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Abstract 
 
Between 0.5% to 1.0% of people in North America suffer from epilepsy, and around 30% of patients 

are drug-resistant. Some drug-resistant patients are candidates for surgery and up to 60% to 70% of 

patients who undergo surgery become seizure-free. Finding a magnetic resonance imaging (MRI) 

abnormality on pre-operative imaging increases the chance of surgical success. However, up to 30% 

to 40% of pre-operative MRIs have no clear lesion in people with drug-resistant epilepsy, and only 

up to 40% to 50% of non-lesional MRI cases become seizure-free after surgery. The focus of this 

work was to design decision support tools to help clinicians evaluate patients for surgery. As the first 

step, we investigated the possibility of segregating MRIs with abnormality from MRIs without any 

abnormality using Deep Learning models. Such models would help clinicians when they examine 

MRIs to find an abnormality. Considering the value of predicting surgery results, in our next step, 

we explored the possibility of predicting the outcome of surgery using MRI and Deep Learning. Our 

results indicate that both lesional and non-lesional MRIs of patients with epilepsy contain signals that 

Deep Learning models can harness to predict the operative success., Finally, we explored the 

possibility of finding an abnormality in MRIs that were reported by radiologists as non-lesional by 

using Deep Learning.  
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Introduction 
 
Around 0.5 to 1.0% of the world population suffers from epilepsy (Fiest et al., 2017; Theodore et 

al., 2006; Wiebe et al., 1999). Of this number, approximately 30% to 40% are drug-resistant  

(Kwan & Brodie, 2000) and may be candidates for evaluation for surgery. Randomized 

controlled trials of epilepsy surgery have shown that 58% to 73% of people with drug-resistant 

temporal lobe epilepsy became seizure-free after surgery, compared to 0% to 8% who continued 

to receive non-invasive management (Engel et al., 2012; Wiebe et al., 2001; Willard et al., 2022). 

In children, up to 37% with drug-resistant epilepsy became seizure-free after surgery compared 

to 0% with medications (Dwivedi et al., 2017). A systematic review and meta-analysis has 

indicated that long-term follow-up for seizure freedom after temporal lobe surgery is similar to 

those reported in short-term studies (Téllez-Zenteno et al., 2005). It is also worth mentioning that 

the success rate is lower for patients with extratemporal epilepsy (De Tisi et al., 2011). 

 

The primary purpose of this thesis is to investigate the possibility of using machine learning and 

magnetic resonance imaging (MRI) to help physicians when dealing with drug-resistant  patients 

who may be candidates for surgery. The goal is to provide tools to improve the result of surgery 

and increase the chances of seizure freedom after surgery.   

 

As the quality of MRI is improving, experts have better means to identify the location of the 

abnormality (Bernasconi et al., 2011). MRI of 44% of patients with epilepsy have no sign of 

abnormality (MRI-negative), and usually, the number is higher for extratemporal epilepsy cases 

(Téllez-Zenteno et al., 2010). This is important because one of the main factors in the success of 

epilepsy surgery is the presence of abnormality or lesion on MRI (Bien et al., 2009; Lascano et 
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al., 2016). A meta-analysis study by Téllez-Zenteno et al. has identified that patients with 

identifiable abnormality in MRI or histopathology are 40% more likely to become seizure-free 

after surgery than those without identifiable abnormality (Téllez-Zenteno et al., 2010). As a 

result, creating tools that would help clinicians deal with non-lesional MRI cases would be very 

valuable.  

 

Clinical data and information gathered from diagnostic tools help clinicians define the risks and 

benefits of surgery for each case, and as a result, there are studies which have focused on 

identifying predictors of the success of the surgery (Cossu et al., 2008; Jeha et al., 2007). There 

are research studies which have designed binary classification tools to predict seizure freedom 

after surgery using Machine Learning algorithms such as K-Nearest Neighbours, Support Vector 

Machines, Neural Networks and Deep Learning. The mentioned algorithms have used features 

from MRI, electroencephalogram (EEG), Positron Emission Tomography (PET), intracranial-

EEG, clinical data, or neuropsychological data as input (Senders et al., 2018). The related work 

chapter provides an overview of these types of studies.  

 

MRI has been used in two different ways in the mentioned systems. Either the interpretation of 

MRI scans from experts has been fed to the systems (Arle et al., 1999), or features have been 

extracted from MRI and then provided as input to the algorithms (Feis et al., 2013). Research has 

shown that the structure of connectome networks extracted from diffusion-weighted MRI differs 

in brains with epilepsy compared to healthy brains (DeSalvo et al., 2014; Liu et al., 2014). In a 

study, Deep Learning and connectome networks have been used to predict the outcome of the 

surgery (Gleichgerrcht et al., 2018). Deep Learning algorithms are advanced versions of non-
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linear neural networks and were used for a medical case for the first time in the 1990s (Lo et al., 

1995). There was not much attention in research communities on Deep Learning in the 2000s, 

but since 2012 advances in hardware and an abundance of data have revived Deep Learning 

algorithms. The medical imaging community has taken notice of Deep Learning algorithms since 

2015 and started to use them for different cases (Litjens et al., 2017).  

 

There have been different studies designed to predict the outcome of surgery for non-lesional 

MRI cases using clinical information or tools such as EEG (Grigsby et al., 1998; Zakaria et al., 

2012). For example, a study identified that magnetoencephalography (MEG) could be used to 

identify the best candidates for surgery (Ramachandrannair et al., 2007), or in another study, 

clinical factors such as seizure frequency, age of onset of seizures, and a number of failed 

antiseizure medications (ASMs) have been identified as primary factors to predict the result for 

pediatric cases (Arya et al., 2016).  

 

MRIs which have been interpreted as normal by experts may still have information to predict the 

outcome of surgery. There is a possibility that they would contain features indicative of the 

outcome. Assuming that would be the case, the mentioned features can be provided to a classifier 

to predict the outcome. Convolutional Neural Networks (CNNs) have two main components that 

can help with the prediction. First, they automatically select the most relevant features, and then 

they use the selected features to predict the outcome (I. Goodfellow et al., 2016; Rosebrock, 

2017). Given the mentioned characteristics of both the problem and CNNs, they can be a good 

candidate to be used for predicting the outcome of surgery for refractory epilepsy with non-

lesional MRI.  
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There are three main research topics that we have worked on: 

1. To investigate if it is possible to differentiate between normal and abnormal MRIs using 

Deep Learning models. 

A model which can mark an MRI as lesional or non-lesional can help physicians 

when identifying candidates for surgery or when planning the surgery. For 

example, when a physician does not find an abnormality in an MRI, while the 

model suggests that there should be one, the physician may re-examine the MRI 

and find the abnormality. 

 

2. To investigate if it is possible to predict the result of surgery using MRI. 

Predicting the result of surgery for both lesional and non-lesional cases can 

significantly impact surgery outcomes.  

 

3. To investigate the possibility of helping physicians find abnormality in MRIs that are 

reported to be non-lesional by comparing MRIs of healthy brains and non-lesional brains 

using Deep Learning. 

Finding abnormality in MRIs is one of the indicative factors for successful 

surgery, and as a result, helping physicians to find abnormality can be very useful.  

 

The introductory chapters of this document contain information about epilepsy, machine 

learning, Deep Learning, and computer vision, along with a related work chapter which presents 
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an overview of other published research related to the focus of the thesis work. After providing 

the introductory information, the three mentioned main projects are presented in detail.  
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1 Background 
 
Given the interdisciplinary nature of this work, the background chapter has two sections. The 

first section targets readers without medical background and provides general information about 

epilepsy. The second section provides an overview on machine learning, computer vision and 

Deep Learning algorithms. It also discusses the application of Deep Learning to analyze medical 

images.  

 
1.1 Epilepsy 
 
Epilepsy is the fourth most common neurological disease after migraine, stroke and Alzheimer's 

and affects between 0.5 to 1% of the global population (Ngugi et al., 2010). The prevalence of 

epilepsy is higher in low-income and middle-income countries compared to high-income 

countries. This could be due  to higher rates of traffic accidents, birth injuries and 

neuroinfectious disorders (Singh & Trevick, 2016). Around 75% of epileptic seizures start during 

childhood which indicates the susceptibility of the developing brain to seizures (Stafstrom & 

Carmant, 2015). Reported incidences also increase in older age groups (more than 50-60 years 

old). Epilepsy reported in older adults could be caused by other neurological problems such as 

tumours or stroke. Although, in general, the prevalence of epilepsy is the same in both male and 

female patients, in some regions, the rate of male patients is higher, which could be due to 

underreporting by women considering the fact that in those regions, the women could be 

regarded as unmarriable if the diagnosis would be known (Fiest et al., 2017).  
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1.1.1 Definition  
 
Epilepsy is a result of abnormal electrical brain activity, also known as seizure. The following is 

the clinical definition of epilepsy provided by the International League Against Epilepsy (ILAE): 

1. “At least two unprovoked (or reflex) seizure occurring more than 24 hours apart; 

2. One unprovoked (or reflex) seizer and a probability of future seizures similar to the 

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the 

next 10 years;  

3. Diagnosis of an epilepsy syndrome. 

Epilepsy is considered resolved for  age-dependent epilepsy syndromes in those past the 

applicable age or those who have remained seizure-free for the last 10 years, with no seizure 

medicines for the last 5 years.” (Definition of Epilepsy 2014 // International League Against 

Epilepsy, n.d.) 

Provoked seizures are a type of seizure which are caused by head injury, fever or other 

reversable insults, while unprovoked seizures mentioned in the above definition do not have an 

immediate cause.  

 

1.1.2 Symptoms  
 
 Patients experience different conditions depending on the type of seizures and their location. 

Symptoms of epilepsy include (Devinsky et al., 2018): 

• Loss of consciousness or awareness 

• Stiffing of the muscles  

• Jerking of legs and arms  

• Sensation that rises from the abdomen to the chest  
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• Experience of déjà vu 

 

1.1.3 Seizure Classification 
 
ILAE classifies seizures into three main groups: focal onset, generalized onset, and unknown 

onset. Figure 2.1 shows both basic and expanded versions of the classification. The basic version 

is meant to be used by practitioners who are not specialized in epilepsy, and the extended version 

is meant for physicians who are specialized in epilepsy (R. S. Fisher et al., 2017). 

 

Focal Onset 

Focal seizures originate in neuronal networks in only one hemisphere of the brain. The 

manifestation of focal seizures on the body depends on where the seizure starts in the brain. For 

example, seizures starting in the occipital lobe may result in visual phenomena. These types of 

seizures are divided into two main categories. 

1. Aware (without loss of consciousness). This type of seizure does not cause loss of 

consciousness but may alter other senses, feelings, or emotions. It also can cause 

involuntary movements of some parts of the body, such as arms and legs.  

2. Impaired awareness. This type of seizure results in change or loss of awareness or 

consciousness. During the seizure, the person my stare into space and not respond to the 

surrounding environment. The patient may also perform repetitive movements.   
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Figure 2.1: International League Against Epilepsy's definition of different types of seizures 

 
 
 
 
 
 



 10 

Generalized Onset 

This type of seizure rapidly engages bilaterally distributed networks. Therefore, some seizures 

may start focally and change to generalized onset.  

1. Motor 

a. Tonic-clonic. They may result in a sudden loss of consciousness, body stiffening 

(tonic), and then paroxysmal body shaking/convulsions (clonic). They are 

considered to be the most dramatic type of seizure. They can sometimes result in 

biting the tongue or loss of bladder control.  

b. Other Motor. These types of seizures are classified to seven types of seizures 

listed in figure 2.1. They each affect the body in different ways. For example, 

Tonic seizures usually affect muscles in the back, arms, and legs, whereas Clonic 

seizures affect the neck, face, and arms.  

2. Non-motors (absence). This type of seizure may cause a short loss of awareness and 

mainly occur in children. There may be subtle body movements during the seizure.  

 

1.1.4 Causes  
 
The cause of epilepsy cannot be identified in all people who have epilepsy, but the following is a 

list of factors which can be considered as the root of the illness (Devinsky et al., 2018).  

• Genetic  

• Structural (example: stroke and brain tumours) 

• Infectious (example: viral brain infections)  

• Metabolic (example: facilitated glucose transporter member 1 deficiency) 

• Immune (example: multiple sclerosis and autoimmune encephalitis)  
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It is also noteworthy to mention that there are factors which may increase the risk of epilepsy. 

The following are three of the mentioned factors (Pitkänen et al., 2016):  

• Brain injuries  

• Brain tumours and stroke  

• Central Nervous System infection  

 

Up to 10% of people in the world will experience seizure at some point in their lives (Hauser & 

Beghi, 2008), but not all seizures fall under the definition of an epileptic seizure. History and 

clinical examinations along with the context and situation in which the seizure happened, help to 

diagnose epilepsy. Diagnostic tools such as EEG and neuroimaging also help clinicians  in 

diagnosing, treating,  and prognosticating epilepsy (Stafstrom & Carmant, 2015). 

 

1.1.5 Comorbidities, Mortality, and Complications  
 
Mental health disorders are among the main epilepsy comorbidities. For example, depression is 

one of the major comorbidities of epilepsy, and around 30% of patients with epilepsy suffer from 

depression. This number is more than 50% for treatment-resistant patients. Depression is also 

associated with a reduction in adherence to medication and the highest seizure frequency  

(Boylan et al., 2004; Fazel et al., 2013; Fiest et al., 2013). Stress and anxiety are two other 

known mental health disorders in patients with epilepsy. People who have epilepsy report higher 

levels of stress compared to the rest of the population (McKee & Privitera, 2017). Sexual 

dysfunction is also common in patients with epilepsy and could have pharmacological or illness 

specific reasons behind it (Atif et al., 2016; Y. Yang & Wang, 2016). It is also reported that 
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nonpsychiatric issues such as cardiovascular and respiratory disorders, diabetes, and obesity have 

higher rates in patients with epilepsy compared to the normal population (Strine et al., 2005).  

 

Epilepsy can lead to dangerous circumstances if the seizure happens at certain times. For 

example, it can lead to falling, drowning or car accidents. Two of the rare but life-threatening 

complications are status epilepticus and sudden unexpected death in epilepsy (SUDEP). Status 

epilepticus is a state of continuous seizure that lasts more than five minutes or a state of frequent 

recurrent seizures (Devinsky et al., 2018).  

 

1.1.6 Temporal Lobe Epilepsy  
 
The human brain has two hemispheres, and each hemisphere contains four lobes (Brain Lobes - 

Mayo Clinic, n.d.) (Figure 2.2): 

• Frontal lobe: This part of the brain is responsible for cognitive functions, emotional 

regulation, planning, reasoning, problem-solving and control of voluntary movements.  

• Parietal lobe: This part of the brain is responsible for integrating sensory information.  

• Temporal lobe: This part of the brain is responsible for processing information about 

memory, receiving auditory information from the ears and analyzing complex visual 

information. The hippocampus is located in the middle of the temporal lobe and is 

responsible for learning and memory.   

• Occipital lobe: This part of the brain is mainly responsible for vision-related functions.   
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Figure 2.2: Brain lobes and their location. The image is borrowed from Mayo Clinic’s website (Brain Lobes - Mayo Clinic, n.d.). 

 

Temporal lobe epilepsy is the most common type of epilepsy when considering focal seizures. 

Seizures originating in the middle of the temporal lobe cause changes in behaviour, memory, and 

responsiveness. They also usually negatively impact cognition. Seizures starting in the temporal 

lobe may discharge beyond the hippocampus (Stafstrom & Carmant, 2015). Most of the 

conducted surgeries are on temporal lobe epilepsy cases.  

 

1.1.7 Treatments  
 
There are at least more than 20 Anti-seizure drugs (ASDs), also known as Antiepileptic Drugs 

(AEDs) or Antiseizure Medications (ASMs). The type and dosage of medication are decided by 

the physicians based on age, type of epilepsy, history, and other clinical findings related to the 
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patient. Usually, the medication course starts with lower dosages, and if needed, the dosage is 

increased. Around 80% of patients experience adverse effects of the ASDs, and in 30% to 40% 

of the cases, the implications are more severe and may affect adherence to the medication 

(Marson et al., 2005). Approximately 50% of patients get to the state of seizure control after 

using the first drug. The second drug would help another 13% to achieve seizure control, and less 

than 4% will achieve seizure control after using the third drug (Kwan & Brodie, 2000). Usually, 

if the patients would not improve after using two types of medication, they would be considered 

for surgery—typically, up to  60-70% of patients who have surgery become seizure-free, 

depending on the type and site of operation.  

 

To find the sections of the brain where the seizure starts, the following diagnostic tools are being 

used: 

• Routine and sleep-deprived EEG studies 

• Inpatient video-EEG and Invasive EEG (with surgically placed electrodes) 

• MRI 

• Positron emission tomography (PET). PET is a type of imaging.  

• Single-photon emission computerized tomography (SPECT). This procedure measures 

the blood flow in different parts of the brain. Usually, parts which cause seizures have a 

higher blood flow.  

• Magnetoencephalography or MEG scan is a medical test which measures magnetic fields 

produced in the brain.  

Depending on the identified location and the area to be removed, there may be a need for an 

additional procedure such as fMRI and Wada test. Wada test helps with identifying which side of 
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the brain controls language. It also identifies which side is more responsible for memory-related 

functions. Neuropsychological tests may also be recommended to measure learning skills and 

establish the baseline for cognitive functions.  

 

Considering different factors, the best candidates would be selected for surgery by physicians. 

Surgery is mainly an option for focal epilepsy cases and rarely is considered for generalized 

epilepsy. Depending on the location of the start of the seizure in the brain, different types of 

surgery would be considered. The following are the types of surgeries: 

a. Resective surgery: In this type of surgery, a small portion of the brain is removed, 

typically with the aim of rendering the patient completely seizure-free.  

b. Laser interstitial thermal therapy (LITT): In this type of surgery, a laser is used to 

pinpoint and destroy a small section of the brain, again with the goal of complete seizure 

freedom.  

c. Deep brain stimulation: In this type of surgery, a device is implanted in the brain to 

release electrical signals to prevent abnormal signals. This is usually considered to be a 

palliative procedure, with the goal of reducing the frequency of seizures.   

d. Corpus Callosotomy: Corpus callosum connects the two brain hemispheres. In some 

cases, disrupting this connection would prevent the spread of seizures from one side of 

the brain to the other side.  

e. Hemispherectomy. In this type of surgery, one side of the cerebral cortex is removed.  

f. Functional hemispherectomy. In this type of surgery, connection nerves are removed, and 

it is mainly considered for children (Epilepsy Surgery - Mayo Clinic, n.d.) 
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The status of seizures is measured based on two scales; Engel Outcome Scale (Engel, 1993) and 

International League Against Epilepsy (ILAE) Outcome Scale (Wieser et al., 2001). The Engel 

Scale has three classes with subclasses, and ILAE Scale has six classes without subclasses. Using 

these classes and subclasses, the outcome of surgery can be described. For example, Engel class 

IA would be an indication of being completely seizure free since surgery, and ILAE class 1 is an 

indication of being seizure-free. Table 2.1 lists all the classes of both scales.  

 

There are guidelines developed for managing patients with epilepsy, and they have specific 

sections for drug-resistant  patients. For example, Figure 2.3 reflects a section of Provincial 

Guidelines for Epilepsy Surgery Referrals in Ontario (Original Guidelines - Ontario Epilepsy 

Guidelines, n.d.). As the flowchart indicates, once it is identified that the second ASM is not 

effective, the case is marked as Medically Refractory Epilepsy (MRE), and the patient is referred 

to District Epilepsy Centre DEC. In DEC, the patient would be admitted to an Epilepsy 

Monitoring Unit and based on all the gathered information, the team decides on the possibility of 

surgery and sends the patient to a Regional Epilepsy Surgery Centre (RESC). Regional Epilepsy 

Surgery Centres have a multidisciplinary team which includes: 

• epileptologist 

• technologist 

• nurse 

• neuropsychologist 

• medical social worker 

• clinical psychologist/psychiatrist  

• community epilepsy liaison 
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• neurosurgeons 

This team makes the final decision on surgery and proceeds based on patient consent. The 

composition of the team reflects the importance and complexity of the decisions that are made by 

the team.  

Engel Outcome Scale ILAE Outcome Scale 

Class I: Free of disabling seizures 
• IA: Completely seizure-free since 

surgery 
• IB: Non disabling simple partial 

seizures only since surgery 
• IC: Some disabling seizures after 

surgery, but free of disabling seizures 
for at least 2 years 

• ID: Generalized convulsions with 
antiepileptic drug withdrawal only 

Class II: Rare disabling seizures (“almost 
seizure-free”) 

• IIA: Initially free of disabling seizures 
but has rare seizures now 

• IIB: Rare disabling seizures since 
surgery 

• IIC: More than rare disabling seizures 
after surgery, but rare seizures for at 
least 2 years 

• IID: Nocturnal seizures only 
Class III: Worthwhile improvement 

• IIIA: Worthwhile seizure reduction 
• IIIB: Prolonged seizure-free intervals 

amounting to greater than half the 
follow-up period, but not less than 2 
years 

1. Class IV: No worthwhile 
improvement 

o IVA: Significant seizure 
reduction 

o IVB: No appreciable change 
o IVC: Seizures worse 

 

• Class 1: Completely seizure free; no 
auras 

• Class 2: Only auras; no other seizures 
• Class 3: 1 to 3 seizure days per year; ± 

auras 
• Class 4: 4 seizure days per year to 

50% reduction of baseline seizure 
days; ± auras 

• Class 5: Less than 50% reduction of 
baseline seizure days; ± auras 

• Class 6: More than 100% increase of 
baseline seizure days; ± auras 

 

Table 2.1: Engle and ILAE Seizure Status Scales (Engel Surgical Outcome Scale – MGH Epilepsy Service, n.d.) 
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Figure 2.3: Ontario’s guideline to manage drug resistance patients (Original Guidelines - Ontario Epilepsy Guidelines, n.d.). 

 
One of the options considered for drug-resistant patients who are not candidates for resective 

surgery is neurostimulation. The Vagus Nerve Stimulator (VNS) is a neurostimulation device 

which is implanted in the body, and it has been shown that it reduces seizure frequency. As 

Figure 2.4 shows, in this method, a signal generator gets connected to the vagus nerve. More 

recent methods for neurostimulation have also shown promising results (R. Fisher et al., 2010; 

Milby et al., 2009; Ryvlin et al., 2018). Dietary therapies are also another treatment option. 

Different types of diets have shown seizure reduction or even, in some cases, seizure freedom 

(Cervenka et al., 2016; Lefevre & Aronson, 2000). Adherence to the diet can be challenging as it 

may have adverse effects such as constipation. The diets also may cause long-term complications 

such as nutritional deficiency or growth complications in children (Kang et al., 2004). Precision 

medicine is another avenue which is currently being explored and shows promising results. 
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Having targeted solutions based on genetic dysfunction can become a very effective choice in the 

future (Kearney et al., 2019).  

 
Figure 2.4: Vagus Nerve Stimulation (VSN) therapy. The signal generator sends signals to the vagus never. The image is 
borrowed from Epilepsy Queensland website (Vagus Nerve Stimulation (VNS) Therapy - Epilepsy Queensland, n.d.). 

 

1.1.8 MRI and Epilepsy  
 
Magnetic Resonance Imaging is an imaging technique which uses magnetic fields and radio 

frequency energy (electromagnetic waves) to produce images of different organs of the body. For 

epilepsy patients, the brain MRI of the patient would be investigated to find structural 

abnormalities.  

 

Changing parameters related to the magnetic field and the radio frequency energy during the 

image acquisition process would result in different types of images called sequences. Three 

major types of sequences are T1-weighted, T2-weighted and Fluid Attenuated Inversion 

Recovery (FLAIR). Different tissues in the human body have different brightness in each MRI 

sequence (Figure 2.5). One of the main parameters in MRI is the strength of the magnetic field, 
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and the unit of its measurement is Tesla. Usually, the MRI scans used for epilepsy are either 1.5T 

or 3T. The higher magnetic field results in a higher quality image which could be beneficial in 

finding abnormalities in MRIs.  

 

The International League Against Epilepsy Neuroimaging Task Force consensus report 

published in 2019 recommends the following MRI formats to be examined when providing care 

for patients with epilepsy.  

• Isotropic, millimetric 3D T1 images 

• Isotropic, millimetric 3D FLAIR images 

• High-resolution 2D submillimeter T2 images (Bernasconi et al., 2019) 
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Figure 2.5: MRI of the brain in three different sequences. As it is listed in the table, different tissues look differently in each 
sequence. The image is borrowed from the MRI Basics website (MRI  Basics, n.d.). 

 

An example of the presence of lesional area displayed in slices of a FLAIR image is presented in 

Figure 2.6.  

 

Figure 2.6: An example of the manifestation of epilepsy related lesion shown by the tip of arrows in six slices of a FLAIR image 
(Bernasconi et al., 2019). 
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MR images are usually stored in DICOM format, but scientists in the neuroimaging community 

use the Nifti format to analyze the images. The DICOM format consists of a set of 2D images (or 

files) which together can render 3D format, whereas the Nifti format is a single file which 

renders a 3D image.  
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1.2 Artificial Intelligence, Machine Learning and Deep Learning  
 
In this section, an overview of technical concepts related to the projects of the thesis is provided. 

The main purpose is to cover basic concepts related to machine learning (ML) and Deep 

Learning (DL). Before starting to explore these concepts, it would be a good idea to mention 

how AI, ML and DL are related to each other. Conceptually, AI can be described as attempts to 

automate intellectual tasks performed by humans (Chollet, 2021). The field encompasses 

different methods to achieve such states. One example would be using rule-based methods to 

control traffic lights. ML is another set of tools in the realm of AI, and DL is a type of ML 

algorithm (Figure 2.7).  

 

 

Figure 2.7: Machine learning is a set of tools that can be used when developing Artificial Intelligence solutions. Deep Learning is 
a subset of machine learning algorithms. 
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1.2.1 Machine Learning 
 
Machine learning is a set of algorithms which analyzes data and desired outcomes to infer rules 

which can help to find answers for new data. For example, if you want to have a system which 

automatically tags images of dogs and cats, first you need to present many images of dogs and 

cats which are tagged by humans to a machine learning algorithm. The algorithm will find/learn 

patterns which it will use to automatically tag new pictures of dogs and cats. The learned rules 

are called a model. In the process of learning, the machine learning algorithm learns how to 

transform the data into a more useful representation of data which would result in the expected 

output. In other words, “all machine-learning algorithms consist of automatically finding such 

transformations that turn data into more useful representation for a given task” (Rosebrock, 

2017).   

 

Classical Machine Learning Algorithms  

Excluding Deep Learning, machine learning algorithms generally can be grouped into four 

categories: 

• Probabilistic modeling  

• Early artificial neural networks  

• Kernel methods 

• Decision trees, random forests, and gradient boosting machines  

 

Probabilistic Modeling 

Probabilistic models use statistical principles for machine learning type tasks. They are the first 

generation of machine learning algorithms. An example of this type of model is Naïve Bayes 
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classifier which is based on Bayes’ theorem. Naïve Bayes has been used to analyze data even 

before computers. Another famous example of this type of model is logistic regression. Logistic 

regression is an algorithm which is vastly being used for classification and is usually one of the 

first choices to be tested for classification tasks.  

 

Early Artificial Neural Networks  

Early forms of artificial neural networks were developed in the 1950s and 1960s. Artificial 

Neural Networks are mainly designed for pattern recognition and classification. They were 

originally inspired by neurons in the brain and are building blocks of Deep Learning algorithms 

(Rosebrock, 2017). In the 1950s, Perceptron Networks, which are a famous type of neural 

networks, were introduced by Rosenblatt (Rosenblatt, 1958). The basic structure of the early 

models started with nodes, which resemble neurons (Figure 2.8). Inputs to a unit were added up 

and passed to a function to produce the output. The mentioned function is called the activation 

function, and in the early artificial neural networks, they were step functions. In the 1960s, it was 

shown that if the activation function is a linear function, the artificial neural network can only 

solve linear problems, and in order to solve nonlinear problems, the activation function needs to 

be a nonlinear function (Minsky & Papert, 1969). Further research in the following decades 

improved the structure of neural networks and training algorithms. These advances enabled the 

neural networks to be used as non-linear classifiers (Rumelhart et al., 1988; Werbos, 1974). A 

major breakthrough happened when in the mid-1980s backpropagation was introduced as a 

method to train the networks. This enabled the researchers to automatically train multilayer 

feedforward neural networks (Figure 2.9). Other types of artificial neural networks such as point-

attractor networks were also started to be invented and researched in the 1970s and 1980s. For 
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example, Hopfield networks in which all the nodes are connected to each other were introduced 

in that time (Hopfield, 1982) Figure (2.10).  

 

 

 

Figure 2.8. The simplest type of nodes (neurons) in artificial neural networks. The inputs are multiplied by a weight, and then all 
the inputs are added up and passed to a non-linear function. 

 
Figure 2.9: An example of a feedforward network. The image is produced by Dotnet program (GitHub - Martisak/Dotnets: Create 

Simple Drawings of Neural Networks Using Graphviz, n.d.). 
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Figure 2.10: Presentation of a Hopfield network with eight nodes. All the nodes are connected to all the other nodes. The picture 

is from primo.ai (Hopfield Network (HN) - PRIMO.Ai, n.d.) 

 

Kernel Methods 

Transforming data points to their presentation in a higher dimension may make the classification 

task easier (Figure 2.11). This transformation is not an easy task, and kernel methods were 

introduced to find alternative solutions. These type of methods omit the calculation of the 

coordinates of the data points in the higher dimension and finds the hyperplanes as decision 

boundaries based on the distance of the data points in the new space. Support Vector Machine 

(SVM) is the most famous algorithm of Kernel methods, and its evolved version was developed 

in the 1990s at Bell Labs (Cortes & Vapnik, 1995). 
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Figure 2.11: Presentation of data points in a higher dimension may make it easier to find decision boundaries. The image is 

borrowed from a Medium blog by Kundo (Finding Non-Linear Decision Boundary in SVM | by Sourodip Kundu | Medium, n.d.). 

 
 

Decision trees, random forests, and gradient boosting machines  

Decision trees are tree-like models. Each internal decision point presents a conditional statement 

which is applied to the input of that node to decide which branch the data belongs to.  They are 

used to classify data or to predict based on input data (Figure 2.12).  
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Figure 2.12: A basic presentation of a decision tree algorithm. 

 

Random forest algorithms work by creating many specialized decision trees and ensembling their 

results. Gradient boosting machine is another group of machine learning algorithms, and similar 

to random forests, it ensembles the results of models. In these types of models, gradient boosting, 

which is a method to improve the result of learning models, is applied to weak models, generally 

decision trees, to improve their results. Basically, gradient boosting is an iterative algorithm 

which works as the following. First, it starts by fitting the first model to the data. Then the 

second model is fitted with the purpose of improving the performance of the first model. On the 

third iteration, another model is fitted with the purpose of improving the performance of the 

ensemble version of the first two models. This process is repeated in a fashion that each time the 

new model improves the performance of an ensemble of models of the previous iterations. 
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Finally, the ensemble of all the models is the outcome of the algorithm. In most cases, gradient 

boosting machines outperform decision trees and random forests.  

 

Deep Learning has proven to be a very powerful tool for many machine learning related 

problems, specifically with perceptual data such as images, videos, and sounds. The reason that it 

has attracted attention is not only the fact that it outperforms other models in many cases but also 

its ability to automatically perform feature engineering and select the most appropriate features 

for the task at hand (Chollet, 2021). In the next section, Deep Learning for medical images is 

explored as it pertains to the main concepts used in this work.  

 

1.2.2 Deep Learning and Medical Images  
 
Background 
 
Rule-based image processing systems were among the first artificial intelligence algorithms 

which have been used to analyze medical images (Haugeland, 1985). Applying computer vision 

algorithms which learn patterns was the next step in analyzing medical images. In these types of 

algorithms, the system is trained to recognize patterns based on handcrafted features from a 

chosen dataset. One of the ways to improve the performance of these types of algorithms is to 

conduct various methods to find the appropriate features. Given the challenges of finding 

relevant features, having a system which can identify the right features and learn them 

automatically would be very useful. As mentioned before, finding features which optimally 

represent the data is one of the main attributes of Deep Learning (DL) algorithms. There are 

different types of DL algorithms, such as CNNs, Recurrent Neural Networks (RNNs)(Graves, 

2013) and Generative Adversarial Networks (GANs) (I. J. Goodfellow et al., 2014). 
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Convolutional Neural Network (CNN) is one of the major types of DL algorithms used 

extensively for analyzing medical images. CNNs have two sections. In the first part, the input 

goes through layers of convolutional filters. These filters extract appropriate features and pass 

them to the second section. In the second section, a neural network performs the machine 

learning task based on extracted features (Figure 2.13) (Rosebrock, 2017). CNNs consist of 

layers and each layer contains units which are called neurons. These units take the output from 

neurons of the previous layer, apply a mathematical function to them and then pass the results to 

the next layer. During the training phase, the mentioned functions would be defined. (Chollet, 

2021). 

 

 In the lower convolutional filters of the first section (convolutional layers), simple patterns such 

as lines and edges are recognized, and as the number of filters grows, more sophisticated patterns 

such as complete shapes are recognized by the filters. The output of each convolution layer is 

called a feature map. The last feature map of the convolution layer has fewer data points 

compared to the number of pixels of the image. In Figure 2.14, the activations of convolution 

layers for corresponding images are visualized (Zeiler & Fergus, 2014). Based on the mentioned 

information, in a CNN which classifies cats and dogs images, the very first layers probably 

extract lines, corners and circles, whereas the few last layers of the convolution extract patterns 

like the shape of the face of the cat or dog. Another interesting point about the convolution layers 

is that it does not matter where the learned pattern would be expressed in the image. After 

learning a pattern in the middle of the image, the convolution layer can extract it from anywhere 

on the image.  
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Figure 2.13: Input, output and two main sections of a CNN 

Different algorithms have been designed to train the networks, and one of the famous and 

effective algorithms is stochastic gradient descent (Rosebrock, 2017). The architecture of a 

network is defined by different factors such as the number of layers, types of layers and how the 

neurons of each layer are connected to the next layer. In the last decade, the architecture of 

CNNs has evolved, improved, and changed to solve specific problems. Three types of CNNs 

architectures are listed in Table 2.2.  

 

Research on CNNs started in the late seventies (Fukushima, 1980), and they were used to 

analyze medical images in the nineties (Lo et al., 1995). A seminal paper on CNNs was 

published at the end of the last century when they were used for classifying handwritten digits 

(LeCun et al., 1998). After that, for more than a decade, there were not many research works 

published on the subject. The CNNs introduced in the nineties needed powerful computational 

systems to calculate their parameters. Advances in core computational powers and methods 

which improve the algorithm itself have made CNNs more practical in the recent decade. In fact, 

the power of CNNs was not revealed until 2012, when technological advances and the use of 

Graphical Processing Units (GPUs) instead of Central Processing Units (CPUs) for DL 

algorithms allowed researchers to apply them to a large amount of data (Rosebrock, 2017). The 

tipping point was when Krizhevsky and his colleagues used DL to win the ImageNet competition 

in 2012 (Krizhevsky et al., 2012). After that, extensive work has been done to improve the 
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architecture of DL algorithms. The network introduced by Krizhevsky is called AlexNet and is a 

stepping stone for the variety of algorithms which were designed in the last decade. The name of 

the network is based on the first name of Krizhevsky. Researchers who work on medical image 

analysis noticed the power of Deep Learning algorithms in 2013. Related work started appearing 

in workshops and conferences, followed by journal papers in 2013 and 2014. The number of 

publications related to applying CNNs to medical images grew rapidly in 2015 and 2016 (Litjens 

et al., 2017).  

 

 

Type Notes 

Conventional 

Architecture  

These networks have two main sections. One which selects the features and 

one which classifies (Krizhevsky et al., 2012).  

Multi-stream 

Architecture 

These networks are designed to accept multi sources of data and merge 

them at some point (Farabet et al., 2013).  

Segmentation 

Architecture 

The architecture of CNN has been changed to improve the efficiency for 

segmentation tasks (Ronneberger et al., 2015).  

Table 2.3: Three types of architectures of CNNs. 
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Figure 2.14: Visualization of features in convolution layers of a trained network (Zeiler & Fergus, 2014) 
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Applying DL on Medical Images   
 
Using Clinical Decision Support Systems (CDSS) can improve the quality of care in a variety of 

ways. For example, they can bring standardization to healthcare which results in receiving the 

same quality of care regardless of the geographical location, or they can help with providing care 

with the most recent evidence given that the CDSSs knowledge can be based on the most recent 

evidence. They can address a lack of resources in rural areas or developing countries. DL 

algorithms can help design CDSSs, and there have been many related works published on this 

subject. For example, they have been used for skin lesion classification (Esteva, et al., 2017). DL 

algorithms have been used to analyze images of different anatomical areas of the body produced 

by different modalities. For example, they have been used to analyze images of the brain 

(Ghafoorian et al., 2016), retina (Zilly et al., 2017), chest (Rajpurkar et al., 2017), breast (Samala 

et al., 2016) and heart (C. Chen et al., 2019). A review conducted in 2017 on PubMed and 

ArXive databases has identified that 58 major projects which have used DL algorithms to 

analyze brain MRI have been published until 2017. The DL algorithms have been used for 

different purposes, such as classification, localization, segmentation, and registration (Table 2.3) 

(Litjens et al., 2017).   
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Task Types 

Classification a. Image or exam classification – Helping to identify if a certain disease 

exists or it does not. Example: detecting Alzheimer's disease 

(Ebrahimighahnavieh et al., 2020)    

b. Object or lesion classification – Helping to classify different objects in 

the image. Example: Classification of skin cancer (Esteva et al., 2017)   

Localization  a. Localization – Helping to identify the location of an organ or other 

objects. Localization can be used as a pre-processing step for other 

tasks, such as segmentation. For example, identifying the volume of 

interest (Wolterink et al., 2016). 

b. Object or lesion detection – Helping to find a lesion in an image. 

Example: Automatic detection of cerebral microbleeds from MRI (Dou 

et al., 2016) 

Segmentation a. Organ segmentation – providing information for quantitative analysis 

of the volume and shape of the organs. Example: Subcortical 

segmentation in MRI (Dolz et al., 2016)  

b. Lesion segmentation – Helping with both detecting the lesion and 

segmentation of the structures. Example: Brain tumor detection and 

segmentation (Dong et al., 2017) 

Registration  a. Registration – Helping with the spatial alignment of different images – 

Example: Using Deep Learning for registering images from different 

modalities (Simonovsky et al., 2016) 
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Other a. Survival prediction – Example: Survival Time prediction of brain 

tumor patients (Nie et al., 2016) 

b. Image enhancement – Example: Suppression of bony structures in 

chest radiographs (W. Yang et al., 2017).   

c. Etc.  

Table 2.3: Deep Learning applications for medical images from a variety of modalities 

 

Seminal Networks  
 
Considering the focus of this work, it would be useful to mention the seminal networks and their 

background. These networks are considered to be the cornerstones of the current momentum in 

Deep Learning and classification research. Large image databases also have been instrumental in 

the advancements in Deep Learning. An example of the mentioned databases is ImageNet, with 

14 million images. Since 2010 ImageNet has run an annual contest for image classification, 

which is called the Large Scale Visual Recognition Challenge (LSVRC) (Russakovsky et al., 

2015). ImageNet challenges are usually the place of birth for the mentioned networks. AlexNet, 

GoogLeNet, VGG, and ResNet are among the few major networks which are cornerstones of 

many other networks’ architecture. For the last few years, the winning algorithms of LSVRC 

have performed classification as well as humans do.  

 

AlexNet, which was designed at the University of Toronto, won first place in LSVRC in 2012 

and is considered to be the reason that the computer vision community started to focus on CNNs. 

AlexNet has eight layers; five layers in a convolutional section and three layers of a fully 

connected neural network for the classification (Krizhevsky et al., 2012). GoogLeNet acquired 
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the first place in the 2014 ImageNet competition and had 22 layers. It was introduced by Szgedy 

et al. in 2014 (Szegedy et al., 2015) and resulted in a class of networks called inception models. 

VGG acquired second place in the 2014 ImageNet competition, and it was designed by the 

Visual Geometry Group from Oxford. It has two variations; a 16-layer network (VGG-16) and a 

19-layer network (VGG-19) (Simonyan & Zisserman, 2015). Training is a resource-intensive 

function and usually needs many data points. As mentioned before, a method called transfer 

learning uses an already trained network for a specific task and fine-tunes it for another task with 

fewer datapoints (Chollet, 2021). Although VGG was originally trained for natural images, it has 

been deployed for medical images using transfer learning (Amit et al., 2017).  

 

In 2014 and 2015, research groups were adding to the layers of the networks to increase the 

accuracy, but it was identified that training becomes challenging as the number of layers grows 

due to a problem called vanishing gradients. In order to resolve this problem, He et al. 

redesigned the classical architecture of CNNs and introduced residual blocks (He et al., 2016). 

Their network is named ResNet, and its variations have been used in many studies to analyze 

MRI (Farooq et al., 2017; Fulton et al., 2019; Korolev et al., 2017).  

 

When reviewing the role that DL algorithms play in medical image research, it is worth noting 

the required and available hardware and software tools. As mentioned before, training DL 

algorithms are very resource-intensive task, and the lack of required computational power was 

one of the main reasons that there was no major activity regarding DL algorithms more than ten 

years after the DL works were introduced in the nineties. Training DL algorithms involves 

matrix-related calculations, and given that Graphical Processing Units (GPUs) are designed to 
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deal with matrices, they can be better computational units for DL compared to Central 

Processing Units (CPUs). Since 2012 GPUs have been used for DL algorithms, and 

programming libraries have been developed to bridge between high-level programming 

languages and GPUs (Litjens et al., 2017; Rosebrock, 2017). For example, Figure 2.15 shows 

how Keras, which is a python library that provides a high-level interface for creating neural 

networks, communicates to an NVIDIA GPU. Keras itself uses either Tensorflow or Theano, 

which are both python libraries, to create and run neural networks. The two mentioned libraries 

use the NVIDIA CUDA Deep Neural Network library (cuDNN) to run the functions on GPUs. 

cuDNN is a library designed to implement neural network related calculations on GPUs.  

 

 

Figure 2.15: This picture shows how Keras communicates to GPU to run neural network related functions. 
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Different types of layers in the convolution section of the CNNs 
 

Convolution Layers 

There are different types of layers in the convolutional layers section of CNNs. The main type 

uses convolution filters (or kernels) to extra features. To gain a better understanding of these 

types of layers, it is worth visiting the convolution filter concept.  

 

Convolution Filters 

Convolution is a technique which can help with extracting specific features from an image. For 

example, in Figure 2.16, the result of applying different filters on two images has been depicted. 

In these examples, vertical edges and horizontal edges are extracted from the images. Any two-

dimensional image is basically a matrix of pixel values. By applying a specific matrix to the 

image using the method which will be explained here, we can extract specific components of an 

image. Using this technique, we can also sharpen or smoothen the original image using the 

proper matrix. The matrix which is applied to the original matrix is called Kernel.  

 

Applying Kernel 

If we have a black-and-white image, the image can be presented as a two-dimensional matrix.  

For example, let us assume that the matrix shown in Figure 2.17a presents an image, and we 

want to apply the kernel presented in Figure 2.17b to be applied on it. The center point of the 

kernel is called the anchor, and in this example, the anchor point is 5. To apply the kernel to the 

image, we put the kernel on top of the image and calculate the value of the pixel, which overlaps 

with the kernel value in the fashion shown in Figure 2.17c. We multiply the values of a kernel 

which overlap with pixels and add them. The calculated value is the new value of the pixel, 
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which overlaps with the anchor. We keep sliding the kernel over the image to calculate all the 

new values of pixels (Figure 2.17d). The process starts from the top-left corner, and the kernel 

slides; therefore, in the first step, the anchor point overlaps with the top-left pixel. When 

calculating the values of pixels which are located on the edges and corners of the image, some of 

the kernel elements do not overlap with the pixels, and that creates a challenge. There are a few 

methods to overcome this problem. In one of the methods, which is illustrated in figure 2.17e, we 

can just ignore the elements which are located outside of the image. CNN learns the values of the 

kernel matrix and other values related to this section during the training. The person who designs 

the network still needs to specify the number of filters and the size of the kernel. The design also 

dictates the sliding steps of the filter on the image. For 3D images, such as MRI, these filters are 

3D as opposed to 2D (such as the example discussed above). There are also other types of 

convolutions layers, such 1D convolution layer, which its main purpose is to reduce the 

dimension of the data. 

 

Pooling Layer 

Although the convolution layers by themselves reduce the dimensionality, there are other types 

of layers which are used to downsample the number of datapoint in each layer. One of the 

mentioned types does not learn how to reduce the dimension using linear transformation but has 

a hardcoded method. For example, Max Pooling, which is a very common type of these kinds of 

layers, extracts the maximum number of fixed blocks of numbers and passes it to the next layer. 

These blocks usually consist of four numbers (Figure 2.18).  
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Main Image 

 
 

Horizontal 
Edge 
Detection  

 
 

Vertical Edge 
Detection  

 
 

Figure 2.16: Applying filters to two images to extract horizontal and vertical edges. Source: (Filters in Convolutional Neural 
Networks, n.d.) 
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1 0 2 2 4 3 
1 1 0 3 2 2 
3 0 2 0 3 1 
1 1 0 3 4 2 
5 2 3 2 1 1 

(a) 
 

0 -1 0 
-1 5 -1 
0 -1 0 

(b) 
 

1*0 0*-1 2*0 2 4 3 
1*-1 1*5 0*-1 3 2 2 
3*0 0*-1 2*0 0 3 1 

1 1 0 3 4 2 
5 2 3 2 1 1 

 
(1*0)+(0*-1)+(2*0)+(1*-1)+(1*5)+(0*-1)+(3*0)+(0*-1)+(2*0)=4 

(c) 
 
 

1 0*0 2*-1 2*0 4 3 
1 1*-1 0*5 3*-1 2 2 
3 0*0 2*-1 0*0 3 1 
1 1 0 3 4 2 
5 2 3 2 1 1 

(d) 
 
                                              (1*5)+(1*0)+(1*-1)+(1*0)=4 

0 -1 0     
-1 1*5 0*-1 2 2 4 3 
0 1*-1 1*0 0 3 2 2 
 3 0 2 0 3 1 
 1 1 0 3 4 2 
 5 2 3 2 1 1 

(e) 
 

Figure 2.17: showing how to apply a convolution filter on a matrix. 
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Figure 2.18:  Applying Max Pooling and Average Pooling on a matrix. 

 

Preventing Overfitting – Dropout  

There are a few different methods to prevent overfitting in neural networks. Regularization is a 

well-known method in machine learning to prevent overfitting. Another method which is 

designed for the neural network is called dropout. What dropout does is to ignore a portion of the 

neurons of a layer during the learning phase. In other words, it randomly chooses some of the 

outputs of each layer and sets them to zero (Figure 2.19). 

 

Figure 2.19:  Applying dropout to a neural network. Source: (Srivastava et al., 2014) 
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Training and Many Images  

Generally, many images are required to train Deep Learning algorithms and not having access to 

a desirable number of data points is a well-known issue when training Deep Learning algorithms. 

Researchers are working on different methods to overcome this problem. A well-known method 

is using data augmentation techniques, such as introducing noise to existing images or flipping 

them. The mentioned techniques are usually used during most CNN training processes. Creating 

synthetic data or using transfer learning are the two other methods which can be deployed 

depending on the nature of the task at hand.  

 

Generating Synthetic Data 

Creating synthetic data for healthcare is an active area of research. Different algorithms are being 

designed and used to create synthetic medical data. There are research groups that are working 

on creating synthetic medical images using computer algorithms. The following are two of the 

algorithms being used to create synthetic medical data.  

 

1. Generative Adversarial Networks  

Generative Adversarial Networks (GANs) are a type of Deep Learning algorithm that can create 

new images which look like the training set that was provided. Using this algorithm, there are 

research works which have used GANs to create new data points to train CNNs (Sixt et al., 

2016). GANs also have been used for medical image synthesis in order to increase the accuracy 

of networks which have been trained for a classification task (Yi et al., 2018). Figure 2.20 shows 

medical images generated with different GAN methods along with the original data. Using 
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GANs to create medical images may help researchers in the medical image community in the 

future.   

 

Figure 2.20: Examples of generated medical images using different types of GANs. The first column is real data. Source: 
(Skandarani et al., 2021) 

 
2. Diffusion Models  

Recently, generating natural images using text-to-image models such as DALL-E 2 has attracted 

attention. In these models, the computer generates an image based on described text (Figure 

2.21). The emergence of such models shows that the future of image and video content will be 

affected by materials created by computer algorithms. DALLE-2 project used a diffusion model 

to render the images. Recently a research group has used a diffusion model to generate brain 

MRIs and created an openly available synthetic database with 100000 brain images (Figure 2.22) 

(Pinaya et al., 2022). This type of effort will enhance the available data for future research in 

medical image analysis.   
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Figure 2.21: An image generated by a text-to-image model (DALLE 2) based on the following text: "a teddy bear on a skateboard 

in times square". Source: (Ramesh et al., 2022) 

 
 

 

 

Figure 2.22: Synthetic MRI created by a Latent Diffusion Model. Source: (Pinaya et al., 2022) 

 

Transfer Learning  

A method called transfer learning uses an already trained network and fine-tunes it for another 

task (Chollet, 2021). This method has two phases. In the first phase, a network is trained on a 

large dataset, and then in the second phase, the trained network is retrained on a specific dataset 
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for the target task. The first phase of training helps the network to learn general and less specific 

features that can be used on the target task. Transfer learning can result in requiring a lower 

number of images for the target task. One of the popular datasets that is being used for transfer 

learning is ImageNet. As it was mentioned before, ImageNet is an image database with 14 

million images (Russakovsky et al., 2015). There are studies which have used transfer learning 

and ImageNet for medical images (Gulshan et al., 2016; Majkowska et al., 2020). Recent 

research published by Google has investigated works which have used networks trained on 

ImageNet and transfer learning for classifying medical images. It has been identified that transfer 

learning does not improve performance on medical image classification tasks with a large 

number of images, but it would shorten the convergence time. They also identified that the lower 

layers of the network (layers closer to input) have little change during the second phase of 

training (training for target task). This means that features learned in lower layers during the first 

phase of training are reused in the second phase (Raghu et al., 2019). The finding matches the 

conventional understanding of the patterns learned in lower layers. As the work of Zeiler and 

Fergus indicated, the lower levels learn simpler patterns, such as edges, while the higher layers 

learn more sophisticated patterns (Zeiler & Fergus, 2014). If the nature of images in the first 

phase and second phase are the same, more layers probably keep the learned patterns and reuse 

them in the second phase of training. This would reduce the number of images needed to train in 

the second phase. For example, with transfer learning and using a network which has been 

trained on ImageNet, the network can reach to around 90% accuracy with only three images. 

Figure 2.23 depicts the effect of the number of images used during transfer learning for the cat vs 

dog task on accuracy. It is important to note that one of the reasons for such a low number is that 

there are many cats and dogs images in the ImageNet dataset, but still, the example shows that 
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transfer learning reduces the required number of data points. It also can be speculated that there 

may be an inverse correlation between relative heterogeneity between target images and the 

number of images required to learn to discern between them. 

 

 

Figure 2.23 Effect of data size on accuracy in transfer learning (Koul et al., 2019) 
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2 Related Work 
 
Machine Learning algorithms have been used to predict the outcome of neurosurgical surgeries. 

These algorithms use medical data or data from different diagnostic tools, such as MRI, to 

classify or predict. During the training phase, if the algorithm is provided with labelled data, it is 

considered to be a supervised algorithm. If the training data is not labelled, the algorithm is 

considered to be an unsupervised algorithm (Chollet, 2021). There are studies which have used 

supervised learning methods and features such as Clinical, Neuropsychological, EEG, PET, 

Pathology and MRI to predict the outcome of surgery for refractory epilepsy cases (Senders et 

al., 2018).  

 

Naïve Bayes, Logistic Regression, K-Nearest Neighbours (K-NN) and Random Forest are four 

well-known classification algorithms which have been used in many different fields, including 

predicting neurosurgical outcomes. For example, in a study, clinical and neuropsychological 

features have been used to predict the outcome of temporal lobe surgery for patients with 

epilepsy, using Naïve Bayes, Logistic Regression and K-NN classifiers. The number of patients 

included in this study was 23, and leave-one-out cross-validation was used to evaluate the 

performance of each algorithm. 90% accuracy has been reported for each of the used algorithms 

(Armañanzas et al., 2013). In another study with 16 patients, Random Forest and FMZ images 

were used to predict the outcome with 87% accuracy (Yankam Njiwa et al., 2015).  

 

Support Vector Machine (SVM) was introduced in the 1990s by Corinna Cortes and 

Vladimir Vapnik (Cortes & Vapnik, 1995) and since then has become very popular in solving 

different classification and regression problems. In a retrospective study of 20 patients who were 
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diagnosed with mesial temporal epilepsy, SVM was used to predict the outcome of surgery with 

95% accuracy. Features extracted from MRI, EEG, clinical data and demographics were used as 

input to the algorithm (Memarian et al., 2015). There are other studies which have used SVM 

and extracted features from MRI to predict the outcome of the surgery. For example, Munsell et 

al. used SVM and extracted features from MRI to predict the outcome of surgery with 70% 

accuracy (Munsell et al., 2015). In another study, Taylor et al. used SVM and reported 79% 

accuracy and 65% specificity when predicting the seizure outcome (Taylor et al., 2018).   

 

Artificial Neural Networks (ANNs) are another class of Machine Learning algorithms that can be 

used for pattern recognition and classification. Neural Networks have been used to predict the 

outcome of surgery for patients with epilepsy. In a study, neural networks predicted the outcome 

for Engel class 1 with 81.8% accuracy and the outcome for Engel class 2 with 95.4% accuracy 

(Grigsby et al., 1998). In another similar study, features such as MRI evaluation, EEG 

evaluation, neuropsychological evaluation and seizure frequency were fed to the neural 

networks. The study has reported 98% accuracy  (Arle et al., 1999).  

 

2.1 MRI and Machine Learning for Predicting the Outcome 
 
As it was mentioned before, MRI data has been used in two different ways to provide 

information for the machine learning classifiers in order to predict the outcome of surgery. In the 

first method, the interpretations of MRI by experts have been encoded and passed to the 

classifier (Arle et al., 1999), and in the second method, features from the images have been 

extracted from the MRI and provided to the classifier.  
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2.1.1 Morphological and Volumetric Features  
 
Morphological and volumetric features of different regions of the brain extracted from the MRI 

of patients have been used by different research groups to predict the outcome of the surgery. For 

example, Bernhardt et al. have used the surface morphology of the hippocampus, amygdala, and 

entorhinal cortex to predict the outcome of surgery for temporal lobe epilepsy. To evaluate their 

classifier, they used an independent cohort of 27 patients from another MRI scanner and 

achieved 96% accuracy (Bernhardt et al., 2015). In another study, the white matter (WM) areas 

of the brain in the MRI of 49 patients with epilepsy who underwent surgery were segmented. 

Five patients within the group had non-lesional MRIs. After preprocessing and segmentation, the 

voxels values of WM were fed to an SVM to predict the outcome of surgery using leave-one-out 

cross-validation. In their study, they achieved 94% accuracy (Feis et al., 2013). 

 

2.1.2 Connectome 
 
The Connectome map of the brain can be produced by processing diffusion-weighted MRI and 

fMRI. The first one would identify the network connectivity of different regions of the brain, and 

the second one would show the network activities. DeSalvo et al. have used diffusion-weighted 

MRI and identified that there is a difference in the network connectivity of patients with left lobe 

temporal epilepsy and the healthy control group’s network connectivity. Using graph theory 

analysis, they have found that distant connectivity between some regions of the brain of patients 

is increased compared to the control group, while there are regions in which their short 

connectivity has increased compared to healthy brains (DeSalvo et al., 2014). In another study by 

Liu et al., white matter, structural networks of mesial temporal sclerosis (mTLE) were compared 

to healthy controls, and it was identified that there are differences between the network 
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connectivity of healthy brains and patient’s brains (Liu et al., 2014). Considering different brain 

connectivity studies, it can be concluded that epilepsy is a disorder in a brain’s network 

connectivity. More specifically, medication refractory focal epilepsy can be considered to be a 

result of focal lesional problems and network disorders (Tavakol et al., 2019).  

 

The structure of the network connectivity can play a role in the success of surgery for drug-

resistant epilepsy cases. A study by Bonilha et al. compared the connectome of three groups. The 

first group was patients with mesial temporal epilepsy who went under surgery and were seizure-

free at least one year after the operation. The second group had surgery but were not seizure-free 

for over the first post-operative year, and the third group was a healthy control group. Their 

comparison identified that all three groups have different patterns in their connectivity of the 

networks (Bonilha et al., 2013). This work was followed by another study, which was led by 

Bonilha, and identified that the degree of difference between the network structure of the brain of 

patients with TLE and healthy brains could predict the outcome of anterior lobe lobectomy with 

83% accuracy. Furthermore, by adding clinical data, the group has improved the accuracy to 

88% (Bonilha et al., 2015). Taylor and colleagues have studied the effects of surgery on the 

structure of networks. They used T1-weighted MRI to identify preoperative and postoperative 

connectome networks. Analyzing the networks, they identified fifteen connections which would 

change during the surgery and can be used to predict the outcome of temporal lube surgery. 

Eight of these fifteen were connected to the ipsilateral temporal lobe (Taylor et al., 2018). In a 

research work by Gleichgerrcht and colleagues, Deep Learning has been applied to the 

connectome of the whole brain to predict the outcome of surgery of patients with mesial 

temporal lobe epilepsy. They retrospectively studied 50 patients, of which 36 became seizure-
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free, and 14 did not become seizure-free. Their model showed positive predictive value of 88 ± 

7% and mean negative predictive value of 79 ± 8%. They also have identified that predicting 

only based on clinical data would yield an accuracy of less than 50% (Gleichgerrcht et al., 2018).  

 

2.2 Non-lesional MRI  
 
Advancements in scanning technologies for acquiring MRI have improved clinicians’ ability to 

detect epileptogenic regions, which would help identify the area of surgery (Bernasconi et al., 

2011). However, around 44% of patients’ MRIs are considered non-lesional. Following an 

operation, histopathology applied to the resected tissue can be used to identify MRI-occult 

lesions, and the number of non-lesional cases drops to approximately 16% (Téllez-Zenteno et al., 

2010). In many cases, retrospectively reviewing the MRI after gathering information by 

histopathology, the area of the lesion is detectable (Bien et al., 2009). When reviewing the 

studies which have worked on non-lesional MRI cases, the definition of non-lesional in that 

study should be noted. For example, in a study by Arya et al., MRI was marked as non-lesional if 

it was “completely normal or if there were only non-specific, non-localising findings that could 

not direct a surgical plan” (Arya et al., 2016).  

 

Although surgery can help reduce the frequency and number of seizures in medication refractory 

non-lesional epilepsy, the chance of success is significantly lower compared to MRI-lesional 

cases (Chapman et al., 2005; Jayakar et al., 2008; Jeha et al., 2007; Téllez-Zenteno et al., 2010). 

The rate of success of surgery for non-lesional MRI cases has been investigated by different 

research groups. For example, in a study by Bien et al., 38% of 29 patients were reported to 

become seizure-free after one year (Bien et al., 2009). Another study showed that 44% of 101 
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children were seizure-free after two years (Jayakar et al., 2008). Zakaria and colleagues have 

reported 49% success for extratemporal cases (n=36), while another study has reported 42% of 

43 patients with extratemporal epilepsy have become seizure-free after two years (See et al., 

2013; Zakaria et al., 2012). It is worth noting that there are studies which showed much better 

results. For example, in a retrospective study in South Korea, 27 children (mean age of 7.8) with 

MRI-negative were followed up at least two years after surgery, with a range of 2.2-9 years and a 

mean of 4.3 years of follow-up. The results showed that 67%  of surgeries had Engle Class 1 

outcome (Seo et al., 2009). A systematic review and meta-analysis published in 2010 has 

identified that studies which have grouped both temporal and extratemporal in one category have 

reported 46% of success rate. The reported number for studies which focused only on temporal 

lobe cases was 51%, and the number of extratemporal was 35% (Téllez-Zenteno et al., 2010).   

 

Given the importance of finding the best candidates for surgery in non-lesional MRI cases, 

identifying factors which would help predict the surgery can be very helpful. A study conducted 

by Arya et al. focused on identifying predictors for the surgical outcome of pediatric MRI-

negative, drug-resistant  cases. In this work, they have analyzed clinical data such as medication 

history and information from diagnostic tools to determine which factors have the most 

predictive value. They have concluded that the seizure frequency, age of onset of seizures, and 

the number of failed anti-epileptic drugs are the most predicting factors (Arya et al., 2016).  

 

The presence of specific patterns in ictal onsets data produced by scalp EEG and intracranial 

EEG (iEEG) in MRI-negative extratemporal epilepsy cases have been indicated as predictors of 

favourable outcome of surgery (Noe et al., 2013; Park et al., 2002; Shi et al., 2017; Zakaria et al., 
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2012). Using intraoperative electrocorticography (ECoG) can also improve the chance of success 

for surgery (Grewal et al., 2019). 

 

Data from Magnetoencephalography (MEG) also has been shown to be a predictor of the result 

of surgery. Ramachandrannair et al. have conducted a retrospective research study on 27 non-

lesional MRIs of children who went under surgery. 36% of the patients became seizure-free after 

surgery, and all the patients in the mentioned group had a MEG cluster in the final resection area 

(Ramachandrannair et al., 2007). 

 

Positron Emission Tomography (PET) is another diagnostic tool that can be helpful for finding 

appropriate candidates for surgery in non-lesional cases. In a study conducted by LoPinto-

Khoury et al., two groups of patients with lesional MRI and non-lesional MRI who underwent 

anterior temporal lobectomy (ATL) were analyzed. The result of their work has shown that 

outcome of surgery for PET-positive/MRI-negative patients is similar to the result of surgery for 

cases with lesional MRI (Lopinto-Khoury et al., 2012).  

 

In our work, we mainly have investigated the possibility of automatically extracting features 

from MRIs and using them to design tools for dealing with patients with epilepsy who are drug-

resistant. Identifying the possibility of using such features to improve the outcome of surgery for 

non-lesional cases was a major part of our work.  
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3 Classifying an MRI as Normal or 
Abnormal Using CNNs (Project 1) 

 
 
3.1 Introduction  
 
Recent advances in machine learning and computer vision have enabled computers to classify 

images with near human performance or, in some cases, better than human performance (He et 

al., 2015, 2016; Hu et al., 2018). Deep Learning algorithms, specifically Convolutional Neural 

Networks (CNNs), have played a key role in enabling computers to perform such tasks. The 

medical image analysis community took notice of such advances around 2015, and since then, 

the mentioned algorithms have been used to analyze medical images. Using Deep Learning 

algorithms to analyze and classify MRIs of patients with epilepsy may help physicians when 

planning surgical treatment and may improve patient outcomes.  

 

MRIs of patients with epilepsy can be marked as normal or abnormal depending on the reading 

from the radiologist and neurologist. If the clinicians find abnormalities related to epilepsy on the 

MRI, it would be marked as abnormal, and if no lesion related to epilepsy is found on the MRI, it 

would be marked as normal. This first step in classifying MRIs may help focus investigations 

and surgical options. A decision support tool which can mark an MRI as normal or abnormal 

(lesional and non-lesional) can prevent physicians from missing an abnormality. It also can help 

physicians in training and improve the quality of care in areas where access to resources is 

limited.  
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Considering the potential benefits of such a tool, we decided to train a CNN which distinguishes 

between normal and abnormal MRIs. The prerequisites of designing and building the engine, 

which can be the core of the decision support tool, are the following: access to marked MRI, 

proper software and hardware tools, and appropriate algorithms. We had access to the marked 

MRIs through the Calgary Comprehensive Epilepsy Centre. Training CNNs require GPUs, and 

we were granted access to Nvidia GPUs through the University of Calgary’s Advanced Research 

Computing cluster. In the following, we have provided a quick review of the evolution of 

different CNN architectures and the architect of CNN that I used.  

 

Convolutional Neural Networks Architectures: 

A variety of CNN’s architectures have been designed and researched. Each architecture has its 

own design variables. These variables consist of the number of layers, the type of layers, how 

they are connected to each other, how they are configured, and the order of the layers. Choices 

made for these variables impact the performance of the networks. Figure 4.1 shows the 

architecture of the VGG-16 network, which was referred to in chapter 2. In the figure, you will 

notice three terms which were not explained before in this document. ReLU is the activation 

function being used for each layer, and a fully connected network is referred to as a traditional 

feedforward neural network which is used for classification purposes after the convolutional 

layers have passed the features to it. The last layer, which is a Softmax layer, helps with 

identifying the probability that the network assigns to each class regarding the presented image.  
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Figure 4.1: Architecture of VGG-16, trained to classify images to 1000 classes. Source: (Chollet, 2021) 

 

In general, increasing the number of layers results in better classification models, as the last 

layers can extract more abstract concepts. However, as researchers added to the layers, it was 

identified that there is a limit to how deep a network can be. As the number of layers increases, 

the network encounters the vanishing gradient problem during the training phase. This problem 

stems from how the backpropagation algorithm works. When the number of layers passes a 

certain limit, the successive gradient procedure on each layer results in disrupting the main goal 

of reducing the error of prediction or classification. Basically, during this process, the main 

signal gets lost as the number of layers increases. In order to solve this problem, the residual 

block was introduced by researchers at Microsoft (He et al., 2016). The residual block adds the 

input to a layer or a few layers to the output of the block, and this results in resolving the 
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vanishing gradient problem. Figure 4.2 shows the residual block as it was presented in the 

mentioned seminal paper.  

 
Figure 4.2: The design of the residual block, which solves the vanishing gradient problem. Source: (He et al., 2016) 

 
In the mentioned seminal paper, they implemented and compared a few different networks on the 

same database. The results show that an 18-layer network outperforms a 34-layer network due to 

the mentioned vanishing gradient problem, but when they restructured the networks using the 

residual block, the results changed. The 34-layer network with residual blocks outperformed all 

the other networks (plain 18-layer, 18-layer with residual blocks, and plain 34-layer). Figure 4.3 

shows the architecture of a plain 34-layer network and a 34-layer network with residual blocks. 

In the paper, they also implemented a network with 152 layers and showed that it outperformed 

everything else. They have named this structure ResNet and added the number of layers as a 

suffix (For example, ResNet-34). 

 
Following the success of ResNet architecture, Dense Convolutional Neural Networks 

(DenseNet) were introduced. In this architecture, the feature map of each layer is passed to the 

input of all the other layers ahead of it. Figure 4.4 shows an abstract depiction of such a network 

architecture. The DensNet structure eliminates the vanishing gradient problem while reinforcing 

feature propagation and reuse. It reduces the number of parameters which are used during 
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training (Huang et al., 2017). At the time that this work was published, DensNet showed 

improvement in performance compared to other available architectures.  

 

3.2 Methodology and Results 
 
As was mentioned before, the goal of this project was to train a network which differentiates 

between lesional and non-lesional MRIs. Initially, we used the ResNet architecture for the 

network. A pipeline which included loading the MRIs, training the network, and reporting the 

performance against validation and test set was implemented using TensorFlow. TensorFlow is a 

library which is developed by Google. After that, we decided to test DenseNet architecture 

performance and, this time, used the PyTorch library to implement the mentioned pipeline 

(instead of using TensorFlow). PyTorch is developed by Meta (Facebook) and is an open source 

Deep Learning framework. Noticing that the DensNet structure performs better, we chose 

DensNet to run experiments and find the best solution for this problem. Eventually, we used a 

DenseNet-121 structure as the main network structure. It has been shown that DensNet uses 

fewer number of parameters while outperforming ResNet (Huang et al., 2017). Appendix A 

gives more information about the convolution layers of the network that we used.  
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Figure 4.3: Architecture of a plain 34-layer network compared to the ResNet 34-layer. Source: (He et al., 2016) 

 
 



 63 

 
Figure 4.4: An example of a Densely Connected Convolutional Network (DensNet). Source: (Huang et al., 2017) 

 

We had access to 399 MRIs of patients with epilepsy. 168 MRI had epilepsy-related 

abnormalities reported for them, and the rest were non-lesional (Figure 4.5). We obtained the 

images from  Calgary Comprehensive Epilepsy Program and, more specifically, from “Federico 

Lab” (Federico Epilepsy Neuroimaging | Home | Cumming School of Medicine | University of 

Calgary, n.d.). The average age of recruited patients was 41.3 ranging from 16 to 88. Table 4.1 

and Figure 4.6 depict more information about the demographics of each group. We divided the 

data into three groups of training, validating and test sets. We allocated 79 images for the test set, 

and it included 34 lesional cases and 45 non-lesional MRIs. The validation set had 40 MRIs 

which included 20 for each class. That would leave 115 non-lesional MRIs and 165 lesional 

MRIs for the training set. Deep Learning networks are trained in batches, and due to hardware 
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limitations and the size of MRIs, each batch could only have 2 MRIs in them. In order for the 

network to see both classes in each round, each batch contained one item of both classes. To 

have this setting, we had to balance the training data. We balanced the training set by duplicating 

50 of the lesional MRIs. These images were chosen randomly.  

 

  

Figure 4.5: Information about the data 

 

 Age Sex 

Non-lesional  

Avg = 40.6 

Median = 37 

IQR = 17.75 

57% female  

Lesional  

Avg = 42.3 

Median = 39 

IQR = 20.75 

51% female  

Table 4.1: Demographics of the cases. 
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Figure 4.6: Age histogram for all the cases. 

 

Data preparation: 

MRI data is 3D in nature and can be presented in a three-dimensional tensor. To train the 

network and test it, all the data should have the same dimensions. We had access to T1-weighted, 

T2-weighted and FLAIR MRIs, and testing identified that only the networks which are trained 

on FLAIR would work on this task. MRIs were in DICOM format and were converted to NIFTI 

format. The main reason for converting DICOM to NIFTI was that the libraries that we used in 

our research work with NIFTI format. The dimension of the FLAIR MRIs was mainly 512, 512, 

48 (for x, y, and z, respectively). All the MRIs had 512 as the x and y dimensions, but the z 
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dimension was not constant for all the samples. We had two choices to create a fixed size for all 

the MRIs: 

1. Downsample all the MRIs to the lowest resolution  

2. Interpolate all the samples to the most common z dimension 

 

Option 1 results in losing data, and as a result, we chose option number 2. We also normalized 

the scaled intensity of all the data points. Figure 4.7 shows the steps of data preparation. The 

learning rate for the network was set to 1*10-5, and the network was trained for 200 epochs. The 

architecture of the network is depicted in Appendix A, and the chosen loss function was the 

Cross-Entropy loss function. For the training, we used Nvidia’s Tesla V100-PCIE GPU with 16 

GB of  GPU RAM. With this specific hardware, training the network with the mentioned 

hyperparameters took around 24 hours. After training, when we ran the model against the test 

set, it achieved F1 score of 0.68 (95% CI, 0.58-0.78) and accuracy of 0.71(95% CI, 0.61-0.81). It 

is worth mentioning that the Mathews Correlation Coefficient (MCC) was 0.40. Details of the 

results are presented in Table 4.2. The mentioned table shows the results based on precision and 

recall, which are equal to Positive Predictive Value (PPV) and sensitivity, respectively. In the 

following, a review of how to calculate F1 and MCC is provided.   

 

The F1 score is calculated using the following formula: 

 2 * (precision * recall)/(precision + recall) 

Basically, the F1 score is the harmonic mean of precision and recall.  
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MCC is defined based on the following: 

((TP * TN) – (FP * FN)) / (sqrt((TP + FP)(TP + FN)(TN + FP)(TN + FN)) where 

TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative  

 
Figure 4.7: The steps to prepare the MRI data. 

 
 
 
 
 

 

Precision or 
Positive 

Predictive 
Value (PPV) 

Recall or 
Sensitivity F1-score 

Lesional (n = 34) 0.76 0.47 0.58 

Non-lesional (n=45) 0.69 0.89 0.78 

Avg 0.73 0.68 0.68 

Accuracy: 0.71(95% CI, 0.61-0.81) 

Table 4.2: Result of DenseNet-121 network for classifying lesional vs non-lesional MRIs. 
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3.3 Conclusion  
 
Different diagnostic tools are being used in the process of examining patients with epilepsy. 

These tools are used to plan the course of treatment. One of the main diagnostic tools is MRI and 

clinicians use it to find epilepsy-related abnormalities in the brain for focal epilepsy cases. 

Finding these abnormalities is not a trivial task, and there are recommendations developed by 

ILAE on how to find the abnormalities and which sequences of MRI to look at. Having access to 

clinical decision support tools which identify if there is any abnormality found by the machine 

may prevent clinicians from missing finding an abnormality. These types of tools, if trained with 

data tagged by world-class clinicians, would be helpful in training settings and in areas which 

deal with a lack of resources.  

 

In our experiments, we have trained a Deep Learning algorithm to differentiate between MRIs 

with abnormality and MRIs without any abnormality. Several architectures and different 

hyperparameters were tested to achieve a good solution. Our experiments indicate that the 

networks can extract the signal in these MRIs. It has to be mentioned that given the existence of 

different types of epilepsy cases in the dataset, dividing the dataset into the groups of different 

types of epilepsy cases and then training the network for each group probably would result in 

better models, but our main challenge was lack of enough data to conduct the mentioned 

experiments. In general, it has to be stated that we had a very limited number of images for such 

a hard classification task, and this is the most important limitation of our work. Initially, we 

started the work with even fewer data and considered using space registration (MNI 305) so that 

voxel locations between images correspond to each other. But as the work progressed, we 

acquired more data and progressed, as it is explained in the chapter.  
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Another practical, exciting project that could be considered as follow-up work in the future 

would be training a network which discriminates between MRIs of patients who have 

abnormality reported in their histopathology report and MRIs in which no abnormality is 

reported in their MRI or histopathology report. In a study, physicians were asked to re-examine 

MRIs which were initially reported as non-lesional after the histopathology report indicated that 

there was a lesion in the brain (Bien et al., 2009). When they reevaluation the MRIs, physicians 

found an abnormality in some of the MRIs. This suggests that after not finding any abnormality 

in MRI, if a model indicates that there is a lesion in the brain, it may encourage the clinician to 

reevaluate the MRI.  

 

This type of work can help when designing and developing other decision support systems 

related to epilepsy. For example, it can be helpful when designing a system which segments MRI 

for Focal Cortical Dysplasia (FCD). Another example is to use it for systems which can identify 

the type of abnormality. The type of work presented in this chapter can filter the MRIs which 

have abnormality and then send them to models that identify the type of abnormality. The 

improved and enhanced version of the model may help clinicians to choose which sequence of 

MRI to look at to find the abnormality.  

 

The performance of classification models such as the one presented in this chapter is generally 

improved with more data, and as a result, we speculate that training a model with more data 

would probably improve the performance of the model. On the other hand, it seems the model, 

which was trained in this chapter, has a preponderance to over-call MRIs as non-lesional. It can 
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be speculated that this is the result of more non-lesional cases in the training set. Although we 

have tried to balance the dataset by randomly duplicating some of the lesional cases, the model 

may be overfitting in favor of non-lesional cases. More data could lead to a more balanced 

dataset which would help reduce this propensity in the future. Another step which could bring a 

more rigorous evaluation would be using leave-one-out for training and evaluation. Given that 

training these types of models are very time-consuming, we did not test the leave-one-out 

method, but further research can perform such tests.  

 

Data from different epilepsy centres should be considered before a general model, which would 

be a candidate to be used in a clinical setting, is designed and developed. One option would be to 

combine the data from different centres and consequently train and test the model. Another 

option is to train models in each centre and then test the models against the test set data from 

where the train set was used. For centres with fewer data, transfer learning concepts might be 

deployed. Federated learning is also an important option that must be considered.  

 

Data from other sources, such as EEG and clinical notes, can be used to improve the results of 

the models discussed in this chapter. All the mentioned data can be fed to one classification 

model, or different models, which use each of these data separately, can be trained and then the 

results can be ensembled.  
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4 Predicting Result of Surgery 
(Project 2) 

 
4.1 Introduction  
 
Around 0.5 to 1.0% of the world population suffers from epilepsy (Fiest et al., 2017; Theodore et 

al., 2006; Wiebe et al., 1999), of whom approximately 30% to 40% are drug-resistant (Kwan & 

Brodie, 2000) and may be candidates for surgery. Randomized controlled trials of epilepsy 

surgery have shown sustained seizure freedom rates following temporal lobe operations in adults 

range from 58% to 73% with surgery, compared to 0% to 8% with medications alone (Engel et 

al., 2012; Wiebe et al., 2001; Willard et al., 2022) and in children 37% with surgery and 0% with 

medications (Dwivedi et al., 2017) A systematic review and meta-analysis of long-term 

outcomes indicates that seizure freedom for various types of surgery is maintained, although it 

declines over time (Téllez-Zenteno et al., 2005). Around 44% of patient’s MRIs are considered 

non-lesional, and in such cases, the success of surgery (variously defined as seizure freedom, 

Engel 1 or Engel 1a) is reported to be between 35% to 51% (Bien et al., 2009; Chapman et al., 

2005; Jayakar et al., 2008; Jeha et al., 2007; Téllez-Zenteno et al., 2010; Zakaria et al., 2012).   

 

Predicting the surgical outcome is of paramount importance. Traditionally, predictive models 

have applied statistical models to clinical, EEG and imaging data to identify predictors of 

surgical success (Cossu et al., 2008; Jeha et al., 2007; Tonini et al., 2004). However, with the 

advent of machine learning, novel analytic approaches have used a variety of algorithms, such as 

K-Nearest Neighbours, Support Vector Machines, Neural Networks and Deep Learning. These 

algorithms have used features from Magnetic Resonance Image (MRI), electroencephalogram 

(EEG), intracranial-EEG, clinical data, or neuropsychological data as input (Arle et al., 1999; 
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Armañanzas et al., 2013; Grigsby et al., 1998; Memarian et al., 2015; Munsell et al., 2015; 

Senders et al., 2018; Taylor et al., 2018; Yankam Njiwa et al., 2015).  

 

Clinical MRI data have been used in two different ways in machine learning to predict surgical 

outcome. One method involves encoding the clinical interpretation of the MRI provided by 

experts, which is then passed on to the classifier (Arle et al., 1999). The other method involves 

using features extracted from the MRI and providing these to the classifier. Typically, the 

features involve morphological, volumetric (Bernhardt et al., 2015; Feis et al., 2013) and 

connectome data (Gleichgerrcht et al., 2018). Deciding on which MRI features optimally 

represent the data is challenging, and here Deep Learning (DL) algorithms, such as 

Convolutional Neural Networks (CNNs), can offer significant advantages. Our work explores the 

application of CNNs to structural MRI data to predict surgical outcomes without manually 

extracting morphological, volumetric or connectome related features. Specifically, we 

hypothesize that CNNs can extract features which would help to find signals to predict the result 

of surgery.  

 
4.2 Methods 
 
Participants 
We studied consecutive patients from the Calgary Comprehensive Epilepsy Program with focal 

drug-resistant epilepsy who underwent surgery, agreed to participate in the study, and we had 

access to their T1-weighted MRI imaging before surgery. We acquired the images from Federico 

Lab (Federico Epilepsy Neuroimaging | Home | Cumming School of Medicine | University of 

Calgary, n.d.), and the scan dates were from 2011 to 2019. Clinical and demographic 

characteristics were obtained, and surgical outcome at the last follow-up was dichotomized as 
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Engel class I and class II to IV (Engel, 1993). GE Discovery MR 750 - 3 Tesla, 3D T1-weighted 

MRIs were used for analysis. Considering all the mentioned factors, we could include seventy-

five patients in our study. The clinical and demographic characteristics of the patients are 

presented in Table 5.1. Engel I outcome was achieved in 34 patients during a median follow-up 

of 23 months (IQR = 36). MRI abnormalities were reported in 56 patients, while 19 were 

reported as non-lesional. Among lesional cases, 22 were reported to have Engel I outcome during 

median follow-up of 24 months (IQR = 34.25). Among non-lesional cases, the latter 12 achieved 

Engel Class I outcomes after a median follow-up of 27.5 months (IQR = 39.5). In addition, we 

had access to 3D T1-weighted MRIs of 387 patients with epilepsy who did not have surgery but 

agreed to participate in the study. These MRIs had the exact same specifications as the 75 MRIs 

of the operated patients and were acquired using the same imaging equipment. Figure 5.1 

summarizes the information about the patients and the outcome of surgeries.  

 
 
4.3 Deep Learning and Image Classification 
 
CNNs are one of the major DL algorithms which have been used extensively for medical image 

classifications (Litjens et al., 2017). As it was mentioned in the previous chapters, CNNs have 

two sections. In the first part, the input goes through layers of convolutional filters, and these 

filters extract appropriate features and pass them to the second section. In the second section, 

there is a neural network which learns the features and performs the classification task 

(Rosebrock, 2017). 
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Figure 5.1 Information about each group of patients and the result of surgery in each group. 
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Variable Patients (n=75) Abnormal MRI Cases 
(n=56) 

Normal MRI Cases 
(n=19) 

PSex (female) 
n 

49% 
37  

50% 
28  

47%  
9  

Age at surgery 
Mean (SD) 35.8 (13.5) 37.6 (13.4) 29.3 (12.3) 

Age at onset 
Mean (SD) 16.3 (12) 17.1 (12) 13.6 (12) 

Hemisphere of seizure 
focus 

Number (percentage) 

Left:33 (44%) 
Right: 36 (48 %) 
Bilateral: 6 (8%) 

Left:29 (51.7%) 
Right:22 (39.2%) 
Bilateral:5 (8.9%) 

Left:4 (21%) 
Right:14(74%) 
Bilateral:1 (5%) 

Seizure focus 
Number (percentage) 

Temporal: 44 (58.7%) 
Frontal: 9 (12%) 
Parietal: 2 (2.7%) 
Insular: 1 (1.3%) 

Multi-
focal/Hemispheric/Regional: 19 

(25.3%) 

Temporal: 38 (67.9%) 
Frontal: 5 (8.9%) 
Parietal:2 (3.6%) 
Insular:1 (1.8%) 

Multi-focal: 10 (17.9%) 

Temporal: 6 (31.6%) 
Frontal:4 (21.1%) 

Parietal:0 
Insular:0 

Multi-focal: 9 (47.4%)  

 

Table 5.1: Demographics and Clinical Characteristics of 75 patients to whom we had access to their preoperative MRI.  
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First, we trained a CNN network to determine if preoperative MRI data could predict surgical 

outcome (dichotomized Engel classification) using a Densenet-121 architecture (Huang et al., 

2017). As expected, given our relatively small sample size, it was not possible to train a CNN. 

We, therefore, decided to use the concept of transfer learning while changing the second section 

of the CNN to another classifier. Transfer learning uses an already trained network and fine-

tunes it for another task (Chollet, 2021), and this may result in requiring a smaller number of 

images for the target task (Koul et al., 2019). In this method, first, a network is trained for an 

initial task, and in the second step, the learning parameters of the trained network will be used 

for the target task (Figure 5.2). During the training of a CNN, the lower convolutional layers 

(layers closer to input) learn simpler patterns, such as edges, while the higher layers learn more 

sophisticated patterns (Zeiler & Fergus, 2014). It has been shown that in transfer learning, the 

lower layers of the network have little change during the second phase of training (training for 

target task). This means that features learned in lower layers during the first phase of training are 

being reused in the second phase (Raghu et al., 2019).  

 
Figure 5.2 - Transfer Learning: using the learning parameters of the network of the first task for training the network of the 

target task. 



 77 

 
Considering the mentioned concepts, we used a CNN network to extract features from MRIs and 

passed them to a classifier. We used the 387 images of non-operated patients to train a Densenet-

121 to classify MRI of male and female patients. The network was trained on batches of images. 

The size of the images and hardware limitations allowed us to put only two images in each batch, 

and each batch contained an image of each class. Before passing the images to the network, the 

images were normalized for image dimension (256*256*152) and scaled the voxel intensity to 

be between 0 and 1. This data was divided into training and validation sets, and we used the MRI 

of 75 patients who had surgery as a test set. We used the cross-entropy loss function and Adam 

optimization to train the network, and the learning rate was set to 1*10-5. 

 

The preoperative MRI of patients who had surgery were divided into two sets of normal and 

abnormal MRIs. After training the male versus female network, both datasets were fed to the 

network, and the output of the section which extracts features were passed to a Max Pooling 

Layer and were stored to be used by other classifiers. The Max Pooling Layer had a kernel size 

of 4 and a stride of 16. Each MRI has around 10 million datapoints, and the output of the stored 

features was a 1024-dimension vector. The 1024 datapoints were passed to six different 

classification algorithms, including Naïve Bayes, Logistic Regression, SVM (radial basis 

function kernel), Decision Tree, Random Forest, and a Gradient Boosting algorithm (Figure 5.3). 

The algorithms were chosen from three major groups of algorithms in machine learning. The 

first group is Probabilistic Models, the second group is Kernel Methods, and the third group is 

Decision Trees, Random Forest, and Gradient Boosting Machines. For Naïve Bayes, Logistic 

Regression, SVM, Decision Tree, and Random Forest, we used Scikit Learn (Pedregosa et al., 

2011). For the Gradient Boosting algorithm, we used XGBoost (T. Chen & Guestrin, 2016). We 
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applied the leave-one-out method and calculated accuracy, F1-Score, and Matthew’s correlation 

coefficient (MCC) to evaluate the results. The 95% confidence interval was calculated as exact 

Clopper-Pearson confidence interval. 

 

Sex differences in adult human brains are observed in overall and subcortical brain volumes, 

along with surface area and cortical thickness of subregional brain sections (Ritchie et al., 2018). 

Furthermore, the volume and surface area of different brain regions change in patients with 

epilepsy (Dreifuss et al., 2001; Pardoe et al., 2009; Pulsipher et al., 2007). We hypothesized that, 

as the network uses MRI features related to brain volume and surface to classify male versus 

female, these features could further help predict the result of epilepsy surgery.  

 

 
Figure 5.3 - Extracted features are passed to a classifier to predict the result of surgery. 

 
4.4 Results 
 

Densenet-121, which was trained to classify male MRI and female MRI, was tested on 75 MRIs 

of patients who had surgery. The test set consisted of 37 female subjects and 38 male subjects. It 

yielded 0.96 (95% CI, 0.89–0.99) with F1-Score of 0.96 (95% CI, 0.89–0.99) and MCC of 0.92. 
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This accuracy was achieved after 150 epochs, which means that the network has seen all the 

images 150 times. The classification report and more details about the performance of the 

network are presented in table 5.2. The results are in accordance with other analyses for this task 

(DLTK, 2018).  

 

Performance of six different machine learning algorithms (from three major types of machine 

learning algorithms) to predict the result of surgery were compared. The algorithms were applied 

on extracted features from both normal and abnormal preoperative MRIs, and the results are 

reported in Table 5.3. The features were extracted using the mentioned Densenet-121 network. 

The results indicated that XGBoost outperforms other algorithms in all three metrics in both 

normal and abnormal images dataset. After XGBoost, Decision Trees had the best performance. 

Considering the results, it is worth mentioning that XGBoost is an implementation of gradient 

boosted Decision Trees. Our results are in accordance with the general notion that gradient 

boosting applied on Decision Trees usually outperforms Random Forests (Chollet, 2021). The 

performance of XGBoost in our results agrees with the general notion that Gradient Boosting 

algorithms outperform other types of algorithms when dealing with tabular and non-perceptual 

datasets. 

 

Table 5.4 contains the classification report for XGBoost performance for abnormal MRIs. The 

algorithm yielded 77% (95% CI, 0.64–0.87) accuracy with F1-Score of 0.75 (95% CI, 0.62-0.86) 

and MCC of 0.5. For the normal MRI cases, the accuracy was 89% (95% CI, 0.67–0.99) with the 

F1-Score of 0.88 (95% CI, 0.65–0.98) and MCC of 0.78. More detail information about the 

performance of XGBoost on normal MRI dataset can be found in Table 5.5. In our experiments, 
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XGBoost was set to be a tree booster, with a learning rate of 1*10-2, and the number of times for 

boosting was set to 20. We also tested 2D FLAIR and 2D T2-weighted preoperative MRIs of the 

same patients with the same pipeline. The plan was to ensemble the result from all three 

sequences to improve the overall results. The pipeline did not work for 2D FLAIR and 2D T2-

weighted MRI, which may relate to acquisition mode. 

 
 
 
 
 

 Precision Recall F1-score Number of cases 

Female 0.95 0.97 0.96 37 

Male 0.97 0.95 0.96 38 

Average 0.96 0.96 0.96  

 
Accuracy = 0.96 (95% CI, 0.89–0.99), F1-Score = 0.96 (95% CI, 0.89–0.99), MCC = 0.92 

Table 5.2: Result of DenseNet-121 network for classifying male vs female using only MRI. 
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Group of 
Algorithms Algorithm Library 

Predicting Result of Surgery 
for Abnormal MRI cases 

(n=56) 

Predicting Result of Surgery 
for Normal MRI cases (n=19) 

Accuracy F1-
Score MCC Accuracy F1-

Score MCC  

Probabilistic 
Modeling 

Naïve 
Bayes 

Scikit 
Learn 0.61 0.57 0.15 0.53 0.42 -0.13  

Logistic 
Regression 

Scikit 
Learn 0.70 0.68 0.35 0.68 0.63 0.28  

Kernel Methods SVM Scikit 
Learn 0.64 0.54 0.19 0.58 0.37 -0.18  

Decision Trees, 
Random Forest, 

and Gradient 
Boosting 
Machines 

Decision 
Trees 

Scikit 
Learn 0.71 0.69 0.38 0.74 0.72 0.45  

Random 
Forest 

Scikit 
Learn 0.59 0.55 0.1 0.53 0.42 -0.13  

Gradient 
Boosting XGBoost 0.77 0.75 0.5 0.89 0.88 0.78  

Table 5.3: The features of the MRI of patients who had surgery were extracted using the convolutional layers section of male vs 
female network and were fed to the different classification algorithms.  

 
 
 
 

 Precision Recall F1-score Number of cases 

Engel II-IV 0.71 0.68 0.70 22 

Engel I 0.80 0.82 0.81 34 

Average 0.76 0.75 0.75  

 
Accuracy = 0.77 (95% CI, 0.64–0.87), F1-Score = 0.75 (95% CI, 0.62-0.86), MCC = 0.5 

Table 5.4: XGBoost performance for predicting the outcome of surgery using extracted features from preoperative lesional MRI 
cases. The features were extracted using a CNN model. The model is evaluated using leave-one-out cross-validation. 
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 Precision Recall F1-score Number of cases 

Engel II-IV 1.00 0.71 0.83 7 

Engel I 0.86 1.00 0.92 12 

Average 0.93 0.86 0.88  

 
Accuracy = 0.89 (95% CI, 0.67–0.99), F1-Score = 0.88 (95% CI, 0.65-0.98), MCC = 0.78 

Table 5.5: XGBoost performance for predicting the outcome of surgery using extracted features from preoperative MRI of 19 
patients with non-lesional MRI. The features were extracted using a CNN model. The model is evaluated using leave-one-out 
cross-validation. 

 
 
 
4.5 Attempts which did not work 
 

It was mentioned before that the first attempt was using the 75 images to train a network which 

predicts the result of surgery. The images were divided into training, validation, and test sets. 

The validation set was set to 12 images (6 images of each class), and the test set was also set to 

be ten images (5 images of each class). The training set was balanced by duplicating some of the 

instances of the class with a lower number of images. We made sure that each batch had an equal 

number of images of each class when presented to the network. As the training loss and 

validation accuracy graphs shown in Figure 5.4, this attempt did not work. In the graph, the 

training loss decreases gradually overtime, while the validation accuracy fluctuates around 50%. 

This indicates that the network is overfitting on the training data.  Given the small number of 

cases, this was expected.  
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In the second attempt, we trained a network on male vs female data as described previously and 

then let the network train on the target task. Again, as Figure 5.5 shows, the network is overfitted 

on the training data, and validation accuracy fluctuated around 50%.  

In the third attempt, we first trained the network on male vs female data and then used the same 

network to train it for the target task, which is predicting the result of surgery, but this time with 

a different strategy. We froze the weights and biases of the convolution layers and only let the 

classification layer to be trained. As Figure 5.6 shows, this attempt was also futile. We tried other 

different combinations of transfer learning, such as freezing weights and biases of the first few 

layers of the convolution layers and then training the network. We also changed the learning rate 

and tested different methods for initiating weights before the training starts. None of the 

mentioned experiments resulted in meaningful results.  
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Figure 5.4: Training loss and validation accuracy graphs for a network which was trained to predict the result of surgery. Given 
the small number of samples, as it was expected, the training loss shows that the network is overfitting as the network is trying 
to minimize the loss and iterates over the training set.  
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Figure 5.5: The training loss and validation accuracy of a network which first was trained to predict male vs female and then was 
trained to predict the result of surgery. As the graphs show, the network overfits on training data.  
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Figure 5.6 Training loss and validation accuracy for predicting the result of surgery using transfer learning. First, the network 
was trained on a male vs female task and then it was trained on the target task. The convolution layer parameters were frozen 
during the second phase of training. The graphs indicate that the network was overfitting on the training data.  



 87 

 
 
 
 
 
 
 
 
After noticing that using traditional methods of transfer learning is not solving our problem, we 

decided to use the extracted features from the convolution layers and pass them to other 

classifiers. Given that the number of features was very high compared to the number of samples, 

we decided to use Singular Value Decomposition (SVD) and Principal Component Analysis 

(PCA) to reduce the number of features before classifying. Testing different combinations for 

these methods, we noticed they were not useful for us. As was mentioned before, we used Max 

Pooling to reduce the number of features which was retrieved from the convolution layers. It is 

worth noting that we also tested Average Pooling and Adaptive Pooling as well, but Max Pooling 

produced the best results.  

 
Alongside testing different algorithms by passing features as input to them, we tried to see if 

there is a way to use distant measurements such as cosine similarity to classify the features, and 

it did not work. Another major algorithm which we experimented with was Hopfield networks. 

In the following, we have discussed how Hopfield networks work and how we tried to use them 

for our research.  

 

Hopfield Networks  

Hopfield networks are a type of neural network that, unlike feedforward networks, are not 

learning patterns through an iterative process. They are presented with patterns once and can 

retrieve the pattern when similar data is presented to them afterwards. The retrieving part is an 
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iterative process. Let us assume that we have a network which has stored P patterns. When it is 

presented with a new pattern, it goes through iterations of updating states of the neurons (nodes) 

and produces a pattern which most resembles the new pattern. They are basically associative 

networks which associate the input to its most similar pattern. For example, as is shown in Figure 

5.8, if the network is trained to learn the four images on the first column, and then the noisy 

version of any of the images is presented to the network, the network retrieves the learned image 

without the noise.  

 

Hopfield networks are point attractor networks. Assuming that our network has N neurons, then 

the state of the neurons can be imagined in an N-dimensional space. In this space, there are 

points to which the network is attracted after going through iterations of the update rule for each 

neuron. These points can be the learned patterns or could be somewhere else in the N-

dimensional space. After training, if the presented state to the network is close to one of the 

stored patterns, then the update rule carries the starting points into those stored points. If the 

stored patterns in our network are not orthogonal to each other, it can cause the creation of 

attractor points.  

 

Structure, Update Rule, Learning Rule, and Capacity  

In Hopfield networks, all the neurons are connected to each other, and the connections between 

the nodes are weighted. In this architecture, there is no self-connection. The state of the node n is 

determined by a method which takes the state of all the other nodes, multiplies them by the 

weight of the connection between them and node n and then adds them up. During the retrieving 
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phase, this method is used iteratively until the network is in an attractor point of the mentioned 

space.  

 

One of the main learning rules for such networks is the Hebbian learning rule. This rule is set 

based on the idea that the weight of each connection is relative to the activity of both ends of the 

connection. If we only have one pattern, implementing the rule and identifying the weight 

between the two nodes is easy. But how does these types of network use this learning rule for 

more than one pattern? To address this question, all the weights which are created by different 

patterns for one connection would be added up. As it is expected, these weights would be used to 

update the state of the nodes during retrieving (update rules). The capacity of a network in terms 

of storing patterns and retrieving them depends on the number of nodes that the network has.  

 

Our idea was to use the extracted features from the convolution layers produced by the network, 

which was trained to classify male vs female MRIs and identify if we can use classical Hopfield 

networks to predict the result of surgery. The first attempt was training one network with 

samples of features of subjects who had successful surgeries and features of subjects who did not 

have a successful surgery and identifying if we presented features of any of the subjects, the 

network would retrieve any of the samples. This idea did not work, and we trained one network 

with features of subjects who had successful surgery and another network with features of 

subjects who did not have successful surgery and identified if any of the networks could retrieve 

the samples. Our experiments based on these ideas did not work.  
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Another idea that we tested was the following. We tried to see if it is possible to create one set of 

features for each class which would be the main form of that class, and see if the network trained 

for that set can retrieve the right class when presented with the features of subjects from that 

class. Different combinations for this idea were tested, and none of them worked.    

Recently an improved version of Hopfield networks was introduced (Ramsauer et al., 2020). The 

new network has a larger capacity for the number of patterns that it can learn. As is shown in 

Figure 5.9, using the traditional Hopfield network, the network can learn six patterns. When half 

of the image of one of the patterns (Homer Simpson) is presented to the network, it can retrieve 

the whole image. However, in the new version, a network with the same number of nodes 

(neurons) can store 24 patterns and still retrieve one of the inputs when half the image is 

provided to the network as an input. Using this modern version of Hopfield was also tested, and 

we did not achieve meaningful results.  
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Figure 5.8: If the images in the input column (second column) were presented to a Hopfield network which was trained with the 
four images in the train data presented in the first column, the network would retrieve the corresponding images in the output 
column. Source of image: (GitHub - Takyamamoto/Hopfield-Network: Hopfield Network Implemented with Python, n.d.) 

 
 
 
 
 
 
 
 
 



 92 

 

Figure 5.9: The different between the traditional Hopfield network and the new version introduced in 2020. The new version has 
a higher capacity. Source of image (Hopfield Networks Is All You Need | Hopfield-Layers, n.d.) 

 
Gradient Boosting Algorithms and Extracted Features 
It has been constantly shown that Deep Learning algorithms are the best candidates to be used 

when working with perceptual data such as images and videos. On the other hand, gradient 

boosting algorithms are known to be one of the better algorithms when dealing with tabular data. 

As was discussed previously, our experiments also confirm that. We also ran another experiment 

which extracts features and passes them to different classifiers and received the same results. We 

trained a CNN model to classify images of handwritten digits of zero and one from the MNIST 

dataset. MNIST is a set of images of handwritten digits from zero to nine (Figure 5.10). The 

main idea was to choose two sets of images which would cover different general shapes when 

training the model for the first task. The images are 28*28 pixels which makes each image to 

have 784 dimensions. When using UMAP to reduce the dimension to visualize the data, it is 
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evident that one and zero are not very close to each other, which makes them good candidates for 

our plan (Figure 5.11).  

 

Figure 5.10: Examples of handwritten digits of MNIST. 

 

Figure 5.11: Reducing the dimensions of MNIST data to visualize it. The blue bobble on the left button of the image represents 
images of zero, and the red bobble presents images of one.  

 

 

The architecture of the network that we used is shown in Figure 5.12. The target task was to 

classify images of four and five. As has been explained in the previous sections, we used the 
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convolution layers of the network, to extract the feature and passed them to different algorithms. 

In this experiment also, XGBoost performed better than the other algorithms (Table 5.6). The 

two experiments suggest that anytime this type of structure is being tested, it would be a good 

idea to start with testing XGBoost.  

 

 

Figure 5.12: Structure of the network being used to classify images of zero and one. 

 
 
 
 
 
 
 
 



 95 

 

Table 5.6: Result of performance of each algorithm applied on the features extracted from images of four and five. The 
extracted features were gathered by passing the images through the convolution layers of a network trained to classify zero and 
one images.  

 

4.6 Conclusion  
 

Around 40% of patients with epilepsy are drug-resistant, and it has been shown that surgery can 

be beneficial to these people. Depending on the anatomical region, approximately 60% of 

surgeries result in seizure freedom, but predicting this on an individual level has been elusive. 

Hence, decision support tools which can predict the result of surgery for individual patients 

would be an extremely valuable asset in clinical care. Using only MRI data, we have designed a 

pipeline which can predict the result of surgery for cases with abnormal MRI with 77% (95% CI, 

0.64–0.87) accuracy. We applied the mentioned pipeline to non-lesional MRIs and achieved 89% 

(95% CI, 0.67–0.99) accuracy. Given that only 35% to 50% of surgeries for normal MRI cases 

are successful, this is a notable result. Considering both experiments, our work suggests that 

there is a signal in MRI which can help predict the result of surgery.  
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Other studies have used MRI data to predict the result of surgery in two ways, either the 

interpretation of the MRI by a physician is fed to the prediction algorithm or features from MRI 

are extracted and provided as input. The examples of extracted features are volumetric features 

or connectome map of the brain. Deep Learning has proven to be a very powerful tool for 

automatically finding and extracting the most important features of data sets, such as images and 

videos where the computer is handling a perceptual task. In this study, we have used features 

extracted by Convolutional Neural Networks (CNN), which are a type of Deep Leaning (DL), to 

predict the result of surgery. Our results confirm the power of CNNs in automatically extracting 

features and reaffirming the capability of gradient boosting algorithms when dealing with tabular 

and non-perpetual datasets.  

 

One of the main constraints of our study was the lack of a large number of preoperative MRIs of 

patients who had surgery to train the machine learning algorithms. Small samples affect the 

training, validation, and generalization of the models. We have used the Clopper-Pearson method 

to calculate the confidence interval, and it is one of the most conservative methods for 

calculating the confidence interval. A small number of samples results in large intervals when 

calculating the 95% confidence interval, and in our case, this interval covers around 35 points. It 

is important to note that even the lower bound of the reported intervals in our studies shows that 

there is a signal in MRI to predict the result of sugary.  

 

More images and further investigation can solidify our findings and perhaps improve the result 

of the prediction. The MRI that we used for training and testing was from one medical center. To 

test the scalability of the solution, images from different medical centres must be gathered and 
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used in the training and testing process. Furthermore, methods for adopting trained models in 

different medical centres should be tested and investigated. A model which is proven to work 

properly in one center can be deployed to other centers by using finetuning and transfer learning, 

with the assumption that there would be enough data in other centers for finetuning.  

 

Results from models which drive prediction from MRI data, such as the work in this chapter, can 

be ensembled with other models which use data from other diagnostic tools to have better and 

more accurate predictions. Testing these systems with large datasets, which are gathered from 

different epilepsy centers, can pave the way for developing decision support tools which are 

ready to be deployed in clinical settings to assist clinicians when identifying the best surgical 

candidates.  
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5 Finding the Abnormality (Project 
3) 

 
5.1 Introduction  
 
As it was mentioned before, around 40% of patients with epilepsy are drug-resistant  and are 

considered to be a candidate for having surgery to either eliminate the seizures or decrease the 

frequency and severity of seizures. One of the main diagnostic tools which help clinicians to 

evaluate candidates and plan for surgery is MRI. Finding epilepsy-related abnormality in MRI 

helps physicians to locate the area where seizures start and therefore increases the chances of 

having an effective operation. On the other hand, a lack of abnormality reduces the chance of 

successful surgery. For example, between 60% to 70% of patients with temporal lobe epilepsy 

become seizure free after surgery, but this number is around 40% for patients who don’t have 

any abnormalities in their MRI. Clinicians cannot find abnormality in around 44% of patients, 

but the interesting point is that this number decreased when they were asked to re-evaluate the 

MRI after they are provided by the histopathology report. In a study, only 16% of patients did 

not have abnormality reported either in MRI or in the histopathology report (Bien et al., 2009). 

This suggests that there may be ways to improve the evaluation and examination of MRI, so 

clinicians can find the abnormality in more cases, which consequently would improve the result 

of surgery cases. 

 

Voxel-wise comparison between MRIs with abnormality and healthy control groups has 

identified that such analysis can become useful in identifying the area of the abnormality (Focke 

et al., 2009; Martin et al., 2017). Considering that the reported metrics in these studies had room 

to improve, machine learning algorithms were utilized to improve the analysis. For example, in 
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one study, SVM was used to lateralize the temporal lobe epilepsy of lesional MRIs (Focke et al., 

2012), or in another study, SVM was used to identify the area of abnormality in MRI of lesional 

cases (Perera-Ortega et al., 2021).  Random forest was also used for the purpose of lateralization 

in non-lesional MRIs (Bennett et al., 2019).  

 

In recent years Deep Learning algorithms have also been used to find abnormalities in MRI. For 

example, in one research study, U-Net architecture was used for the segmentation of focal 

cortical dysplasia (FCD) in MRIs. U-Net architecture has two main sections. The first section 

extracts features (encoding), and the second section constructs an image using the extracted features 

(decoding) (Figure 6.1) (Ronneberger et al., 2015). The network was trained and evaluated on 

marked MRIs and reached a Dice Score of 52.47 (Bijay Dev et al., 2019). Dice score is used to 

measure the performance of algorithms which are used for segmentation. In essence, it evaluates 

the overlap between the area which was marked by the algorithm and the actual marked area 

((2⋅|A∩B|)/(|A|+|B|)). In another study, the researchers used a CNN for classifying the MRIs with 

FCD and without FCD. They proposed a method to mark the FCD area and achieved Dice score of 

78 (Wang et al., 2020). Another method was proposed by Feng et al. to mark the FCD in an MRI, 

and they have reached Dice score of 52.68 for non-lesional MRIs. Although in the paper, the Dice 

score was reported for FCD of non-lesional MRI, they used resected area during the surgery and not 

the area acquired based on the histopathology report (Feng et al., 2020).  
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(a) 

 

(b) 

Figure 6.1: (a) The original U-Net architecture (source: (Ronneberger et al., 2015). (b) The modified U-Net architecture to mark 
the FCD in lesional MRI cases. (Source: (Bijay Dev et al., 2019)) 
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We planned to design a system that can help clinicians find abnormalities in non-lesional MRIs. 

We hypothesized that a system which can differentiate between MRIs of healthy brains and 

MRIs of epilepsy patients, in which no abnormality is reported on them, uses the lesional area to 

distinguish between the two classes. To test our idea, we decided to train a Deep Learning model 

which differentiates between the two classes and then identify which area of the MRI causes the 

network to classify an MRI as belonging to the epilepsy group. We planned to compare the 

identified area of MRIs of patients who had surgery with the following areas and determine if we 

can reach any conclusion: 

• Area of the brain where the seizure starts based on intracranial EEG report  

• The resected area during the surgery  

• Histopathology report  

 

We also planned to test and see if the features resulting which are triggering the discrimination 

between the two classes would lead to finding any sign of abnormality in the MRI by re-

examining the MRI. There are different methods to find the areas of an image which cause the 

classification in CNNs. Three of the methods are reviewed in the following.  

 

5.1.1 Visualizing The Reason Behind 
 
As the potential of Deep Learning algorithms for computer vision tasks such as classification 

was revealed, understanding the reason behind the results produced by the algorithms has 

become an important research area. A few main approaches are being deployed by the Deep 

Learning community to open the black box and provide more explanation behind the decision 

made by the networks, and in the following three of them are explored. 
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Occlusion Sensitivity 

In this technique, portions of the image are occluded systematically, and the effect of the covered 

portion on the output of the network is measured. The areas which affected the outcome the most 

are the regions of the image which have contributed the most in the process of classification. 

Figure 6.2 shows an example of using Occlusion sensitivity for identifying a cat in the image 

(Selvaraju et al., 2017).  

 

Figure 6.2: Using Occlusion sensitivity to locate the cat in the image. The source of the image is (Selvaraju et al., 2017) 

  

Class Activation Mapping  

Class Activation Mapping (CAM) creates heatmaps based on the activation of neurons of 

convolutional filters in the last layer of the CNN for the predicted category. In the process of 

calculating the heatmap of CNNs, the network structure would be changed, and this will reduce 

the accuracy (Zhou et al., 2015).  

 



 103 

Gradient-weighted Class Activation Mapping  

Gradient-weighted Class Activation (Grad CAM) generalizes CAM and does not change the 

architecture of the CNN when calculating the heatmap. It uses the gradient of the last 

convolutional layer of the CNN and is applicable to different families of CNN (Selvaraju et al., 

2016). Newer and more advanced visualization methods, such as Grad-CAM++ or Grad-CAM++ 

with Mask Regional Convolutional Neural Network (GC-MRCNN), have been developed 

recently (Inbaraj et al., 2021). Figure 6.3 shows examples of CAM, Grad-CAM, Grad-CAM++ 

and GC-MRCNN. 

 

 
Figure 6.3: Original image and different methods of visualization. The image is borrowed from (Inbaraj et al., 2021) 
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Identifying the relevance and importance of each area of the image to the classification outcome 

has been used for medical images. For example, visualization methods have been used to bring 

insight to CNNs, which were trained for Alzheimer’s disease classification based on MRI (C. 

Yang et al., 2018). In another instant, the methods were used to identify the areas of the lung 

affected by Covid-19. Figure 6.4 shows the heatmap produced by the occlusion sensitivity 

method on a network trained to segregate Covid-19 CT scans from CT scans of normal lungs and  

CT scans of lungs with pneumonia (Aminu et al., 2021). In another example, Grad-CAM was 

used to investigate a network which differentiates dementia with Lewy bodies from Alzheimer’s 

disease using brain perfusion single photon emission tomography images (Figure 6.5) (Iizuka et 

al., 2019). It has to be mentioned that there are also points of view which argue that the 

mentioned visualization tools should only be used for “model troubleshooting and systems audit” 

and not for the purpose of “human-comprehensible explanations for complex, black-box machine 

learning algorithms” (Ghassemi et al., 2021). 

 

5.2 Methodology and Results  
 
We had access to 353 T1-weighted MRIs of healthy brains and 213 T1-weighted non-lesional 

MRIs of patients with epilepsy. The healthy brain MRI scans were provided by Dr. Richard 

Frayne, and the location of the scans was Seaman Family MR Centre in Foothills Medical Centre 

in Calgary, Alberta (Home | Vascular Imaging | Cumming School of Medicine | University of 

Calgary, n.d.). The MRI scans for the patients with epilepsy were obtained from “Federico Lab” 

(Federico Epilepsy Neuroimaging | Home | Cumming School of Medicine | University of 

Calgary, n.d.). The average age of individuals, who were recruited for healthy brain MRI scans, 
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was 49.7, and the average age of patients with epilepsy was 40.5. In this document, non-lesional 

is referred to MRIs where no epilepsy-related abnormality is reported for them (Table 6.1). The 

dimension of healthy MRIs was mostly 166, 256, 256 (for x, y and z dimensions, respectively), 

and the dimension of the non-lesional MRIs were mostly 256, 256, 148 or 256, 256 152 (for x, y, 

and z dimensions respectively). The dataset was divided into three sections of training, 

validation, and test sets. Three hundred thirteen of the healthy MRIs were allocated to the 

training set, and 173 of the non-lesional MRIs were put in the training set. Twenty images of 

each class were allocated to the validation set, which resulted in a total of 40 images for the 

validating set. Forty images were assigned to the test set, and it included 20 images of each class.  

 

 

Figure 6.4: Heatmap of a CT scan of a lung produced based on the output of a CNN, which was trained to classify normal class, 
pneumonia class and Covid-19 class images of lungs. The lung in this CT scan was from the Covid-19 class. The source of the 

image is: (Aminu et al., 2021). 

 
 
We used DensNet-121 network architecture as the other projects showed that it could be a good 

candidate. The review of the structure of the network is not provided here, as the structure of 

DensNet-121 has been discussed in previous chapters. The CNNs are trained in batches of 
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images, and given the size of MRIs and the hardware limitations for training a CNN with the 

mentioned MRIs, each batch could only have two MRIs. Given the mechanics of the 

backpropagation algorithm and the fact that the gradient descent algorithm is applied to each 

batch, it made sense to make sure that each batch has both classes, so each time that the 

algorithm is trying to minimize the error between the predicted result and expected result it 

would be based on a sample of each class. To achieve this, we duplicated some of the non-

lesional MRIs to increase them to a total of 313. The duplicated images were chosen randomly. It 

is important to mention that before training, we normalized the MRIs for scale intensity and 

resized all of them to 256, 256, and 152.  

 

 

Figure 6.5: Heatmap for a network which distinguishes between dementia with Lewy bodies from Alzheimer's using brain 
perfusion single photon emission tomography images. The source of the image is (Iizuka et al., 2019). 
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 Age Sex 

Non-lesional (n = 242) 
Avg = 40.5 

SD = 14.23 

57% female  

138 

Healthy (n = 382) 
Avg = 49.7 

SD = 17.50 

55% female  

211 

Table 6.1: Demographics of the two classes of MRI. Non-lesional MRIs are MRI of patients with epilepsy which did not have any 
abnormality reported on them, and healthy is MRI of normal brains. 

 
 
After training the network, it was identified that the validation accuracy was 100%. Further 

investigations indicated that the network had achieved this status in only two epochs. Each epoch 

is defined as one round of presenting all the images to the network for training. Figure 6.6 shows 

training loss and validation accuracy graphs during the training of the network. Running the 

network against the test set also presents a 100% accuracy (Table 6.2). This indicates that there 

must be a very strong signal which is not related to subtle differences but probably to a major 

difference in the MRI of each class. A closer examination of both classes revealed that most of 

the healthy MRIs include the neck of the subjects (Figure 6.6). This led to the second attempt to 

train a network after cropping the images and removing the neck area of the MRIs. We used 

dcm2nixx tool to remove the neck area from the MRIs. Figure 6.7 shows a sample of an MRI of 

the healthy brain after removing the neck area.  Unfortunately, that did not solve the problem 

either, and the network still converged very quickly (Figure 6.8).   

 

We decided to train a network which distinguishes between healthy control MRIs (not cropped) 

and non-lesional MRIs with fewer images and to observe the accuracy of the validation set over 
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time. To do this, we randomly chose 14 images (7 of each class) and 60 validation images. The 

main purpose of the practice was to make sure that we had not made any mistakes in our code 

and to try to gain a better understanding of the results. We adjusted the dimensions of the healthy 

control MRI to the non-lesional MRI’s dimensions (256, 256, 152). Figure 6.9 illustrates that the 

network achieves 100% accuracy on the validation set after 16 epochs. We repeated the same 

experiment and normalized all the images to (211, 256, 204) dimensions which are the average 

values of dimensions in both classes. In the previous experiment, we picked the dimensions of 

the non-lesional MRIs and normalized the healthy control images based on non-lesional MRIs 

dimensions (which would result in losing information in the healthy control group). Choosing the 

middle ground also did not solve the issue, and the network archived 100% accuracy after ten 

epochs (Figure 6.10). We ran similar experiments on a cropped version of healthy control 

images. The dimension of cropped healthy control images was (166,256, 170). Although 

removing the neck area resulted in achieving 100% accuracy in epoch 200, which indicates that 

removing was useful, but still the difference between the MRI of the two classes are very 

pronounced (Figure 6.11 and 6.12).  
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Figure 6.5: The validation accuracy and training loss graphs during the training of the network which is aimed to distinguish 
between healthy brain MRIs and non-lesional MRIs of patients with epilepsy. The graphs are smoothed by 0.6. 

 

 

 

 Precision Recall F1-score Number of cases 

Non-lesional 1 1 1 20 

Healthy 1 1 1 20 

Average 1 1 1  

Table 6.2: Result of running the trained network against the test set of healthy brain MRIs and non-lesional MRIs of patients 
with epilepsy. 



 110 

 
 
 
 
 

 

Figure 6.6: The left-hand side of the image shows the MRI of a healthy brain, and the right-hand side shows the non-lesional MRI 
of a patient with epilepsy. The MRIs of healthy brains contain the neck area. 
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Figure 6.7: A sample of a healthy brain MRI in which its neck area is removed. 
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Figure 6.8: Validation accuracy and training loss graphs during training of a network which is aimed to distinguish between the 
cropped version of healthy control MRI and non-lesional MRI. The graphs are smoothed by 0.6. 
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Figure 6.9: Validation accuracy and training loss graphs during training a network which is aimed to distinguish between healthy 
brain MRI and non-lesional MRI. The training set had 14 images. The graphs are smoothed by 0.6.  
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Figure 6.10: Validation accuracy and training loss graphs during training a network which is aimed to distinguish between 

healthy brain MRI and non-lesional MRI. The training set had 14 images. The dimensions of the MRIs were set to (211, 256, 204). 
The graphs are smoothed by 0.6. 
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Figure 6.11: Validation accuracy and training loss graphs during the training of a network which is aimed to differentiate 

between cropped healthy brain MRI and non-lesional MRI. The training set had 14 images. The dimensions of the MRIs were set 
to the dimension of non-lesional MRIs. The graphs are smoothed by 0.6. 
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Figure 6.12: Validation accuracy and training loss during training of a network which is aimed to differentiate between cropped 
healthy brain MRI and non-lesional MRI. The training set had 14 images. The dimensions of the MRIs were set to (211, 256,161 . 

The graphs are smoothed by 0.6. 
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All the above experiments suggested that there are significant differences between the two sets of 

MRIs. Given that we received the images from two different settings, the differences can be 

related to the characteristics of the images, such as dimensions. Using the trained networks and 

deploying the Occlusion Sensitivity method, we created the heatmaps for MRIs. The heatmap 

confirmed the theory as it showed that in many layers of MRI, all the sections of the brain area 

are triggering the classification (Figure 13).  

 

The following is a summary of the steps taken during this work. Compiling the steps would help 

to clarify why we concluded that using the images that we have access to would not help answer 

our questions.  

• As the first step, we trained a network using a set of non-lesional MRIs and healthy 

control MRIs. The goal was to have a network which can differentiate between the two 

sets. During the training, we noticed that the network converges very quickly and 

achieves 100% accuracy on both the validation and test sets. This shows that the network 

is discriminating based on very pronounced differences, while we were hoping that the 

network would pick on subtle differences which would lead to finding the lesion. 

• In the second step, we thought maybe improving the database and homogenizing both 

sets would help. We noticed that most MRIs from the healthy brain set contain the neck 

area. As a result, we removed the necks to see if we can overcome the problem. It did not 

solve the problem.  

• In the last step, we visualized the reason behind the classifications. This visualization 

confirmed that the network is picking on very major differences. 
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Original MRI Heatmap 

 
 

 
 

  

  
Figure13: Heatmap of MRI for the network which is trained to distinguish between healthy contorl MRI and non-lesional MRI 
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We did not pursue other visualization methods for a few reasons. Two of the reasons are listed 

below: 

• We know the network is not using the features that we are interested in  

• Although the Occlusion method seems to be the most simplistic method, there are 

medical image related studies which have identified that it worked better than the other 

methods for them (Aminu et al., 2021). 

 

The current issues could be resolved if the healthy control images were from more similar 

settings compared to the non-lesional group. On the other hand, there is a low probability that 

healthy brains and normal looking brains, which have epilepsy, have major differences.  

 
5.3 Conclusion  
 
A subgroup of patients with epilepsy who are not responsive to available drugs may be 

candidates for surgery. In the clinical workflow, when deciding which patients would be the best 

candidate, different diagnostic tools are used. These tools include EEG, Video EEG, MRI, fMRI, 

PET, and SPECT. Using the mentioned tools, clinicians determine the location of surgery. 

Finding abnormality in the MRI would have a paramount value in indicating the location of the 

surgery and is indicative of the chances of success of the surgery. As a result, designing tools 

which can help clinicians find the abnormality in MRI would have a huge impact on the surgery 

outcome, specifically for cases where clinicians cannot find any abnormality.  

 

The main purpose of the mentioned attempts in this chapter was to use Deep Learning to find an 

abnormality or location of seizure in MRI of patients that there was no abnormality reported for 

them. To design such a tool, we decided to train a network to distinguish between the mentioned 
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MRIs and MRIs of healthy brains and then use the different methods to identify which area of 

the MRI has caused the classification. We speculated that the abnormal area probably would play 

a role as a distinguishing factor. Unfortunately, when training the networks, a very strong signal 

not related to the subtle difference was playing the role of the distinguishing factor, and 

consequently, we could not further analyze the work.  

 

It seems to us that the idea of using Deep Learning to find abnormalities in MRI still has the 

potential to be worked on the different set of MRIs. MRIs produced with more consistent 

variables from the same machine should be investigated and compared using Deep Learning. For 

example, as the first step, the MRIs of healthy brains and the MRIs of patients with epilepsy 

should be gathered in the same settings with the exact same MRI variables. In the second step, it 

would be a good idea to focus on the specific type of epilepsy, such as temporal epilepsy, as 

opposed to using MRI of different types of epilepsy. Furthermore, if necessary, MRIs should be 

cropped, and only specific areas of MRIs should be fed to the network.  
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6 Conclusion and Future Work   
 
Epilepsy is the most reported neurological disorder after migraine, stroke, and Alzheimer's. 

Around 40% of patients with epilepsy are drug-resistant  and can be candidates for surgery. In 

epilepsy centers, usually, a team of clinicians provides consultations on the benefits and risks of 

having surgery for cases which are considered to be candidates for surgery. Diagnostic tools such 

as MRI, EEG, intracranial EEG, and PET help clinicians provide recommendations. Between 

60% to 70% of patients who undergo surgery would become seizure-free after surgery. This 

number is substantially lower for patients with no abnormality reported in their MRI. As a result, 

providing decision support tools which can help physicians in the process of evaluating patients 

with epilepsy for surgery would be very useful.  

 

In general, clinical decision support systems are designed to improve healthcare outcome. For 

example, they may be designed to prevent mistakes or to bring consistency in providing care. 

Depending on the nature of the tools, they also can help healthcare systems in areas of the world 

which are challenged by lack of proper resources. New advancements in AI algorithms, along 

with using them in clinical decision support tools, have been very promising, especially in the 

imaging area. With the rise of Deep Learning and reinforcement learning algorithms, complex 

clinical tasks are being automated by machines, and advanced diagnostic tools are being 

designed and developed. Consequently, using machine learning to provide tools to deal with 

epilepsy has been the focus of many studies in the last decade. In this work, we have worked on 

using machine learning algorithms to provide tools for physicians when providing care for 

patients with epilepsy.  
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Using Deep Learning, we have worked on models which can be the core of decision support 

tools that can help when dealing with drug-resistant  epilepsy cases. More specifically, we have 

worked on three main topics. 

o Research Topic One: To investigate if it is possible to differentiate between normal and 

abnormal MRIs using Deep Learning. 

• Findings: 

We developed a model which would distinguish between MRI of patients with 

epilepsy with abnormality and MRI of patients without any abnormality. The 

purpose of this type of model is to be a decision support tool for physicians when 

they are seeking lesions on MRI of focal epilepsy cases. Our work indicates that 

there is a signal in MRI which can be harnessed for this purpose.  

• Limitations and future work: 

 Usually, training Deep Learning models requires a large number of data 

and more data results in better precision. Considering this fact, it would 

make sense to gather more data and train models to investigate if it is 

possible to achieve better results.  

 Training a model using MRIs from different centers would help to 

conclude if our findings can be generalized. Future work can investigate 

this by using data from different centers.  

 Probably training models using MRI of similar types of epilepsy would 

result in better accuracy. More data from different centers would give a 

chance to train CNNs for a specific type of epilepsy.   
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 Having access to better hardware can help improve the performance of the 

model. In our case, we could only have 2 MRIs for each batch. This can be 

increased and probably would help with the performance of the model.  

 Training models which can differentiate between MRIs of brains with 

histopathological lesions and MRIs of brains with no histopathological 

lesion. When a clinician does not find any abnormality on MRI, but the 

model suggests that there may be a lesion, the clinician would be 

encouraged to reevaluate the MRI. It has been shown that, in some cases, 

reevaluation of non-lesional MRIs after knowing that there are 

histopathological lesions would result in finding an abnormality on the 

MRI (Bien et al., 2009).  

o Research Topic Two: Is it possible to predict the result of surgery using MRI? 

• Findings: 

 Our finding indicates that there is a signal in both lesional and non-

lesional MRIs to predict the result of surgery. 

• Limitations and future work: 

 More MRIs would help to improve the results and enables the researchers 

to use better evaluation methods. As stated before, our finding indicates 

that there is a signal in MRIs which can be harnessed for our task. Having 

access to enough data probably eliminated the need to use transfer 

learning, and we can train a CNN from scratch to predict the result of 

surgery. In our project, we have used the leave-one-out methodology. 

With enough data, better evaluation methods can be deployed. Also, using 
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data from multiple centers would help to evaluate if our findings can be 

generalized. Furthermore, more data would also enable the researchers to 

train the models for specific types of epilepsy. 

o Research Topic Three: Investigating the possibility of helping physicians in finding 

abnormalities in MRIs which are reported to be non-lesional by comparing MRIs of 

healthy brains and MRIs of non-lesional brains using Deep Learning. 

• Our finding: Our data set of two classes had major differences, which resulted in 

not being able to achieve what we were looking for.  

• Future work: Trying to see if there are other ways to deploy such ideas to find 

abnormalities. 

 

As explained in the above sections, our experiments show that in the first two projects, there is a 

signal in MRI to be harnessed for the desired classifications, and we speculate that more data 

would improve the performance of the models. To solidify the findings of models, such as the 

ones explored in our work, the models need to be tested against data from different centers. 

There are a few methods to use data from different centers. One way would be to combine and 

normalize data from different centres and then use them for training. The second method would 

be to train a model in one center, use transfer learning and then test on the data of other centres. 

Federated learning is another option which can be considered for learning from different centers. 

Federated learning is a machine learning method which trains a model across multiple data 

centers while not storing data from different centers in one place. In this method, different 

models are trained in local centers, and learning parameters are shared between the models to 

generate a global model.   
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Further research can enhance the experiments that we have conducted. For example, data from 

different sources, such as EEG or clinical notes, can be fed to the models as input. At least two 

different architectures can be used to combine the data. One method would be training different 

models for each type of data and then ensemble the results from the different models (Figure 

7.1a). Another possible option would be, using data from different resources and training one 

model (Figure 7.1b). For example, features extracted from image data using the convolution 

layers can be combined with the other data types and then be provided to a classifier.  

 

 

Figure 7.1: Methods to use data from different sources. Training different models each for a specific data type and then 
ensemble the results(a). Feeding different data types to one model and train it (b). 
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Data, the Bottleneck 

The biggest challenge that we encountered throughout the projects was the lack of enough data, 

which is needed when working with Deep Learning algorithms. It seems that lack of access to a 

large number of data is the main issue for the medical image community as well. With the rise of 

Deep Learning, it was expected that decision support systems would bring huge changes to 

practices related to medical images and radiology. Although most probably, these changes will 

be materialized, more data is needed to build and deploy such systems, and gathering such data 

requires more time. It can be argued that the data probably exists, but proper processes should be 

established to provide access to the data.  

 

Outside of the medical world, machine learning based models are seamlessly integrated into our 

lives. Examples of such models include Alexa and Siri. There are also models with astonishing 

output which have attracted media attention. An example of such models is LaMDA, a language 

model developed by Google. LaMDA is not the only example, there are other interesting models 

which have been trained by a very large number of data points. GPT-3 (a language model 

developed by OpenAI), Imagen (a text-to-image model developed by Google), or DALL-E (a 

text-to-image model developed by OpenAI) are other examples of such models.  

 

Comparing the mentioned models with models which have been trained and deployed to medical 

settings indicates a huge difference between the two. One of the main explanations could be 

related to the availability of data for training models in the medical world. The comparison also 

shows the untapped potential for training models in medical fields once enough data is available. 

This does not mean that currently, there are no impactful, deployed models in clinical settings. 
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Examples of such models include an early warning system developed and deployed in St. 

Michael’s Hospital in Toronto (Antoniou & Mamdani, 2021), skin lesion analysis applications, 

or pathology-related applications available on the market. More of such applications and devices 

will be used in medical settings soon. In basic science fields, which can affect medical settings in 

the future, the impact of sophisticated ML models has been materialized. An example of that 

type of model is AlphaFold, which recently has been used to publish the predicted structure of 

more than 200 million proteins (AlphaFold Reveals the Structure of the Protein Universe, n.d.). 

As the health record is moving toward digitalization, Electronic Health Record (HER) systems 

which are used for a large number of patients, or projects such as Observational Health Data 

Science and Informatics (OHDSI) (OHDSI – Observational Health Data Sciences and 

Informatics, n.d.) are going to be the basis for many future ML projects. Considering the current 

efforts for data gathering in healthcare systems and data gathered through wearable devices, the 

future of healthcare data would present a different landscape.  

 

Other Challenges  

Improving the results of the projects worked on in this thesis can be enabled by focusing on the 

following: 

1. Using more and better data 

2. Using better methods and algorithms  

3. Using better hardware 
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There are also other challenges which must be considered when working on machine learning 

models that are aimed to be deployed in medical settings. The following is a short list of such 

challenges. 

 

Patient Privacy and Model Inversion Methods  

Protecting the privacy of patient data is an essential part of research projects, and any models 

which are trained with the aim of deployment in healthcare settings are bound by ethical 

constraints to protect the patient data. In the last decade, a new research area has emerged which 

investigates the possibility of recovering the training data from a trained model (Fredrikson et al., 

2015). There are methods to prevent such actions. One example is using federated learning 

which was explained before. Another option would be adding noise to the data to minimize what 

can be retrieved. Preventing recovering data from a trained model is an ongoing and interesting 

field of research.  

 

Representation of Different Demographic Groups 

ML models targeted for medical settings must be trained on datasets which represent all ethnic 

and marginalized groups. For example, the dataset of MRIs, which is used to train a model, must 

include all groups within the target population and not just patients who can access the 

healthcare system due to socioeconomic factors. In general, when training models using regional 

data, the fact that training data is biased toward regional populations must be considered. The 

effects of demographic composition of datasets and how to address the problem of imbalanced 

datasets must be carefully considered.  
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Operationalizing Medical Models  

Operationalizing medical models which have passed all the tests and are ready to be deployed 

has proven to be a challenging task. For example, a report from MIT Technology Review 

indicated that none of the predictive models developed during the COVID pandemic made a real 

difference (Hundreds of AI Tools Have Been Built to Catch Covid. None of Them Helped. | MIT 

Technology Review, n.d.). Along with acquiring approvals from regulatory bodies, proper 

multidisciplinary teams should be assembled to deploy such models in clinical settings. After 

deploying the model, it must be constantly monitored and improved based on new data and 

information. Monitoring, maintaining, and improving the model is an essential part of installing 

models in medical settings. This process is part of a well-known ML workflow (Figure 7.2). In 

some cases, after installing the models into the healthcare settings, proper change management 

approaches should be deployed to improve the efficiency of the clinical workflow. The impact of 

the installed systems on healthcare should also be evaluated and studied for improvement.   

 

 

 

Figure 7.2: The ML workflow based on Google AI Guidelines - source: (Machine Learning Workflow  |  AI Platform  |  Google 
Cloud, n.d.) 

Some of the above considerations are applicable to non-medical fields as well. Given the easier 

access to data in other fields compared to medicine, groups which work on them have valuable 
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experience that can be used by groups that work on healthcare-related models. Advancements in 

ML and AI have opened new horizons for many fields, and it is expected that the effects of 

machine learning on medicine to be experienced in the upcoming decade. Assuming that is the 

case, patient care outcomes for neurological diseases such as epilepsy might also be substantially 

improved in the near future.  
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8 Appendix A 
 
DenseNet( 
  (features): Sequential( 
    (conv0): Conv3d(1, 64, kernel_size=(7, 7, 7), stride=(2, 2, 2), paddin
g=(3, 3, 3), bias=False) 
    (norm0): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_r
unning_stats=True) 
    (relu0): ReLU(inplace=True) 
    (pool0): MaxPool3d(kernel_size=3, stride=2, padding=1, dilation=1, cei
l_mode=False) 
    (denseblock1): _DenseBlock( 
      (denselayer1): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, t
rack_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(64, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1)
, bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer2): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(96, eps=1e-05, momentum=0.1, affine=True, t
rack_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(96, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1)
, bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer3): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(128, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 



 157 

        ) 
      ) 
      (denselayer4): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(160, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(160, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer5): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(192, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(192, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer6): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(224, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(224, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
    ) 
    (transition1): _Transition( 
      (norm): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track
_running_stats=True) 
      (relu): ReLU(inplace=True) 
      (conv): Conv3d(256, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bi
as=False) 
      (pool): AvgPool3d(kernel_size=2, stride=2, padding=0) 
    ) 
    (denseblock2): _DenseBlock( 
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      (denselayer1): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(128, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer2): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(160, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(160, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer3): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(192, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(192, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer4): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(224, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(224, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
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        ) 
      ) 
      (denselayer5): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(256, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer6): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(288, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(288, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer7): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(320, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(320, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer8): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(352, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(352, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
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          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer9): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(384, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(384, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer10): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(416, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(416, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer11): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(448, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(448, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer12): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(480, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(480, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
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          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
    ) 
    (transition2): _Transition( 
      (norm): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track
_running_stats=True) 
      (relu): ReLU(inplace=True) 
      (conv): Conv3d(512, 256, kernel_size=(1, 1, 1), stride=(1, 1, 1), bi
as=False) 
      (pool): AvgPool3d(kernel_size=2, stride=2, padding=0) 
    ) 
    (denseblock3): _DenseBlock( 
      (denselayer1): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(256, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer2): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(288, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(288, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer3): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(320, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(320, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
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          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer4): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(352, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(352, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer5): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(384, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(384, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer6): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(416, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(416, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer7): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(448, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(448, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
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          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer8): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(480, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(480, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer9): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(512, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer10): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(544, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(544, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer11): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(576, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
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          (conv1): Conv3d(576, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer12): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(608, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(608, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer13): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(640, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(640, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer14): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(672, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(672, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer15): _DenseLayer( 
        (layers): Sequential( 
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          (norm1): BatchNorm3d(704, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(704, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer16): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(736, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(736, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer17): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(768, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(768, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer18): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(800, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(800, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
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      (denselayer19): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(832, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(832, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer20): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(864, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(864, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer21): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(896, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(896, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer22): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(928, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(928, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
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        ) 
      ) 
      (denselayer23): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(960, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(960, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer24): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(992, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(992, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
    ) 
    (transition3): _Transition( 
      (norm): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, trac
k_running_stats=True) 
      (relu): ReLU(inplace=True) 
      (conv): Conv3d(1024, 512, kernel_size=(1, 1, 1), stride=(1, 1, 1), b
ias=False) 
      (pool): AvgPool3d(kernel_size=2, stride=2, padding=0) 
    ) 
    (denseblock4): _DenseBlock( 
      (denselayer1): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(512, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
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      (denselayer2): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(544, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(544, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer3): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(576, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(576, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer4): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(608, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(608, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer5): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(640, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(640, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
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        ) 
      ) 
      (denselayer6): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(672, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(672, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer7): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(704, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(704, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer8): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(736, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(736, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer9): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(768, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(768, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
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          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer10): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(800, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(800, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer11): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(832, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(832, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer12): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(864, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(864, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer13): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(896, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(896, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 



 171 

          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer14): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(928, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(928, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer15): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(960, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(960, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
      (denselayer16): _DenseLayer( 
        (layers): Sequential( 
          (norm1): BatchNorm3d(992, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu1): ReLU(inplace=True) 
          (conv1): Conv3d(992, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1
), bias=False) 
          (norm2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, 
track_running_stats=True) 
          (relu2): ReLU(inplace=True) 
          (conv2): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1)
, padding=(1, 1, 1), bias=False) 
        ) 
      ) 
    ) 
    (norm5): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track
_running_stats=True) 
  ) 
) 
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