
An Iterative Model for Agile Product Line Engineering

Yaser Ghanam

University of Calgary

yghanam@ucalgary.ca

Frank Maurer

University of Calgary

frank.maurer@ucalgary.ca

Abstract

Agile software development (ASD) and software

product line engineering (SPLE) seem to be two

rewarding yet disparate schools of thoughts in

software engineering. ASD encourages strong business

involvement in development activities, focuses only on

the requirements at hand, and deems huge investment

in requirement and design upfront unjustifiable. On the

other hand, SPLE considers intensive domain analysis

and flexible & detailed software design as

prerequisites to any development effort. SPLE plans

for potential future projects, and dedicates

considerable resources for preplanning efforts.

Integrating ASD and SPLE, although is challenging,

has a huge potential of magnifying enhancements in

quality, cuts in cost and reductions in time-to-market.

In this paper, we present our research on this

integration. We propose a model that enables agile

organizations to establish product lines without

disturbing the agility of their practices. The model is a

bottom-up application-driven approach that relies on

automated tests to derive core assets from existing

code.

1. Introduction
Agile software engineering is a collection of

methodologies that, according to the Agile Manifesto

[1], give customer involvement and satisfaction the

highest priority. Agile practitioners preach an iterative

development approach that encourages values and

practices such as stakeholder communication, early

feedback from customer, test-driven development,

short iterations, just-in-time design and continuous

integration. The field of software engineering has

matured enough to realize that getting the customer

requirements right is key to the success of any software

project. This is why traditional software engineering

approaches invest so much time at the beginning of the

project life cycle to elicit these requirements, clarify

any vagueness around them, document them and

produce designs that attempt to satisfy them.

On the other hand, given the high level of

uncertainty of customer requirement at the beginning of

the project, agile methods discourage large investments

in upfront analysis and design. Big-design-up-front

(BDUF) is seen by many agile practitioners as the

antithesis of agility. Agile methods tackle requirements

in a different manner. While a project vision and rough

scope are usually developed by agile teams, they do not

spend more than a few weeks on this effort before

iterative development starts. Detailed requirements are

only determined during development iterations and

only for features that are part of this increment.

Requirements are elicited from the customer in the

form of user stories and made more concrete by

defining acceptance tests [2]. A short development

iteration (two to four weeks) implements these user

stories and produces a working version of the system.

At the end of each iteration, the customer gets the final

say on how well those requirements are satisfied and

what needs to be done in the next iteration. The

architecture of the system evolves gradually bottom-up

as the project needs become clearer. Design decisions

are agreed upon by the members of the development

team who talk to each other in their daily scrum

meetings. Agile methods demonstrate an outstanding

flexibility to accommodate change requests. This

responsiveness to change, although might be expensive,

can still be more economically justified (by the not-so-

much investment upfront in predicting future changes)

than other models which deem any change request

during the implementation phase very expensive

(because of the so-much investment upfront).

While scientific data on agile methods is not yet

conclusive, they seem to work well according to a

growing number of case studies, experience reports and

controlled experiments investigating individual agile

practices (e.g. business organizations are reporting

success in adopting agile practices like Test Driven

Development [3]).

Another successful practice in industry is software

product line engineering. By planning for families of

products as opposed to single products, SPLE offers

opportunities for cost minimization, time reduction,

and quality improvement. This is achieved through

emphasizing flexibility of the reference architecture of

the product line and focusing on the reusability of

development artifacts. According to [4], the ultimate

goal of product line engineering is to enable

organizations to produce systems of higher quality,

with less cost and in shorter time. Nonetheless, for a

software product line to enjoy success, current

approaches require a huge amount of effort to be

invested upfront in domain analysis, application

analysis, flexible architectural design, documentation

and core asset development. Interestingly enough, agile

methods, on a high level, aim to achieve the same goals

(higher quality, shorter time, less cost), while not

spending any extra time or money in early stages where

uncertainty is high. SPLE seems to focus on improving

organizational efficiencies while ASD focuses on

increasing the effectiveness of individual teams.

Since pivotal aspects of SPLE sound off-putting to

the agile community, there is a need to investigate

whether and how ASD and SPLE can work together to

achieve their common goals. Our research goal is to

build a bridge between ASD and SPLE to combine the

advantageous characteristics of both. Our ultimate

objective is to come up with a model that enables agile

organizations to establish software product lines

without affecting the agility of their practices.

The rest of this paper will be structured as follows.

Section 2 is a literature review on this research topic.

Section 3 talks about why it is challenging to make

agile methods capable of establishing product lines.

Section 4 discusses our proposed model to bridge agile

and SPLE. Section 5 discusses the methodologies we

are using to study the issue. Section 6 talks about

possible ways to evaluate our work. Section 7

summarizes our research motivation, goals and the

progress made so far and gives a glance on the

contribution of this ongoing research.

2. Related Work

Literature on SPLE in general is extensive. With

specialized conferences like Software Product Line

Engineering, efforts to enhance the practice are

numerous. Most of these efforts seem to rely on

common bases cited from books like “Software Product

Lines - Practices and Patterns” [4]. But when we look

for literature on agile product line engineering, one can

barely find a paper dedicated to that topic, or a paper

that has “agile” and “product line” in its title. At SPLC

2006, an encouraging initiative was the 1
st
 international

workshop on agile product line engineering [5]. The

workshop aimed to bring practitioners from the agile

community and the SPLE community to discuss

commonalities and points of variation between the two

practices. The theme of the discussions in that

workshop was around how feasible it is to integrate the

two approaches. In conjunction with this workshop,

one of the presented efforts was the iterative approach

proposed by Carbon et al. [6]. This approach is based

on PuLSE-I [7] which is a reuse-centric application

engineering process. The proposed approach gives

agile methods the role of tailoring a product for a

specific customer during the application engineering

process. While an interesting first step, this effort does

not consider the introduction of the product line

practice in an agile organization in a way that does not

disturb agility nor does it discuss how the product line

architecture is derived in the first place.

Also, Paige et al. [8] proposed building software

product lines using Feature Driven Development. They

assert the method worked well when giving special

considerations for the product line architectural and

component design. Another noticeable effort was by

Hanssen et al. [9] who presented a success story of

integrating SPLE and ASD. In this experience, SPLE

was used for long-term planning at the strategic level of

the organization. On the other hand, ASD was used at a

medium-term project level to serve tactical processes.

3. Issues

This section discusses some of the issues that agile

methods will have to address in order to be able to

integrate product line engineering approaches.

3.1 Requirement analysis
In sequential software engineering models (like

Royce’s Waterfall model), it is essential to conduct

domain or/and application analysis prior to any design

or implementation in order to get the right requirement

specifications. This is why in traditional software

engineering models, practitioners advise that projects

allocate a high amount of resources to requirement

engineering [10]. When we talk about developing a

family of products, investment in domain analysis

becomes even more crucial and resource demanding.

This is because it is no longer sufficient to analyze the

project at hand; but there is a need to plan for future

projects that are potential members of the product

family. Such a long-term planning requires deep

insights into future market opportunities and is

surrounded by a high level of uncertainty.

This issue is a real challenge for agile methods that

deem huge investments in domain analysis

economically unjustifiable because of the high level of

vagueness at the beginning of the project and the

uncertainties of where the market will be going over

the next years. Agile methods encourage focusing on

immediate needs that can be delivered to the customer

at the end of a development iteration. This approach

limits uncertainty (as forecasting what is needed in a

few weeks is easier than predicting what might be

useful a few years down the road) and increases net

present value (as payback for an investment will start to

come within weeks of development effort).

Introducing a new phase where lengthy domain

analysis has to take place before starting any

implementation to address current problems would

affect the agility of the practice and, thus, might not be

appealing to agile practitioners.

Another issue with domain analysis is the detailed

documentation of the findings. While it is of high

importance for existing product line models to produce

formal requirement documents as a reference for future

projects in the same domain, agile methods do not

provide documentation unless it is essential to satisfy a

customer’s need. Rather, documentation of agile-

produced systems often consist mainly of the code

itself accompanied by acceptance and unit tests as well

as high-level overview documents.

3.2 Preplanned reuse
Agile methods develop systems based on current

needs and not based on predictions of what is going to

be useful in the future: current needs are concrete,

future needs are more like options. Detailed planning

includes only a small set of clear requirements that are

requested directly by the customer and discussed

amongst the different stakeholders. After this set of

requirements has been satisfied (accepted by the

customer), another set is to be implemented taking into

consideration all available information. No time is

allocated at the beginning of the project to produce

detailed requirement documents given their frequent

changes. According to [11], it is not sufficient to tailor

and reuse artifacts whenever they are needed to satisfy

a product line requirement of reuse. Reuse has to be

preplanned. There has to be a specific set of artifacts

that are to be reused. Special considerations in the

design and implementation are given to these core

assets. Designing these core assets requires knowledge

of what the architecture of the system will encompass,

and thus, this has to be done after the architecture has

been defined.

In agile methods, however, the architecture is

supposed to evolve over time. And because of this

expected evolution, it makes no sense to produce and

continuously spend time and effort in updating lengthy

design documents for an architecture that is

continuously changing.

Giving up investment in requirement and design

upfront does not come without a cost. Starting the

development process focused on concrete needs likely

results in producing artifacts (acceptance tests, design

modules, pieces of code … etc) that are application-

specific and hard to reuse for other applications. Not

producing reusable assets effectively costs nothing

when developing single systems. In fact, it saves money

as SPLE literature indicates that it takes 2-3 product

development efforts to recover the initial investment

into the product line approach. But opportunity costs

become high when thinking about developing families

of products where reuse is pivotal.

3.3 Core asset management
Needless to say, managing available core assets is

an essential success factor in software product lines. It

is not sufficient to develop these assets and make sure

they fit within the platform of a specific product line.

Once the product line starts to mature, the number of

core assets also starts to increase. Therefore, there

should be formal mechanisms through which core

assets can be described and identified for reuse and

maintenance purposes. It should also be possible to

trace these assets across the different phases in the

product line so that a quality enhancement of a given

asset can regressively affect all instances of this asset in

the product line.

These issues have been already addressed in

traditional SPLE approaches through detailed

documentation and means of tracking and associating

artifacts at different variations of the product line.

However, this is a challenge for agile methods that,

again, do not value spending time on producing

detailed requirement and design documents. So the

question is whether it is possible to keep track of core

assets and manage them with practices compatible to

agile approaches.

3.4 Flexible Design
To make customization possible in a software

product line, flexibility is to be introduced at two

different levels. One level is the reusable artifacts.

These artifacts need to be flexible enough to be

plugged into or/and interfaced with different members

in the family. This consequently implies the other level

at which flexibility is to be introduced which is the

system architecture. The architecture needs to be

flexible to accommodate variations in the product line.

Variation points are to be defined in order to

incorporate potential variants into the architectural

design. Defining variability in advance is essential to

the success of any product line practice and helps

define the scope of the product line.

Putting a flexible system architecture in shape

before starting any implementation seems to be a

reasonable, or more precisely expectable, requirement

in traditional software models that finalize the

architectural design before the implementation phase

starts. But for agile teams, the story is different. In agile

practices, the architecture is derived bottom up from

concrete requirements and evolves over time. The

question is: how can we create variation points in the

product line if the architecture is not to be worked on

prior to the implementation?

4. The Proposed Model

4.1. Overview
Our proposed model to integrate agile methods with

SPLE takes into consideration the issues mentioned in

the previous section. On a high level, this model differs

from other proposed models in a number of ways. For

one, as opposed to other models like the one in [6] and

[9] that attempt to utilize agile methods as an enabling

development model within SPLE, the model we are

presenting here emphasizes agile as the key player

within which SPLE techniques will be integrated at the

enterprise level. Differently put, while previous works

target SPL-based organizations that want to make their

product development more agile, our model targets

agile organizations that wish to establish an SPL.

Secondly, current SPLE models depend heavily on

platform requirement and architectural design as

prerequisites to instantiating product instances. In this

model, however, we adopt a bottom-up approach

through which the product line is built iteratively from

existing product instances. The platform will evolve

progressively in an iterative approach at the project

level.

4.2. The Corner Stone of our Approach
It is true that agile software development values

working software over comprehensive documentation

[1]. But this does not mean that agile-produced artifacts

are untraceable. Assuming a healthy practice of agile

methodologies, test-driven development necessitates

that all feature development be driven by acceptance

tests defined by the business stakeholders. We look at

acceptance tests as the corner stone of the bridge

between agile methods and product line engineering.

Acceptance tests are core assets that will be reused and

will, consequently, drive reuse of development artifacts

in the product line. The rest of this section explains

what an acceptance test is and how it is produced.

Usually in the planning meeting, the customer

defines a set of user stories that are effectively a subset

of the system requirements. These requirements are

translated (by the customer and other stakeholders) into

human-readable test cases that define acceptance

criteria for the feature in form of examples [12]. These

test cases are called acceptance tests and are usually

organized in a tabular format. Figure 1 is a simple

example of an acceptance test for a course registration

system.

ID 3

Description Adding an offered course.

Preconditions CPSC 688 and SENG 615 are offered only in

Fall08.

Operation a. Add CPSC 688 in Fall08

b. Add SENG 615 in Spring09

Expected

outcome

a. Course is added successfully.

b. Course is not added. Message: “SENG

615 is not offered in Spring 09”

Figure 1 - Example of an acceptance test

Using frameworks like Fit or GreenPepper [13], the

development team automates these tests before they

start the actual coding of the intended features. These

tests will initially fail. With progress being made in the

development process, test cases start to gradually pass.

Ideally, when a new developer joins the team and is

asked to enhance a certain feature, the associated

acceptance test should be sufficient to understand what

the objective of the feature is.

4.3. The Iterative Model
Let’s assume an organization is developing two

independent systems; yet these systems are in the same

or very similar domain. Each of the systems has a

number of developers who, in the worst case scenario,

do not communicate. Development of both systems is

going on in parallel and is following a test-driven

development approach. As shown in Figure 2, at the

end of the development stage, we expect the following

to be available for each of the systems: a set of

acceptance tests, an implemented architecture, and a set

of code modules.

The organization realizes that more systems in the

same domain will be in demand soon and decides to

work on establishing a product line. System C is the

first system to benefit from the product line approach.

Figure 2 - Development of two independent systems

4.3.1. Core Assets Team. Prior to starting the

development of system C, the first step would be to

form a team of developers who will be responsible for

creating and maintaining core assets.

The responsibilities of this team include mining the

existing systems A and B (on demand) for modules that

can be reused in products under development, extract a

generic layer of these modules, and define variation

points and variants to these generic artifacts. The core

asset team also helps the product teams to refactor their

products to use the core assets.

The mining process will depend primarily on

acceptance tests that are associated with code modules

(or features). This process requires that the members of

this team are familiar with existing systems in the

organization. Thus, the core asset team will consist of

senior developers from Team A, B and C. This also

ensures that the core asset team is grounded in the

actual needs of the teams that will use its work results.

4.3.2. Evaluation & Extraction. When the new team

starts the development of system C, they first obtain a

set of user stories from the customer. These user stories

are converted to acceptance tests. The acceptance tests

are discussed with the core asset team. The evaluation

process entails finding similarities between the

acceptance tests at hand and those that already exist

from the previously developed systems. If the team

decides the level of similarity is above a certain

threshold value alpha (α), then a match is found and the

tailoring process follows
1
.

The tailoring process follows and encompasses

more sophisticated procedures to refactor acceptance

tests and produce a final artifact that has two layers: a

generic layer and a variability layer. In this process, all

relevant acceptance tests from previous systems (say

1 The value α is a predefined percentage at which it is more economical to reuse

than develop from scratch. Initially, α can start low (say 30% - 3 out of each ten

cases already exist) to give the product line an opportunity to grow. Later α can

be increased gradually as the scope of the product line gets more restricted. If

the level of similarity between what is required and what already exists does not

exceed alpha, then the request cannot be honored, and it would be the

responsibility of the requesting team to develop that specific module.

A.T1A, A.T1B) in addition to the acceptance test in hand

(say A.T1C) are used to extract an acceptance test A.T1`

that has a generic fixed component A.T1G, a variable

component A.T1V, a variation point such as X, and a

number of variants A.T1A`, A.T1B` and A.T1C` as shown

in Figure 3. For example, A.T1G defines a generic

acceptance test for a door locking system. A variation

point X would be the print type with three different

variants: A.T1A` (finger print), A.T1B` (voice print) and

A.T1C` (eye print).

Figure 3 - A.T1` consists of two layers

The extraction process of the generic A.T is conducted

in three steps:

1) Define the intersection of all relevant

acceptance tests to come up with a generic

layer.

2) Specify how and why non-intersecting parts

differ to define variation points.

3) Specify how acceptance tests in hand relate to

the newly specified variation points to specify

variants.

4.3.3. Refactoring. Once the acceptance test model has

been defined as in Figure 3, the refactoring process is

conducted. We mentioned before that every feature

(user story) is developed against a prewritten test that

defines acceptance criteria. This is why the refactoring

process will be steered by the newly generated

acceptance test model. That is, test cases that have been

classified within the generic A.T will drive the

generation of a generic module (MG), whereas those

that have been categorized within the variability layer

will drive the generation of specialized modules (MV).

Figure 4 illustrates the anticipated object model

resulting from the direct mapping of the acceptance test

model (A.T1`in Figure 3) to a code module (M1).

While it is the responsibility of the core assets team to

produce the generic layer of this module along with

interfacing points, the generation of the variability

layer will be mainly the responsibility of the

development teams.

Figure 4 - Refactoring process produces Module 1

4.3.4. Managing Core Assets. Once the definition of

the new module has been finalized and the refactoring

process to build this module from existing code has

been achieved, the core assets team adds the refactored

module as a self-contained component (class, interface

or package) along with all associated variants into a

repository of reusable modules for future uses.

Reusable modules in the core asset repository are

referenced by their corresponding acceptance tests. In

early stages, these acceptance tests can be looked at

manually, but with the number of assets increasing over

time, there might be a need to develop an automated

search mechanism. Using automated acceptance tests

as a core asset provides solutions for a number of

issues:

1. Documentation: with the lack of traditional

documentation of the current status of the product

line, there needs to be an alternative to make it

possible for newcomers to understand what is

already there, what needs to be maintained, and

what needs to be produced.

2. Traceability: whenever an application instance

makes use of existing modules, the corresponding

acceptance tests in the repository links this usage

to the reusable component. This tracking is done

so that when core asset in the repository is

modified (e.g. to fix a bug), all application

instances can be traced back and, hence, can be

notified of this change.

3. Maintainability: when receiving new reuse

requests from future projects, new information

about the domain might be available. This will

affect already existing reusable artifacts. They will

be continuously maintained so their flexibility and

fitness for future reuse increases every time.

Maintaining an artifact includes different options

such as expanding the generic layer, defining new

variation points or identifying new variants. As

more requests are made to the repository of

reusable components, these components get

polished until they reach a stage where they

become pluggable without further modifications.

4.3.5. Core Asset Incorporation. The development

efforts to achieve the model in Figure 5 will mainly be

spent by the core assets team with a possible (and

encouraged) cooperation of the development team who

originally initiated the request. This cooperation

already exists considering the participation of team

members who belong to the development team of

System C. However, more communication is always

encouraged in agile settings for everyone to be up-to-

date on the progress.

The resulting module is streamed back to be

incorporated in the system under development while

other requests (possibly from different teams) are

progressing in the same process.

4.3.6. Architecture Evolution. The process described

above consists of a number of steps including: forming

the core assets team, evaluating reuse requests,

refactoring existing code, adding newly developed

modules to the repository, and finally incorporating the

new module into the system under development. This

multi-step process is to be conducted iteratively at the

project level. That is, every project in the same domain

will initiate requests to the core assets team asking for

reusable artifacts. Handling schedules of different

teams involved in the product development using a

configuration management system is an open research

question. As more projects are developed, the number

of reusable artifacts increases resulting in a higher level

of reuse and refinement of pluggable components. As

more components in the architecture become stable

(API less frequently changed), the generic platform will

consequently stabilize and the variability layer will

gradually separate. To illustrate, look at Figure 5 and

notice how the two architectural levels of the product

line evolve as more projects are realized.

 A B C

Figure 5 - Product line architecture evolution

At point A, the product line is still in the first stages

where existing modules (M1 and M2) are continuously

experiencing considerable alterations and new reusable

modules are introduced (Mn). At this point, there is

high coupling between the variability layer and the

generic framework.

At point B, we start to notice signs of maturity since

existing modules are starting to move towards the

Number of Projects

generic framework (i.e. experiencing less alteration).

Also, at this point the interfaces of repeatedly used

modules are getting more polished and thus the

variability layer is getting thinner as the generic

modules start to directly provide the required

functionality to the applications.

When the product line reaches point C, it starts to

stabilize since most of the modules now belong entirely

to the generic framework with a very thin layer of

variability containing instances of variation.

It is true that in this iterative approach, the first few

projects that feed into the iterative process may not

economically benefit from the product line practice.

But according to [11], even in traditional product line

models, at least three software systems need to be

developed before the break-even point is realized

(getting back the upfront investment). Following this

bottom up approach initially avoids the upfront cost

(and the associated risk) of the traditional SPL

approach. The first two to three systems developed by

our approach will (combined) not cost more than the

first two to three systems using traditional SPL. The

company can start the SPL initiative with much less

risk as it already has the experience from building a

few similar systems. It has learned a lot about the

domain during development and is now more able to

predict where the market is going. It avoids investing

into reusable assets that nobody wants to use (as it does

not have to anticipate what will be used but simply

respond to reuse requests from application

development teams).

5. Methodology

We will combine empirical studies in industry with

a practical implementation of the proposed agile

product line approach with our own development team.

To begin, we will look carefully into case studies of

agile-based organizations that do development of

systems in a specific domain. These organizations may

not claim to have a product line, but when we look at

the development processes of some of our industrial

contacts, we can easily see core asset development

activities in some of the larger agile teams.

Furthermore, to be able to study the feasibility and

practicality of the proposed model, we decided to

actually implement a small-scale product line for a

specific application domain. The domain we picked in

collaboration with one of our industrial sponsors is

software for monitoring and controlling intelligent

homes. These systems will be designed for use on

touch sensitive displays and digital tabletops.

Establishing a product line in such an application

domain makes an excellent case study for our research.

For one, the field of tabletop applications is a fairly

new field that is increasingly emerging as a future core

technology. This implies that a learning curve is to take

place before the development teams become familiar

with the domain. This is an advantage since we are

interested in knowing how the learning curve (when

introducing a new domain) will affect the effort of

establishing a product line. The other advantage this

application domain offers is the numerous

opportunities for customization (which we see as a

precondition for establishing a product line).

Members of the development teams are interns with

good background about software engineering in general

and agile practices in particular. They will be working

in teams in a software engineering lab in settings that

encourage face-to-face communication and facilitate

daily scrum meetings. This lab will also have a digital

tabletop for testing as well as a small simulation

environment for the intelligent home.

We will use ideas from action research and

implement the iterative model for establishing the

product line by giving direct guidance to the

developers in our team. Team members will be

involved in release & iteration planning with our

industrial partners. They will also be involved in the

decision making process at every stage of the

development. Their performance will be closely

monitored and their output will be evaluated by the

customer for quality. These measures are taken in order

to make the environment as real as possible so that we

can get precise feedback on the model. Through daily

scrum meetings and informal discussions with the

developers, we aim to have a good idea on how well

the model is working. More specifically, we are

interested in knowing what factors affect the

effectiveness of the core assets team, whether there are

any communication issues between the development

teams and the core assets team, and whether there are

any coordination or synchronization problems between

teams working in parallel on different projects. We will

also monitor and pursue feedback on the generation of

the reusable artifacts, their quality, their evolution and

their flexibility. Moreover, the evolution of the

architecture itself across different projects in the

product line is one of the major foci of our study.

6. Evaluation

The results of the study shown in the previous

section will be incorporated in a refinement process of

the proposed model. After that, we will evaluate the

model through two different phases.

6.1. Hypothetical Systems
Since we have industrial partners who are interested

in the applications we will be developing for intelligent

homes, these partners can be a valuable source of

realistic requirement specifications for a few

hypothetical systems. The requirements of these

systems are to be evaluated against the capabilities of

the product line that was established during our study.

For each of these systems, if 1) the product line is

capable of accommodating a certain percentage of the

requirements through existing reusable artifacts, and 2)

the architecture shows flexibility to interface with

newly developed artifacts, then our model has

successfully produced a product line that has a business

value. If one of these two conditions was not met,

further investigation is to be done to identify sources of

problems before proceeding to the next step.

6.2. Empirical Evaluation
When the first evaluation phase has been

successfully accomplished, we will be looking for

industrial partners who are willing to validate the

model by implementing it in their business

organizations. Getting partners who are willing to risk

their time and man power to validate the model is a

difficult task. But once the request is honored,

feedback from these organizations will significantly

contribute to the enhancement of this model.

7. Conclusions: Progress & Contributions

In this paper we presented an iterative, acceptance

test driven model for agile product line engineering.

The model aims for a seamless integration between

ASD and SPLE. It follows a bottom-up approach

where reusable artifacts are extracted from existing

assets on demand. The corner stone of our model is the

use of automated acceptance tests for replacing

traditional documentation for SPL purposes. Currently,

we are in the initial stages of our research where the

model is being continuously revised and refined.

One of the issues that we need to study more is

whether test-driven-development is the most effective

agile method in achieving the objectives of the

proposed iterative model. Many other questions remain

open. We would like to answer questions like: would it

be more practical to rely on unit tests as opposed to

acceptance tests or maybe both? How can these tests be

written for reuse? What is the best way to track and

maintain core assets across different application

instances? How do we control the scope of the product

line so that it does not go out of control? What are the

financial implications of a bottom-up product line

approach in an agile context, and how does it compare

to more traditional SPL approaches? Also, a major

question is how to improve communication amongst

different teams working on different projects in the

same product line?

We strongly believe that investigating this topic will

have a significant impact on both research in software

engineering and the software industry. Not only will the

integration of ASD and SPLE provide substantial

benefits to software development organizations, it will

also open the doors for new research areas in the field

of agile software engineering.

8. References

[1] “Manifesto for Agile Software Development,” available

at http://agilemanifesto.org. Last accessed April 20th, 2008.

[2] Reppert, T., “Don’t Just Break Software, Make Software:

How Story-Test-Driven-Development is Changing the Way

QA, Customers, and Developers Work”, Better Software,

6(6): 18–23, 2004.

[3] Melnik, G., Jeffries, R., “Test-Driven Development – The

Art of Fearless Programming”, IEEE Software, 24(3): 24-30,

2007.

[4] Clements, P., and Northrop, L., Software Product Lines:

Practices and Patterns, Addison-Wesley, 2002.

[5] Cooper, K., and Franch, X., "APLE 1st International

Workshop on Agile Product Line Engineering", SPLC, 2006.

[6] Carbon, R., Lindvall, M., Muthig, D., and Costa, P.,

“Integrating product line engineering and agile methods:

flexible design up-front vs. incremental design”, The 1st

International Workshop on APLE, 2006 - SPLC.

[7] Bayer, J., Gacek, C., Muthig, D., and Widen, T.,

“PuLSE-I: Deriving Instances from a Product Line

Infrastructure”, Proceedings of the 7th IEEE International

Conference and Workshop on the Engineering of Computer-

Based Systems, 2000, pp. 237 - 245.

[8] Paige, R., Xiaochen, W., Stephenson, Z., and Phillip J.,

“Towards an Agile Process for Building Software Product

Lines”, LNCS: XP 2006, pp. 198 – 199.

[9] Hanssen, G., and Fægri, T., "Process Fusion: An

Industrial Case Study on Agile Software Product Line

Engineering", accepted for special Issue of Journal of

Systems and Software (JSS), 2008.

[10] Hofmann, H., Lehner, F., "Requirements engineering as

a success factor in software projects", IEEE Software, 18(4),

pp.58-66, 2001.

[11] Pohl, K., Böckle, G., and Linden, F, Software Product

Line Engineering: Foundations, Principles and Techniques,

Springer, Germany, 2005.

[12] Perry, W., Effective Methods for Software Testing, John

Wiley & Sons, New York, 2000.

[13] GreenPepper Software, www.greenpeppersoftware

.com. Last accessed May 1st, 2008.

