
The Application of Multi-modal Test Execution Using Fitclipse

Shelly Park, Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{parksh, maurer}@cpsc.ucalgary.ca

Abstract

Multi-modal test execution allows execution of the

same test against various layers and components of a
software system. This paper presents a method that
effectively encodes one-to-many test definition and test
execution relationship of multi-modal functional tests
without creating large test maintenance overhead. Our
approach extends the Fit table specification structure
by multi-modal fixtures in Fitclipse and presents the
results of test execution in a way that can help
debugging and progress reporting. We analyze the
application of multi-modal test execution and the
potential benefits of using multi-modal test execution
in a multi-functional team.

1. Introduction

In Executable acceptance test driven development,
the requirements are presented in form of tests. The
benefit of executable acceptance testing is to reduce
the ambiguous requirements specifications by
enforcing the customer to specify the requirements
with testable data and examples. The main difference
of executable acceptance tests with other tests is that it
defines the functional requirements criteria for a
finished product from business perspective by the
customer. In an EATDD environment, the acceptance
tests are the main communication channel for
communicating project progress, requirements and
quality. All stakeholders of the software project
including the development team are involved with
varying degrees in specifying, testing, implementing or
communicating through acceptance tests. Acceptance
tests are not just for customers, but an important
communication tool for all stakeholders – users,
customers, analysts, developers and QAs – in the
development project. In addition, agile methodologies
consider automation of acceptance tests to be an
essential part of the development [1,7], because many
of the testing tasks are highly repetitive and postponing
all acceptance tests to the end is “a bottleneck before

the product delivery”, which could have
“overwhelming overhead for each delivery” [7] – and
it often has as illustrated by many schedule overheads
due to late integration and acceptance testing.

It is important to note that research into executable
acceptance testing is not just about testing. Unlike the
authors of the other types of tests, the author or the
owner of executable acceptance tests is not the QAs.
The specifications are supposed to be written by
customers who often have limited software
engineering background. The purpose of the
executable acceptance tests is to communicate the
business perspective of the software requirements and
business values as much as it is to communicate the
quality of the software. The challenge with executable
specification is the format and the interpretation of the
test results must be easily understood by the non-
developers and non-testers, but also be able to convey
the details of the development project from business
perspective.

There are several tools and languages for
representing and testing for workflow process and
system requirements. The “record-and-playback” type
of tools such as WATIR [2] or Selenium [3] work on
the user interface layer. Swimlane is used for process
flow diagrams, which is more popular among business
process analysts to communicate the requirements.
Finally, agile practitioners use Fit [4] or tools based on
Fit such as FitNesse [5] and FitLibrary [6]. In Fit, the
test definition is specified in form of tables, which is
called “Fit tables”. The developers write “fixtures” that
map the test definition to the software program code.
Once the Fit tables are combined with the fixtures,
anyone can execute and read the test results.

We argue that the next generation of functional
testing tools needs to be multi-modal: tests need to be
expressible in multiple formats to satisfy the
requirements from different stakeholder groups and
need to be executable against different layers of the
software system. We call the first multi-modal test
definition and the second multi-modal test execution.
This paper deals specifically with multi-modal test

execution and its applications in executable acceptance
test driven development (EATDD) environment.
Functional requirements do not necessarily translate
easily to a specific part of the code, but rather
functional requirements are combination of different
parts of the code. Identifying these code easily and be
able to map a functional feature to the location in the
code is necessary for quality assurance activity. We
have implemented multi-modal test execution in an
executable acceptance testing tool called Fitclipse and
this paper explains the application side of how multi-
modal test execution can be used for software
development project. Section 2 presents issues and
necessities for multi-modal functional testing tools.
Section 3 presents how multi-modal functional testing
is implemented in Fitclipse and examples of how tests
can be specified and executed. Section 4 concludes the
paper arguing for the usefulness of having multi-modal
acceptance test execution.

2. Motivation for Multi-modal Functional
Test Execution

The purpose of multi-modal test execution, which
will be abbreviated to MMTE, is to provide one-to-
many mapping between the acceptance test definition
and the fixture test executions: a single functional test
or a feature in the requirement is executed against
different layers or components of the software system.
The customer may define functionality, but the actual
implementation of the requirement can exist in many
forms, components and locations in the
implementation because a functional feature is
combination of different parts of the code that works
together. Rather than duplicating the acceptance test
definition per appearance of the functionality or
completely ignoring the multi-layer aspect of the
software in the acceptance tests specifications, the next
generation of acceptance testing tools should
acknowledge the need for MMTE. The information
must be readily available to non-developers in order
for the non-developer team members and stakeholders
to understand the project progress, impact of the future
changes and obtain finer grained details of the
implementation.

There are three benefits to MMTE.
• Finer grained progress tracking in multi-

layered systems
• Respond to business requirements changes
• Derive requirements

The following sections will explain in detail how
MMTE can be used to achieve the three benefits.

2.1. Progress tracking in Multi-Layered
Systems

One of the best design practices for developing large

software is to split the system into different layers of
abstractions [8]. For example, a duplication of same
code in multiple user interfaces (e.g. one web-based,
one thick client and one for mobile devices) can be
eliminated by abstracting out the business logic into a
business layer, multiple user interface layers and other
extra layers as needed (e.g. a web services layer for
cross-company software integrations). In this type of
multi-layered architectural software, a feature or
functionality is implemented across many layers of the
software architecture. For example, the business layer
could be responsible for all calculations and
maintaining the business rules, but the user interface
layer is responsible for triggering the correct event
sequences to collect the correct inputs from the user
and display the output result. These two layers must be
properly integrated in order for the functionality to
become useful. Layered abstractions is important
because it can help pinpoint failing code quickly and
help fix the code without creating contradicting
behaviors between different interfaces.

MMTE against a multi-layered system allows for
finer grained progress tracking than “features” as it
determines which layers of a feature are already
working and which are failing or unimplemented. The
finer grained tests can be beneficial to a wide range of
audiences. For example, developers rely on automated
acceptance testing for regression testing, which can
help developers feel safer about changing code,
especially for large or legacy applications. Having
finer grained acceptance tests can help find the root
cause of a bug quickly by identifying the lowest level
that suddenly breaks.

In addition, understanding the design of the multi-
layered software architecture could help the QAs to
write better test cases for other testing procedures,
especially during system testing and integration testing.
A project manager can obtain quantitative figures on
the progress of the development project in finer details,
such as the number of failing acceptance tests and the
number of unimplemented functional features.
Estimating the time, budget and resources can become
more accurate using the figures provided by the
executable acceptance tests.

2.2. Respond to Changes

The benefit of having architectural information
embedded in the acceptance tests through MMTE is
quick feedback about the impact of these system-wide

architectural or business requirement changes that may
occur during the development project. Customers
could change their mind during the project about the
requirements due to changing business requirements,
budget or emergence of new technology. Or the
developers could realize an additional layer of data
abstraction is required or removal of a layer is more
appropriate from the original specification. As the
changes occur in the test definition, the exact place
where code modification is required becomes apparent
to everyone through failing tests. Following the spirit
of agile development about “responding to change” [9],
the team can improve communication to all
stakeholders based on the concrete evidence provided
by the MMTE. Resource allocation or feature
negotiation can become easier when all stakeholders
are informed with more concrete evidence to base their
decisions.

2.3. Derive Requirements

MMTE can also play an important role in deriving
requirements. Often customers may not be aware of
exactly what they need, thus the requirements may be
too vague. Having MMTE capability in the testing tool
can help business analysts, QAs or developers to
expand the details of the specification to achieve more
concrete design requirements. Whether the details are
divided in terms of different software components or
different software architectural layers, having a one-to-
many mapping capability can help eliminate
requirements ambiguities and define more detailed
requirements than just a “feature”.

3. Implementation

FitClipse [10] is an executable acceptance testing
tool with features such as the ability to perform
acceptance test refactoring, multi-modal test execution,
card-based project planning and test failure analysis
using the test result history. Fitclipse attempts to
address some of the critical research issues in
executable acceptance testing, such as test maintenance,
information abstraction and test failure analysis.
Fitclipse is based on Fit [4] and FitLibrary [6] and it is
built as an Eclipse plugin, which allows the developers
and QAs to keep the acceptance tests in the same
project location as the code.

Fit [4] is designed to facilitate automated
acceptance testing using HTML tables. Fitclipse uses
Wiki syntax to define the Fit tables and uses Fitnesse
to convert the wiki-syntax into HTML table. A study
done by Read et al. shows that over two-thirds of the
computer science students who tried Fit responded

positively on using Fit for future projects [12].
Similarly, the study by Melnik shows that half of the
business students also responded positively on the use
of Fit [13]. These studies as well as its common use
also show that Fit is a good starting point for more
research as it has generated a lot of strong opinions
about how acceptance tests should be [13].

The customer will write the functional requirements
test definition. If the functionality exists in many
places in the software, the developers can expand the
test definition to include MMTE. In order to provide
one-to-many relationship between the acceptance test
definition and the test fixtures, we decided to expand
the first row of the Fit table definition to specify more
than one fixture separated by a comma. There should
be one Fit table, but many fixtures – each mapping the
test to a specific layer or component of the SUT
(System-under-Test). If there are four fixtures, then
Parser will create four Fit tables. Fit will execute these
four tables as if these specifications were manually
specified four times by the user. After the tests are
executed and the results are returned, Fitclipse will
combine the results from the duplicate tables into one
table and lay them side by side for easy comparison.

Figure 1: One test, many fixtures

Figure 1 shows an example of one-to-many mapping
between test and the fixtures. In this example test,
three fixtures are associated with this test.

Figure 2: Execution result of the test with three
fixtures

Figure 2 shows an example execution result of three
test results shown side by side in order to easily
convey the message about the state of the
implementation. This test result shows that although
the first test (business logic layer) is passing, the
second test (GUI layer) is returning wrong result and

the last fixture is not implemented yet as it returns
exception errors.

4. Analysis

The benefit of MMTE is the ability to convey the
state of the project progress in finer details such as the
existence of the same functional behavior in multiple
parts of the software and having more concrete
acceptance tests in order to reduce the cost due to
miscommunication. For example, if the customer
specifically asks for data to be accessible in two
different types of database, install in multiple
platforms or provide same data using two different
types of APIs, MMTE is useful in conveying the
requirements information more effectively.

However, it is important to note that test automation
is not test-specification automation [14]. The ability to
enhance the clarity of the software requirements
through examples, communicate architectural design
decisions to the stakeholders and be able to perform
automated regression testing at multiple-layers of the
code comes at a price of time and effort. However, we
would argue that having this information is much
better than trying to figure out what the developers did
after the implementation is written or trying to fix the
software with high defect rate afterward.

4. Future Work

The next step to MMTE is to perform analysis on the

specific types of software development scenarios that
can benefit the most from MMTE. Particularly, we
believe that the test result from MMTE will have a lot
of value to the development team in communicating
the software architecture. We are interested to find out
the adoption process of such technique, such as the
obstacles in implementing the technique in practical
situations and the ways in which people perceive the
benefits of the technique.

There are two research problems to multi-modal
acceptance testing. The first part is the MMTE and we
have provided one of many solutions that are possible.
The second part is the multi-modal test definition
where different formats are better suited for
representing different types of requirements
information and/or for different users of the
specification. Because the main author of the
executable acceptance testing is the customers with
little or no software engineering background, it is
important to build a tool that can accommodate the
way customers think about software requirements,
rather than make them conform to the way software

engineers and QAs think about requirements
specifications and requirements testing. It would also
be interesting to see the possibilities of integrating with
complementary tool like Zibreve [15]. Once both
testing methodologies are implemented, user studies
will be performed to analyze the usage patterns and the
impact as a method as a whole.

5. Conclusion

This paper presented problems with the current state

of the executable acceptance test-driven development
process and shows why multi-modal functional testing
is useful. We described our tool that supports multi-
modal test execution. Because Fit is widely used by
agile teams, we used it as the basis for our own
extensions and implemented the feature in Fitclipse.
We added the capability to attach multiple fixtures per
test definition in order to facilitate multi-modal
functional test execution. MMTE helps identify which
layer is the root cause of a bug and encourages a better
progress tracking on a finer granularity than a
“feature”. Multi-modal test execution is a method
rather than just a tool implementation. It should be
supported by all acceptance testing tools and everyone
involved in the software development, not just the
developers and QAs.

7. References

1. Beck, K.: Extreme Programming Explained: Embrace
Change, 1/e, Addison-Wesley, Boston, MA, 1999

2. WATIR http://wtr.rubyforge.org/watir_user_guide.html
3. Selenium http://www.openqa.org/selenium/
4. FIT http://fit.c2.com/
5. FITnesse http://fitnesse.org/
6. FitLibrary http://sourceforge.net/projects/fitlibrary
7. Beck, K. Test-Driven Development: by Example,

Addison-Wesley, 2002
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994

9. Agile manifesto. http://agilemanifesto.org/
10. Fitclipse, http://sourceforge.net/projects/fitclipse/
11. Martin, R., Melnik, G., 2008, Tests and Requirements,

Requirements and Tests: A Mobius Strip, IEEE
Software, 25(1), pp. 54-59

12. Read, K., Melnik, G., Maurer,F., Students experiences
with executable acceptance testing, Jul 2005,
Proceedings of the Agile Development Conference 2005

13. Melnik, G., Empirical Analyses of Executable
Acceptance Test Driven Development, July 2007, PhD
Thesis, University of Calgary

14. Martin, R., Melnik, G., 2008, Tests and Requirements,
Requirements and Tests: A Mobius Strip, IEEE
Software, 25(1), pp. 54-59

15. Zibreve, http://www.zibreve.com/

