
Software Process Support over the Internet

F. Maurer & G. Succi
University of Calgary

2500 University Dr NW
Calgary, Alberta, T2N lN4 Canada

maurer@cnsc.ucalnarv.ca
Giancarlo.Succi@enel.ucalw-v.ca

ABSTRACT
The MILOS system supports software development
processes over the Internet. It integrates process modeling
with project planning and enactment. Our flexible
workflow engine allows refining and changing process
models during project execution, The built-in traceability
component supports change notifications and helps the
project participants to ensure that the project plan as well
as the state of the enactment engine reflect the “real
world development process. Tool integration is
accomplished by using the built-in capabilities of Web
browsers.

Keywords
Process support, Internet, flexible workflow, change
notification, traceability

1 INTRODUCTION
In most companies, software development still is more of
an art than an engineering discipline. To overcome the
resulting problems, companies are trying to improve their
software processes following, for example, the capability
maturity model (CMM) or similar approaches. Key issues
here are process modeling and related activities: the
development of explicit descriptions of how software has
to be created and maintained. Most often, these
descriptions are textual: Companies create process
manuals and rely on their employees to interpret the
contents of these documents while executing development
processes.

To reduce the problems of textual descriptions (e.g.
ambiguity, missing descriptions of some aspects of the
software engineering process), various formal or semi-
formal process modeling languages were developed (e.g.
[1,3,8]). However, even (semi-)formal process models
cannot ensure that the ,,real“ development process
follows the prescribed model; they still rely on humans to
interpret and follow the model.

In order to solve this problem and to provide active
guidance during process execution, enactment engines
have been proposed (e.g. [6]). Basically, an enactment (or

Permission to make digital or hard topics of all or part &this work for
personal or classroom LSC is granted without fee provided that COPiCS
are tlot ma& or distributed for profit or commercial advantage and that
copies bear this notice and the full citation 011 the first page. To COPY
otller\vise, to republish, to post on servers or to rcdistrihute 10 lists.
rcquircs prior specific permission and/or a ke.
ICSE ‘99 Los Angclcs CA
Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

H. Holz, B. Kiitting, S. Goldmann, B. Dellen
University of Kaiserslautem

AG Expert Systems
P.O. Box 3049

67653 Kaiserslautem, Germany
{holz,sigig,koetting,dellen}@informatik.uni-kl.de

workflow) engine is an interpreter that operationalizes
process descriptions and guides its human users in their
software development tasks (thereby increasing the
chances that the process model and the real-world process
stay in sync).

Another main problem in software development projects
is the dramatic shortage of skilled workers. It is often
impossible to find appropriate people locally. This fact
forces companies to create virtual teams (or even virtual
enterprises) with members distributed all over the world.

In this paper, we describe MILOS, a Web-based process
support system that improves the coordination and
information exchange of virtual teams. Its flexible
workflow engine allows the creation, refinement, and
adaptation of project plans during enactment; therefore, it
is suited for the highly dynamic, distributed environment
of virtual teams. Its traceability and change notification
mechanism supports team members in coping with
changes.

In Section 2, we describe the system architecture. Section
3 explains the example for the demonstration whereas the
last section discusses related approaches.

2 SYSTEM ARCHITECTURE
The MILOS environment consists of several components:
a resource pool, a process modeling component, a project
management component, and a workflow engine. These
components are linked by a change management
mechanism.

The resource pool component manages agents, roles and
agent properties. It allows to represent company
structures, e.g. in organization charts or hierarchical skill
structures. These can be used to support scheduling of
tasks by querying the component for agents that meet
certain criteria.

The process modeling component maintains formal
process definitions. These include control flow and data
flow specifications, as well as pre- and postconditions,
process refinement and required skills.

The project plan management component supports the
project manager in planning and customizing the project.
The manager can add dates for planned start and end
times of processes and assign agents to processes. S/he
can also change the project plan by adding or removing
processes on every refinement level during execution of

642

the project. These operations can be performed using MS-
Project.

The workfrow management component is responsible for
executing the project plan and managing products. It
generates to-do lists for agents and maintains the current
project state. The workflow engine is able to react
dynamically to project plan changes during execution,
without interrupting the enactment flow.

Our system supports different kinds of notification
techniques. On one hand we provide standard
notifications like escalation mechanisms (e.g. user
notification on approaching deadlines). On the other
hand, we generate notification dependencies from the
project plan, and allow project participants to express
interest in specific information. To implement these
notification dependencies, we use Event-Condition-
Action (ECA) rules that can be based on product and
process-specific events like product-changed or process-
delayed.

MILOS is implemented in Java. We are using the OODB
Gemstone/J 2.0 as an Enterprise Java Bean (EJB) server
that provides transaction management and persistency
services. EJB is a portable, highly scalable, multi-
platform component architecture that dramatically
simplifies the development of thin-client, multi-tier
applications.

The technical architecture of MILOS is based on a multi-
tier approach: many servers act as pillars (components) of
the system, which is more in accordance with the 00
paradigm than the traditional one-server-many-clients
approach. We use three tiers: the process model, the
project plan and the workflow.

The clients of our system are Web-based applets using
Java Remote Method Invocation @MI). Our replication
and conflict solving mechanisms allow us to distribute
workflow execution and also to execute parts of the
workflow off-line.

As mentioned above, we implemented a connection to
MS-Project for planning support. Other applications like
MS-Office, FrameMaker and RationalRose can be
invoked from within the execution framework.

For supporting the project and quality management, our
system uses a metric tool developed at the University of
Calgary by Succi’ to measure different criteria during
process enactment. The palette of measurable criteria
starts at product specific measures like lines of code and
goes up to process specific measures like effort.

3 EXAMPLE
In the following, we want to illustrate our system’s
functionality with the help of an example scenario
describing our own project’s software development

Fig. 1: Example plan created with MS-Project.

Based on the system’s architecture, the project planner
creates an initial plan using some standard software. The
screenshot taken from MS-Project in Fig. 1 shows a
simplified example plan for developing the MILOS
architecture. For each of the three components Project
Plan Management (PPM), Worylow Engine (WFE) and
Resource Pool (RI’), the plan contains a task’ describing
the component’s development process. These tasks are
complex, i.e. they are refined by a set of subtasks that
describe the task (or the activities required to perform the
task) in more detail. As Fig. 1 shows, the complex task
Develop WFE component consists of the subtasks Design
WFE, Implement WFE, Test WFE and Q-Analyze WFE’.
Also shown is some scheduling information, i.e. planned
start and finish times, duration as well as team members
assigned to each task. In addition to the information
shown in Fig. 1, the plan also contains a loop from Test
WFE back to Implement WFE. This loop is modeled by
specifying a product flow between those two processes,
using MS-Project’s additional task attribute fields.

For plan enactment, the project planner exports the plan
from MS-Project into MILOS. From now on, team
members, regardless of their geographical location, can
log into MILOS via standard Web browsers and are
provided with individual workspaces. Figure 2 shows the
current workspace of team member Alice. According to
the project plan, she is responsible for the task Implement
WFE and, consequently, this task appears on her to-do
list.

The workspace allows Alice to browse the information
associated with each task, e.g. a more detailed task
description (including the task hierarchy) and scheduling
information. In particular, she is given access to any
documents needed to execute the task. Hence, the list of
input documents (the design document and the
requirements document) as well as the list of output
documents is displayed for task Implement WFE. These
lists can be specified in the project plan. A double-click
on a document opens it with the appropriate tool.

2 In the following, task andprocess are used synonymously.

3Quality analysis of code.

643

As soon as the required input document WFE design has
been released by Bob, the team member who is
responsible for task Design WFE (see Fig. l), Alice is
notified that the task Implement WFE has become
executable. After having inspected the design document,
she forecasts her start and finish times for the
implementation to be the current date (Dec. 14) and Dec.
17, respectively. In the case that her forecast violated the
project schedule, the planner would receive an
automatically generated email notification about this
problem. However, since her forecast conforms to the
schedule, no notification is sent.

A double-click on the (empty) output document WFE
implementation starts the appropriate Java
implementation environment for Alice. At the end of each
day that she is working on this task, she can save her
work and specify a “percentage complete” value for it.
This value will be exported from MILOS back to MS-
Project in order to provide the planner with up-to-date
information on the project.

When she is finished with the task, it will be removed
from her to-do list. In addition, the document WFE
implementation is released, to the effect that the two
succeeding tasks Test WFE and Q-Analyze WFE become
executable. According to the plan (see Fig. l), the former
has not been assigned to any team member yet, while the
latter has been assigned to a specific metric tool. This tool
acts as a software agent that performs the task
automatically as soon as it becomes executable.

Depending on these measurements, the planner might
want to refine the task Test WFE to either a black-box or
white-box testing process. In our example, the planner
settles for white-box testing because of a high number of
conditional expressions in Alice’s code. Hence, he refines
the task Test WFE by creating two new subtasks Write
WFE Test Cases and Run WFE Test Cases. In addition, he
schedules these two new tasks -and updates his former
estimate on the finish time of the task Test WFE. Because

this former estimate was based on his optimistic
assumption that black-box testing would suffice, the
planner now allocates more time for task Test WFE. As a
consequence, the schedule for the succeeding tasks
System Integration and System Test also has to be
changed.

When he is finished with updating the project plan, the
planner exports it again into MILOS. This cau.ses the two
newly created tasks to appear on the to-do lists of those
team members the tasks were assigned to. In addition, the
team members responsible for the tasks whose time
scheduling had to be changed receive a corresponding
notification. This allows them to update their own work
schedule, in particular their forecasts on start and finish
times.

In case any problems with Alice’s code should be
encountered during task Run WFE Test Cases, an MS-
Word document containing a description of the problems
will be created as output. The presence of this document
will cause a restart of the task Implement WFE, i.e. it will
appear once again on Alice’s to-do list, together with the
problem report as an additional input to the task.
However, since by now the calendar has advanced to Dec.
28, whereas the implementation task was scheduled to
finish by Dec. 18, the planner will receive an
automatically generated email about this delay. That way,
he will have the opportunity to correct the plan in time if
project deadlines make this update necessary.

Meanwhile, Alice will release a new version of the
document WFE implementation as soon as she has
corrected the code. Analogous to the restart of task
Implement WFE, the release of a new WFE
implementation document version will cause a restart of
the succeeding tasks Test WFE and Q-Analyze WFE. That
way, a single restart might cause a “restart-cascade” that
reaches all tasks affected by a change in a document.

4 RELATED WORK
Our work bears similarities to several areas of research,
particularly project management tools, worktlow
management approaches, and process modeling and
enactment research.

Commercially available project management tools like
MS-Project’ and Autoplan support project planning and
scheduling, but provide little or no enactment support. A
project management system that does provide both
planning and execution support is the Mesa/Vista
Enterprise3 tool. Mesa/Vista Enterprise is an environment
for collaborative project execution and m,anagement. It
provides distributed access to project .data, as well as
version and configuration management, but it does not
include any change notification services.

Workflow management tools like Staffware4, FlowMark’,
or TeamWARE concentrate on project execution and

1 l~t~://www.microsoR.conl/projecV

2 bttp:ilwww.digit.comi

3 ht~://mesasys.conl/vistapm/

4 http:Nwww.staffware.com/

5 http:Nwww.soRware.ibm.conllad/flowmark

644

provide little or no support for process modeling and
project planning. In particular, plan changes during
enactment require a complete restart of the project in most
workflow management tools.

The approaches most similar to our work can be found in
the area of process modeling and enactment research.
Most approaches in that area provide (web-based)
modeling and enactment functionality, as well as some
support for dynamic plan changes and change
notifications. However. most of these apnroaches do not
provide project planning and manager&t support, like
resource allocation and time scheduling for tasks in the
project. Below, we briefly describi a number of
approaches in the area of process modeling and enactment
research.

Endeavors [2] is a support system for distributed
execution of (workflow) processes. Endeavors provides
support for dynamic process changes, and is currently
being extended to support World Wide Web (WWW)
protocols.

Serendipity [4] is a process modeling and enactment
environment that supports collaborative modeling as well
as execution of software processes. Change notifications
are sent, using an event-handling concept similar to our
approach. Several external tools have been integrated in
the Serendipity system.
OzWeb [5] is a web-based system that supports multiple
users who are grouped together into collaborative teams.
OzWeb provides a framework that supports the storage of
retrieval of information in a “referential hyperbase”, and
provides some notifications based on dependencies
extracted from a process model.

EPOS [7] is a Software Engineering Environment with
emphasis on Process Modeling, Software Configuration
Management and support to cooperative work. The EPOS
system is based on an underlying database, which
provides versioning functionality and transaction
management, controlled by an application-specific
process model.
The SPADE [I] project aims at defiig and developing a
software engineering environment for software process
modeling and enactment. Its process modeling language
is based on a high-level Petri net formalism. The SPADE
research also includes techniques to deal with process
evolution during enactment.

STATE OF IMPLEMENTATION
The MILOS system is implemented in Java 1.1.7. The
user interfaces run in any Java 1.1.7 compatible Web
browser supporting Java Swing. The current versions of
Netscape and Microsoft Internet Explorer need the Java
Plug-in’ installed. The Server side is implemented on top
of the Gemstone/J3 2.0.1 Enterprise Java Beans
application server. The MILOS exporter/importer can be
loaded into Microsoft Project 98. The tool is freely

available for education and research purposes (contact
maurer@c,cpsc.ucalgarv.ca or koetting@informatik.uni-
klde)

ACKNOWLEDGEMENTS
The work was supported by NSERC, Nortel, the
University of Calgary, and the DFG with several research
grants.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

S. Bandinelli, A. Fuggetta, S. Grigolli. Process
Modeling-in-the-large with SLANG. In IEEE
Proceedings of the 2nd International Conference on
the Sofhyare Process, Berlin (Germany).

G.A. Bolter and R. N. Taylor: Endeavors: A Process
System Integration Infrastructure in Proceedings of
the Fourth International Conference on the Software
Process, Brighton, England, December 1996.
A. Briickers, C. Lott, H. Rombach, M. Verlage:
MVP-L language report version 2. Technical Report
265/95, Department of Computer Science, University
of Kaiserslautem, Germany, 1995.

J.C. Grundy and J.G. Hosking,: Serendipity:
integrated environment support for process
modelling, enactment and work coordination,
Automated Software Engineering: Special Issue on
Process Technology 5(l), January 1998, Kluwer
Academic Publishers, pp. 27-60.

G. E. Kaiser, St. E. Dossick, W. Jiang, J. Jingshuang
Yang and S. X. Ye,: WWW-based Collaboration
Environments with Distributed Tool Services, World
Wide Web, Baltzer Science Publishers (to appear).

G.E. Kaiser P.H. Feiler, S.S. Popovich: Intelligent
Assistance for Software Development and
Maintenance, IEEE Sof?ware, May 1988.

M.N. Nguyen, A.I. Wang, R. Comadi: Total
Software Process Model Evolution In EPOS.
Submittedpaperfor 4th ICSP, 1996, Brigthon, UK.
S. Sutton, L. Osterweil, D. Heimbigner: APPL/A: a
language for software process programming, IEEE
Transactions on SE and Methodology, Vol. 4, No. 3,
p. 221-286, 1995

645

