
The Role of Patch Review in Software Evolution: An
Analysis of the Mozilla Firefox

Mehrdad Nurolahzade, Seyed Mehdi Nasehi, Shahedul Huq Khandkar, Shreya Rawal
Department of Computer Science

University of Calgary
2500 University Dr NW, Calgary, AB T2N 1N4

{mnurolah,smnasehi,shkhandk,srawal}@ucalgary.ca

ABSTRACT
Patch review is the basic mechanism for validating the design and
implementation of patches and maintaining consistency in some
commercial and Free/Libre/Open Source Software (FLOSS)
projects. We examine the inner-workings of the development
process of the successful and mature Mozilla foundation and
highlight how different parties involved affect and steer the
process. Although reviewers are the primary actors in the patch
review process, success in the process can only be achieved if the
community supports reviewers adequately. Peer developers play
the supporting role by offering insight and ideas that help create
more quality patches. Moreover, they reduce the huge patch
backlog reviewers have to clear by identifying and eliminating
immature patches.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7
[Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Human Factors, Management, Measurement

1. INTRODUCTION
Following the success of FLOSS projects in the last two decades
various studies have been performed to gain insight into this
model of development [1][9][15][16][18]. The basic principles of
FLOSS development are clear enough, but the details can
certainly be difficult to define. Open source developments
typically have a central person or body that selects a subset of the
developed code for the official release and makes it widely
available for distribution [1]. The selection takes place after code
is exposed to the development community and reviewed by
people both inside and/or outside the core development
community [9]. Code review not only works as an important
quality assurance mechanism in both commercial and FLOSS
settings, but also enables learning and knowledge transfer in the

software development team. This is especially essential to the
FLOSS model where development is usually driven by a virtual
team that is geographically distributed over multiple time zones.

In this paper, we examine the process of incrementally submitting
and integrating patches into Firefox (one of the core software
evolution activities in Mozilla). The review ensures that the patch
adheres to the initial requirements, commonly accepted standards,
does not introduce inadvertent errors and unwanted side effects to
the common code base. “Mozilla community has decided that it
can't accept just any change to be integrated into the public central
Mozilla code base. If you want your code to become a part of it,
you need to follow rules. These rules are not like law, but
basically you must convince people that your change is good.”1
The Firefox project is one of the successful projects in the FLOSS
world. Firefox is the second most popular browser and its market
share has been steadily growing over the last year.2 The hybrid of
open source and commercial characteristics of development in
Mozilla has led to a process model that heavily relies on patch
reviews performed by module owners, who act as the gatekeepers
[19] in the development community.

This study combines quantitative and qualitative research methods
on data drawn from the Firefox Bugzilla repository. Products like
Firefox that use a mixture of commercial and FLOSS
development process have become widespread. This research was
designed to help better understand the dynamics of this
development model by trying to answer the following research
questions: What are the roles involved in the patch review
process? What is the process of conducting reviews? When are
reviews performed? What do reviewers look at and what they
possibly miss?

More specifically, we make the following contributions:

• Statistical analysis of reviewer behavior. We found that most
reviews are performed by core community members.
Additionally, a substantial amount of reviews take place in
the first 24-48 hours after patch submission. Interestingly, on
average peers conduct their review before module owners.

• Identification of reviewer focus points and concerns. We
analyzed reviewer comments and categorized different types
of feedback provided by reviewers. We found that peers are

1 https://developer.mozilla.org/en/Mozilla_Hacker's_Getting_Started_Guide
2 http://marketshare.hitslink.com/browser-market-share.aspx?qprid =1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IWPSE-EVOL’09, August 24–25, 2009, Amsterdam, The Netherlands.

Copyright 2009 ACM 978-1-60558-678-6/09/08...$10.00.

more interested in the functionality and usability aspects of
the product while module owners are more concerned about
the quality and long-term maintainability of the project.

• Developer and reviewer behavioral patterns. We identified a
number of interesting patterns in developer and reviewer
behavior, for example, Patchy-Patcher and Merciful
Reviewer that are described in our findings (Section 3).

The remainder of this Section discusses an overview of the
Mozilla software evolution process. In Section 2 the data
collection and analysis method is described. Section 3 presents the
results uncovered through the study. In Section 4 we discuss our
findings and the limitations of the study. A summary of related
work is given in Section 5. We conclude in Section 6 by
summarizing our findings and presenting ideas for future work.

1.1 PATCH EVOLUTION IN MOZILLA
Mozilla tries to incorporate a hybrid of the quality of the
commercial and scalability of the FLOSS development models.
Mozilla, unlike the typical FLOSS project, has a relatively large
core development group [1]. At the same time, it enforces code
ownership similar to commercial projects. This is contrary to
some FLOSS projects that rely on unofficial ownership structures,
which means you can commit code without being required to seek
approval from a source of authority.

One of the challenges in FLOSS development model is managing
the loosely coordinated contributions of participants. Some
FLOSS projects rely on decision-making mechanisms like voting
to manage the chaos of open source development [5]. Mozilla also
utilizes voting for incorporation of enhancements and new
features. However, the final decision is made by the responsible
module owner and is not steered by voting. In other words, as
Mike Beltzner the development director of Firefox puts it,
“Anyone can propose a change. Anyone can comment on a
proposal for change. Anyone can submit a change to the code. Not
everyone can approve a change.” [12] Module owners in Mozilla
are the equivalent of leaders in a typical commercial project. They
have a precise understanding of a subset of the product and its
dependencies with the rest of the product or related projects. Their
objective is to bring order to development by leveraging and
coordinating resources. A good example is the Mozilla's “Won't
Fix” status, which is used by module owners to mark those bug
reports or enhancements that they are not going to fix. This works
like a control mechanism for module owners to show what the
priorities of the project are and what they do not want to include
in the final product. In other words, Mozilla reserves the right for
module owner to veto a change request if need be. Of course, this
also comes at a price and may cause disputes and disagreements
in the community [13].

Mozilla module owners should facilitate good development as
defined by the developer community. Code review is used as the
basic mechanism for validating the design and implementation of
patches. Before code is checked into a source code repository the
appropriate module owner and possibly peers must review it. The
patch submit-review process involves developer submitting
his/her patch to Bugzilla by attaching it to the appropriate bug
report. Submitters may submit patches that serve as bug fixes or
patches that provide an enhancement or a new feature. Reviewers
then read through the submitted patch and comment on it. Mozilla
requires patch reviews to be done by module owners and possibly
peer volunteer developers. This distinguishes Mozilla from some

FLOSS projects that primarily rely on inspections performed by
volunteer developers. Based on the feedback received by the
reviewers, the submitter enhances the patch. Once the patch is
deemed acceptable, it is committed to source code repository by
the developer (if he has write privilege to source code repository)
or a core member of the module.

Developers should build, run, and test their solutions before
submitting the patch. They are encouraged to include tests in their
patch as well.3 After submitting a patch the developer may ask for
a code review by changing the status of bug report to review? or
super-review?. Some patches have to undergo two reviews: a
regular review and a “super-review”. Reviewers are specific to
given areas of the code base, but any super-reviewer may review a
patch. Each module has an owner and zero or more peers who can
perform the review. Review requests are forwarded to the module
owner by default, but the module owner may assign one of his
peers to perform the review. If there is not a response from the
reviewer, it is the responsibility of the developer to contact the
module owner and remind him/her to perform the review. If
developer does not get a response within a week and believes the
patch deserves rapid attention, s/he can ask in Bugzilla or IRC (in
#developers channel) who else can review patches for current
component and forward his request to them instead. The patch-
review process is often iterative, but reviewers never fix code
themselves. The reviewer asks for modifications and the
developer is expected to apply them and resubmit the patch.
Reviewers indicate the approval or rejection of the patch by
flagging the patch review+, super-review+, and ui-review+ or
review-, super-review-, and ui-review- respectively.

When a patch is finally approved it is checked into the product
tree. After check-in, the person behind it should be available for
the next hour or two in case something goes wrong with his/her
check-in. This is roughly the time it takes to get unit test results
from all platforms. Every day one person from the Mozilla
community is selected to watch over the build tree, make sure
unsuccessful builds get traction, call people on the phone, etc.
This person is called a “sheriff”. For reasons like build breakage,
performance regressions, or test regressions, the sheriff could
close the tree to further check-ins. The sheriff reopens the tree
when he has confidence that the regressions are diagnosed, being
fixed, and Tinderbox4 is clear enough.5 For performance
regressions the sheriff asks people to explain whether their check-
ins are responsible for the regression. If somebody could not show
that his/her check-in is not related to the regression, the sheriff
will back the check-in out.6

2. METHOD
Our study relies on data extracted from the Mozilla Bugzilla
database. A Bugzilla database collects bug reports that are
submitted by reporters with a short description and a summary.
Bugzilla also captures the status of a bug, for example,
UNCONFIRMED, NEW, ASSIGNED, RESOLVED, or
CLOSED. The resolution of a bug is captured separately from its
status, for example, FIXED, DUPLICATE, or INVALID. Details

3 https://developer.mozilla.org/en/Creating_a_patch
4 https://developer.mozilla.org/En/Tinderbox
5 https://wiki.mozilla.org/Sheriff_Duty
6 http://www-archive.mozilla.org/hacking/regression-policy.html

on the life cycle7 of a bug can be found in the Bugzilla
documentation.8 For our analysis, we developed a program that
extracted data from Bugzilla into a local database. To extract data
from Bugzilla, its XML export feature was used. Bug report
comments and history were retrieved directly from the web
interface of Bugzilla. Additionally, we developed a tool on top of
our database schema to facilitate qualitative coding and
quantitative analysis of the bug descriptions, status changes, and
developer comments.

Our research questions cannot be answered by solely conducting a
quantitative analysis on the Mozilla bug repository. Identifying an
instance of review and the type of feedback provided by the
reviewer requires qualitative analysis of the bug report comments.
Therefore, we have combined both qualitative and quantitative
methods in this study in order to properly analyze the Mozilla
patch evolution process. We examined 112 randomly selected bug
reports from the Mozilla Firefox project. We retrieved a list of
bug reports through the web interface of the Mozilla Bugzilla9 by
specifying Firefox as the product and leaving component, version,
severity, priority, and the rest of the fields untouched. We then
randomly went through the search results and selected 112 bug
reports. We narrowed our focus to those bug reports that entailed
at least one patch submission and review to ensure that patch
review takes place in all bug reports in the selected sample. Our
sampled data set contains 66 bugs, 38 enhancements and 8 new
features filed between the years 2002 and 2009.

We found that 67 developers submitted 310 patches. Those
patches received 318 reviews by 66 peer developers and 38
module owners (or module owner peers). The median number of
patches per bug reports is 2, with a standard deviation of 2.88.
Figure 1 shows the distribution of reviews per bug report. For
each of the selected bug reports, we carefully examined the fields,
comments, attachments, and status changes to identify discussions
and events. To answer our research questions we were primarily
interested in discussions related to patch submission and review
events. Three researchers performed initial coding based on a
coding guideline, which was developed by open coding a sample
data set. A fourth researcher revised the data set in the end, to
increase intercoder reliability.

Figure 1. Number of reviews per bug report.

7 http://www.bugzilla.org/docs/3.2/en/html/lifecycle.html
8 http://www.bugzilla.org/docs/3.2/en/html/
9 https://bugzilla.mozilla.org/query.cgi

3. FINDINGS
We performed various observations on the Mozilla patch review
related events and found interesting patterns in the way
developers and reviewers are submitting, reviewing, and
integrating patches into the main development trunk of the
project.

3.1 PATTERNS
3.1.1 PATCHY-PATCHER
Submitting a patch does not necessarily mean that it is finished or
takes care of the bug report. A patch can be considered finished
when the developer formally asks for a review.

“wip 0.1 works, but i need to fix labels and finish fixing
test_history_sidebar” (Bug #390614)

A work in progress (WIP) patch may not even build, but can still
be used as a platform to discuss the solution. A developer may
partially know about the solution, but still might need help from
the community for the missing parts. WIP patches are also used as
a means of progress reporting. The Mozilla developer guidelines
advise developers to work on multiple bugs in parallel. “Difficult
bugs may take several days or weeks to complete, plus the time
for reviews.”10 Using Bugzilla to keep track of work in progress
helps developers not to lose context when switching between bug
reports.

3.1.2 NEWCOMER
The dynamics of immigration of newcomers [4] to FLOSS
projects has been studied in the past. Mozilla comes with a pool of
documentation to help new developers get oriented with
community development standards and practice. However, as
expected not everyone goes through all the documents before
filing a bug report or submitting a patch. Moreover, we observed
that there is a discrepancy between the accepted notion of practice
and the documented version. It is not unusual to see developers
stuck wondering what the next step is, or doing something based
on their own intuition that can of course be misleading.

“Should I attach a new patch for new review?” (Bug #416728)

For example in response to the comment above, the reviewer
replies that there is no need for new review; but unless he is able
to check the new patch in, he should attach a new patch.

3.1.3 MERCIFUL REVIEWER
The Mozilla review guide states that module owners and super-
reviewers use the review- and super-review- flags respectively to
communicate that patch failed the review. Our data set contains
only 42 instances of review- while the number of review failures
we counted was 56. This discrepancy between the two figures
shows a tendency in reviewers not to use review- flags. In those
situations, the reviewer leaves a comment on the patch and resets
bug status from review? to nothing.

3.1.4 DOUBTFUL REVIEWER
If a patch entails changes to existing functionality of the system,
the decisions regarding new functionality is left to the community.
This is when the bug report assignee, peer developers, and module
owner(s) engage in a discussion regarding different aspects of

10 https://developer.mozilla.org/en/Mozilla_Development_Strategies

new functionality. However, we noticed cases when the bug
report does not attract much of community attention and the
reviewer expresses his/her uncertainty of the proposed solution.

“Let's put this in for beta, and make sure we blog about the
change a little,and see the reaction.” (Bug #412862)

The approach developed by reviewers in this case is to accept the
patch and wait for the community’s reaction to the new/changed
functionality when they see it in the new builds (late feedback).
Alternatively, a reviewer can delay his verdict until peer
developers step in and express their opinion (early feedback).

3.2 OBSERVATIONS
3.2.1 ASSIGNMENT
A Developer can submit a patch to a bug report that is not
assigned to him. Yet, most patches are developed by assigned
developers. Merely 36 out of 310 (11.6%) patches in our data set
were developed by peer (non-assignee) developers.

3.2.2 CORE DEVELOPERS
Our data set contains patch contributions by 67 developers who
have contributed 310 patches to 112 bug reports. But, the
distribution of developer contribution to patch development is not
even. Top developers (that make up 25% of the developer
population) have contributed the majority of the patches (64.5%).
We also verified how many bug reports each developer has
contributed to. Likewise, the top developers have contributed to
the majority of bug reports (55.6%) by submitting patches.

Figure 2. Patch Review Time.

3.2.3 MODULE OWNER REVIEWS
Checking into most (but not all) of the Mozilla tree requires
another level of pre-check-in code review. This level of review is
done by a group of strong developers and is referred to as “super-
review”.11 Our data set contains 38 reviewers that did a total of
198 code or UI inspections. The Mozilla reviewers are expected to
provide some sort of response within 24 hours.12 Figure 2 shows
the timing of patch reviews in our data set. While module owners
do not review 43.8% of patches, 33.4%, 5.5%, and 5.9% of
module owner reviews happened within 24 hours, 2 days, and 5

11 http://www.mozilla.org/hacking/reviewers.html
12 https://developer.mozilla.org/en/Code_Review_FAQ

days after patch submission. We noticed a minor UI enhancement
patch that waited 435 days to be reviewed. The problem is finally
resolved when one of the developers notices it and brings it to
community attention.

“I'm not sure of the procedure here, but a patch has been waiting
for review for nearly a year now, and nothing has happened.”
(Bug #182928)

Of the total of 198 review decisions in our data set, 86 are
acceptance and 112 are rejection. Table 1 shows the different
feedback types provided by module owners and peers. Analysis of
the reviewer decisions shows that the primary reasons for
rejecting a patch are implementation and design issues.
Documentation, coding standards, and functionality are almost
weighed the same by reviewers when rejecting a patch. However,
this cannot be interpreted as reviewers lean towards the
implementation and design quality of Firefox than the
documentation and coding style quality of it. Reviewers even
notice minor programming malpractices like bad naming of
variables and functions, block indentation, and inconsistency
between code and comments.

Table 1. Reviewer feedback types

Feedback Module
Owner

Peer
Developer

Implementation 63 45

Functionality and Usability 6 31

Documentation 9 1

Coding Standards 7 3

Performance 1 2

3.2.4 PEER REVIEWS
Most submitted patches (76.1%) get no peer developer review and
only 17.3% of patches get only one such review. 12.4% of patches
are reviewed by peers within 24 hours (See Figure 2). Our data set
contains patch review contributions by 66 peer developers. Here
again like patch development the contribution is not evenly
distributed between peers. A core group of peers (23%) did the
majority (63%) of the reviews. The analysis of the list of top peer
reviewers revealed the fact that they are all core developers of the
community. Peer developers primarily express their opinion on
implementation, functionality/usability, and design aspects of
proposed patches (see Table 1). Documentation and coding
standards receive relatively much lower attention as compared to
former concerns. Peer developers are more out spoken when they
see something wrong with a patch, otherwise they rather stay
silent.

“I'm actually pretty sure this is the wrong fix” (Bug #464792)

80% of comments by peer developers are either negative or partly
negative.

“This method name [IsChildrenVisible] is a little off... maybe
“AreChildrenVisible”, or “HasVisibleChildren”?” (Bug
#323492)

A reviewer may need further detail regarding the patch
implementation from the developer in order to provide his/her
feedback. Likewise, the developer might have problem
interpreting reviewer feedback and therefore may need to ask
further questions to clarify the situation.

“Those lines aren't in that function; I'm unsure what this comment
is about.” (Bug #450340)

Discussions around review may also attract peer developers to get
involved and express their opinion on developer or reviewer
comments, which might affect the new patch that developer is
going to submit.

3.2.5 PEERS VS. MODULE OWNERS
The majority of bug reports (45.9%) get only one review that is a
module owner review. At the same time, module owners decide
by themselves in 89.4% of cases, because no peer developer
commented on the patch before them. On the other hand, our data
set shows that on average peer developers tend to review
developed patches before module owners. We also verified what
motivates patch developers to resubmit a patch. Resubmission
happens when a module owner, the patch developer, or a peer
developer (ranked respectively) rejects a patch or finds room for
improvement in it.

3.2.6 RUBBER STAMPS
According to the Mozilla review guidelines, if the type of
correction required is small and simple enough that a review is not
needed then the reviewer can “rubber stamp” the patch. A rubber
stamped patch is flagged review+ but the reviewer also supplies
the list of minor fixes expected.

“This extra </handlers> makes this not work, r=me with this
removed” (Bug #346079)

The developer is expected then to make the corrections, submit a
new patch, and check-in the new patch.

“Yikes, had a bad copy and paste in that one” (Bug #346079)

We counted 31 instances of rubber stamp given in our data set in
which minor implementation (18), coding standards (7), and
documentation (6) corrections were requested by reviewers.

3.2.7 MULTIPLE REVIEWERS
In certain cases a patch requires more than one review in order to
be checked into source code repository. A patch that changes code
in more than one module must receive a review+ from each
module owner. If the first reviewer feels that the patch would
benefit from additional reviews, they should request a second
review from an appropriate person. Also, significant user interface
& experience changes should get ui-review from someone in the
UI group. In our sample, more than one module owner reviewed
23 patches, one module owner inspected 145, and no module
owner reviewed the rest of them.

3.2.8 UNDISCOVERED ERRORS
Code review is not expected to find all errors in the code [7][2].
Mozilla accepts the fact that reviewers may miss things during
their review. 8.4% of patches in our data set passed review and
went into source code repository but later were backed out or
replaced with another patch. We verified that performance issues
and regressions caused as a result of merging current product tree

into main tree are the primary errors that remain undiscovered
during review.

“Based on the site breakage, re-opening and suggesting we back
out this change.” (Bug #412862)

Figure 3. Patch review time by bug report priority.

If the undiscovered error causes a build breakage, test or
performance regression then it is easily identified during
automated builds. Otherwise, it can make its way into next release
until someone notices and files a new bug report for it. Bug
reports that are suspected to be a regression are marked with the
keyword “regression” in Bugzilla. If one or more suspected
patches that caused the regression are identified, the two bug
reports are marked as related. Additionally, the original bug report
is reopened to further pursue the problem.

“Adding bug 418643 to the dependency list which has been
introduced this problem 3 month ago.” (Bug #477739)

3.2.9 DEVELOPMENT EFFORT
The chance to get a patch into source code repository is 53.55%.
In other words, on average one of every two patches developed is
thrown away by the developer or fails the review. We did not
analyze the characteristics of patches that get accepted, but a
study like Weißgerber et al. [17] would be interesting to conduct
in the future.

3.2.10 BUG PRIORITY
High priority bug reports are expected to receive higher developer
and reviewer attention. The idea behind assigning priority to bug
reports is to show the level of interest in resolution of those bug
reports. Developers are considering bug reports based on their
priority; 65% of P1 (highest priority) bug reports get their first
patch within 24 hours, while 22% of P2 and 13% of P3 bug
reports get their patch in similar time. Unless the developed
patches are reviewed as soon as possible, faster resolution of
higher priority bugs cannot be achieved. Figure 3, shows the
review time of P1, P2, and P3 bug reports in our sample. There is
no significant relationship between the time reviewers consider
patches and bug report priority. While 57% of P1 patches received
a review within 24 hours, also 55.5% and 57% of P2 and P3
patches respectively received a review within 24 hours. Hence,
reviewers are examining patches, irrespective of their bug report
priority.

4. DISCUSSION
Figure 4 provides a conceptual model of the patch evolution
process space in Mozilla. The process is shaped around a problem
statement (bug report), that is either a defect found in the product
or a new enhancement or feature to be incorporated. The
resolution of the problem happens through developing a solution,
which is delivered in the form of a patch. The problem and the
associated solution are tightly tied together and can influence one
another. The three parties involved (developer, peer, and module
owner) work closely to define the problem and candidate
solutions, further refine the selected solution, and finally resolve
the problem (close the bug report). Hence, the set of activities
taking place in the relationship of the above parties can be
described as define, refine, and resolve.

Figure 4. A conceptual model of the Mozilla patch evolution.

4.1 DEFINE
In Mozilla, there is a strong correlation between assignment and
patch submission. This is quite contrary to the common view held
in FLOSS development in which everyone contributes a patch to
the problem and the best patch is chosen by voting or is selected
by a member of the core development group. Peer developers tend
to invest their effort in engaging in discussions with the assigned
developer before and after solution development, rather than
trying to develop alternative solutions themselves. In other words,
they help developers understand the problem and solution spaces.
They provide alternative explanations for the problem, identify
related problems, propose alternative solutions, verify the
developed solution, and spot misalignment between the developed
solution and the original problem.
If a developer is not competent in the field of the problem or does
not have the required information to provide a solution, he will
turn to peer developers for advice. Alternatively, assigned
developer may act as mediators between parties interested in
solving a particular problem. The mediator [15] negotiates
between those competent parties who can provide insight and
those who are willing to produce a patch and drives forward the
process until the solution is developed. This is one of the
occasions where the Patchy-Patcher pattern of development may
be seen.

4.2 REFINE
Module owners are usually overwhelmed with the number of
patches they have to review and bug reports they have to
comment on. Peer reviews can be very helpful to patch developers
in finding their mistakes and misalignments with community
standards early on. Although non-member peers do not contribute
to patch reviews very much on an individual basis, the combined
contribution of them is still substantial. Peers comment on a little
less than a quarter (23.9%) of submitted patches. It may not seem
like a great help to module owners, but the reality is that peers
also contribute before patch submission by helping the developer
better define the problem/solution. If peers do not find something
wrong with a patch, then there is no reason to leave a comment. In
most FLOSS communities the absence of negative voice is treated
as agreement with a proposed solution. Our result, showing 80%
of peer comments are either negative or partly negative about the
submitted patch, is backing up this view. On the other hand,
although peers do not review patches as much as module owners
do, their effect on identifying and eliminating immature patches is
still valuable. Module owners only review 33.4% of patches
within 24 hours, but adding up the 43.8% of patches that are not
reviewed by module owners (because they are WIP patches or the
developer or peers found something wrong with the patch and
eliminated it) and the number of patches reviewed within the next
24 hours, the total of patches examined within 48 hours would be
82.8%.
We noticed that there are noticeable differences in the
contribution of peer developers and module owners to refining the
solution. Peer developers seem to be not willing to review a patch
when a module owner has already done so. Rather they prefer to
express their own view on module owner's comment by either
questioning the feedback provided or trying to clarify it for the
developer by providing further context or examples. Module
owners, on the other hand, prefer to wait until peer developers
first review a patch. If the peer comments result in a resubmission
of the patch then that saves them one review. After all, reviewers
are the expensive resources of the community, any reduction in
reviews that does not lead to a reduction in the number of defects
found will result in cost saving.
Implementation and design aspects of developed patches receive
high attention from both peer developers and module owners.
However, peer developers are providing more functionality and
usability feedback to patch developers than module owners, and at
the same time they are commenting less on documentation and
coding style aspects of the developed patches. Comparison of the
top developers list and top peer reviews list shows that, except a
few exceptions, the most active peer reviewers are also active
developers themselves. Reviewing the code is a more tedious task
than commenting on the functionality and usability of the
implemented solution. Besides, the primary interest of the external
developers, who are users of the system [5], is the functionality
and usability aspects of the product. Our analysis shows that the
Doubtful Reviewer pattern usually happens when changes are
being made to functionality and usability of the system. These
problems are not necessarily of the kind of nature that module
owners are an expert in. This is when the community has to step
in and express its preferences [12]. In this regard, a peer focusing
more on functionality and usability aspects of the product, at the
cost of disregarding the maintainability of it, is still beneficial.
Inevitably, the module owners have to make up for that by
focusing more on the quality and long-term maintainability of the

project. In addition, the combined number of coding standards and
documentation rubber stamps given by reviewers is still less than
rubber stamps given for minor implementation issues. Reviewers
are more careful with a change that might disturb the long-term
maintainability of the product. Deviations in coding standards and
documentation can easily creep into the code base, but minor
implementation issues are in good chance to be discovered by
automated tests or by the community. Module owners and peer
developers are complementing each other. They refine the
developed solution based on their interest/concern in the overall
process.

4.3 RESOLVE
Our findings are similar to previous findings from FLOSS and
commercial [1] projects that show the core development group
provide most of the functionality developed. It is reflecting the
part-time nature of external participation as compared to the full-
time commitment of core developers. Although most external
developers do not participate frequently in development on an
individual basis, but the combined contribution of them is
substantial. Back in 2007, Firefox was estimated to have 1000
contributors that made 100 contributions daily [12]. 37% of the
code contributed to Firefox between November 2006 and April
2007 came from the community [12]. Module owners do rarely
participate in development, but they have a group of peers that are
part of the core development team and do most of the
development. While we expected the top developers to be either
the module owners or their peers, we found developers that are
actively contributing to development and are not listed as module
owner peers. This can be attributed to the special policy that
Mozilla has in order to “find and elevate smart contributors” [12]
to take on the role of module owners or their peers in the future.
Despite the extensive control of module owner on the Mozilla
development process, they still handle external developers with
great care. Although, we did not find any sign of disgrace or
discontent in developer's behavior upon receiving review- in our
data set, but one can expect to see such a reaction from time to
time. However, module owners seem to have developed this
strategy over the years not to deter new or casual developers from
contributing to the community. After all, it is commonly believed
that “Teams with practices to attract contributions from more
developers will be more effective” [11]. Similarly, we noticed that
despite the clumsiness of the Newcomers, which introduce delays
and complications to the process, the community still copes with
them patiently.
In addition to mutual respect, trust plays an important role in the
relationship between module owner and the developer. Rubber
stamping a patch results in skipping the review step of the new
patch, which increases the speed of the patch review process and
decreases the workload of the reviewer. However, rubber stamps
are not given to all developers, as one of the module owners puts
it in the developer forum “It's more likely to happen with a known
contributor, because it's far too common for people to screw up
changes like this (making code changes in addition to the
comment change, screwing up the diffing, etc). You'd think this
would be simple, but apparently for some people it's not.”13
Module owners rely on assigned developer to manage the
lifecycle of a bug report from the beginning to the very end. The

13 http://groups.google.com/group/mozilla.governance/browse_thread/

thread/f01ea12ff3c36522/98955c0068c9d923?hl=en

bug report resolution does not happen by submitting a patch.
Developers are expected to be present and offer their services
during and after the patch is checked into source code repository
and automated builds are run.

4.4 THREATS TO VALIDITY
Of course our study also suffers from several limitations. Aranda
and Venolia [8] found that “Bug reports are strongly dependent on
social, organizational, and technical knowledge that cannot be
solely extracted through automated analysis of software
repositories.” Similarly in our study, an instance of review is
considered to be the explicit feedback provided by the module
owner or toggling of review flag. However, developers and
reviewers rely on communication channels other than Bugzilla to
discuss patch and review related topics. Therefore, those instances
of review that have taken place over email, IRC, or IM
communications between patch developers, peers, and module
owners have not been considered. Despite the above limitation,
we have considered those review instances that the developer
implicitly refers to an instance of communication between him
and the module owner that motivated him to submit a new patch.

Our sample data set contains only 112 of thousands of bug reports
residing on the Mozilla Bugzilla server. Our sample size might be
small, compared to samples used in related MSR work, but our
study primarily relies on qualitative analysis of the sampled bug
reports. Unlike quantitative analysis, conducting qualitative
analysis on a larger sample requires considerable amount of effort.
The natural step to address the above concerns would be to talk to
the Mozilla developers involved and have them verify our
findings.

The generalizability of the results presented here can be evaluated
by examining bug reports and patch evolution processes in other
FLOSS communities with different characteristics. The research
reported here relies on reading sampled bug reports and
information acquired from the Mozilla community web site,
developer forum, and a few published talks and interviews with
key community members. Other sources of information like the
code repository, developers IRC channels, chat history, and
additional methods like interviewing can be used in the future
qualitative examinations of patch review process allowing
analysis of information not accessible using our present method.

5. RELATED WORK
The code review process has been discussed both in the context of
commercial and FLOSS projects. Mäntylä and Lassenius [14]
studied the type of defects that were discovered by the code
reviewers and found that 75 percent of defects did not have any
effect on the visible functionality of the software, but they
“improved software evolvability by making it easier to understand
and modify”. Our findings also show that module owners closely
look at non-functional aspects of the developed patches. Those
non-functional defects are hardly tracked by automated tests and
should be discovered through module owner inspections.

The development process of Mozilla and other FLOSS projects
have been investigated in many studies. Mockus et al. [1] studied
various aspects of the Apache web server and the Mozilla browser
and compared them with commercial projects. They come up with
several hypotheses based on the analysis of the Mozilla data and
provide a description the development process. Asundi and Jayant
[9] described a generic patch submit-review process in FLOSS

projects. They found that although the patch review process is not
the same across various FLOSS projects, the core members across
all projects play a crucial role. Crowston and Scozzi [10], like the
former two studies, found that there are striking differences in the
level of contribution to the open source development process. The
most active users carried out most of the tasks while most others
contributed only once or twice. The contribution power law
distribution has similarly been observed by Wilkinson [6] in an
analysis of four systems including Mozilla’s Bugzilla. Identically,
we observed the same phenomenon in developer and reviewer
contributions.

Sandusky and Gasser [18] use data drawn from Mozilla to study
the role of negotiation in software problem management in the
context of FLOSS projects. Our qualitative analysis of bug reports
in order to identify patch submission and review discussions is
similar to theirs. Halverson et al. [3] did a study on the Mozilla
development community and presented two prototypes to aid
coordination and management needs of software development
work. They also identify a few social and technical patterns of
behavior in the development process. Rigby and German [15]
studied four open source projects including Mozilla and found
some commonalities in the review process of them: each project
had a coding standard; projects required contributors to update
documentation; and they emphasized that patches should be
separate and no patch should add large functionality, because
small patches are easier to review. Rigby et al. [16] provided a
description of Apache review process and showed quantitatively
that Apache development relies on frequent reviews of small
pieces of functionality.

6. CONCLUSION
Our goal in this study was to better understand the patch evolution
process of the Mozilla development community. We
quantitatively measured parameters related to the process,
explained the inner-workings of the process, and identified a few
recurrent patterns in developer and reviewer behavior. Most
development and peer reviews in Firefox come from a group of
developers who make up the core development group. Assigned
developers are primarily responsible for bug reports and are
supported by peer developers and module owners. Peers play a
key role in the process by providing ideas before a patch is
developed and reviewing developed patches before module
owners and finding and reporting back errors. This results in
decrease in module owner workload. On the other hand, while
module owners are concerned about the long-term maintainability,
peers seem to be interested in the functionality and usability of the
product. This preference also benefits module owners because
feedback from the community helps them better decide on these
aspects of the product.

Despite its limitations, a number of interesting questions have
been raised by our work that can be investigated in future
research. We noticed that the level of attention to bug reports is
not evenly distributed. The popularity phenomenon has also been
observed by Wilkinson [6] in four online systems including
Mozilla’s Bugzilla. What types of bug reports attract more
community participation in the form of discussions before and
after patch submission? Likewise, there are bug reports that
receive no community attention. What type bug reports are
resolved without receiving any community attention beyond the
assigned developer and the module owner? An interesting

research question to be investigated in the future is: How the
community discussions before patch submission affect the patch
development and review process? In order to assess the
effectiveness of the review process, further research is needed on
the nature and treatment of undiscovered errors. Is there a
common pattern in occurrence of undiscovered errors?

7. ACKNOWLEDGMENTS
The authors of this paper feel indebted to Jonathan Sillito for the
insightful and fruitful discussions throughout this research. We
also wish to extend our thanks to Frank Maurer, Tom
Zimmermann, David Ma, and the unknown reviewers for their
constructive comments on earlier versions of this paper.

8. REFERENCES
[1] A. Mockus, et al., Two case studies of open source software

development: Apache and Mozilla, ACM Transactions on
Software Engineering and Methodology (TOSEM), v.11 n.3,
p.309-346, July 2002.

[2] B. Boehm, V. R. Basili, Software Defect Reduction Top 10
List, Computer, v.34 n.1, p.135-137, January 2001.

[3] C. A. Halverson, et al., Designing task visualizations to
support the coordination of work in software development,
Proceedings of the 20th anniversary conference on Computer
supported cooperative work, November 2006.

[4] C. Bird, et al., Open Borders? Immigration in Open Source
Projects, Proceedings of the 4th International Workshop on
Mining Software Repositories, May 2007.

[5] C. Gacek, B. Arief, The Many Meanings of Open Source,
IEEE Software, v.21 n.1, p.34-40, January 2004.

[6] D. M. Wilkinson, Strong regularities in online peer
production, Proceedings of the 9th ACM conference on
Electronic commerce, July 2008.

[7] F. Shull, et al., What We Have Learned About Fighting
Defects, Proceedings of 8th International Software Metrics
Symposium, Ottawa, Canada, pages 249–258. IEEE, 2002.

[8] J. Aranda, G. Venolia, The Secret Life of Bugs: Going Past
the Errors and Omissions in Software Repositories,
Proceedings of the 31st International Conference on
Software Engineering (ICSE'09), May 2009.

[9] J. Asundi, R. Jayant, Patch Review Processes in Open Source
Software Development Communities: A Comparative Case
Study, Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, January 2007.

[10] K. Crowston, B. Scozzi, Coordination Practices for Bug
Fixing within FLOSS Development Teams, Proceedings of
the First International Workshop on Computer Supported
Activity Coordination (CSAC 2004), April 2004.

[11] K. Crowston, et al., Effective work practices for FLOSS
development: A model and propositions, Proceedings of the
38th Annual Hawaii International Conference on System
Sciences, 2005.

[12] M. Beltzner, Embracing the Chaos: Designing For and With
Community, Session in Web 2.0 Expo, April 2007.

[13] M. Conor, The Life Cycle of a Bug, Mozilla Video
Presentations, https://developer.mozilla.org/En/
Video_presentations, Feb 2007.

[14] M. V. Mäntylä, C. Lassenius, What Types of Defects Are
Really Discovered in Code Reviews?, to be appeared in
IEEE Transactions on Software Engineering, 2009.

[15] P. C. Rigby, D. M. German. A preliminary examination of
code review processes in open source projects, Technical
Report DCS-305-IR, University of Victoria, January 2006.

[16] P. C. Rigby, et al., Open source software peer review
practices: a case study of the apache server, Proceedings of

the 30th international conference on Software engineering,
May 2008.

[17] P. Weißgerber, et al., Small patches get in!, Proceedings of
the 2008 international working conference on Mining
software repositories, May 2008.

[18] R. J. Sandusky, L. Gasser, Negotiation and the coordination
of information and activity in distributed software problem
management, Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work,
November 2005.

[19] T. J. Allen, Managing the Flow of Technology, MIT Press,
1977.

