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Abstract 
 

Extreme Programming (XP) has been reported to 

work well by valuing principles of simplicity, 

lightweight practices, effective feedback and 

continuous process and product improvement. This 

paper describes an approach towards managing 

software product lines in a setting where XP practices 

are common. The paper is an action research 

describing a case where we handled variability in the 

domain of intelligent home systems to satisfy a range 

of requirements by our industrial partner. The paper 

delves into how variability and traceability of 

requirements can be managed via executable 

specifications. A case study was used to evaluate the 

approach, and it provided initial insights on its 

feasibility and usefulness. 
 

1. Introduction 
 

1.1. The Problem Context 
 

Intelligent home systems make it possible to 

monitor and control the surrounding environment in a 

smart home. These systems usually need to encompass 

a spacious variety of home infrastructures, devices, 

security mechanisms and many other aspects. Every 

home has its own floor plan and hardware capabilities;   

and on top of that, every home owner has different 

interests in what needs to be monitored or/and 

controlled in the home. Furthermore, even the interface 

- through which the end users control and monitor the 

home - is likely to have a raft of possible designs and 

technologies. We stumbled upon this issue of 

variability as our XP team (in the software engineering 

lab) was developing a smart home solution for an 

industrial partner. The problem was that many variation 

points existed, each of which had to embrace a handful 

of variants. We realized that developing a separate 

system for each home was a viable option but not an 

economically appealing one. The challenge was to be 

able to deliver a system that only had those variants 

requested by a specific customer without substantial 

rework. Given that these systems had a lot of 

overlapping requirements, the apparent solution to our 

problem was to adopt a software product line practice. 

Achieving this without affecting the agility of our team 

was the dilemma we tried to solve.  
 

1.2. Software Product Lines 
 

A software product line (SPL) is a family of 

software-intensive systems that share a common set of 

features while allowing for a margin of variability to 

satisfy different customer needs [1]. Companies 

consistently report that SPLs yield significant 

improvements in productivity, time to market, product 

quality, and customer satisfaction [2]. Commonality 

between systems is what makes SPLs economically 

effective; whereas variability is what makes mass 

customization possible. SPLs deal with similar systems 

as a family of products sharing a library of core assets. 

But since customer requirements are rarely exactly the 

same, shared assets have to accommodate a certain 

degree of variability. For instance, the customer of an 

intelligent home system should be able to choose a 

subset of components that fulfills his wants. 

Furthermore, it should be possible for customers to 

tailor certain aspects of these components to meet their 

specific needs. A security system, for example, offers 

different techniques to secure access control such as 

PIN protected locks, access by magnet cards and finger 

print authentication. When choosing to have a security 

system component, customers may select one or more 

of these options. Traditionally for SPLs, commonality 

and variability are documented in requirement artifacts 

as well as multilevel design artifacts. These artifacts 

trace all the way down to code units (i.e. packages, 

classes, methods) so that reuse can be achieved and 

customization is done in the right place. There are three 

main factors at play in SPL engineering: 1) 

Commonality and variability management: eliciting and 

communicating commonality and variability in 



requirements to stakeholders; 2) Traceability of 

commonality and variability from the requirements to 

the code; and 3) Managing and tracking reuse of code 

across different instances of the system, usually driven 

by the previous two elements. 

Our research is focused on investigating how agile 

organizations, especially those adopting XP, can 

benefit from SPL engineering. We developed a model 

based on test-driven development (TDD) that utilizes 

executable specifications
1
 (ES) to achieve the three 

abovementioned elements. This paper specifically 

delves into the first two elements.  
 

1.3. Preliminary Analysis 
 

Normally, SPL engineering starts off with a phase 

called domain engineering. During this phase, 

engineers plan for products as a family rather than as 

individual instances. Domain engineers conduct 

commonality and variability analysis to produce a 

variability model. This analysis is conducted through a 

variety of techniques. In this paper, we discuss the 

technique by Pohl et al [3] - it entails four major steps: 

1. Define common requirements: use application 

requirement matrices, priority analysis or checklist 

based analysis to review the requirements of systems 

you have previously built or you expect to build in 

the future. Extract repeated requirements, 

requirements to become common in the future, or 

strategically common requirements. 

2. Define requirement variability: look at how 

requirements across different systems might vary and 

understand why they vary. The objective of this step 

is to extract variation points, possible variants, as 

well as any dependencies or constraints. 

3.  Document findings in (1) and (2): this produces 

domain requirement documents that explain to 

                                                           
1 ES is a general term that refers to what is known as story 

tests or executable acceptance tests. 

application engineers how to instantiate applications. 

4. Proceed to the next phases: use the documentation 

produced in (3) to design, implement, and test the 

architecture and its constituents.  

This approach presumes sufficient knowledge about 

the domain and the needs of the market. It also requires 

a substantial amount of work for upfront analysis –

which goes against core principles and believes of XP. 

The approach has proven to work well for 

organizations under certain assumptions. Table 1 lists 

these assumptions and shows how they were in conflict 

with the practices of our XP team.  

The following section provides a thorough 

discussion of our approach. In Section 3, we present a 

case study and discussion of the model. Section 4 is a 

review of related work. We draw our conclusions in 

Section 5. 

2. Extreme Software Product Lines 
 

2.1. Organizing Test Artifacts 
 

The previous section showed how variability 

analysis is conducted in some traditional SPL practices, 

and how a number of the basic suppositions underlying 

these practices are not suitable for an XP culture. In 

this section, we present a model bridging the gap 

between SPLs and XP. This model addresses the notion 

that XP does not produce elaborate requirement 

documents to describe the system under development. 

XP, however, produces other artifacts (i.e. ES) that can 

alternatively be used to describe the system and act as 

anchor points for traceability relations. In story TDD, 

ES are written before writing code in the form of 

acceptance tests (AT). ATs are usually written 

collaboratively by the stakeholders to ensure a 

consistent understanding of the system. These tests can 

be automated by tools like FIT[4].  

 

 Table 1. Assumptions of the traditional model of variability, and conflicts with XP practices 

 Assumption Conflict 

A The organization has built systems in the same 

domain. Or sufficient knowledge about the 

domain is elicited upfront. Pohl et al [3] assert 

that building an SPL “requires sophisticated 

domain experience.” 

This implies that adopting a product line approach might be infeasible for 

small organizations entering a new market. Moreover, XP considers 

acting upon predicted future requirements too risky, and thus may not be 

willing to substantially invest in domain requirement elicitation upfront. 

B Traditional requirement engineering was done for 

each system in “A”: elicitation, negotiation, 

validation, documentation, management. 

In XP, development starts immediately. As for requirements, XP does not 

dedicate a requirement engineering phase, but rather preaches a 

minimalistic way of obtaining customers‟ needs using story cards.  

C Requirement documents resulting from “B” are 

available and up-to-date. They accurately map to 

and are consistent with design, code and test 

artifacts.  

In XP, unless requested by the customer, requirement, design and test 

documents are considered of less value than actual implementation. In 

case documentation exists, it is generally difficult to ensure documents 

are up-to-date and consistent. Most XP teams will not create requirement 

and design documents to the extent expected in SPL engineering. 



This makes it possible to continuously run these tests 

against the code developers write to measure how 

complete a feature implementation is. We specifically 

propose the use of ES in the form of ATs to model 

variability in product families. The benefit of using 

ATs is twofold. For one, no burden is added on the XP 

team to produce ATs given that ATs are a natural 

starting point in XP iterations. Secondly, since XP 

promotes a refactor-whenever-needed notion, these 

tests are continuously updated to reflect changes in the 

system. Hence, we can assume these artifacts represent 

a sufficiently up-to-date account of the system they test.  

In order to use test artifacts as a basis for our 

model, it is important to understand in what form these 

artifacts exist in our repository. We considered the use 

of a common tool to write and run ATs called FitNesse 

[5]. FitNesse is an AT framework based on a fully 

integrated standalone wiki. With the help of the user 

guide provided with the FitNesse tool package, we 

procured an object model that reflects how test artifacts 

relate to the system under test (SUT) and to each other. 

As Figure 1 shows, the production of test artifacts is 

driven by features requested by the customer. In this 

paper, we use the term feature to refer to a chunk of 

functionality that delivers business value [6]. There is 

no restriction on how small or large this functionality 

is, as long as the customer thinks its existence would 

add value to the delivered system. Internally, 

nonetheless, developers may choose to break the 

feature down into sub-features to make it more 

manageable and testable. While one or more test 

artifacts are produced to test a single feature, it is also 

true that a single test artifact might cut across a number 

of features in the system. 

A test artifact can exist at different granularities. 

Typically, developers would start by creating a test 

project for the SUT. The test project has a number of 

test suites that are optionally used to organize tests into 

a recursive folder-like structure. Grouping tests into 

suites might be based on a feature breakdown or might 

be chronological based on XP iterations. Each suite 

consists of one or more test pages. In FitNesse, these 

pages are files, each of which has a number of tables 

representing user stories. Test tables can take different 

formats based on the type of fixture they are linked to 

(e.g. column or row). In essence, these tables are the 

specifications of the customer. In order for test tables 

to be executed, they are linked to a thin layer of testing 

code called a fixture. It is within these fixtures where 

the actual production code is tested. A fixture uses a 

number of code units to execute specifications from the 

AT tables. According to this model, capturing 

commonality and variability in features can occur at 

different granularities of test artifacts. Some test 

artifacts can be seen as common across different 

applications in the family, and thus are considered 

default artifacts. Some other artifacts may be described 

as optional or alternatives. For example, a customer 

might want to exclude a certain scenario or include an 

additional one in a given feature. In this case, 

variability is defined at the test page level to include, 

exclude or add certain test tables. Some of these tables 

may be in conflict; therefore, multiplicity and 

dependency constraints need to govern the selection 

process. The following subsection will illustrate this 

concept further. 

 

2.2. Introducing Variability 
 

In an intelligent home system, test tables in a page 

describing an access control feature looks like the one 

in Figure 2. This test page looks almost the same as a 

traditional FitNesse test page. The only difference is 

that we denoted some test as “default” and others as 

“optional.” Default artifacts are those that are essential 

to reflect the value of the feature at hand. If removed, 

the feature becomes meaningless or valueless. Some 

other tables like setup tables might also be considered 

default if their existence is a prerequisite for other 

default tables to execute. The default attribute should 

not constrain the flexibility of responding to new 

requirements. It is only an indication, for new 

customers, that this element was of special importance 

to previous customers, making it a good candidate to 

become common across different instances. Optional 

test artifacts, on the other hand, are those that can be 

looked at as add-ons rather than necessities. This might 

be perceived differently by different customers. 

Therefore, optionality is only a guide for future 

customers that an element might be cut out without 

omitting the value of the feature. This initial 

assumption might be challenged later on by other 

customers who deem the optional element to be an 

indispensible part of the feature. Thus, an optional test 

artifact could be upgraded to become a default one and 

vice versa. Now, say a new customer requests a change 

to the access control feature via PIN. The customer is 

given the test page in Figure 2. 

 

 
Figure1. An object model for test artifacts 



 

 
 

  
Figure 2. A test page is composed of a number of test tables 

 

He has the option to exclude existing tables or add new 

ones. The customer requests the customization shown 

in Figure 3. Table C is added to the test page as one 

more option future customers can pick from. However, 

the addition of Table D is not as straightforward due to 

its conflict with Table B. That is, according to Table B, 

the input should be locked for 2 minutes after 2 failed 

attempts. Whereas according to Table D, the user is 

allowed 3 attempts after which the owner is notified. 

To solve this issue, we can impose a constraint that 

Table B and Table D cannot coexist. We can visualize 

the new version of the test page using a commonly used 

concept in SPLs called a feature model [7] as shown in 

Figure 4. A solid line symbolizes a default artifact 

whereas a dotted line symbolizes an optional one. 

Multiplicity constraints in the form of [min..max] may 

be added to govern the selection of artifacts. In this 

case, a [0..1] indicates that only one element may be 

selected amongst the set {Table B, Table D}. 
 

 

- Replace Table B with Table D (cannot coexist due to conflicting behavior). 

- Add Table C.  

  

Figure 3. Customization requested by the customer 
 

 
Figure 4. A feature graph representing variability  

 

2.3. Instantiation Process 
 

The instantiation step relies on the notion that ATs 

ideally serve as an accurate and up-to-date reference of 

features in the core system. A core system is one that 

continuously accumulates assets produced towards the 

satisfaction of previous customer requests (as explained 

in the previous subsection). It is from the core system 

that family members are produced as variants in the 

product line. The discussion to follow assumes that a 

core system is available and is represented through a 

library of ATs organized as discussed in the previous 

subsection. The instantiation process requires a number 

of steps as shown in Figure 5, namely: 

1. Select ATs: upon a new request of the system, the 

customer is provided with ATs that embody the 

different capabilities (features) currently available 

in the core system. Customers are to select only 

those ATs that match the criteria (scenarios) they 

are looking for (highlighted in Figure 5). The 

outcome of this step is a subset of ATs.  

2. Execute ATs: the selected subset of ATs is run 

against the core system; and a test coverage report 

is obtained using a test coverage tool.  The 

coverage report provides information about what 

code units or fragments were used to execute the 

given subset of ATs. This includes modules, 

namespaces, classes, methods, and files in both the 

testing code (fixture code) and the tested code 

(production code). 

 
Figure 5. Variant instantiation 

 

3. Extract code: based on the coverage information 

provided in step 2, relevant code units and 

fragments will be extracted from the core system. 

Any fragments that are not needed in the current 



instance are eliminated. This is the most complex 

and crucial step as will be discussed later. The 

outcomes of this step are two, namely: a new 

system that represents a variant of the core system, 

and a new test suite that possesses the fixture code 

needed to provide test coverage for the new system. 

4. Verify and build: in this step, the newly 

instantiated system is compiled and built to make 

sure the extraction step did not produce any flaws in 

the code or the references. Then, by utilizing the 

test suite extracted in the previous step, the selected 

subset of ATs (from step 1) is run against the new 

system to verify the satisfaction of acceptance 

criteria within the new variant.  
 

2.4. Change Management 
 

New needs: In the previous section, it is implicitly 

assumed that customers‟ needs can always be fulfilled 

by existing features in the core system. Alas, in reality 

this is not the case. Customers usually introduce new 

needs, especially in agile contexts where customer 

involvement is key, and where an incremental approach 

is encouraged. For any new requests in the system, an 

AT needs to be written to represent the request at hand, 

and then is added to the library of ATs in the core 

system as per the variability model described earlier. In 

case the customer requires a change in a detail of a 

previously written AT, modifications better happen on 

a new copy of that AT (rather than the original AT). 

The new copy of the AT is to be treated as an entirely 

new AT representing a new option for customers to 

pick from. In all cases, developers implement the 

required functionality until the AT passes – basically, 

development takes its normal course as it would in a 

typical agile project. In case a conflict is introduced by 

the change (i.e. a new scenario cannot coexist with an 

existing one), it should be resolved in a way that does 

not affect other variants in the family. If this is not 

possible, the conflicting change could be explicated in 

the variability model by imposing constraints to govern 

the instantiation process. Managing conflicts in the 

variability model is beyond the scope of this paper.  

Maintenance: during the development cycle, some 

modules endure code improvements, refactoring, 

restructuring and bug fixing. These changes can be 

categorized as external or internal changes. An external 

change is one that is visible to the customer (e.g. 

change in the sequence of operations). Conducting 

changes in this category requires changes in the 

corresponding ATs. And since test coverage 

information provides traceability to the code units 

affected by the change, this information is used to 

indicate where in the core system (not the variant) a 

change needs to occur. On the other hand, an internal 

change is one that affects the code but does not directly 

influence the customer (e.g. using web services instead 

of http requests). This kind of changes does not require 

an update of ATs. In both cases, after the change has 

been incorporated in the code, all variants in the family 

need to be re-instantiated and tested to make sure the 

change has propagated to all relevant variants and did 

not have a destructive effect on other variants.  
 

3. Evaluation: Case Study 
 

In the previous section, we presented an approach 

to manage variability and instantiate products using 

ATs. Here, we present an evaluation aimed at 

investigating the feasibility and usefulness of the 

approach. We use Action Research (AR) [8] to self-

evaluate our approach against the original problem. AR 

is a well established evaluation technique in applied 

research. We applied the approach on the intelligent 

home system mentioned earlier (aka eHome). eHome is 

an application to monitor and control smart homes. So 

far, eHome has around 100 classes divided into model, 

view, controller, hardware, and communication layers. 

There are about 70 test cases covering about 90% of 

the model code. We encountered a number of variation 

points such as: interface touch capabilities (e.g. single 

touch versus multiple touch), interface orientation (e.g. 

vertical vs. horizontal), required modules (e.g. light 

control modules, RFID item tracking). In this section, 

we illustrate our idea by presenting an example 

treatment of a variation point from our case study.  
 

3.1. Core System Status 
 

Our customer requested a feature that would enable 

the end user to define macros to control devices at the 

home. A macro is a sequence of actions to be executed 

on demand. The feature was defined as per the AT 

shown in Figure 6.  

 
Figure 6. AT for adding unconditional macros 

 



A later request from the customer was to extend the 

previous feature so that it is possible to optionally 

constrain the execution of some macros by a set of 

conditions. These conditions are to be defined by the 

end user. Figure 7 shows the AT for this request. This 

AT was added to the same test page as the previous AT 

because there was a lot of overlapping functionality. A 

thin layer of fixture code was developed to execute 

both tables. Figure 8 shows what the contents of this 

layer look like. Production code units that made both 

test cases pass is shown in Table 2
2
. To summarize, the 

“macro addition” feature existed in the core system in 

such a way that the two ATs were supported. Both the 

fixture code and the production code incorporated the 

requirements of both scenarios. 
 

3.2. Instantiation  
 

In the previous section, the fact that a customer 

requested to add a certain extension to the feature (as 

per the second AT) does not mean that the feature has 

to exist in its fullest version in all variants of the 

system. Some customers would not like the 

complication of dealing with rules to constrain macros, 

and thus are satisfied with the simpler version 

represented by the first AT only. In our approach, 

customers communicate their preferences through the 

selection of ATs - Customers can choose the scenarios 

they would like to see in the feature, and may exclude 

some other scenarios that are unneeded. Therefore, for 

this feature we define a variation point that minimally 

yields two variants: one that supports the addition of 

unconditional macros only (simple version), and 

another that supports the addition of both unconditional 

and conditional macros (complex version). 

The dilemma is to produce just-enough code to 

instantiate each variant. According to the proposed 

approach, the selection of ATs is the first step towards 

this objective. We distinguish two cases: in Case I, the 

customer chooses the AT in Figure 6 only. In Case II, 

the customer chooses both ATs. Table 3 shows the 

coverage results of executing the tests in both cases. 

We only show method coverage to simplify the 

analysis. A „‟ symbol besides a method means the 

method was visited when the AT was executed. „P‟ 

stands for production code and „T‟ stands for test code. 

Having access to the coverage information, the next 

step in the instantiation process is extracting the needed 

code units for the specific variant of interest. 

To illustrate, consider Case1 (aka variant 1) where 

some methods are unneeded for a successful execution 

                                                           
2 Primitive getters and setters, constructors and other auto-

generated units are removed due to space limitation. 

 
Figure 7. AT for adding conditional macros 

 

 
Figure 8. Fixture code for the core feature 

 

Table 2. Production code units for the core feature 

 
 

of the selected AT. In this case, the production code 

units needed are shown in Table 4; and the generated 

fixture code will be as in Figure 9.  As shown in the 

table, in some cases, all the methods in a given class 

are not needed. This might imply that the class itself is 

to be abandoned. Nevertheless, as will be discussed 

later, this is not always a trivial decision. 
 

3.3. Discussion 



3.3.1. Insights from the evaluation. The objective of 

our evaluation was to check the feasibility and 

usefulness of our approach. It was a sanity check to 

make sure the approach can actually be employed in 

real settings. For this reason, the approach was applied 

on a real system. During the system development, we 

treated a number of variation points, but we only had 

the space to present a simple example. The initial 

insights from our evaluation indicate that the approach 

is indeed feasible. It is simple, lightweight and based 

on test artifacts which are naturally produced in XP 

contexts. The fact that it supports incremental 

extensions and change management makes it a good fit 

for XP practices when compared to heavyweight, big-

design-upfront-based approaches. The results of the 

evaluation also underscore the usefulness of the 

proposed approach. That is, instantiating different 

products from a library of core assets - based on 

specific customer needs - promises to reduce cost and 

drastically improve quality and time-to-market. This is 

especially significant when no huge investments are 

required upfront, and a faster ROI is expected [9] – 

which are advantages this approach offers. 

Furthermore, the approach operates on the ES layer 

which makes the instantiation process agnostic to the 

testing or implementation language. We strongly 

believe the approach will provide great benefits for 

software practitioners, but its generalizability is 

constrained with the limitations discussed below. 
 

3.3.2. Limitations. It is imperative to point out a 

number of issues we encountered during our 

experience. We think the accuracy of the code 

extraction step can be improved – especially when 

treating fairly complex code – by taking into 

consideration coverage reports at different granularities 

(e.g. classes, methods, namespaces) and in different 

forms (e.g. branch coverage, visit coverage, sequence 

coverage). In our evaluation, we only discussed visit 

coverage for methods. We could see in Table 3 that 

even though some methods and classes were not 

needed anymore, that did not necessarily imply simple 

removal of these units and their references from the 

code assembly. In our case simple removal did the job. 

But in some other cases, the method might be shown to 

be uncovered because it is referenced in a condition 

block that was not executed. This tends to indicate that 

the uncovered branch is not needed anymore because 

there is no match for the case in the test artifacts. But to 

ensure a fair treatment of such cases, use of branch 

coverage or even static code analyzers might be 

required before taking a decision. This issue will be 

further researched in the near future. Moreover, so far 

we only evaluated our approach on model-based 

Table 3. AT coverage report 

 
 

Table 4. Production code units for variant 1 

 
 

 
Figure 9. Fixture code for variant 1 

 

classes. We anticipate facing more challenges when we 

start dealing with UI classes, communication interfaces 

and hardware layers. This is because the testing tools 

currently available do not automate tests for these 

layers as effectively as they do for model classes. 

Resolving this issue is one of the tasks on our to-do list 

for this year. 
 

4. Related Work 
 

The quest for an incremental, non-invasive approach 

to establishing and managing production lines is a 

relatively new phenomenon. Kruger [10] built a 



commercial tool to ease the transition to software mass 

customization. The tool utilizes the concept of 

separation of concerns to manage variability in 

software systems. Moreover, Clegg et al. [11] proposed 

a method to incrementally build an SPL architecture in 

an object-orientated environment. The method does not 

discuss how to extract and communicate variability 

from the requirement engineering phase to the 

realization phase. O‟Brien et al. [12] discussed the 

introduction of SPLs in big organizations based on a 

top-down mining approach for core assets. They 

assume the organization has already developed many 

applications in the domain. Combining ASD and SPLs 

has been briefly discussed in literature. McGregor [13] 

presented an interesting theoretical attempt to 

reconstruct a hybrid method. Carbon et al. [9] proposed 

the use of a reuse-centric application engineering 

process to combine agile methods and SPLs. The 

approach gives agile methods the role of tailoring a 

product for a specific customer during application 

engineering. Another effort was by Hanssen et al. [14] 

where SPLs were used at the strategic level and ASD 

was used at the medium-term project level.  

While these efforts are interesting attempts to 

combine concepts from ASD and SPLs, their focus is 

different from the focus of our research. The work 

presented here is focused on a test-driven approach to 

introduce product line practices to small organizations 

in a non-disruptive manner (rather than only managing 

existing SPLs). To the best of our knowledge, this 

research focus is original and has not been previously 

discussed in literature. The use of a test-driven 

approach in SPLs was initially proposed by Ghanam et 

al. [15]. 
 

5. Conclusions  
 

This paper contributed a novel lightweight 

approach to manage variability in software product 

lines. The approach enables agile organizations – 

especially those adopting XP practices – to instantiate 

various products from a core system. These products, 

although different, are treated and managed as a single 

system with variation points. Combining SPL and XP 

practices provides significant advantages for software 

practitioners. It does not only reduce the amount of 

rework and the cost of producing customized solutions, 

but also makes it feasible for agile organizations to 

target customers with diverse needs without having to 

disturb the agility of their practices.  

The notion of variability management does usually 

require a radical change in the mindset in the 

organization as soon as they start to look at their 

products as a family. However, the proposed approach 

has the potential to substantially reduce the adoption 

barriers of a product line practice through its 

incremental and non-burdening nature. The approach 

utilizes test artifacts that are naturally produced in XP 

projects, and gives customer involvement a special 

treatment by enabling customers to pick from variants 

and contribute to the variability model when available 

variants are not satisfactory.  

The approach presented in this paper was evaluated 

through a case study where it actually was employed to 

manage variability in an intelligent home system. The 

example illustrated that the approach is feasible and 

useful, but suffered limitations that are to be addressed 

in future research. We are presently in the process of 

combining results from this work with concepts like 

reuse management to magnify the advantages of 

adopting an agile product line. 
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