
Extreme Product Line Engineering:

Managing Variability & Traceability via Executable Specifications

Yaser Ghanam

University of Calgary

yghanam@ucalgary.ca

Frank Maurer

University of Calgary

frank.maurer@ucalgary.ca

Abstract

Extreme Programming (XP) has been reported to

work well by valuing principles of simplicity,

lightweight practices, effective feedback and

continuous process and product improvement. This

paper describes an approach towards managing

software product lines in a setting where XP practices

are common. The paper is an action research

describing a case where we handled variability in the

domain of intelligent home systems to satisfy a range

of requirements by our industrial partner. The paper

delves into how variability and traceability of

requirements can be managed via executable

specifications. A case study was used to evaluate the

approach, and it provided initial insights on its

feasibility and usefulness.

1. Introduction

1.1. The Problem Context

Intelligent home systems make it possible to

monitor and control the surrounding environment in a

smart home. These systems usually need to encompass

a spacious variety of home infrastructures, devices,

security mechanisms and many other aspects. Every

home has its own floor plan and hardware capabilities;

and on top of that, every home owner has different

interests in what needs to be monitored or/and

controlled in the home. Furthermore, even the interface

- through which the end users control and monitor the

home - is likely to have a raft of possible designs and

technologies. We stumbled upon this issue of

variability as our XP team (in the software engineering

lab) was developing a smart home solution for an

industrial partner. The problem was that many variation

points existed, each of which had to embrace a handful

of variants. We realized that developing a separate

system for each home was a viable option but not an

economically appealing one. The challenge was to be

able to deliver a system that only had those variants

requested by a specific customer without substantial

rework. Given that these systems had a lot of

overlapping requirements, the apparent solution to our

problem was to adopt a software product line practice.

Achieving this without affecting the agility of our team

was the dilemma we tried to solve.

1.2. Software Product Lines

A software product line (SPL) is a family of

software-intensive systems that share a common set of

features while allowing for a margin of variability to

satisfy different customer needs [1]. Companies

consistently report that SPLs yield significant

improvements in productivity, time to market, product

quality, and customer satisfaction [2]. Commonality

between systems is what makes SPLs economically

effective; whereas variability is what makes mass

customization possible. SPLs deal with similar systems

as a family of products sharing a library of core assets.

But since customer requirements are rarely exactly the

same, shared assets have to accommodate a certain

degree of variability. For instance, the customer of an

intelligent home system should be able to choose a

subset of components that fulfills his wants.

Furthermore, it should be possible for customers to

tailor certain aspects of these components to meet their

specific needs. A security system, for example, offers

different techniques to secure access control such as

PIN protected locks, access by magnet cards and finger

print authentication. When choosing to have a security

system component, customers may select one or more

of these options. Traditionally for SPLs, commonality

and variability are documented in requirement artifacts

as well as multilevel design artifacts. These artifacts

trace all the way down to code units (i.e. packages,

classes, methods) so that reuse can be achieved and

customization is done in the right place. There are three

main factors at play in SPL engineering: 1)

Commonality and variability management: eliciting and

communicating commonality and variability in

requirements to stakeholders; 2) Traceability of

commonality and variability from the requirements to

the code; and 3) Managing and tracking reuse of code

across different instances of the system, usually driven

by the previous two elements.

Our research is focused on investigating how agile

organizations, especially those adopting XP, can

benefit from SPL engineering. We developed a model

based on test-driven development (TDD) that utilizes

executable specifications
1
 (ES) to achieve the three

abovementioned elements. This paper specifically

delves into the first two elements.

1.3. Preliminary Analysis

Normally, SPL engineering starts off with a phase

called domain engineering. During this phase,

engineers plan for products as a family rather than as

individual instances. Domain engineers conduct

commonality and variability analysis to produce a

variability model. This analysis is conducted through a

variety of techniques. In this paper, we discuss the

technique by Pohl et al [3] - it entails four major steps:

1. Define common requirements: use application

requirement matrices, priority analysis or checklist

based analysis to review the requirements of systems

you have previously built or you expect to build in

the future. Extract repeated requirements,

requirements to become common in the future, or

strategically common requirements.

2. Define requirement variability: look at how

requirements across different systems might vary and

understand why they vary. The objective of this step

is to extract variation points, possible variants, as

well as any dependencies or constraints.

3. Document findings in (1) and (2): this produces

domain requirement documents that explain to

1 ES is a general term that refers to what is known as story

tests or executable acceptance tests.

application engineers how to instantiate applications.

4. Proceed to the next phases: use the documentation

produced in (3) to design, implement, and test the

architecture and its constituents.

This approach presumes sufficient knowledge about

the domain and the needs of the market. It also requires

a substantial amount of work for upfront analysis –

which goes against core principles and believes of XP.

The approach has proven to work well for

organizations under certain assumptions. Table 1 lists

these assumptions and shows how they were in conflict

with the practices of our XP team.

The following section provides a thorough

discussion of our approach. In Section 3, we present a

case study and discussion of the model. Section 4 is a

review of related work. We draw our conclusions in

Section 5.

2. Extreme Software Product Lines

2.1. Organizing Test Artifacts

The previous section showed how variability

analysis is conducted in some traditional SPL practices,

and how a number of the basic suppositions underlying

these practices are not suitable for an XP culture. In

this section, we present a model bridging the gap

between SPLs and XP. This model addresses the notion

that XP does not produce elaborate requirement

documents to describe the system under development.

XP, however, produces other artifacts (i.e. ES) that can

alternatively be used to describe the system and act as

anchor points for traceability relations. In story TDD,

ES are written before writing code in the form of

acceptance tests (AT). ATs are usually written

collaboratively by the stakeholders to ensure a

consistent understanding of the system. These tests can

be automated by tools like FIT[4].

 Table 1. Assumptions of the traditional model of variability, and conflicts with XP practices

 Assumption Conflict

A The organization has built systems in the same

domain. Or sufficient knowledge about the

domain is elicited upfront. Pohl et al [3] assert

that building an SPL “requires sophisticated

domain experience.”

This implies that adopting a product line approach might be infeasible for

small organizations entering a new market. Moreover, XP considers

acting upon predicted future requirements too risky, and thus may not be

willing to substantially invest in domain requirement elicitation upfront.

B Traditional requirement engineering was done for

each system in “A”: elicitation, negotiation,

validation, documentation, management.

In XP, development starts immediately. As for requirements, XP does not

dedicate a requirement engineering phase, but rather preaches a

minimalistic way of obtaining customers‟ needs using story cards.

C Requirement documents resulting from “B” are

available and up-to-date. They accurately map to

and are consistent with design, code and test

artifacts.

In XP, unless requested by the customer, requirement, design and test

documents are considered of less value than actual implementation. In

case documentation exists, it is generally difficult to ensure documents

are up-to-date and consistent. Most XP teams will not create requirement

and design documents to the extent expected in SPL engineering.

This makes it possible to continuously run these tests

against the code developers write to measure how

complete a feature implementation is. We specifically

propose the use of ES in the form of ATs to model

variability in product families. The benefit of using

ATs is twofold. For one, no burden is added on the XP

team to produce ATs given that ATs are a natural

starting point in XP iterations. Secondly, since XP

promotes a refactor-whenever-needed notion, these

tests are continuously updated to reflect changes in the

system. Hence, we can assume these artifacts represent

a sufficiently up-to-date account of the system they test.

In order to use test artifacts as a basis for our

model, it is important to understand in what form these

artifacts exist in our repository. We considered the use

of a common tool to write and run ATs called FitNesse

[5]. FitNesse is an AT framework based on a fully

integrated standalone wiki. With the help of the user

guide provided with the FitNesse tool package, we

procured an object model that reflects how test artifacts

relate to the system under test (SUT) and to each other.

As Figure 1 shows, the production of test artifacts is

driven by features requested by the customer. In this

paper, we use the term feature to refer to a chunk of

functionality that delivers business value [6]. There is

no restriction on how small or large this functionality

is, as long as the customer thinks its existence would

add value to the delivered system. Internally,

nonetheless, developers may choose to break the

feature down into sub-features to make it more

manageable and testable. While one or more test

artifacts are produced to test a single feature, it is also

true that a single test artifact might cut across a number

of features in the system.

A test artifact can exist at different granularities.

Typically, developers would start by creating a test

project for the SUT. The test project has a number of

test suites that are optionally used to organize tests into

a recursive folder-like structure. Grouping tests into

suites might be based on a feature breakdown or might

be chronological based on XP iterations. Each suite

consists of one or more test pages. In FitNesse, these

pages are files, each of which has a number of tables

representing user stories. Test tables can take different

formats based on the type of fixture they are linked to

(e.g. column or row). In essence, these tables are the

specifications of the customer. In order for test tables

to be executed, they are linked to a thin layer of testing

code called a fixture. It is within these fixtures where

the actual production code is tested. A fixture uses a

number of code units to execute specifications from the

AT tables. According to this model, capturing

commonality and variability in features can occur at

different granularities of test artifacts. Some test

artifacts can be seen as common across different

applications in the family, and thus are considered

default artifacts. Some other artifacts may be described

as optional or alternatives. For example, a customer

might want to exclude a certain scenario or include an

additional one in a given feature. In this case,

variability is defined at the test page level to include,

exclude or add certain test tables. Some of these tables

may be in conflict; therefore, multiplicity and

dependency constraints need to govern the selection

process. The following subsection will illustrate this

concept further.

2.2. Introducing Variability

In an intelligent home system, test tables in a page

describing an access control feature looks like the one

in Figure 2. This test page looks almost the same as a

traditional FitNesse test page. The only difference is

that we denoted some test as “default” and others as

“optional.” Default artifacts are those that are essential

to reflect the value of the feature at hand. If removed,

the feature becomes meaningless or valueless. Some

other tables like setup tables might also be considered

default if their existence is a prerequisite for other

default tables to execute. The default attribute should

not constrain the flexibility of responding to new

requirements. It is only an indication, for new

customers, that this element was of special importance

to previous customers, making it a good candidate to

become common across different instances. Optional

test artifacts, on the other hand, are those that can be

looked at as add-ons rather than necessities. This might

be perceived differently by different customers.

Therefore, optionality is only a guide for future

customers that an element might be cut out without

omitting the value of the feature. This initial

assumption might be challenged later on by other

customers who deem the optional element to be an

indispensible part of the feature. Thus, an optional test

artifact could be upgraded to become a default one and

vice versa. Now, say a new customer requests a change

to the access control feature via PIN. The customer is

given the test page in Figure 2.

Figure1. An object model for test artifacts

Figure 2. A test page is composed of a number of test tables

He has the option to exclude existing tables or add new

ones. The customer requests the customization shown

in Figure 3. Table C is added to the test page as one

more option future customers can pick from. However,

the addition of Table D is not as straightforward due to

its conflict with Table B. That is, according to Table B,

the input should be locked for 2 minutes after 2 failed

attempts. Whereas according to Table D, the user is

allowed 3 attempts after which the owner is notified.

To solve this issue, we can impose a constraint that

Table B and Table D cannot coexist. We can visualize

the new version of the test page using a commonly used

concept in SPLs called a feature model [7] as shown in

Figure 4. A solid line symbolizes a default artifact

whereas a dotted line symbolizes an optional one.

Multiplicity constraints in the form of [min..max] may

be added to govern the selection of artifacts. In this

case, a [0..1] indicates that only one element may be

selected amongst the set {Table B, Table D}.

- Replace Table B with Table D (cannot coexist due to conflicting behavior).

- Add Table C.

Figure 3. Customization requested by the customer

Figure 4. A feature graph representing variability

2.3. Instantiation Process

The instantiation step relies on the notion that ATs

ideally serve as an accurate and up-to-date reference of

features in the core system. A core system is one that

continuously accumulates assets produced towards the

satisfaction of previous customer requests (as explained

in the previous subsection). It is from the core system

that family members are produced as variants in the

product line. The discussion to follow assumes that a

core system is available and is represented through a

library of ATs organized as discussed in the previous

subsection. The instantiation process requires a number

of steps as shown in Figure 5, namely:

1. Select ATs: upon a new request of the system, the

customer is provided with ATs that embody the

different capabilities (features) currently available

in the core system. Customers are to select only

those ATs that match the criteria (scenarios) they

are looking for (highlighted in Figure 5). The

outcome of this step is a subset of ATs.

2. Execute ATs: the selected subset of ATs is run

against the core system; and a test coverage report

is obtained using a test coverage tool. The

coverage report provides information about what

code units or fragments were used to execute the

given subset of ATs. This includes modules,

namespaces, classes, methods, and files in both the

testing code (fixture code) and the tested code

(production code).

Figure 5. Variant instantiation

3. Extract code: based on the coverage information

provided in step 2, relevant code units and

fragments will be extracted from the core system.

Any fragments that are not needed in the current

instance are eliminated. This is the most complex

and crucial step as will be discussed later. The

outcomes of this step are two, namely: a new

system that represents a variant of the core system,

and a new test suite that possesses the fixture code

needed to provide test coverage for the new system.

4. Verify and build: in this step, the newly

instantiated system is compiled and built to make

sure the extraction step did not produce any flaws in

the code or the references. Then, by utilizing the

test suite extracted in the previous step, the selected

subset of ATs (from step 1) is run against the new

system to verify the satisfaction of acceptance

criteria within the new variant.

2.4. Change Management

New needs: In the previous section, it is implicitly

assumed that customers‟ needs can always be fulfilled

by existing features in the core system. Alas, in reality

this is not the case. Customers usually introduce new

needs, especially in agile contexts where customer

involvement is key, and where an incremental approach

is encouraged. For any new requests in the system, an

AT needs to be written to represent the request at hand,

and then is added to the library of ATs in the core

system as per the variability model described earlier. In

case the customer requires a change in a detail of a

previously written AT, modifications better happen on

a new copy of that AT (rather than the original AT).

The new copy of the AT is to be treated as an entirely

new AT representing a new option for customers to

pick from. In all cases, developers implement the

required functionality until the AT passes – basically,

development takes its normal course as it would in a

typical agile project. In case a conflict is introduced by

the change (i.e. a new scenario cannot coexist with an

existing one), it should be resolved in a way that does

not affect other variants in the family. If this is not

possible, the conflicting change could be explicated in

the variability model by imposing constraints to govern

the instantiation process. Managing conflicts in the

variability model is beyond the scope of this paper.

Maintenance: during the development cycle, some

modules endure code improvements, refactoring,

restructuring and bug fixing. These changes can be

categorized as external or internal changes. An external

change is one that is visible to the customer (e.g.

change in the sequence of operations). Conducting

changes in this category requires changes in the

corresponding ATs. And since test coverage

information provides traceability to the code units

affected by the change, this information is used to

indicate where in the core system (not the variant) a

change needs to occur. On the other hand, an internal

change is one that affects the code but does not directly

influence the customer (e.g. using web services instead

of http requests). This kind of changes does not require

an update of ATs. In both cases, after the change has

been incorporated in the code, all variants in the family

need to be re-instantiated and tested to make sure the

change has propagated to all relevant variants and did

not have a destructive effect on other variants.

3. Evaluation: Case Study

In the previous section, we presented an approach

to manage variability and instantiate products using

ATs. Here, we present an evaluation aimed at

investigating the feasibility and usefulness of the

approach. We use Action Research (AR) [8] to self-

evaluate our approach against the original problem. AR

is a well established evaluation technique in applied

research. We applied the approach on the intelligent

home system mentioned earlier (aka eHome). eHome is

an application to monitor and control smart homes. So

far, eHome has around 100 classes divided into model,

view, controller, hardware, and communication layers.

There are about 70 test cases covering about 90% of

the model code. We encountered a number of variation

points such as: interface touch capabilities (e.g. single

touch versus multiple touch), interface orientation (e.g.

vertical vs. horizontal), required modules (e.g. light

control modules, RFID item tracking). In this section,

we illustrate our idea by presenting an example

treatment of a variation point from our case study.

3.1. Core System Status

Our customer requested a feature that would enable

the end user to define macros to control devices at the

home. A macro is a sequence of actions to be executed

on demand. The feature was defined as per the AT

shown in Figure 6.

Figure 6. AT for adding unconditional macros

A later request from the customer was to extend the

previous feature so that it is possible to optionally

constrain the execution of some macros by a set of

conditions. These conditions are to be defined by the

end user. Figure 7 shows the AT for this request. This

AT was added to the same test page as the previous AT

because there was a lot of overlapping functionality. A

thin layer of fixture code was developed to execute

both tables. Figure 8 shows what the contents of this

layer look like. Production code units that made both

test cases pass is shown in Table 2
2
. To summarize, the

“macro addition” feature existed in the core system in

such a way that the two ATs were supported. Both the

fixture code and the production code incorporated the

requirements of both scenarios.

3.2. Instantiation

In the previous section, the fact that a customer

requested to add a certain extension to the feature (as

per the second AT) does not mean that the feature has

to exist in its fullest version in all variants of the

system. Some customers would not like the

complication of dealing with rules to constrain macros,

and thus are satisfied with the simpler version

represented by the first AT only. In our approach,

customers communicate their preferences through the

selection of ATs - Customers can choose the scenarios

they would like to see in the feature, and may exclude

some other scenarios that are unneeded. Therefore, for

this feature we define a variation point that minimally

yields two variants: one that supports the addition of

unconditional macros only (simple version), and

another that supports the addition of both unconditional

and conditional macros (complex version).

The dilemma is to produce just-enough code to

instantiate each variant. According to the proposed

approach, the selection of ATs is the first step towards

this objective. We distinguish two cases: in Case I, the

customer chooses the AT in Figure 6 only. In Case II,

the customer chooses both ATs. Table 3 shows the

coverage results of executing the tests in both cases.

We only show method coverage to simplify the

analysis. A „‟ symbol besides a method means the

method was visited when the AT was executed. „P‟

stands for production code and „T‟ stands for test code.

Having access to the coverage information, the next

step in the instantiation process is extracting the needed

code units for the specific variant of interest.

To illustrate, consider Case1 (aka variant 1) where

some methods are unneeded for a successful execution

2 Primitive getters and setters, constructors and other auto-

generated units are removed due to space limitation.

Figure 7. AT for adding conditional macros

Figure 8. Fixture code for the core feature

Table 2. Production code units for the core feature

of the selected AT. In this case, the production code

units needed are shown in Table 4; and the generated

fixture code will be as in Figure 9. As shown in the

table, in some cases, all the methods in a given class

are not needed. This might imply that the class itself is

to be abandoned. Nevertheless, as will be discussed

later, this is not always a trivial decision.

3.3. Discussion

3.3.1. Insights from the evaluation. The objective of

our evaluation was to check the feasibility and

usefulness of our approach. It was a sanity check to

make sure the approach can actually be employed in

real settings. For this reason, the approach was applied

on a real system. During the system development, we

treated a number of variation points, but we only had

the space to present a simple example. The initial

insights from our evaluation indicate that the approach

is indeed feasible. It is simple, lightweight and based

on test artifacts which are naturally produced in XP

contexts. The fact that it supports incremental

extensions and change management makes it a good fit

for XP practices when compared to heavyweight, big-

design-upfront-based approaches. The results of the

evaluation also underscore the usefulness of the

proposed approach. That is, instantiating different

products from a library of core assets - based on

specific customer needs - promises to reduce cost and

drastically improve quality and time-to-market. This is

especially significant when no huge investments are

required upfront, and a faster ROI is expected [9] –

which are advantages this approach offers.

Furthermore, the approach operates on the ES layer

which makes the instantiation process agnostic to the

testing or implementation language. We strongly

believe the approach will provide great benefits for

software practitioners, but its generalizability is

constrained with the limitations discussed below.

3.3.2. Limitations. It is imperative to point out a

number of issues we encountered during our

experience. We think the accuracy of the code

extraction step can be improved – especially when

treating fairly complex code – by taking into

consideration coverage reports at different granularities

(e.g. classes, methods, namespaces) and in different

forms (e.g. branch coverage, visit coverage, sequence

coverage). In our evaluation, we only discussed visit

coverage for methods. We could see in Table 3 that

even though some methods and classes were not

needed anymore, that did not necessarily imply simple

removal of these units and their references from the

code assembly. In our case simple removal did the job.

But in some other cases, the method might be shown to

be uncovered because it is referenced in a condition

block that was not executed. This tends to indicate that

the uncovered branch is not needed anymore because

there is no match for the case in the test artifacts. But to

ensure a fair treatment of such cases, use of branch

coverage or even static code analyzers might be

required before taking a decision. This issue will be

further researched in the near future. Moreover, so far

we only evaluated our approach on model-based

Table 3. AT coverage report

Table 4. Production code units for variant 1

Figure 9. Fixture code for variant 1

classes. We anticipate facing more challenges when we

start dealing with UI classes, communication interfaces

and hardware layers. This is because the testing tools

currently available do not automate tests for these

layers as effectively as they do for model classes.

Resolving this issue is one of the tasks on our to-do list

for this year.

4. Related Work

The quest for an incremental, non-invasive approach

to establishing and managing production lines is a

relatively new phenomenon. Kruger [10] built a

commercial tool to ease the transition to software mass

customization. The tool utilizes the concept of

separation of concerns to manage variability in

software systems. Moreover, Clegg et al. [11] proposed

a method to incrementally build an SPL architecture in

an object-orientated environment. The method does not

discuss how to extract and communicate variability

from the requirement engineering phase to the

realization phase. O‟Brien et al. [12] discussed the

introduction of SPLs in big organizations based on a

top-down mining approach for core assets. They

assume the organization has already developed many

applications in the domain. Combining ASD and SPLs

has been briefly discussed in literature. McGregor [13]

presented an interesting theoretical attempt to

reconstruct a hybrid method. Carbon et al. [9] proposed

the use of a reuse-centric application engineering

process to combine agile methods and SPLs. The

approach gives agile methods the role of tailoring a

product for a specific customer during application

engineering. Another effort was by Hanssen et al. [14]

where SPLs were used at the strategic level and ASD

was used at the medium-term project level.

While these efforts are interesting attempts to

combine concepts from ASD and SPLs, their focus is

different from the focus of our research. The work

presented here is focused on a test-driven approach to

introduce product line practices to small organizations

in a non-disruptive manner (rather than only managing

existing SPLs). To the best of our knowledge, this

research focus is original and has not been previously

discussed in literature. The use of a test-driven

approach in SPLs was initially proposed by Ghanam et

al. [15].

5. Conclusions

This paper contributed a novel lightweight

approach to manage variability in software product

lines. The approach enables agile organizations –

especially those adopting XP practices – to instantiate

various products from a core system. These products,

although different, are treated and managed as a single

system with variation points. Combining SPL and XP

practices provides significant advantages for software

practitioners. It does not only reduce the amount of

rework and the cost of producing customized solutions,

but also makes it feasible for agile organizations to

target customers with diverse needs without having to

disturb the agility of their practices.

The notion of variability management does usually

require a radical change in the mindset in the

organization as soon as they start to look at their

products as a family. However, the proposed approach

has the potential to substantially reduce the adoption

barriers of a product line practice through its

incremental and non-burdening nature. The approach

utilizes test artifacts that are naturally produced in XP

projects, and gives customer involvement a special

treatment by enabling customers to pick from variants

and contribute to the variability model when available

variants are not satisfactory.

The approach presented in this paper was evaluated

through a case study where it actually was employed to

manage variability in an intelligent home system. The

example illustrated that the approach is feasible and

useful, but suffered limitations that are to be addressed

in future research. We are presently in the process of

combining results from this work with concepts like

reuse management to magnify the advantages of

adopting an agile product line.

6. References

[1] Clements, P., and Northrop, L., Software Product Lines:

Practice and Patterns, Addison-Wesley, US, 2001.

[2] About Software Product Lines, http://www.sei.cmu.edu/

productlines/about_pl.html, accessed Dec, 2008.

[3] Pohl, K., Böckle, G., and Linden, F., SPLE: Foundations,

Principles and Techniques, Springer, Germany, 2005.

[4] FIT, http://fit.c2.com, accessed Nov, 2008.

[5] Fitnesse, http://www.fitnesse.org, accessed Dec, 2008.

[6] VersionOne, http://www.versionone.com/Resources/

FeatureEstimation.asp, accessed Dec, 2008.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.

Feature-Oriented Domain Analysis (FODA) Feasibility

Study. Technical Report CMU/SEI-90-TR-21, 1990.

[8] D. Avison, F. Lau, M. Myers, P. Nielsen, Action

research, Communications of the ACM 42 (1) (1999) 94–97.

[9] Carbon, R., Lindvall, M., Muthig, D., and Costa, P.

Integrating PL Engineering and Agile Methods: Flexible

Design Up-front vs. Incremental Design, 1st International

Workshop on Agile Product Line Engineering, 2006.

[10] Kruger, C., “Easing the Transition to Software Mass

Customization”, in Proceedings of the 4th International

Workshop on Product Family Engineering, Germany, 2002.

[11] Clegg, K., Kelly, T., and McDermid, J., Incremental

Product-Line Development, International Workshop on

Product Line Engineering, Seattle, 2002.

[12] O‟Brien, L., and Smith, D., MAP and OAR Methods:

Techniques for Developing Core Assets for Software Product

Lines from Existing Assets, CMU/SEI-2002-TN-007, 2002.

[13] McGregor, J. Agile Software Product Lines,

Deconstructed, Journal of Object Technology, 7(8), 2008.

[14] Hanssen, G., and Fægri, T., “Process Fusion: An

Industrial Case Study on Agile Software Product Line

Engineering”, Journal of Systems and Software, 2008.

[15] Ghanam, Y., Park, S., and Maurer, F. A Test-Driven

Approach to Establishing & Managing Agile Product Lines.

The 5th SPLiT Workshop –SPLC 2008, Ireland.

http://www.sei.cmu.edu/
http://www.versionone.com/Resources/

