
Tool Support for Refactoring to Design Patterns 
Carmen Zannier 

University of Calgary, Computer Science 
Calgary, Alberta, Canada, T2N 1N4 

(00) (1)(403)220 7140 

zannierc @cpsc.ucalgary.ca 

ABSTRACT 
Using design patterns improves the maintainability of software 
systems. Applying patterns often implies upfront design while 
Agile Methods rely on software architecture to emerge. We 
bridge this gap by applying refactoring towards patterns to 
improve software design. We propose complex refactoring to 
J2EE design patterns and describe requirements of complex 
refactorings and accompanying tool support. 

Keywords 
Refactoring to Design Patterns; J2EE Design Patterns; Atomic 
Refactorings; Sequential Refactorings; Complex Refactorings; 

1. INTRODUCTION 
Design patterns enhance the readability, maintainability and 
understand-ability of a software system [5]. They usually require 
the use of software development methodologies that implement 
thorough upfront design. Agile methodologies emphasize an 
initial, but emerging software design and architecture [2]. We 
join these two approaches by proposing complex refactorings to 
design patterns and accompanying tool support that allow design 
to emerge after a software system has been coded, but still 
conform to a given design pattern. Complex refactorings are 
composed of atomic and sequential refactorings and maintain 
design knowledge of an existing system. We focus on refactoring 
to Java 2 Enterprise Edition design patterns, a popular application 
area. The benefits of complex refactorings and tool support 
therein are those typical of design pattern implementations as well 
as improved run-time performance. Section 2 @ examines re- 
factoring to design patterns, Section 3 discusses the required 
design pattern knowledge, Section 4 explains the benefits and 
desired goals and Section 5 concludes what we have discussed. 

2. REFACTORING TO PATTERNS 
The increased popularity of Agile methods such as Extreme 
Programming, Serum, Crystal, etcetera has helped advertise a 
design and code improvement practice: refactoring. At the very 
basic level, refactoring is cleaning up code. Small changes to 
code such as renaming a variable preserve the behavior of a 
software system while restructuring the code to improve 
readability and understand-ability [4]. Such atomic refactorings 
are as basic as a refactoring can be and tool support for such 
operations is available [3][7]. At a similar level to these atomic 
refactorings are refactorings such as ExtractMethod, which 
moves a section of (possibly repeated) code into its own method 

Copyright is held by the author/owner(s). 

OOPSLA "02, November 4-8, 2002, Seattle, Washington, USA. 

ACM 1-58113-626-9/02/0011. 

[4]. These refactorings are only slightly more complex than the 
atomic refactorings previously mentioned and thus are considered 
atomic. Tool support for these refactorings is also easily found. 
The complexity of refactorings quickly increases with the 
combination and repetition of atomic refactorings. An example of 
this is ExtraetClass, which encompasses MoveField and 
MoveMethod [4]. We term such refactorings sequential as they 
are sequences of atomic refactorings. Tool support for sequential 
refactorings is not as easily found. Finally, an even higher 
complexity level is determined. Made up of atomic and 
sequential, complex refactorings lean towards introducing 
patterns into a system. An example is Replace Multiple 
Constructors with Creation Methods, a work in progress by 
Kerievsky [8] which involves a combination of ExtractClass, and 
a repetition of ReuameMethod and MoveMethod atomic and 
sequential refactorings. These complex refactorings are necessary 
to handle the complexity of changing the entire structure of a 
software system and are the focus of this research. 

The complex refactorings we propose use J2EE design patterns as 
targets. We address four issues. Firstly, what knowledge do 
refactorings require? Atomic and sequential refactorings maintain 
little to no knowledge of an application's design. Renaming or 
moving a method requires little information (names of methods in 
the class, the name of another class) about the actual structure of 
an entire application. Complex refactorings produce changes in 
an application at a higher abstraction level and require more 
knowledge of an application's design. Fortunately, our complex 
refactorings will be used to refactor to design patterns, each of 
which has a determinable structure that provides information for 
the complex refactorings. Similarly, the motivation behind 
applying a pattern is somewhat determinable. The complex 
refactorings represent knowledge of the motivation and the 
structure of the solution. We use Session Fagade as an example. 
The motivation behind the use of the Session Fagade pattern is 
typically tight coupling between the client and the business tier. 
For example, a Java Server Page (.jsp) directly accesses an entity 
bean. This creates much dependence between the two layers so 
that a change in one layer affects the other layer a great deal. In 
order to enhance the application, complex refactorings must know 
where the client pages (e.g. a .jsp) reside and where the business 
pages (e.g. entity beans) reside. The complex refactorings must 
also know that any references to entity beans within the .jsp pages 
need to be changed to reference the session fagade class. 
Complex refactorings require much more knowledge than atomic 
or sequential refactorings and our tool support will reflect this. 

The second issue is what atomic or sequential refactorings, or 
combinations of such refactorings should be used within each 
complex refactoring? For example, in order to refactor to the 
Session Fagade design pattern there are a few tasks that must be 
performed, assuming the existence of a weaker design such as the 

122 



motivation given above. 1. Create a new session bean fagade 
class to communicate between the client and business objects; 2. 
Instantiate the business objects inside the fagade; 3. Instantiate the 
Session Fagade inside the client; 4. Move and rename much of the 
functionality out of and within (respectively) the client. We 
establish the complex refactoring Create Conversation Class 
which encompasses creating the actual Session Fagade class, 
instantiating it in the client and instantiating business objects in 
the Session Fagade class. The atomic and sequential refactorings 
involved are Fowler's ExtractClass, which encompasses 
MoveField and MoveMethod and we add the atomic command 
to instantiate the facade class (the business objects can be 
instantiated with MoveField). Each complex refactoring will 
therefore be made up of its requisite knowledge of the system 
design and a number of atomic and sequential refactorings. 

The third issue is what existing tool support can we utilize to 
assist in development of the tool? The refactoring support 
provided by IDEs such as [3][7], is support for atomic and 
sequential refactorings only. These refactorings are behavior 
preserving, undoable and extremely useful for simple tasks, but 
they require much user involvement and do not change the 
structure of the entire system to a large extent. To order and 
combine just these atomic and sequential refactorings to refactor 
to a design pattern would require much organization and foresight 
by the user, and would risk the stability of the program. Eclipse 
is an open source IDE developed by IBM and contains constantly 
growing atomic and sequential re-factoring support [3]. Like 
similar tools, it is currently insufficient to refactor to a design 
pattern, but was chosen for its availability of code and potential 
for refactoring expansion. Eclipse contains refactoring wizards, 
refactoring classes and change classes to support atomic and 
sequential refactorings, all of which can be used to manipulate 
low-level refactorings within the complex refactorings. Any 
necessary but yet unimplemented atomic and sequential 
refactorings will be implemented according to the existing 
refactoring design, based on the design of [10]. The final issue is 
what complex refactorings can be used or established to enhance 
runtime performance? We focus on design patterns at the J2EE 
Business Tier, which address many network call issues, and focus 
on complex refactorings to these design patterns. 

3. PATTERN CREATOR KNOWLEDGE 
In our tool, each Design Pattern Creator Wizard maintains a 
Knowledge Store specific to its design pattern. The Knowledge 
Store contains Motivation Knowledge and Solution Knowledge. 
The Motivation Knowledge represents the typical errors ideally 
solved by the given design pattern. The Solution Knowledge 
represents the desired structure of the application. For example, 
in the Session Fagade Design Pattern Creator Wizard, the 
Motivation Knowledge contains information about a series of 
client pages and a series of business objects. The Solution 
Knowledge contains information about the Session Fagade, the 
business objects and the client. By including this knowledge in 
the tool we reduce the number of necessary requests to the user. 

4. BENEFITS AND DESIRED GOALS 
The benefits of tool support for refactoring to J2EE Design 
Patterns are many. By refactoring the code we allow for 

improved naming of variables and methods, enhancing code 
readability and code understand-ability. In conforming to a given 
design pattern we improve understand-ability of an application as 
a whole and we improve the flexibility of an application [5][6]. 
Equally important though is our desire to improve the 
development process and run-time performance. Trying to 
manually refactor a reasonable sized application to the extent that 
a design pattern is adopted is tedious and difficult. With tool 
support however, we simplify and speed up the process by hiding 
some of the necessary but time-consuming atomic refactorings. 
Lastly, we improve run-time of the applications. We focus 
specifically on problems in calls across the network and try to 
perform these calls in the most optimal manner possible, as per 
the given design pattern. 

5. CONCLUDING REMARKS 
Traditional software development favors sound up-front design. 
Agile software development favors emerging design. We propose 
complex refactorings to join these conflicting approaches by 
allowing design to change even after an application is 
implemented, regardless of whether the design was established 
up-front or emerged throughout the development process. The 
accompanying tool combines atomic and sequential refactorings 
to create complex refactorings with design pattern motivation and 
solution knowledge that restructure the design of an entire 
application. The domain is J2EE applications and the desired 
goal is improvement in the following areas: readability, 
flexibility, understand-ability, development process and run-time. 

6. REFERENCES 
[1] Alur D, Crup J, Malks D; Core J2EE Patterns Best Practices 
and Design Strategies; Sun Microsystems Inc. Upper Saddle 
River, NJ; 2001; p.54-71,104-112, 246-420. 

[2] Beck, K.; Extreme Programming Explained: Embrace Change; 
Addison Wesley Upper Saddle River NJ, 2000; p.103-115. 

[3] Eclipse www.eclipse.org (Last Visited: July 11, 2002). 

[4] Fowler, M.; Refactoring: Improving the Design of Existing 
Code; Addison-Wesley ; Upper Saddle River, NJ 2000; p. xv-xxi, 
110-116, 142-153, 227-231,273-274. 

[5] Gamma E. Helm R. Johnson R. Vlissides J; Design Patterns - 
Elements of Reusable Object Oriented Software; Addison 
Wesley; Reading MA, 1995; p.l-3 

[6] Grand, Mark; Java Enterprise Design Patterns, Patterns in Java 
3; John Wiley & Sons Inc. New York 2002; pl-6. 

[7] IntelliJ IDEA www.intellij.com/idea (Last Visited: July 11, 
2002). 

[8] Kerievsky, Joshua; Refactoring to Patterns; Industrial Logic 
www.industriallogic.com/papers/rtp015.pdf (Last Visited: July 
11, 2002). 

[9] Opdyke W.; Refactoring Object-Oriented Frameworks; PHD 
Dissertation, University of Illinois at Urbana-Champaign 1992. 

[10] Roberts, D, Brant J, Johnson R; A Refactoring Tool for 
SmallTalk; Journal of Theory and Practice of Object Systems 
(TAPOS) V.3 No.4 1997 p.253-263. 

123 


