ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Information and Software Technology 49 (2007) 637-653

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

A model of design decision making based on empirical results
of interviews with software designers

Carmen Zannier **, Mike Chiasson °, Frank Maurer *

& University of Calgary, Department of Computer Science, Calgary, AB, Canada
° University of Lancaster, Department of Management Science, Management School, Lancaster University, Bailrigg, Lancaster, UK

Available online 13 February 2007

Abstract

Despite the impact of design decisions on software design, we have little understanding about how design decisions are made. This
hinders our ability to provide design metrics, processes and training that support inherent design work. By interviewing 25 software
designers and using content analysis and explanation building as our analysis technique, we provide qualitative and quantitative results
that highlight aspects of rational and naturalistic decision making in software design. Our qualitative multi-case study results in a model
of design decision making to answer the question: how do software designers make design decisions? We find the structure of the design
problem determines the aspects of rational and naturalistic decision making used. The more structured the design decision, the less a

designer considers options.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Design decision; Rational decision making; Naturalistic decision making; Interviewing

1. Introduction

Designing software involves numerous cognitive skills
such as mental modeling [25], mental simulation [1], prob-
lem structuring [24] and decision making [27], the last of
which is the focus of this paper. We empirically examine
software design decisions for three reasons. First, there is
little empirical work in this area despite strong calls to
examine this topic [1,15,27,28,54,65]. Second, growing sup-
port for studying the social side of software development
makes an empirical examination of design decisions highly
relevant to research in software design, especially due to
growing recognition that “the major problems of [software
design] work are not so much technological as sociological
in nature” [16]. Last, an empirically based understanding
of design decisions motivates the development of design
processes, tools and metrics that incorporate inherent work

* Corresponding author. Tel.: +1 403 771 6633.
E-mail addresses: zannierc@cpsc.ucalgary.ca (C. Zannier), m.chiasson
@lancaster.ac.uk (M. Chiasson), maurer@cpsc.ucalgary.ca (F. Maurer).

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.02.010

activities of software design. Given this, we describe our
multi-case study of 25 software designers interviewed about
design decisions they have made, and we present quantita-
tive and qualitative results of these interviews and the deci-
sion model that emerged from our results.

We provide two key conclusions. First, our results are
consistent with [24], that design is primarily about problem
structuring. We add to this work by showing that problem
structuring in software design is a crucial aspect of the
design decision making process. Our second conclusion is
that designers utilize two seemingly opposing decision
making approaches, concurrently: Rational decision mak-
ing (RDM) [41], and Naturalistic decision making
(NDM) [37]. Rational decision making is characterized
by the consequential choice of an option among a set of
options, with a goal of selecting the optimal option [41].
Naturalistic decision making is characterized by situation
assessment and the evaluation of a single option with a
goal of selecting a satisfactory option [37]. The current
state of decision making literature suggests these
approaches are independent of each other. For example,
fire-fighters use NDM [37], and operations researchers

mailto:zannierc@cpsc.ucalgary.ca
mailto:m.chiasson@lancaster.ac.uk
mailto:@lancaster.ac.uk
mailto:maurer@cpsc.ucalgary.ca

638 C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

use RDM [41]. Our results show that in software design,
decisions are made using aspects of NDM and aspects of
RDM concurrently, contingent upon the structure of the
problem, as defined by the decision maker.

These results impact software design in three ways:
design metrics, design processes and design training.
Regarding design metrics, our results challenge the pursuit
of only objective and quantifiable measures of design, via
numerous qualitative descriptions of design (e.g. ‘“‘ver-
bose”, ‘“‘awkward”, “spaghetti”’) and no quantitative
descriptions. Regarding design processes, our results sup-
port iterative development approaches not only because it
provides a designer with more opportunities to structure
information surrounding a decision, but because iterative
development accommodates our empirical evidence that
designers often follow singular evaluation not consequen-
tial choice among design alternatives — an NDM perspec-
tive. Iterative development provides the opportunity to
revisit a design decision that was made via singular evalu-
ation, and then evaluate alternatives as needed. Lastly, in
design training our results raise numerous questions about
the most effective methods to acquire design knowledge,
given that some designers pursue knowledge in places such
as textbooks, conferences or the internet, while other
designers show minimal interest in such knowledge.

Two assumptions were made that are relevant for this
paper. The first was that a design change involves one or
more design decisions. The second was that the design
change is a critical incident, as per the definition [19].

Our paper proceeds as follows. Section 2 provides a lit-
erature review and Section 3 introduces the study, describ-
ing data collection and analysis. Section 4 provides our
results, including the decision model and Section 5 dis-
cusses validity. Section 6 concludes this research. [68] pro-
vides definitions of codes used in content analysis,
referenced throughout this paper.

2. Literature review

We describe four topics pertinent to a review of software
design decision making and presented in increasing order
of relevance to this research. The topics are listed in Table
1, in the leftmost column. A common theme emerged from
an examination of these topics: that software design

Table 1

Pertinent literature review topics

Topic Perspective Perspective

Problem solving Well structured Ill-structured

problems problems

Measuring software Objective Subjective
design

Software design Explicit Implicit
cognition

Decision making Rational Natural

emerges from two seemingly opposing perspectives. For
example, rational decision making is one perspective from
which to view decision making; naturalistic decision mak-
ing is the other perspective. It can be claimed that the def-
inition of naturalistic decision making opposes the
definition of rational decision making.

Avoiding a right and wrong response to rational and
naturalistic decision making, we show how the two comple-
ment each other in addressing the topic. We suggest that
RDM andlor NDM provides one platform from which to
identify and discuss tensions and complementarities in deci-
sion making approaches. Among the topics there is similar-
ity in the ideas inherent in the perspectives. For example,
the ideas found in the perspective called well structured
are used by the ideas found in the perspective called expli-
cit. The format of Table 1 suggests similarity among the
perspectives listed in the same column, and differences
between the columns. Despite the obvious differences
between the columns, our goal of this section is to explore
these as complementary differences instead of radical and
irreconcilable approaches.

2.1. Problem solving

The extent to which a problem is structured establishes
two perspectives from which to view a problem. These per-
spectives are a well structured problem (WSP) and an ill
structured problem (ISP). They can be viewed by consider-
ing problems in general (e.g. the design of a house, a game
of chess) or by considering software development problems
specifically.

A well structured problem is one that has criteria that
reveal relationships between the characteristics of a prob-
lem domain and the characteristics of a method by which
to solve the problem [58]. “There is at least one problem
space in which can be represented the initial problem state,
the goal state, and all other states that may be reached, or
considered, in the course of attempting a solution to a
problem” [58]. An example of a well structured problem
is a game of chess.

An ill-structured problem is a problem that is not well-
structured [58]. An ill structured problem requires problem
structuring, where a problem solver converts an ill struc-
tured problem to a well structured problem [58]. A problem
solver spends more time in problem structuring than in
actually solving a problem once it is structured [58]. An
example of an ill structured problem is the design of a
new house [58]. Decisions made in early design sketches
of the house establish structures under which following
decisions will be made [58].

Specific to software development, a well structured
problem can be handled by Tayloristic approaches. Taylo-
rism is a management solution, where factories are man-
aged through scientific methods rather than by “the rule
of thumb”. Scientific selection of the workperson, task
breakdown and separating planning from execution are
three characteristics of this approach [61]. Taylorism is a

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 639

potential foundation for software engineering practice
which is often considered to be opposed to agile practices
[2].

Specific to software development, an ill structured prob-
lem provides a platform for wicked problems. The formu-
lation of a wicked problem is the actual problem; wicked
problems have no stopping rule; solutions to wicked prob-
lems are not true or false, but good or bad [53] Wicked
problems are a potential foundation for software engineer-
ing practices that agree with agile practices [2,52].

The dichotomy between well structured problems and ill
structured problems is easily reconcilable. ““There is no real
boundary between well structured problems and ill struc-
tured problems.” [58]. Given the definitions of the two,
much of problem solving can be viewed as problem struc-
turing [58].

2.2. Measuring software design

When measuring software design the literature shows
two perspectives from which to begin. They are quantifi-
able metrics and qualifiable metrics.

Quantifiable software design metrics must accurately
represent the attributes they are supposed to quantify
[33]. Consequently, much work teaches the proper use
of metrics [18]. It is even stated that software engineering
cannot become a true engineering disciplines, until the
field establishes proper measurement theories [18]. In
practice, consistent relationships between internal and
external software design attributes are exceedingly diffi-
cult to develop [9]. This is because software does not
directly show design attributes but only exhibits charac-
teristics indicative of design attributes [9]. This is also
because “good” software design is inconsistently defined
[10]. Dating back at least 25 years, researchers have tried
to develop a consistent and agreed upon set of design
metrics, to no avail.

Qualifiable software design metrics relies on more elu-
sive concepts such as quality or goodness, and rely on
human judgment of “good” [17,5]. Recognizing that
“good” software design is undefined, [21], qualifiable soft-
ware design uses the concept of “good enough’ software
(satisificing), to evaluate a software design. Additionally,
qualifiable software design metrics rely on design patterns
as the cornerstone of good software design [22]. Software
design patterns provide common solutions to common
design problems but still require a designer to tailor a design
pattern to a specific design solution [22].

Reconciling quantifiable and qualifiable software design
metrics is difficult because it is akin to matching internal
product characteristics to external design attributes. As of
yet, this has not been accomplished.

2.3. Capturing (Design) cognition

Capturing software design cognition (i.e. the way a soft-
ware designer thinks) can be done explicitly or implicitly

and much research exists in both areas. The use of design
rationale approaches is an explicit approach to capturing
design cognition. Empirically studying software designers
at work is an implicit approach to capturing design
cognition.

2.3.1. Explicit capture: Design rationale

Design rationale is the documenting of design decisions
and their justifications [39,35]. The purpose is to facilitate
reasoning and communication about a design as well as
organizational learning [39,35]. Two examples of design
rationale capture are Issue-Based Information System
(IBIS) [13] and Questions, Options and Criteria (QOC)
[42]. Unfortunately, evaluations of design rationale have
not been positive. An initial investigation attempted to
determine the usefulness of design rationale documents
[31]. The conclusion of the study was that design rationale
documents should be useful to interested designers. How-
ever, design rationale documents were, at the time, insuffi-
cient, as less than half of the designers’ design rationale
questions were answered by the design rationale documen-
tation. A second study investigated the usability of QOC
[55]. This study critiqued QOC as lacking a vocabulary,
providing a poor representation of dependencies between
decision problems, and being too restrictive [55]. Lastly,
speaking to the motivation behind design rationale, one
investigation found software design meetings to be struc-
tured and was thus critical of the usefulness of design ratio-
nale models as a method to organize design [47].

2.3.2. Implicit capture: Design studies

A survey of design studies reveals the following six
related qualities impact software design: expertise, mental
modeling, mental simulation, continual restructuring, pre-
ferred evaluation criteria and group interactions. Each
quality is defined below, and the results of the studies per-
taining to each quality are summarized.

Expertise is the knowledge and experience software
designers have in design [1,25,4,59]. The issue of expertise,
or knowledge, is fundamental to software productivity and
quality [15]. “Although individual staff members under-
stood different components of the application, the deep
integration of various knowledge domains required to inte-
grate the design of a large, complex system was a scarcer
attribute” [15]. Individual team members do not possess
enough knowledge for a project and must learn additional
information before they are productive [65].

Mental modeling is the internal or external model a
designer creates that is capable of supporting mental simu-
lation [1]. ““A model is an abstract representation of a sys-
tem that enables us to answer questions about the system”
[11]. External modeling is the development of diagrams,
code or any physical model of the application [4]. Internal
modeling is the mental development of a model of the
application [24]. Studies have shown that expert designers
can create more detailed mental models than novices can,
and their mental models are better able to handle mental

640 C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

simulations [1,15,24,59]. In addition, individuals maintain
a mental model that is used in the creation of a group
model [23]. A model develops as team members learn from
one another about the application and required computa-
tional structures [65].

Mental simulation is the “‘ability to imagine people and
objects consciously and to transform those people and
objects through several transitions, finally picturing them
in a different way than at the start” [37]. External and inter-
nal modeling provides a foundation upon which mental
simulations run. Designers alternate between concrete sce-
narios and abstracting from these scenarios [23]. Mental
simulations run on a mental model and are thus subject
to the detail of the mental model as well as limitations of
working memory [1,15,24,25,32].

Continual restructuring is the process of turning an ISP
(ill-structured software problem) to a WSP (well-structured
software problem). Continual restructuring emphasizes the
importance of the context of a situation in evaluating its exe-
cution. The current state of design determines relevant issues
in a design problem [4,20,43] and designers revisit the framed
problem as new context-based information emerges [23,65].
This process has been termed “organized anarchy” [12].

The term “preferred evaluation criteria” refers to the
minimal criteria a subject adopts to structure an ISP and
guide the search for a satisfactory solution [24]. Caution
must be taken in the selection of preferred evaluation crite-
ria. Properly chosen criteria reduced design problem com-
plexity, but poorly chosen criteria led to early reduction of
the design problem and a closed minded approach to the
situation [24,25,65]. The preferred evaluation criteria gen-
erated can be considered similar to that of confirmation
bias, tunnel vision and groupthink [64,46].

Group interactions is the dynamics of group work in soft-
ware design. Motivation for the examination of group
interactions arises from vast amounts of time designers
spend in informal communication [26]. The terms “distrib-
uted” and “‘shared” cognition suggest that individual men-
tal models coalesce via coordinated group action, resulting
in a common model [23]. The coalescing may result from
the domination of a small coalition of individual designers
(or sometimes just one designer) controlling the direction
of the project [15]. In relation to the preferred evaluation
criteria, one study showed this control can result in success
or failure of a closed-minded group upon the arrival of new
design ideas [65].

Reconciling explicit design cognition capture and impli-
cit design cognition capture, is not well researched in soft-
ware development, perhaps because it is akin to evaluating
how people work versus how they say they work. Such
research is beyond the scope of this work.

2.4. Decision making
Two approaches to decision making provide the per-

spectives from which to view multiple decision making the-
ories as well as the perspectives from which to view

software design decision making. The two decision making
approaches differ in their emphasis on mathematical foun-
dations and real-time scenarios. They are called rational
decision making and naturalistic decision making.

2.4.1. Rational decision making

A rational decision, “is one that conforms either to a set
of general principles that govern preferences or to a set of
rules that govern behaviour. These principles or rules are
then applied in a logical way to the situation of concern
resulting in actions which generate consequences that are
deemed to be acceptable to the decision maker” [60].

Rational decision making is characterized by an appre-
ciation for mathematical computation of decision alterna-
tives. A rational decision is also a normative decision,
because the process and outcome are prescriptive, often
in opposition to description. A normative decision ‘“‘pre-
scribes for given assumptions, courses of action for the
attainment of outcomes having certain formal ‘optimum’
properties” [41]. “Prescriptive” is defined as recommending
an approach to decision making to the decision maker.

A rational decision has three features that are parts of
the decision maker’s approach to decision making [57,56].

e Decision alternatives. The decision alternatives are repre-
sented by a set of possible courses of action and poten-
tial outcomes for each action.

e Utility function. A utility function assigns a value to each
possible action based on its outcome.

e Probabilities. A decision has information or probabili-
ties as to which outcome will occur in case of the selec-
tion of a particular alternative.

Rational decision making is limited by three assump-
tions. The first is that a set of possible courses of action
and the probability of outcomes is actually known. The
second is that the decision maker’s goal is to optimize.
The last assumption is that combinatorial explosion of
alternatives and the time involved in mathematical calcula-
tions of situations of combinatorial explosion are not a
large concern [48,37].

2.4.2. Naturalistic decision making

A naturalistic decision, ““‘connotes situational behaviour
without the conscious analytical division of situations into
parts and evaluation according to context-independent
rules” [20]. Naturalistic decision making is characterized
by an appreciation for real-time scenarios and judgment
biases. A naturalistic decision is defined by the following
six characteristics [36]:

e Manifests itself in dynamic and continually changing
conditions.

e Embodies real-time reactions to these changes.

e Embraces ill-defined tasks and goals.

e Resolves itself under the guidance of knowledgeable
decision makers.

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 641

e Utilizes situation assessment over consequential choice.
e Has a goal of satisficing instead of optimizing.

Three terms in these six characteristics require defini-
tion: consequential choice, situation assessment and
satisficing.

e Consequential choice. The organized analysis of options
and potential outcomes, typical of rational decision the-
ory [40].

e Situation assessment. The absence of choice in real-
world decisions. A decision maker exercises an action
that may or may not be considered amongst a set of
choices [40]. A decision maker thinks of a possible
option then uses mental simulation to evaluate the
option. If the mental simulation succeeds the decision
maker executes that option.

Satisficing. The acceptance of a satisfactory, as opposed

to optimal, outcome [37].

Naturalistic decision theories are limited by the absence
of a definable, predictable set of outcomes. Our review has
found 11 approaches to naturalistic decision making
[51,29,14,63,8,62,45,7,50,30,37].

3. The study

We accomplished our empirical examination of design
decision making via a multi-case study that used interviews
and content analysis [38] to understand design decision
making. Our multi-case study consisted of 25 explanatory
case studies with software designers [66]. Our interviews
followed a semi-structured format and lasted, on average,
45 min. We used content analysis to code words, phrases,
sentences and paragraphs. Lastly we used our results to
build an explanation of design decision making [66]. The
purpose of this examination is to answer the question:
how do software designers make design decisions? In [67]
we presented hypotheses for design decisions made for four
types of design decisions. Given our emphasis on problem
structuring in our current results we cannot group deci-
sions into one of these four types, and we leave this catego-
rization for future work.

3.1. Data collection

There are three issues we address from our interviewing,
which was conducted from May to August of 2004. The

Table 2
Critical decision interview example questions [34]

interviews were audio recorded, totaling approximately
161 h of conversation.

To stimulate discussions around software decision mak-
ing, we used the Critical Decision Method for Eliciting
Knowledge (CDM) for our interview format [34]. The
CDM begins with one general question to initiate conver-
sation with the interview subject and hear a description
of the critical incident. The CDM then provides probing
questions based on the information given in this descrip-
tion. It is a semi-structured interview format [49]. In our
interviews we asked designers to describe a design change
they made, followed by probing questions addressing
aspects of their description. The order and the way in
which the questions were asked varied, depending upon
the interview subject’s description, but the theme of the
question remained the same. The probing questions (e.g.
Cues) and examples of the way the probing questions were
asked, are listed in Table 2. An example of a variation of a
question is, for external goals, ““You mentioned your mar-
keting department wanted you to use XSLT, can you talk
about that a bit more?” We chose the CDM because of its
extensive use in analyzing decisions [37] and we found it to
be extremely beneficial because it generated conversation
that we perceived to be natural for most interview subjects
and ensured an approximately consistent approach to all
interviews.

To collect data, we used snowball sampling, an emergent
sampling approach that does not explicitly characterize an
interview subject by domain, type of system, experience or
any other characteristic. [49]. For our study, we initially
interviewed colleagues at the University of Calgary who
had previous software design experience and local col-
leagues (i.e. in the same city as us) we knew in the industry
through conferences or user groups. This meant that ini-
tially our interview subjects were primarily Calgary-based
software developers (11 participants). When a leading agile
conference was held in Calgary in August 2004 [3], we
broadened the demographic of our interview subjects. We
interviewed leaders of the agile community and developers
from across North America. We interviewed 25 people in
total. During our interviewing, we noticed a difference in
the perspectives of 8 of our interview subjects. They dis-
cussed design changes they had seen people make or had
overseen, when they were a coach or a consultant on a
team. They spoke about design change as a concept rather
than one critical incident, and gave multiple examples of
critical incidents of design changes. Given this, we defined
two perspectives in our interviews subjects: Developer and

Decision (initial question)
Cues (probe)

Knowledge (probe)
Options (probe)
Experience (probe)

Time pressure (probe)
Externals (probe)

Describe how you make a design change to a system, and how you make the decision to make the change.
What do you see, hear, discuss, or experience that suggests a change needs to occur?

Where do you acquire the knowledge to make the change?

Discuss the extent to which you consider options in making a design change to a system.

To what extent do specific past experiences impact your decision to make a design change?

How does time pressure impact decisions in design changes?

How do external goals impact decisions in design changes?

642 C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

Mentor. A Developer is an interview subject who discussed
a design change that they championed when s/he was a
member of a design/development team, and discussed the
design change as a critical incident. A Mentor is an inter-
view subject who discussed design change as an abstract
concept, based on the culmination of design experiences
with software development teams where s/he was a coach
or paid consultant. The abstract level at which Mentors
discussed design changes allowed us to compare the general
theories of design work to the actual practices of design.
When we refer to all subjects of our interviews, Developers
and Mentors, we say Designers. We recognize that 19 of
our 25 Designers discussed design changes on Agile pro-
jects [2]. We address this when we discuss the validity of
our study.

The interviews took place primarily at the time and loca-
tion most convenient for the interview subject: at his/her
place of business, over lunch or at a conference s/he was
attending. We attempted to make the interview subject as
comfortable as possible in this regard. Interview subjects
explicitly stated when s/he did not remember enough about
a critical incident to answer part of a question and also sta-
ted biases they might have had (although they did not use
the word ‘bias). Willingness to participate was not an issue
for any of our 25 interviews. Lastly, we saw signs of a
desire to be a good subject in 2-3 of our subjects. This
was apparent when interview subjects said a version of
the phrase “I’'m not sure if that is the sort of answer you're
looking for.” To this we typically replied with a version of
the phrase “I'm looking for anything you can recall sur-
rounding the design change.” In general though, we found
the interview subjects had significant industry experience
and/or were well-recognized members of their development
community. They had little to gain or lose from participat-
ing, at any level, in our study.

3.2. Data analysis

We discuss three issues in our data analysis, which
occurred on transcripts of the interviews. Transcripts
of the recordings produced 180 typed pages (single
space). The transcripts were marked with a pen colour
and label indicating a code found during analysis [38].
Analysis was time consuming. For example, 1h of
recorded conversation took 12-15h to analyze, depend-
ing upon the speed at which the interview subject spoke.
This did not include time to compare results across
interviews.

Our content analysis placed words, phrases, sentences
and/or paragraphs into codes [38]. In our study we coded
at two levels for our quantitative results. First we coded
words or small phrases, which we called Small Window
Coding (SWC). SWC removed the context from a tran-
script but showed word choice in the transcription. We
then coded long phrases, sentences or paragraphs, which
we called Large Window Coding (LWC). LWC incorpo-
rated more context of a statement than SWC and showed

some word choice within a context. Given the large absence
of context, we found SWC and LWC were most useful to
generate frequencies of codes as an indicator of popular
and unpopular codes. For SWC we used an interactive dic-
tionary and for LWC we used that dictionary as a prede-
fined dictionary, and added codes as needed.

We then generated further understanding of software
decision making by showing relationships between codes
in two ways. We used codes from SWC and LWC to
show relationships between codes, throughout the tran-
scripts. We called this Generic Relational Coding
(GRC). We showed a relationship between two codes with
a line. For example <<Ideas>> — <<Model>> was a
common relationship showing the interview subject had
a thought about the design of a system. GRC did not
answer a specific interview question but did incorporate
the context of a transcript and showed recurring themes
throughout the transcripts. Next we used codes from
SWC and LWC to show relationships between codes in
answer to our interview questions. We called this Specific
Relational Coding (SRC). SRC incorporated much con-
text of an interview and answered a specific interview
question.

To build explanations [66], we compared case study
results to confirm and produce theory [66]. Using our four
types of coding, we built a summary of each case study.
Using our knowledge of decision making (RDM and
NDM in particular), we generated small ideas and theories
about each case study and compared them against other
case studies. We continuously refined these ideas and theo-
ries and continuously incorporated more case studies, until
our theory explained all our case studies. Our theory
became our explanatory model of design decision making
with the 25 case studies consistent with it.

Using six approaches to analyze our interview tran-
scripts SWC, LWC, GRC, SRC, Case Study Summary
and Cross Case Comparison, we were able to draw upon
the strengths and avoid the limitations of some analysis
forms with respect to our goal of understanding design
decision making. Each form of analysis built our under-
standing of each case and was crucial in validating the
overall result. While the analysis was lengthy, these six
forms of analysis provided the most insight and value to
our emerging theories.

4. Results

We provide five types of results before describing our
decision model. First we provide frequencies of codes,
which give us an idea of potentially important concepts
to examine. Using this we then look at emerging themes
of these concepts. We apply these themes to interpret
how RDM and NDM map to design decision making,
as our third type of results. These interpretations are used
when we describe our case study summaries. Lastly the
case study summaries are compared in our cross case
analysis.

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 643

4.1. Frequencies

We examined the number of interview subjects who had
a code in their top three codes. These are listed in Tables 3
and 4, for SWC and LWC respectively and show the most
popular codes across interviews. We grouped the top three
codes when we counted these frequencies because of how
little variation there was in the frequencies of the top three
codes (which we do not show, due to space constraints).
Across all interviews, <<Modeling>> and <<Customer
Product>> were in the top three codes more often than
any other code in SWC. <<Modeling>> and <<Idea>>
were in the top three codes more often than any other code
in LWC. We find these numeric results show the dominant
topics in the interviews but are insufficient indicators of
design decision making and thus show codes that only
had a frequency of 5 or more in the top three codes across
interviews.

4.2. Emerging themes

Numerous relationships between codes emerged
through our Generic Relational Coding, showing popular
themes across the interviews. We discuss five here, given
the three most popular codes presented in Tables 3 and 4.

4.2.1. <<Ideas>>

The first relationship that was popular was the relation-
ship between <<Ideas>> and <<Better vs. Worse>>. Our
interview subjects qualified their ideas according to some
subjective definition of better or worse, as opposed to right
or wrong. We provide the quote below as an example.

“The idea itself, I saw some of the custom attribute imple-
mentations and I thought that’s a much better way of
doing [what] Java did.” Developer Perspective

Table 3

Frequencies of Top 3 Codes for SWC across interviews

Code Frequency
Modeling 13
Customer product 10
Group 9
Technology 9
Time 9
Frequency 7
Better vs. worse 5
Table 4

Frequencies of Top 3 Codes for LWC across interviews

Code Frequency
Modeling 15
Idea 12
Customer product 7
Decision 7
Knowledge 7
Better vs. worse 6
Technology 6
Adaptation 5

Thisis important for design decisions because it highlights
a difference between naturalistic decision making (NDM)
and rational decision making (RDM). NDM utilizes a satis-
factory solution while RDM utilizes an optimal solution.
The relationship, <<Ideas>> — <<Better vs. Worse>> sug-
gests designers think subjectively about design, which raises
the question: is it possible to find optimality through individ-
uals’ subjective evaluations of right or wrong?

To be clear, the interview subjects discussed design ideas
as being better or worse. This became apparent because the
second dominant relationship across the interviews was
<<Ideas>> — <<Modeling>> and the third was <<Model-
ing>> — <<Better vs. Worse>>. An example of the relation-
ship between <<Ideas>> and <<Muodeling>> is as follows.

“I was trying to go with [the] incremental change
approach. . .um, where did I get the idea [for the design]?
... guess it’s kind of a basic encapsulation idea.” Devel-
oper Perspective

Through quotes such as these, we saw that designers had
ideas about design that were sometimes difficult to trace
back to a specific reference. The question raised above
can now be narrowed to design: is it possible to find an
optimal software design through designers’ subjective eval-
uations of right or wrong software design? The example of
the relationship between <<Modeling>> and <<Better vs.
Worse>> reiterates this point.

“...during those 8 months we had to let certain things
slide because [the system] just had to work, it didn’t have
to have. ..all the bells and whistles. It just really had to
work.”” Developer Perspective

4.2.2. <<Modeling>>

Another dominant relationship was one between
<<Modeling>> and <<Adaptation>>. This relationship
was prominent across the interviews, perhaps due to the
agile background from which 19/25 of our subjects spoke.
Nevertheless, changing design was important. An example
of adapting a model is the following quote.

“...[There] was a heavily expensive object to create. In
one part of the code we were creating it much more than
was required. So the simple fix there was to create it once,
and keep it there and just continue to reuse it.”” Developer
Perspective

Through quotes such as these, we saw that changing an
existing design was discussed much more than beginning a
new design. This gives merit to the idea that problem struc-
turing builds on past structured problems, which we dis-
cuss in Section 4.4.1.

4.2.3. <<Customer Product>>
Lastly, a dominant relationship with <<Customer
Product>> was <<Need>>. Customer requests were often

644

highlighted as a need (i.e. requirement) for the model. For
example,

“There was no graphic at all before. It was presented in
table form and [the customer] wanted to present the
information graphically. That was definitely a customer
need.” Mentor Perspective.

We found numerous relationships throughout GRC, but
present these only because of the popularity of the codes
<<Modeling>>, <<Ideas>> and <<Customer Product>>,
as per Tables 3 and 4. There were two reasons to examine
the recurring themes via GRC. The first was to give us an
understanding of recurring themes in the transcripts and to
allow these ideas to emerge with as little bias as possible.
Ultimately, some of these recurring themes became empir-
ical evidence that challenge traditional ideas about soft-
ware design. For example, the above question about
design optimality via subjective evaluations impacts the
assumption made by existing design metrics, that software
design can be quantified on an absolute, totally ordered
scale. As a by-product of interviewing members of the soft-
ware industry about design decisions we gained some
insight on other important design issues as well. The sec-
ond reason we examined recurring themes via GRC was
validation. As we built our case study summaries, we coded
our summaries and compared these codes to GRC and
SRC. Finding matching codes between coded case summa-
ries and GRC or SRC was an excellent vehicle for verifying
our internal validity as we discuss in Section 5.

4.3. “Answers”’ to questions

Using RDM and NDM to guide the generalizing of our
interview subjects’ approaches to decision making [41,37],
we interpreted each interview question as it related to the
attributes of RDM and NDM. We found differences
between RDM and NDM in the goal, method, effect of envi-
ronment, and the nature of the knowledge employed in the

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

decision as shown in Table 5. We address each of these
in this order.

If a decision maker’s goal was to optimize design
(rational), then information cues were considered to indi-
cate right or wrong decisions. If the decision maker’s goal
was to satisfice design (naturalistic), then cues were used
only to indicate better or worse outcomes.

If a decision maker followed consequential choice
(rational), then s/he discussed numerous options surround-
ing the decision to make a design change. If a decision
maker followed singular evaluation (naturalistic), then s/
he did not discuss options.

If a decision maker was unconcerned about time pressure
and the external environment (rational), then s/he was
unconcerned with computational overhead and external
goals. On the other hand, if the decision maker was con-
cerned about time pressure (naturalistic), then dynamic con-
ditions, real-time reactions, ill-defined tasks and goals
andsituation assessment allowed external goals to influence
decision making, thus providing little time and point in con-
sidering detailed computations.

If the decision maker was cognizant of all possible
courses of action (rational), then experience, knowledge
and explicit searches were used to reach decisions. If the
decision maker was not cognizant of all possible courses
of action (naturalistic), then s/he relied on general accumu-
lation of experience or knowledge. Given these general
interpretations, more detailed results illustrate similarities
and differences within and across cases.

Using these interpretations with our specific relational
coding, we classified the answers to each question of each
interview as either NDM, RDM, N/A (when we did not
have time to ask the question) or “?”” (when the categoriza-
tion was unclear). Table 6 shows the classifications for each
question and the overall classification of the interview sub-
ject’s approach to the decisions they discussed. The overall
classification is based on the majority classification of the
probing interview questions. Our results show that our
interview subjects are primarily NDM-oriented. This

Table 5
Interpretations of interview questions with respect to decision making
Component 1 RDM 2 NDM

Decision goal (1.1) Optimizing: Cues are right or wrong,

quantifiable

Decision method (1.2) Consequential choice: Options are considered

Decision environment (1.3) Not concerned with computation overhead:
Time pressure is not a factor in decision making.
External goals do not impact decision making.

Cues are quantifiable

Decision knowledge (1.4) Cognizant of all possible courses of action:
Specific experience based knowledge, explicit

search of knowledge

(2.1) Satisficing: Cues are better or worse, not quantifiable

(2.2) Singular evaluation: Options are not considered

(2.3) Dynamic conditions: External goals impact decision making. Time
pressure impacts decision making

(2.4) Real-time reactions: Time pressure is an issue. Cues are from some
trigger

(2.5) 1ll-defined tasks & goals: Externals impact a decision

(2.6) Situation assessment: Cues are unquantifiable

(2.7) Tacit based knowledge: Accumulation of knowledge
(2.8) Experience-based knowledge: Accumulation of experience

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 645

Table 6
Classifications of answers to interview questions, per interview
Interview ID " 23 4 5 6 778 9 10 11" 120 13 14 15 16 17 18 19 20 21 22 23 24 25
Decision RDM X X 7 X X X ? ? X ?

NDM X X X X X X X X X X X X X X X
Cues RDM X X X X X X X X

NDM X X X X X X X X X X X X X X X X X
Knowledge RDM X X X X X X X X X

NDM X X X X X X X X X X X X X X X X
Options RDM X X X X X X X X X X X X X X

NDM X X X X X X X X X X X
Experience RDM X X X X X X X X X

NDM X X X X X X X X X X X X X X X X
Time pressure RDM X X X X X N/A X X X N/A X X X X X

NDM X X X X X X X X X X
External goals RDM N/A X N/A X X X X N/A X

NDM X X X X X X X X X X X X X X X X

" indicates Mentor perspective.

becomes apparent by examining the total number of cate-
gorizations in an RDM column (65) in Table 6 versus the
total number of categorizations in an NDM column (101)
in Table 6. When examining Mentor perspectives, we have
2 Mentor perspectives that were categorized as RDM or
NDM and 6 categorized as NDM. When examining Devel-
oper perspectives that were categorized as RDM or NDM
we have 4 categorized as RDM, 9 categorized as NDM and
4 that were not clear enough to categorize. We used the
overall Decision question to report these numbers.

For Cues, Experience, Knowledge and External Goals,
the interviewees’ discussions of each was more aligned with
the NDM interpretations (as provided in Table 6) than the
RDM interpretations. For Alternatives the interview sub-
jects’ discussions were more aligned with the RDM inter-
pretations (as provided in Table 5). For Time Pressure
the interview subjects’ discussions were almost evenly split
between NDM and RDM. We list “N/A” where we did not
have time to ask the question during the interview.

Two points are important to conclude from these
results. First, we are not able to identify any pattern of
decision making among interviews or between interview
perspectives, solely from this categorization. Despite this,
these results identify the foundations of decision making
for the interview subjects’ responses, and the application
of our interpretations of NDM and RDM to the responses.
This is particularly important as applying the interpreta-
tions in Table 5 to each case study was how we began
our explanation building [66] for our decision making the-
ory. The final step was to examine the context of each inter-
view to determine the pattern that is not visible from these
categorizations.

4.4. Case study summaries

We built case study summaries and compared them to
each other to build an explanation of design decision

making. We provide two case study summaries in Figs.
1, and 2 as examples of the 25 case studies we analyzed.
We selected Developer NDM and Developer RDM to
describe. Each case study shows evidence of three results
that make up the three major components of the decision
model we present as our final results. The first result is
that software designers perform problem structuring
when making decisions about software design. This
reconfirms results found in [24]. The second result is that
software designers incorporate information from their
environment and their personal knowledge and experi-
ence when performing problem structuring. The third
result is that a software designer’s approach to decision
making changes with respect to the structure of the prob-
lem about which they make design decisions. This last
result emerges by comparing approaches to decision
making across interviews, not only from looking at one
interview.

Our description of the figures used for the case study
summaries is as follows. We show problem structuring as
a circle in our case studies. We use a circle because the
structuring of one problem feeds right into the structur-
ing of another problem [58]. Starting at the twelve
o’clock position, marked with a dashed line, we move
clockwise to the right, continuously structuring the prob-
lem as information is incorporated. We use a dashed line
because the boundary between an ISP and a WSP is
blurry [58]. The information used to structure the design
problem is shown with quotes from each transcript, rep-
resentative of the overall answer to a probing question
from the CDM. The placement of this information with
respect to the circle is arbitrary, but we have kept it con-
sistent in our figures for readability. We highlight aspects
of the interview, with respect to decision making, inside
the structuring circle. Lastly, we provide an overview
of the design change discussed by the interview subject,
along the top of the figure.

646

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

DESIGN DECISION DESCRIPTION:
Java dynamically creating HTML pages was refactored
to output XML that is transformed to HTML using XSLT.

TIME PRESSURE: CUES: “[The design] just became very awkward

“Ultimately we weren't really pressured by time.” and I thought it wasn't very good ... the code
itself, the Java that was outputting the HTML

EXTERNAL GOALS: | was very verbose and difficult to navigate. ... I

“It wasn't a case of ... ‘resume based
development’. ... It was ... a case of
experimenting with something I thought
was a better design The company

... needed to have a customizable look
and feel for their website.”

as definitely hearing some of the Ul designers
K frustrations with the fact that the Ul
£ was not changing rapidly enough.”

KNOWLEDGE:

“I'd used XML and ... played around
44 with XSLT a little bit but never on a

" ¥ production system. I went out and
bought a book, the first book on XSLT, ... and I
just started devouring that book and started
trying it out, seeing what worked. I bought
the book to implement this design idea.”

ALTERNATIVES: x
“You write off a lot of other options because
of their coupling to different vendors, or their
different approaches that you found to be
suboptimal. ... I thought a little bit about
other design approa[ches but, mostly decided
pretty quickly that [the i
XML, XSLT approach] it e

K Pl It was generally around the problem of refactoring, so I thought that,

our code is too verbose and, I thought we were using the wrong solution

for the problem. So yes, they were reminders of that, that’s pretty generic.”

Fig. 1. Developer NDM case study summary.

DESIGN DECISION DESCRIPTION:
Refactored most of the code of a web application from using largely JSPs
to velocity templates, to follow the velocity template design paradigm.

TIME PRESSURE: . .
“There was some time pressure, not so much for CUES: “Debugging and code tracing and then
the decision but just that something got done.” .. a philosophical [issuel, separate the
| presentation from the design so that we can
K change the presentation whenever we
want and it's easier to read the code.”

EXTERNAL GOALS:
“We wanted to look at the code and

determine whether or not the code 7 417 | iV

actually looked ok. To tell you the truth, D : ersP® ..

a lot of _the code we refactored ended -~ Dﬂ"zl.(:zﬂkﬂ"‘degﬁel‘cﬁ' KNOWLEDGE:

up]lo:k.u‘;g Ok.tl!).ut the other half we .‘\Cnec-\j‘\c et yes |“There was a paper we found that was
... lost interest.

about why use [velocity templates]
instead of [other approaches] and

¥ that’s what we based [the decision] on.
... Alittle bit was based on core J2EE patterns
books. Those are some sources we used along
with the velocity [template] manual.”

ol s
) tj\\loopﬂonh-
W

ALTERNATIVES: ad
“There were sort of limited options, we didn’t
even need to do it at all right, like we could
have just tried living with the system the way
it was. ... What was more important was that
we picked one thing

and stuck with it EXPERIENCE: “I've worked on projects before with similar types of
instead of each person problems when I was getting started with Java based web applications... .
doing their own thing.” This was before velocity was out and we made our own template. ... When

we had the same problem here that's why it originally occurred to me.”

Fig. 2. Developer RDM case study summary.

4.4.1. Developer NDM, ID #3

Subject #3 was classified as taking a primarily naturalis-
tic approach to design decisions, as shown in Table 6. We
present this case in more detail here.

We begin with a quote from Interview Subject #3 to
show support for problem structuring.

“I'wasn’t too happy with the design. I'd been talking to some

friends and reading some articles about XSLT, and at that
point it seemed like it had become mature enough to use. 1
had played with it earlier and it wasn’t that mature but
now it was mature, so I sold it to the managers, the idea
of moving to this approach. I explained various business rea-
sons why it would be important to do. Then I. . .built the first
skeleton version. . ., a login page I changed to use XSLT.
That was a nice cue that it worked. ..” ID #3 Developer

Here the idea of problem structuring is not immediately
clear, but the last two lines of this quote are important.
Subject #3 had a negative feeling about the current state
of a design (nb, did not say the current design was wrong)
and had an idea about a design change. Without knowing
if the design change would be successful, subject #3 proto-
typed a small version of the proposed design change and
used that as a guide to the rest of the design change. This
fits with the explanation of an ISP given that, “neither
the guiding organization nor the attributes evoked from
memory need at any time during the process provide a
complete procedure nor complete information for design-
ing. As a matter of fact, the entire procedure could conceiv-
ably be organized as a system of productions in which the
elements already evoked from memory and the aspects of

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 647

design already arrived at up to a given point would serve as
the stimuli to evoke the next set of elements” [58]. Inter-
view Subject #3 used the initial prototype as a stimulus
to the rest of the design change and thus worked from an
ISP to a WSP.

Again, problem structuring was accomplished by incor-
porating information from a designer’s environment and
by using knowledge and experience. We show highlights
of the responses from subject #3 in Fig. 1 and incorporate
additional quotes, where beneficial, as we describe each
probe.

Cues. Indicators that a design change needed to occur
were continuously mentioned by subject #3. Phrases such
as “feeling the pain” and “awkward” and “frustrated”
were common, all of which are difficult to quantify as
“wrong”’, yet are clear indicators that the design is not
right. These indicators came from the development envi-
ronment and from Interview Subject #3. The quote in
Fig. 1 clearly shows this (Table 5, #2.1).

Knowledge. The knowledge to implement the change
came from an explicit search for a specific solution (Table
5, #1.4). This clear-cut approach to problem solving is very
clearly represented in Fig. 1.

Experience. The experience used was generic, as stated
verbatim, by subject #3 and shown in Fig. 1 (Table 5,
#2.8).

Alternatives. Subject #3 did not consider options in solv-
ing the problem, as shown in Fig. 1, but had definitive rea-
sons why the alternative chosen, was chosen (Table 5,
#2.2).

External goals. The reference to “‘selling” the design
change to managers is very suggestive of external goals that
had to be addressed. Similarly a desire to experiment with a
better idea, as shown in Fig. 1 impacted the design change
(Table 5, #2.5).

Time pressure. Time pressure was not an issue in this
design change and this is clearly represented in Fig. 1
(Table 5, #1.3).

We find subject #3 used a primarily naturalistic
approach to a semi-structured design decision, but used
facets of rational decision making when searching for a
solution and acknowledging time pressure.

4.4.2. Developer RDM, ID #17

Subject #17 was classified as taking a primarily rational
approach to design decisions, as shown in Table 6. We
present this case in more detail here.

We begin with a quote from subject #17 to show sup-
port for problem structuring.

“It seems to me whenever you do refactoring, the
hardest part is coming up with the plan, not the actual
refactoring part, because once you have the plan, it’s
usually just the same thing over and over, like I'm
going to be doing a find and replace or I'm going to
look for code that looks like this and replace it with
this.”” ID #17 Developer

Subject #17 addresses, almost explicitly, the fundamen-
tal idea behind problem structuring. “There is merit to the
claim that much problem solving effort is directed at struc-
turing problems, and only a fraction of it at solving prob-
lems once they are structured” [58]. The quote by subject
#17 states making a plan is harder than executing it, which
we find quite similar to the idea that problem solving is
more about structuring the problem rather than solving it
once it is structured [58].

Again, problem structuring was accomplished by incor-
porating information from a designer’s environment and
by using knowledge and experience. We show highlights
of the responses from subject #17 in Fig. 2 and incorporate
additional quotes, where beneficial, as we describe each
probe.

Cues. Subject #17 discusses subjective cues such as find-
ing a web application difficult to test and debug, but the
larger indicator that a design change needed to occur was
not following a design heuristic. Separating the presenta-
tion layer from the business layer is a well-published con-
cept in web applications [22]. Subject #17 examined code
and found that it did not adhere to a popular heuristic
(Table 5, #1.1).

Knowledge. The quote found in Fig. 2 is clear evidence
of the explicit use of published references for solving the
design problem (Table 5, #1.4).

Experience. Subject #17 heavily relied on specific past
experiences to solve this problem (Table 5, #1.4). This is
clear in the quote in Fig. 2.

Alternatives. Considering alternatives was done to a
small degree, by subject #17. Initially we understood that
no alternatives were considered, but the use of taglibs to
solve the problem was a consideration, and pre-existing
taglibs in the web application under development offered
a measure of comparison to the chosen velocity template
alternative (Table 5, #1.2).

External goals. Subject #17 identified a desire to keep
the code clean, although from the quote in Fig. 2, we see
this was not entirely executed (Table. 4.4, #2.5).

Time pressure. The design change was part of a pro-
ject over the summer, but it did not have any serious
time constraints, as per the quote in Fig. 2 (Table 5,
#1.3).

We find subject #17 used a primarily rational approach
to a well-structured design decision, and used extremely
minimal facets of naturalistic decision making when identi-
fying a design change needed to occur.

4.5. Cross case comparison

After completing the above case study summaries for
each of the 25 interviews, we performed cross case compar-
ison. We will use the above two cases as an example of the
discussions we had to interpret our data.

Subject #3 had a relatively abstract design problem, in
comparison to Interview subject #17. Subject #3 felt the

648 C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

code he was working with was awkward or could be better,
and heard other developers complaining about workflow
issues. In contrast, subject #17 had an issue with separating
presentation code from business code, a common heuristic
in the design of web applications [22]. Here we see the cues
to the design problem were fuzzier (ill-structured) for sub-
ject #3 than they were for subject #17. The problem defini-
tion was more precise for subject #17 than it was for
Subject #3. While both interview subjects did an active
search for knowledge and did not consider options to
any large extent their use of past experiences was quite dif-
ferent. Subject #3 could not recall a specific past experience
that helped in the discussed design problem while subject
#17 used a specific past experience as a large indicator of
the resolution to his design problem.

Our arguments continued in this fashion using our
quantitative data, our interpretations of Table 5, and con-
tinuous reference to the transcripts. From this we gener-
ated enough of an understanding of each case to develop
a decision model.

4.5.1. Problem structuring

Before describing the decision model, we take one last
look at problem structuring, because it is an integral com-
ponent of the decision model. In the above case studies, we
describe the structure of the design change that each inter-
view subject discussed. We cannot quantitatively define the
structure of a problem, by the very definition of problem
structuring. However, we can examine the structure of each
problem relative to each other. Because the approach to
decision making varied with respect to the structure of
the problem as perceived by the interview subject, we show
the structure of each design change discussed by the inter-
view subjects, relative to each other. This is shown in

Fig. 3. Two interview subjects (ID #18 and ID #25) dis-
cussed two distinct design changes during the interview,
and both of these are shown in Fig. 3.

Again we show problem structuring as a circle, and a
problem is more structured as it moves clockwise around
the circle, beginning at the 12 o’clock position. We
placed each design change on the circle according to
the structure of the design problem discussed, and we
found four divisions within our interviews, increasing in
structure as we move clockwise around the circle. The
first quadrant (upper right) primarily discussed design
as idea generation. The second quadrant (lower right)
primarily discussed large architectural changes to existing
systems, based on developer instinct. The third quadrant
(lower left) primarily discussed the use of design heuris-
tics such as remove duplication, to recognize changes
to an existing system. The fourth quadrant (upper left)
discussed small code changes often as a result of cus-
tomer need. We emphasize the blurry boundary between
a WSP and an ISP and between cases within each
quadrant.

4.6. Decision model

Given all of our results, we make three conclusions and
present our decision model.

Conclusion #1. The more structured the design problem
was, the more the interview subject primarily discussed
rational approaches to solve the problem, and the more
naturalistic approaches were facilitators to this discussion.
In casual speak, the interview subject might have said I
could have tried this option, I could have tried that option,
but I did not because my approach was right and it was
right because of these constraints.”

0 PROBLEM STRUCTURING
Dy A e ! i
18. . Clho, % ooV VO e
: e, 1001 Rt T LA
D,ﬁ; 9, (\Pf "Sfo,‘,? O;éé'ere U,;\/‘?iho - a0 xee’q o -_,'BL »"\\'\'\c‘ to"'ﬁ“b
). 0 e, . ¥ W i
/53 ph’-\'re,.fj’o“ﬁkor "flzz.)a”" %J/ Q’SJO) 1ges | e A -\\}t\c’a“ R T oo o o
#2 e e, I SN ez : eS\e 1€
27. 0, s b/ to, e, e A D A A
n e, D:{e"’?s ,}mﬁ“d ;”c‘nbni:{ C‘e:S' |\0 # w0 # q.‘)cﬁ‘o’ ““o\oe C-z&‘w\\\}lﬁ." o
#13. . 57%1_ ffgn U/z U Or,gﬁaw i ﬁro o6 cg\%“\p“ W ot
Csy. ¢ o A\ 0, g !
4, 7 G 7 R) T
D # A Uy fo%“’ 003,‘ ”*e‘o,ho""fe ” 7 W o ;\Q\T\u\ o
iy, Make Cng o, A
#lg - Cleg, sy, Sep, “Se. ARt
"B Cryp, S e
Useq i g, St D
p;"::/vc Larls,lbgi;o%&f #y Dg,
b ey, e, Opn (c)
!e"]?. bt”s;‘ ‘:_?n fo o #y J’a’ac; p.!be’:lr
), "D efislic» 0{'/\/0
e ¥ or
Dy, Crg) Oy, I e g,
J‘.Rt dlpa 10'7?(){‘ n”& /\75,
" ' I
N oy, f‘sg,,, . ‘f@ﬂ%wva 5 L1
A0 D it Opey. Sin, Wy Seq
. Lc(\%ﬁ*{)og\o o 25, o oy, A s "}usf) .5‘(?.;"'? (‘O]_S
v 5 (&Y € o
oo il -\\\\)\ 50“? At (] K [Sign A 6‘:‘(4‘9 leg & CCap,
%\1'?& S e \S‘CD@ o G0 y&_k 25, Pmg, 'Sty B iy, -
T o - ¢ Wi . Sty , K
W o et :,’ \g”ﬁ pe®® Q\c?“ e 6003(’“9/&5.,{ f’ixfgrprfqi,% follou, %
“\Q '\0%‘ @1‘-5\“_@ oo]‘O‘?{J‘.useﬁ‘l.v-ﬁlné’&’ arlsof {G/”fo Uy,
\8] \D%‘J. _\“&\ca d’;’fic(% Mo""e,- Stp 4.\3,_,,?0..(9,7’ Stz
Y

Fig. 3. Structure of design problems from interview subjects.

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 649

Conclusion #2 (the inverse of Conclusion #1). The less
structured the design problem was, the more the interview
subject primarily discussed naturalistic approaches to solv-
ing the design problem, and the more that rational
approaches were facilitators to this discussion. In casual
speak, the interview subject might have said, “I thought
about this option, I thought about that option, but I only
actually tried my approach because it seemed fitting and
worked out okay.”

To be clear, we never completely eliminated the use of
RDM or NDM in any case study. There was always a com-
bination of both. For example Interview Subject #17 fol-
lowed RDM with respect to Cues, Knowledge, and
Experience, but followed NDM with respect to Alterna-
tives. Interview Subject #3 followed RDM with respect
to Knowledge and Time but followed NDM with respect
to Cues, Experience and Alternatives. From this we make
a third conclusion.

Conclusion #3. When design decisions are made, either
NDM or RDM is the dominant decision making approach,
but aspects of the other decision making approach are used
to implement the decision, depending upon the structure of
the decision.

We used all three conclusions as a working theory while
we analyzed all of our cases. We built on these conclusions
to produce the following decision model.

The Design Decision Model that emerged from our
results is shown in Fig. 4 as we describe three compo-
nents of the model: Structuring Flow, Structuring Mech-
anisms and Structuring Perspectives. Decisions are made
along the Structuring Flow as a result of incoming Struc-
turing Mechanisms and wusing underlying Structural
Perspectives.

4.6.1. Structuring flow

A consistent aspect that emerged from the interviews was
the Structuring Flow. We define a Structuring Flow as the
process of structuring an ill-structured software design prob-
lem to a well-structured software design problem. This result
confirms existing design literature [24]. When software devel-
opers are faced with a design change they move from an idea
of that change to a specific implementation of that change.
Thus the circle in Fig. 4 is called the Structuring Flow and
moves in a clockwise direction, starting from the “12” posi-
tion. The product of one structuring is used in subsequent
Structuring Flows, so the circle is continually exercised.

4.6.2. Structuring mechanisms

Another consistent aspect that emerged from the inter-
views is the use of numerous Structuring Mechanisms. We
define a Structuring Mechanism as the information used by
a software design decision maker to structure a problem
and/or make a software design decision. All arrows pointing
to the Structuring Flow in Fig. 4 are representative of Struc-
turing Mechanisms. The bottom of Fig. 4 lists Structuring
Mechanisms that can be used at any point along the Struc-
turing Flow. The Structuring Mechanisms emerged from
our data via our probing questions. Examples of Structuring
Mechanisms are a software developer’s personal experience,
knowledge, ideas and opinions, their preferred evaluation
criteria [24], the people with whom they interact, and existing
models and work processes. All of these impact the way in
which a design decision is structured.

4.6.3. Structuring perspectives
The last consistent aspect that emerged from the data
is the perspective an interview subject takes in making a

N

Structuring »
Mechanisms*

&
Rational Backing

& prototyping

i
Val

DESIGN DECISION MAKING

\ well-structured

Structuringl Perspective

ill-structured ;

Naturalistic Execution
via singular evaluation

Rational Execution
via consequential choice

Naturalistic Backing
via bounded optimalilty
mental simulation

& Structuring
. Mechanisms*

via satisficing &

N |

“Structuring Flow™
*personal experience, opinion, ideas, knowledge, group interactions, external infulences,
existing model of the problem, existing work processes, preferred evaluation criteria

Fig. 4. Design decision model.

650 C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

decision along the Structuring Flow. We define the Struc-
turing Perspective as the underlying decision theory, one
of rational or naturalistic decision making, that an inter-
view subject uses in making a decision. In Fig. 4, the Struc-
turing Perspectives are listed inside the circle created by the
Structuring Flow. The definitions of RDM and NDM, are
used to determine the Structuring Perspective. It is here
that our results show a merger of two seemingly opposing
decision approaches.

Our interviews show that the more ill-structured the
design problem (e.g. requirements) the more the decision
maker uses naturalistic approaches, via satisficing, but
the more the decision maker uses rational approaches via
consequential choice. The decision is naturalistic in that
it uses mental modeling [1,4,24] and mental simulation
[37,23] to subjectively evaluate advantages and disadvan-
tages to a decision problem that has no right or optimal
answer. The decision is rational in that it uses consequen-
tial choice [41,60] to compare decision alternatives.

Our interviews also show that the more well-structured
the design problem (e.g. source code) the more the decision
maker uses rational approaches via boundedly optimal
solutions, but the more the decision maker uses naturalistic
approaches via singular evaluation. The decision is rational
in that a right or (bounded) optimal [60] decision is easily
found because the problem is extremely focused (e.g. sepa-
rating business logic from presentation code). The decision
is naturalistic in that singular evaluation is used instead of
consequential choice because the “right” alternative is
found.

In other words, a decision in an ISP is rational in its exe-
cution with a foundation in naturalistic decision making
and a decision in a WSP is naturalistic in its execution with
a foundation in rational decision making. Our results show
that software design decisions are made by integrating
aspects of RDM and NDM, depending on how structured
the design problem is perceived to be, by the decision
maker. This perception is dependent upon his/her ability
to access Structuring Mechanisms.

4.6.4. Summary

In the Design Decision Model above, a decision occurs
anywhere along the Structuring Flow and the decision
maker uses the corresponding Structuring Perspective to
a greater or lesser extent, depending on the structure of
the problem. The Structuring Perspective incorporates
aspects of RDM and NDM and the extent to which aspects
of these decision making approaches are incorporated
depends upon the number and variety of Structuring
Mechanisms a decision maker has access to, and utilizes.
Lastly, the product of any structuring becomes the basis
for future structuring. In Fig. 4 the top center of the circle
created by the Structuring Flow is labeled with both “ill-
structured” and “well structured” marking the extreme
beginning and ending points, respectively, of any structur-
ing. Decisions made become part of the structure for future
decisions.

5. Validity

We discuss the construct, internal and external validity
as well as a threat to the validity of our study.

5.1. Construct validity

The use of the CDM (Critical Decision Method) to
examine decision making is a well-used tool [34,37]. The
assumption, however, that a design change is a critical inci-
dent may be argued. We believe this to be a minor assump-
tion because the purpose of the CDM is to examine
cognitive skills used in decision making about a critical inci-
dent, not just the critical incident itself. Effecting design
change is most certainly a cognitive skill requiring decision
making [27,28,54].

5.2. Internal validity

We are able to internally validate our results in two
ways. We validate our interpretations of the answers to
the probing questions using our Specific Relational Cod-
ing. We validate our assigning of the decision making
approach using our categorizations of the probing ques-
tions as NDM or RDM, as shown in Table 5.

5.2.1. Interpreting the probing questions

We compared our SRC to the summaries of each ques-
tion, which we then coded. We summarized the responses
of each question for each interview, in our own words, then
coded that summary. We searched the SRC of each inter-
view subject for matching codes, to verify our summary
of the question. A match means that we found the codes
from the coded summary in the codes generated by SRC,
for each of the 7 questions asked. All of our case study
comparisons showed at least 5 out of 7 matches between
the coded summaries and the SRC of each interview. Typ-
ically when there was a mismatch, it was because the SRC
found codes that did exist while the coded question sum-
mary showed what was not in the response to the interview
question. For example, if time pressure was not an issue in
a decision, the SRC contained other codes representative of
what was an issue in a decision, whereas the coded sum-
mary contained the code !<<Time>>, to show that time
was not an issue.

5.2.2. Assigning decision approaches

We compared the structure of the decision discussed to
the decision making approach assigned to the decision in
Table 6.

We found two interview subjects who were categorized
as using NDM in their decision making, despite having a
WSP. We found one interview subject who was categorized
as using RDM in their decision making, despite having an
ISP. Subject #19 was in a quality assurance role when the
design change that was discussed occurred. We believe this
gives a different perspective on a design problem and is

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 651

perhaps a factor in how a problem is structured. Subject
#21 had the least experience of our interview subjects which
is, as we have stated, a factor in how a problem is struc-
tured. We did not have enough time during the interview
to ask subject #6 two of the 6 probing questions, so our cat-
egorization of this subject is weakened by a lack of informa-
tion. While these are not the exact reasons for the
inconsistency between the structure of the problem and
the approach to decision making, they draw attention to
an important issue: the background of the person designing
the software has the potential to heavily impact the
approach to design. This is beyond the scope of this work.

5.3. External validity

Given that we conducted case studies, not experiments,
our external validity relies on generalization to theory (ana-
lytical generalization), and not statistical generalization.
This approach to theoretical development is well-docu-
mented and employed in many social science disciplines
[66]. All of our case studies align with our decision making
model. For example, subject #3 found code ‘“awkward”
and “verbose” (qualitative cues) so he read up on XSLT
as a solution to his problem (search for knowledge), “sold
the idea” to business managers (external goals), and then
prototyped his idea and fully implemented it once the pro-
totype worked (singular evaluation of alternatives, satisfic-
ing). He felt little time pressure and was not reminded of
specific past experiences.

5.4. Threats to validity

We address four topics that can be used as critiques of
the validity of our study. The first is that most of the par-
ticipants were familiar with, used or discussed agile soft-
ware methods. It can be argued that the principles
defined in the agile manifesto [2] align with the definition
of naturalistic decision making [37]. As a result, our study
may include a larger balance towards NDM versus RDM.
To mitigate this, future work (already underway at the time
of writing) involves observations of developers in non-agile
environments to explore the NDM:RDM balance in these
design environments.

The second issue is that our results mix Mentor and
Developer perspectives, potentially impacting our results.
We see this as potential for even further insight into design
decision making. Part of our evaluation involved compar-
ing Mentor and Developer perspectives to determine the
similarities and differences between the two perspectives.
While we saw some differences with respect to the use of
knowledge (Mentor perspectives discussed active search
more than Developer perspectives), there was similarity
between the two perspectives.

The third issue is that we do not report the types of sys-
tems that were discussed in the design decision (expect to
explain the context of the system). The primary reason
for this is that the type of system was not the topic of anal-

ysis, individual design changes were. Because we do not
have extreme variation in the types of systems discussed
(e.g. personal projects and critical systems), because most
of the systems were small to mid-size projects (because
many were agile projects), and because we interviews
designers about a design change not an end-to-end system,
we see the issue of the type of system discussed to be a
small threat to the validity of our study.

The last issue is that our results are subject to the weak-
nesses of retrospective interviews. Interview subjects
reported their results as they remembered the design
change and thus our results are subject to their recollection.
In order to validate these results we will compare these
results to the results of our observations in agile and
non-agile environments to determine if what developers
say they do matches what they actually do.

6. Conclusions

We presented results from a multi-case study of 25 soft-
ware designers interviewed about design decisions they
have made. Our results are quantitative and qualitative,
occurring on numerous levels of abstraction, allowing us
for multiple forms of internal validation. From these
results we presented a model of software design decision
making and make four important conclusions.

Conclusion #1 is that software design is primarily about
problem structuring. Conclusion #2 is that the more struc-
tured the design problem was, the more the interview sub-
ject primarily discussed rational approaches to solve the
problem, and the more that naturalistic approaches were
facilitators to this discussion. Conclusion #3 is that the less
structured the design problem was, the more the interview
subject primarily discussed naturalistic approaches to solv-
ing the design problem, and the more that rational
approaches were facilitators to this discussion. Conclusion
#4 is that decision makers use either NDM or RDM as the
dominant decision making approach but use aspects of the
other decision making approach to implement their deci-
sion, depending upon the structure of the decision.

Our evidence shows that measures of design are most
often qualitative, subjective and sometimes even based on
gut feeling, which challenges the pursuit of quantitative
and objective measures of design. Our evidence shows that
software designers often use satisficing and singular evalu-
ation in trying different approaches to design, which moti-
vates the use of iterative design, which gives a designer
more opportunity to approach a design in different ways.
Lastly, our evidence shows that published knowledge in
the form of textbooks and journals is not always used,
which raises questions about the most effective methods
to acquire design knowledge. Our empirical study impacts
software engineering design metrics, processes and training
by highlighting designers’ inherent work processes in these
areas.

Future work is directed at validating our decision model
via observations at software companies (already underway

652 C. Zannier et al. | Information and Software Technology 49 (2007) 637-653

at the time of writing). Interviews are, by definition retro-
spective whereas observations are, by definition, current.

Acknowledgements

We thank all of our interview participants who took
time from their work days to participate in our interviews.

References

[1] B. Adelson et al., The role of domain experience in soft design, IEEE
Transactions on Software Engineering 11 (11) (1985).

[2] Agile Manifesto. Available from www.agilemanifesto.org
(08/17/2005).

[3] Agile Conference. Available from www.xpuniverse.com (02/27/2006).

[4] S. Ahmed et al., Understanding differences between how novice &
experienced designers approach design tasks, Research Engineering
and Design 14 (2003) 1-11.

[5]J. Bach, The Challenge of Good Enough Software, American
Programmer, October, 1995.

[7] L.R. Beach, Image theory: Personal & organizational decisions, in:
G.A. Klein, J. Orasanu, R. Calderwood, C.E. Zsambok (Eds.),
Decision Making in Action: Models and Methods, Ablex Publishing
Corporation, Norwood, NJ, 1993.

[8] B. Brehmer, G.R.B. Joyce, Human Judgment: The SJT View, Elsevier
Science Ltd, Amsterdam, 1988.

[9] L.C. Briand, S. Morasca, V.R. Vasili, Property-based software
engineering measurement, IEEE Transactions on Software Engineer-
ing (1996) 22.

[10] L.C. Briand, Ch. Bunse, J.W. Daly, A controlled experiment for
evaluating quality guidelines on the maintainability of object-
oriented designs, IEEE Transactions on Software Engineering 27
(2001) 6.

[11] B. Bruegge et al., Object-Oriented Software Engineering, Prentice
Hall, New Jersey, 2004.

[12] C. Clegg, Psychology and information technology: The study of
cognition in organizations, British Journal of Psychology 85 (1994)
449-4717.

[13]J. Conklin, M. Begeman, gIBIS: A hypertext tool for exploratory
policy discussion, ACM Transactions on Office Information Systems
6 (4) (1988) 303-331.

[14] R.W. Cooksey, Judgment Analysis: Theory, Methods and Applica-
tions, Academic Press, California, USA, 1995.

[15] B. Curtis et al., A field study of the soft. des. process for large
systems, Communications of the ACM 31 (11) (1988).

[16] T. Demarco et al., Peopleware, second ed., Dorset House Pub. Co.,
New York, 1999.

[171 R.G. Dromey, A Model for Software Product Quality, IEEE
Transactions on Software Engineering 21 (2) (1995).

[18] N. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous & Practical
Approach, second ed., PWS Publishing Company; Cambridge Uni-
versity Press, 1996.

[19] J.C. Flanagan, The critical incident technique, Psychological Bulletin
51 (4) (1954).

[20] B. Flyvberg, Making Social Science Matter: Why Social Inquiry Fails
and How it Can Succeed Again, Cambridge University Press,
Cambridge, 2001.

[21] M. Fowler, Avoiding repetition, IEEE Software (2001).

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object — Oriented Software, Addison-Wesley,
Upper Saddle River, NJ, 1995.

[23] S. Gasson, Framing design: A social process view of information
system development, in: Proceedings of the International
Conference on Information Systems, Helsinki, Finland, 1998,
pp. 224-236.

[24] R. Guindon, Designing the design process, HCI 5 (1990) 305-344.

[25] R. Guindon, Knowledge exploited by experts during software sys.
design, International Journal of Man-Machine Studies 33 (1990)
279-304.

[26] J. Herbsleb, et al., Formulation and preliminary test of an empirical
theory of coordination in soft. eng., in: Eur. Soft. Eng. Conf./ACM
SIGSOFT Symp. Found. Soft. Eng; 2003.

[27]J. Highsmith, Agile Project Management, Addison Wesley, New
Jersey, USA, 2004.

[28] J. Highsmith, Agile Software Development Ecosystems, Addison
Wesley, New Jersey, USA, 2003.

[29] D. Kahneman, A. Tversky, Prospect theory: An analysis of decision
under risk, Econometrica 47 (2) (1979) 263-292.

[30] S. Kaner, with Lind L, Toldi C, Fisk S, Berger D; Facilitator’s Guide
to Participatory Decision Making; Sam Kaner, BC; 1996.

[31] L. Karsenty, An empirical evaluation of design rational documents,
in: Proceedings of SIGCHI Conference on Human Factors in
Computing Systems, Vancouver, BC, 1996, pp. 150-156.

[32]J. Kim, F.J. Lerch, Towards a model of cognitive process in logical
design: comparing object-oriented and traditional functional decom-
position software methodologies, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Monterey,
CA, 1992, pp. 489-498.

[33] B. Kitchenham, S. Lawrence Pfleeger, N. Fenton, Towards a
framework for software measurement validation, IEEE Transactions
on Software Engineering 21 (1995) 12.

[34] G. Klein et al., Critical decision method for eliciting knowledge,
IEEE Transactions on System, Man Cyber. 19 (1989) 3.

[35] M. Klein, Capturing design rationale in concurrent engineering
teams, IEEE Computer 26 (1) (1993) 47-93.

[36] G.A. Klein, J. Orasanu, R. Calderwood, C.E. Zsambok (Eds.),
Decision Making in Action: Models and Methods, Ablex Publishing
Corporation, Norwood, NJ, 1993.

[37] G. Klein, Sources of Power, MIT Press, Cambridge, MA, 1998.

[38] Krippendorff, Content Analysis, V5, Sage Publications, London,
1980.

[39]J. Lee, K.-Y. Li, What’s in design rationale? in: T.P. Moran, J.M.
Carroll (Eds.), Design Rationale: Concepts, Techniques, and Use,
Lawrence Erlbaum Associates, Mahwah, NJ, 1996.

[40] R. Lipshitz, Decision making as argument-driven action, in: Klein,
Orasanu, Calder-wood, Zsambok (Eds.), Decision Making in
Action, Ablex Publishing Corporation, New Jersey, 1993.

[41] Luce et al., Games & Decisions, Wiley, New York, 1958.

[42] A. MacLean, R.M. Young, V.M.E. Bellotti, T.P. Moran, Questions,
options, criteria: elements of design space analysis, in: T.P. Moran,
J.M. Carroll (Eds.), Design Rationale: Concepts, Techniques, and
Use, Lawrence Erlbaum Associates, Mahwah, NJ, 1996.

[43] A. Malhotra et al.,, Cognitive processes in design, International
Journal of Man—Machine Studies 12 (1980) 119-140.

[45] H. Montgomery, The search for a dominance structure in decision
making: Examining the evidence, in: G.A. Klein, J. Orasanu, R.
Calderwood, C.E. Zsambok (Eds.), Decision Making in Action:
Models and Methods, Ablex Publishing Corporation, Norwood, NJ,
1993.

[46] D.A. Norman, Things that Make us Smart: Defending Human
Attributes in the Age of the Machine, Addison-Wesley, New Jersey,
USA, 1993.

[47]1 G.M. Olson, J.S. Olson, M. Storrosten, M. Carter, J. Herbsleb, H.
Rueter, The structure of activity during design meetings, in: T.P.
Moran, J.M. Carroll (Eds.), Design Rationale: Concepts, Techniques,
and Use, Lawrence Erlbaum Associates, Mahwah, NJ, 1996.

[48] J. Orasanu et al., The reinvention of decision making, in: Klein et al.
(Eds.), Decision Making in Action, Ablex, New Jersey, USA, 1993.

[49] M.Q. Patton, Qualitative Research & Evaluation Methods, third ed.,
Sage Publications, California, USA, 2002.

[50] N. Pennington, R. Hastie, A theory of explanation-based decision
making, in: G.A. Klein, J. Orasanu, R. Calderwood, C.E. Zsambok
(Eds.), Decision Making in Action: Models and Methods, Ablex
Publishing Corporation, Norwood, NJ, 1993.

http://www.agilemanifesto.org
http://www.xpuniverse.com

C. Zannier et al. | Information and Software Technology 49 (2007) 637-653 653

[51] L.D. Phillips, A theory of requisite decision models, Acta Psycho-
logica 56 (1984) 29-48.

[52] M. Poppendieck, T. Poppendieck, Lean Software Development: An
Agile Toolkit, Addison Wesley, Upper Saddle River, NJ, 2003.

[53] H. Rittel, M. Webber, Dilemmas in a general theory of planning,
Policy Sciences 4 (1973) 155-169.

[54] S. Rugaber et al., Recognizing design decisions in programs, IEEE
Software (1990).

[55] S.B. Shum, Analyzing the usability of a design rationale notation, in:
T.P. Moran, J.M. Carroll (Eds.), Design Rationale: Concepts,
Techniques, and Use, Lawrence Erlbaum Associates, Mahwah, NJ,
1996.

[56]J. Siddal, Analytical Decision-Making in Engineering Design,
Prentice Hall Inc., Englewood Cliffs, NJ, 1972.

[57] H. Simon, A behavioural model of rational choice, Quarterly Journal
of Economics 69 (1) (1955) 99-118.

[58] H. Simon, The Structure of Ill Structured Problems, Al V4, 1973,
pp. 181-201.

[59] S. Sonnetag, Expertise in professional software design, Journal of
Applied Psychology 83 (5) (1998) 703-715.

[60] W.C. Stirling, Satisficing Games and Decision Making, with Appli-
cations to Engineering and Computer Science, Cambridge University
Press, Cambridge, UK, 2003.

[61] Taylorism. Available from http://www.quality.org/TQM-MSI/
taylor.html.

[62] A. Tversky, Elimination by aspects: A theory of choice, Psychological
Review 79 (4) (1972) 281-299.

[63] A. Tversky, D. Kahneman, Judgment under uncertainty — heuristics
and biases, in: D. Kahneman, P. Slovic, A. Tversky (Eds.), Judgment
Under Uncertainty — Heuristics and Biases, Cambridge University
Press, Cambridge, UK, 1982.

[64] K. Vicente, The Human Factor, Alfred A Knopf, Canada, 2003.

[65] D.B. Walz, et al., Inside a Software Design Team; Communication of
the ACM, vol. 36, No. 10, October 1993.

[66] R.K. Yin, Case Study Research: Design & Methods, third ed., Sage
Publications, California, USA, 2003.

[67] C. Zannier, et al., A qualitative empirical evaluation of design
decisions, in: Workshop on Human & Social Factors of Soft. Eng.,
ACM Press, 2005.

[68] C. Zannier, pages.cpsc.ucalgary.ca/~zannierc/codes.html.

http://www.quality.org/TQM-MSI/taylor.html
http://www.quality.org/TQM-MSI/taylor.html

	A model of design decision making based on empirical results of interviews with software designers
	Introduction
	Literature review
	Problem solving
	Measuring software design
	Capturing (Design) cognition
	Explicit capture: Design rationale
	Implicit capture: Design studies

	Decision making
	Rational decision making
	Naturalistic decision making

	The study
	Data collection
	Data analysis

	Results
	Frequencies
	Emerging themes
	
	
	

	 " Answers " to questions
	Case study summaries
	Developer NDM, ID #3
	Developer RDM, ID #17

	Cross case comparison
	Problem structuring

	Decision model
	Structuring flow
	Structuring mechanisms
	Structuring perspectives
	Summary

	Validity
	Construct validity
	Internal validity
	Interpreting the probing questions
	Assigning decision approaches

	External validity
	Threats to validity

	Conclusions
	Acknowledgements
	References

