
WIT: A Framework for In-Container Testing of Web-

Portal Applications

Wenliang Xiong, Harpreet Bajwa & Frank Maurer
University of Calgary, Department of Computer Science

Calgary, Alberta, Canada T2N 1N4

+1 (403) 220-7140

{xiongw,bajwa,maurer}@cpsc.ucalgary.ca

Abstract: In this paper we describe a novel approach that allows for in-

container testing of web portal applications. Concretely, our approach helps in

locating and debugging (a) Deployment environment related problems, (b) Se-

curity: role based testing of resource access and (c) Problems arising from the

interaction between the container and the application code in the form of re-

quest and response objects and other application environment objects. Our ap-

proach allows developers to write automated in-container test cases for web

portal applications. Using Aspect technology, the test code is injected into

the application code allowing the tests to run in the same environment as

the portal application. WIT, our testing framework, provides the developers the

ability to control the portal server environment by setting up an initial environ-

ment state before the execution of the application code. After the application

code is executed, the environment state can be validated and cleaned up to pre-

vent any traces or side effects. A test failure is reported if the results of execut-

ing the original code are incorrect. In this paper, we present the overall testing

approach, design & implementation of WIT as well as a usage scenario.

1 Introduction

Container-based web technologies ease the burden on developers by providing under-

lying services such as persistence, security etc so that developers can concentrate on

implementing the business logic. By providing robust and fine-tuned services to the

application code the reliability, maintainability and performance of websites is im-

proved considerably. The container further provides added value by managing the life

cycle of the application code. While the advantages of container-based technologies

are obvious, a container acts as a black box from the application developer’s point of

view and is only accessible via the API. Thus, automated testing of container-based

application is challenging.

When an error occurs on the client side, it is difficult to predict the precise origin of

the error. One of the reasons of the error may come from the container interacting

incorrectly with the application code. Also, unpredictable changes in the container

environment are often caused when the application code is deployed in the container.

Although the application code runs correctly in the testing development container

environment, developers cannot be guaranteed success of the application in the pro-

duction environment.

Testing an application for such errors that surface only at deployment time requires

an approach for executing the test code inside the container environment and the abil-

ity to access and control the environment specific objects. We refer to this approach

henceforth as in-container testing (ICT). Existing tools for front-end GUI or back-end

business logic testing cannot test the deployment-related problems such as those men-

tioned above because the tests run outside of the container. A high-level report of the

problems provided by them cannot be used to narrow down the scope of problems.

The motivation for our work comes from one of our industry partners that are

building enterprise java based web portal applications [1]. The company reported 1)

unknown deployment related errors and 2) lack of an automated way to test access to

sensitive portal resources1. This paper addresses the problems discussed above by

proposing a novel approach for performing automated ICT using the WIT framework

for JSR [2] compliant portals.

The rest of the paper is organized as follows. Section 2 explains in detail the de-

ployment related problems needed to be addressed by ICT. A detailed explanation of

the architecture of web portal applications is provided in Section3. Section 4 provides

a description of the design of WIT. Then some example usage scenarios and details on

how tests can be implemented and run using WIT is provided in Section 5. Section 6

compares related work and approaches that currently exist for in-container testing of

web-applications. Finally, section 7 discusses the future work and concludes our pa-

per.

2 Problems Needed to Be Addressed by ICT

Unpredictable changes in the container environment are often caused when the appli-

cation code is deployed in the production environment. Testing an application for such

errors that surface only at deployment time requires an approach for executing the test

code inside the container environment. In the following section we briefly discuss

some of the problems encountered when a web-application is deployed in the produc-

tion environment.

a) Deployment related problems: Certain environment attributes are set within the

container at deployment time for e.g. descriptor files are read at deployment time and

the environment is configured accordingly. That might, for example, mean that certain

database resources are different in the test and the deployment environment or that

some security roles do not match. Another possible difference between the test and the

production container environment may be due to the fact that a different version of a

library file is being referenced by the application code. All these subtle differences

may introduce an error. For example, a portlet configured with the connection string to

database A in the testing environment, for some reason, is assigned a connection string

to database B when deployed to the production environment. Portlet code executing

1 A more comprehensive analysis of portal test practices and the results of our case study are

published concurrently in ICWE 2005 [16].

successfully in the test environment may fail because of the changed connection string.

Another example: The version of a specific jar library is different in the test and pro-

duction environment, e.g. a newer version is deployed in the test environment and

referred by the portlet code directly or indirectly. The above examples highlight that

the successful execution of the portlet code in test environment cannot guarantee its

success in the production environment.

b) Security: role based testing of resource access. Access to sensitive resources for e.g.

portlets [3] is controlled by assigning permissions to individual users or user groups

granting the appropriate access. Without automated testing tool support the adminis-

trator setting the permissions must log in as a user with a specific role and test manu-

ally each time the applications are deployed in the production environment to verify

whether the permissions have been correctly assigned.

c) Problems arising from the interaction between the container and the application

code in the form of request, response objects and other application environment ob-

jects. In container-based web application, data submitted by the browser is assembled

by the container as a request object. The data is then forwarded to the application code

through access to certain environment objects. After the execution of the application

code, results are sent back to the browser as a response object assembled by the con-

tainer. The request and response objects are primarily responsible for carrying the data

exchanged between the container and the application code. The application code can

use all accessible objects as part of its business logic. Changing the values of some

environment objects might create side effects on other parts of the application. Auto-

matically testing the application code that relies on these objects requires a mechanism

that allows developers to manipulate all these objects.

3 Portlet-based Web-Portal Application Architecture

Web Portals are an example of container-based web application providing a single

integrated point of access to information by aggregating multiple streams of dynamic

content rendered as portlet windows. Technically, a portlet is a piece of code that runs

within the portlet container [3] and provides content fragments to be embedded into

the portal pages.

Fig. 1. Portal Server Component-Interactions

A client request as shown in Fig. 1 for a portal page interacts with multiple interfaces

defined by the portal server components. The portal server completes the client re-

quest for the portal page by retrieving the portlets written by the developer for the

current page. Thereafter the portal server invokes the portlet container for each portlet.

The final portal page presented to the client represents the aggregated content gener-

ated by several portlets. With commercial portal servers, the source code of the portal

server components as highlighted in Fig. 1 is inaccessible to the developer.

Because of the complexity of web portals, automated in-container testing presents four

unique challenges. Firstly, the portlet API layer depicted in Fig. 1 is the only way that

portlets can ‘talk’ to the inaccessible components. Thus, we need to find a way to

intercept calls from the container to the portlets and vice versa so that testers can ac-

cess and manipulate the calls generated by the container. Secondly, testing portlets

involves invoking a series of inaccessible interactions in the portal server as seen in

the Fig. 1. Thirdly, since the tests run in the container we need to collect individual

test results of executing each portlet and then send back the aggregated results to the

test client. Lastly, while the test code runs with the original application code, portal

clients still should receive the correct response from the portlets. Thus, minimizing the

side effects of the test code on the original portlet code becomes imperative. In the

next section, we describe how our approach addresses these issues.

4 WIT: Web Portal Application In-container Testing Framework

4.1 Design Overview

The WIT system consists of following modules: Converter, Weaver, Invoker, Control-

ler, and Repository.

Fig. 2. In-Container Portlet Test Request Invocation

The tests are initiated by the testing client Invoker depicted in Fig.2. This starts a

process whereby the test Controller assembles and sends the request for the portlet

under test and simultaneously, writes the test control instruct to the Repository. Before

the request reaches the portlet under test, a check is made to ensure that the test con-

trol instruct allows the test code to execute. If the check is successful, the test code 1)

intercepts the calls between the application code and the portlet API and 2) sets up the

initial state to execute the portlet code. After the portlet code is executed, the results

of the tests get stored in the Repository and then reported to developers by the Con-

troller.

4.2 Invoker & Controller

The Invoker is the starting point of the in-container testing process. The responsibili-

ties of the Invoker are twofold. First, it calls the Converter & Weaver as explained in

section 4.3 to generate portlet code together with the test code and then deploys the

generated code into the target portal server. Secondly, it sends a test request to the

Controller and reports the test results returned by the Controller. The Controller is a

servlet that accepts the test request from the Invoker. It then simulates the invocation

of the portlet from a browser and assembles the portlet request. Meanwhile, it writes a

control instruct into the Repository to indicate which portlet is going to be tested. The

Controller is also responsible for querying the test results saved in the Repository and

then sending them back to the Invoker.

4.3 Converter & Weaver

We utilized AspectJ technology [4, 5] in order to intercept calls to the portlet code by

injecting the test code into the portlet code.

As shown in Fig. 3 test cases written for in-container testing are fed into the Converter

first to generate Aspect code. This code is in turn compiled with the original portlet

code by the AspectJ Weaver. As a result of this, the portlet binary class files are

weaved in with the test code. During this phase, information like the location of the

Repository is compiled into the portlet code as well. The final output of this convert-

ing & weaving phase is deployable portlet code together with the testing code.

Fig. 3. Injecting the test code into Portlets

4.4 Repository

Multiple Portlets run simultaneously within the portlet container and so does the test

code. Writing the test results into a central location makes it possible to collect all the

test results asynchronously. In order to provide better performance by avoiding I/O

disk operations, we have chosen an in-memory database as our repository. Besides,

the test results Repository also contains control information indicating which portlets

are going to be tested. Only test code in Portlets indicated by the control information

is executed. In this way, we avoid the side-effect from our tests on other portlets. Fur-

thermore, if we clear such control information in Repository, no test code will be

executed and thus, portlets are restored to the normal state to accept requests from

users.

5 Usage Scenario of WIT

After providing an overview on the WIT architecture, we will now describe how a

tester can write the in-container test cases for WIT. Further, three main usage scenar-

ios of WIT will be discussed in detail with reference to an Accounts portlet example.

Fig. 4 shows an example of an Accounts portlet class containing a method called

doView2 [2] which is invoked by the container. The portlet accesses the database

connection string to connect to the backend database. The corresponding account id is

retrieved from the PortletSession object [2], which is sent to the back-end database

system to get the detail account information, which is in turn returned to client.

1) public class AccountsPortlet{

2) public void doView(PortletRequest request, PortletResponse re-
sponse){

3) try {

4) PortletSettings portletSettings = request.getPortletSettings();
5) String dbConnStr = portletSettings.getAttribute("AccountDB");
6) //Now the AccountsPortlet can persist information to the back-

end Account database
 …………

7) String acctId =
8) (String)request.getPortletSession().getAttribute("acctId");
9) AccountDetail ad = AccountDB.getAccountDetail(acctId);
10) Request.setAttribute(“AcctDtl”, ad);
11) PrintWriter out = response.getWriter();
12) //following pseudo code prints out the AccountDetail object
13) response.setContentType("text/html");
14) out.println(……);
15) }

Fig. 4. doView Method – AccountsPortlet Class

2 doView is the core method in which a portlet developer implements the business logic

5.1 In-container Test Case Naming Conventions

Our in-container test case classes follow a specific naming convention.

Name of test case class: = Name of portlet class + “Test”

The name of each test case starts exactly with the name of the portlet being tested and

ends with the string “Test”. For each portlet method being tested, there is a pair of test

methods in the test case. The access modifier of these methods must be public, and the

return type must be void. The name of these methods consists of three parts. The first

part is either “before” or “after”, and the second part is the name of methods being

tested, and the third part is any valid string to make the test methods more meaningful.

Name of test methods := (before | after) +

 “_” + name of methods under testing +

 “_” + additional string

5.2 Testing Deployment Related Problems

The test scenario presented in this section allows testing for deployment related prob-

lems (see Section 2 -- (a)). The PortletSettings [2] object contains configuration pa-

rameters accessed by the portlet code at runtime. These parameters are initially de-

fined in the portlet descriptor file called portlet.xml. The portal administrator uses the

administrative interface to configure individual portlet by editing the configuration

parameters before deploying the application into the production environment.

For instance the accounts portlet as shown in Fig. 4 (line 4, 5, 6) accesses the database

connection string by reading the configuration parameter from the portlet descriptor

file (refer Fig. 5).

Fig. 5. A snippet of portlet.xml showing configuration parameters

The AccountsPortletTest code in Fig. 6 checks for the valid database connection string

in the production environment. An incorrect value read by the portlet at runtime on

the production environment will cause the AccountsPortletTest to fail.

<concrete-portlet href="#Accounts">
 <portlet-name>Accounts</portlet-name>
 ……
 <config-param>
 <param-name>AccountDB</param-name>

 <param-value>jdbc:db2://localhost:50000/AccountDB</param-value>
 </config-param>
</concrete-portlet>

Fig. 6. doView() – AccountsPortlet Test Case For Database Connection String

5.3 Automated Testing Security: Role Based Testing of Resource Access.

The test scenario presented in this section tests security privileges. We first highlight

how the In-container security test case classes differ in naming convention from other

test classes. A specific naming convention described below is used.
Name of security test case class: = Name of portlet class + “SecurityTest”

Name of security test case: =”test”+ (View|Edit|Config) + “Security”

Next, we discuss an example scenario below whereby a portal user called David is

trying to access a sensitive resource which ideally he should not have access to.

WIT, will first weave the security test case testViewSecurity () code in Fig. 7 into the

doView() of the account portlet class, and then login to the portal application with the

specified user name and password, and then send a request to view AccountsPortlet. If

the request is successful for some reason the doView() method in AccountsPortlet will

be executed – which should have been prevented by the security system. Thus, the

execution of the doView method means that the security test has failed and, thus, the

testViewSecurity method triggers a “fail”. This in turn reports a test failure to the

developer.

Fig. 7. doView() – AccountsPortlet Test Case For Security

public class AccountsPortletTest extends TestCase {
 private final String AccountDBConnStr =

 “jdbc:db2://DB2BOX:50000/AccountDB”;

 public void after_doView_ testGetAcctDBConnStr
 (PortletRequest request, PortletResponse response) {
 PortletSettings portletSettings = request.getPortletSettings();

 String dbConnStr = portletSettings.getAttribute("AccountDB");
 assertEquals("AccountDB Connection String is incorrect",
 dbConnStr, AccountDBConnStr);
 }
}

public class AccountsPortletSecurityTest
 extends SecurityTestCase {
 public String getAuthenUrl() { return “http://ict5/login”; }
 public String getAuthenUser() {return “david”; }
 public String getAuthenPwd() { return “pass”; }
 public String getPortletInvokeUrl() {
 return “http://ict5/Acct”;
 }

 public String testViewSecurity() {
 fail(“the user:”+getAuthenUser()+” should not be
 able to view the AccountPortlet”);

5.4 Testing Problems Arising from the Interaction Between the Container and

the Application Code

The test scenario presented in this section tests problems arising from the interaction

between the container and the application code in the form of request, response ob-

jects and other application environment objects.

The AccountsPortlet depicted in Fig. 4 displays account detail information according

to the account id number submitted by the user (line 7-14). In Fig. 8, developers set up

the initial testing environment in the before_doViewtest_GetAcctDetail method by

adding an account id into session object, and check the environment in the af-

ter_doViewtest_GetAcctDetail method by comparing the outBalance with the ex-

pected number 10. If the account outbalance is not what we expected, then a failure is

fired.

 Fig. 8. doView () Test Case – AccountsPortletTest Class

5.5 Using WIT to Run Tests

After a tester has written automated portlet tests, he/she is able to compile, deploy and

invoke all of them using a custom ANT [6] command that we developed. At the end of

the script run, test results are displayed in the script window and the browser. The Ant

based script can be integrated with the regular build process and promotes regression

testing. The ICT accounts portlet tests for demo usage scenario were deployed and run

in the IBM Websphere Portal Server [11] environment.

public class AccountsPortletTest extends TestCase {
 public void before_doView_testGetAcctDetail
 (PortletRequest request, PortletResponse response) {
 session.setAttribute(“acctId”, “123”);
 }

 public void after_doView_testGetAcctDetail
 (PortletRequest request, PortletResponse response) {
 AccountDetail ad =
 (AccountDetail) request.getAttribute(“AcctDtl”);
 double outBalance = ad.getOutstandingBalance();
 assertEquals("outstanding balance is incorrect", outBalance, 10);
 }
}

Fig. 9. Results of Test Execution of AccountsPortletTest Cases

6 Related Work

To our best knowledge, WIT is the only framework at this time that supports in-

container testing of portlet-based applications. Other alternate approaches such as

those provided by Cactus [7] can test Servlets [12], EJBs [13] and JSPs [14], etc.

Portlets cannot be tested using the Cactus framework.

Further, the in-container testing approach used by the Cactus framework is more re-

stricted than ours. Components, like Servlets, tested using Cactus are instantiated as

normal classes in the test code versus using the real container to manage the compo-

nent’s lifecycle. Thus, they actually do now run in the same environment as when they

are deployed. The limitation of this approach is that although the tests run in a real

container, some in-container methods and its interactions with the real container can-

not be completely tested as the services provided by the real container are being in-

completely used. Thus Cactus tests may not be able to adequately detect deployment

related errors as well as security issues (refer Section2 – (a), (b)) which can be tested

effectively using our approach.

Client side testing frameworks such as httpUnit [8] and jWebUnit [9] support is

more geared towards black box testing in a web environment. It can easily query the

server externally and analyze the responses received. The frameworks, however, do

not give a detailed control over the environment and constructing an initial state for

the test is time consuming and often involves multiple http requests.

The Mock Objects approach [10] is another complimentary strategy to in-container

testing of methods. In essence, it fakes implementation of the services provided by the

container by using simulated objects. The main goal of mock objects is to unit test a

method in isolation of domain objects by using simulated copies instead of real ob-

jects. Mock Objects suffer from the drawback that they do not assure that the in-

container methods will run correctly when deployed on the chosen container. They

only allow for a fine grained testing of business logic of in-container methods inde-

pendent of the real context in which they run.

7 Conclusions and Future Work

Within this paper, we first presented the need for automated testing support in areas

where portal applications currently cannot be tested automatically. We then elaborated

on the various problems encountered at deployment time. This established the re-

quirement that the tests must execute in the real container in order to test application

code using the services provided by the container. To address these problems we have

provided automated testing support through the WIT framework. The paper discusses

the design and implementation of the WIT framework followed by examples of its

usage scenarios. The framework allows in-container testing of web portal applications

and provides a way of detecting and debugging deployment and security related prob-

lems associated with portlets. Using WIT, some manual testing can be replaced by

automated tests.

We developed the ICT testing approach using WIT for portlets due to the scale of

problem reported by our industry partner. Future versions of the WIT framework will

be provided with configurable settings to perform in-container testing of other con-

tainer-based web components such as servlets, EJBs, Struts [15] etc. The results of our

ongoing empirical studies validating the usability and usefulness of WIT shall be pre-

sented in the future.

References

1. Christian Wege, DaimerChrysler. Portal Server Technology. IEEE Internet Computing

2002.

2. JSR-000168 Portlet Specification.

http://www.jcp.org/aboutJava/communityprocess/review/jsr168/ (Last Visited: February

11, 2005).

3. Portal Introduction-IBM. http://www-106.ibm.com/developerworks/ibm/library/i-

portletintro (Last Visited: February 7, 2005).

4. Aspect Oriented Programming Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier and John Irwin Xerox Palo Alto Research

Center; European Conference on Object-Oriented Programming(ECOOP),Finland June

1997.

5. AspectJ Eclipse Project http://eclipse.org/aspectj/ (Last Visited: February 7, 2005).

6. Apache ANT http://ant.apache.org/ (Last Visited: February 7, 2005).

7. Cactus Apache Jakarta Project http://jakarta.apache.org/cactus/ (Last Visited: January

29,2005)

8. Client Side Testing using HttpUnit. http://httpunit.sourceforge.net/ (Last Visited: February

7,2005)

9. Client Side Testing of web-applications using jWebUnit http://jwebunit.sourceforge.net/

(Last Visited: February 7,2005).

10. Mocks Objects. http://c2.com/cgi/wiki?MockObject (Last Visited: January 25,2005).

11. IBM Websphere Portal Zone http://www7b.software.ibm.com/wsdd/zones/portal/ (Last

Visited: February 7, 2005).

12. JSR-000154 Java Servlet 2.4 Specification.

http://www.jcp.org/aboutJava/communityprocess/final/jsr154/ (Last Visited: February 11,

2005)

13. EJB Specification. http://java.sun.com/products/ejb/docs.html (Last Visited: February 11,

2005)

14. JSR-000152 JavaServer Pages 2.0 Specification.

http://www.jcp.org/aboutJava/communityprocess/final/jsr152/ (Last Visited: February 11,

2005)

15. The Apache Struts Web Application Framework. http://struts.apache.org/ (Last Visited:

February 11, 2005)

16. Harpreet Bajwa , Wenliang Xiong, Frank Maurer: Evaluating Current Testing Processes of

Web-Portal Applications. Proc of ICWE 2005.

