
SCENTOR: Scenario-Based Testing of E-Business Applications

Jeremiah Wittevrongel, Frank Maurer
The University of Calgary

jeremiah@cpsc.ucalgary.ca, maurer@cpsc.ucalgary.ca

Abstract

E-business software is often developed on a tight

schedule, and testing needs to keep pace. Advice from
proponents of approaches like Extreme Programming is
that by testing continuously, it is actually possible to
compress development cycles. In this paper we discuss a
testing approach that supports developers with their task
of creating automated functional test drivers for e-
business applications. The main goal for the approach is
to reduce the time and effort required to automate
scenario tests for e-business applications. After
motivating the approach, we give an abstract view of a
tool designed and implemented to support the approach.
Next, we give an example of its use, and finally proceed to
a discussion of the architecture of the tool itself.

1. Introduction

Before sending e-business software live on the Web,
we want to ensure it functions as expected. But e-
business software development is different than
traditional software development. The Internet has
accelerated the required development pace, while the risks
involved in using new and sometimes immature web
technologies pose additional threats to completing the
project on a tight schedule.

Approaches like Extreme Programming drastically
shorten development cycles and may be particularly well-
suited to mid-sized e-business projects. There is evidence
that adopting only some of the practices in Extreme
Programming will shorten project schedules and result in
more successful software development processes [1].

One of the cornerstones of Extreme Programming is
the use of continual testing throughout the development
process. Unit tests created by the developers while they
work on the system are combined with scenario tests
based directly on customer requirements. Together, these
tests form a continually evolving and always-available
automated test suite.

Tools like JUnit [7] provide a lightweight testing
framework for quickly implementing functional unit tests.
The support is not specific, however, to e-business
applications, meaning that developers may have
additional work if they wish to adopt an approach
involving continual automated testing.

SCENTOR [12] is an approach that aims to provide e-
business-specific support for the generation of scenario-
based tests using JUnit as a basis. In doing so, it is hoped
that creating scenario tests for e-business applications
takes less time, leaving more time for running the tests
and developing the system. In a test-centric approach to
development, this will result in a compressed schedule.

In Section 2, we motivate our work, and give some
background. Section 3 illustrates how to derive test
drivers from usage scenarios of a system. Section 4 gives
an example of our approach, while Section 5 describes the
system architecture. In Section 6, we discuss related work,
and finally, Section 7 summarizes our results.

2. Motivation and background

E-business projects often have huge time-to-market
pressure; there is not always a lot of time for testing.
Priority One under extreme time pressure should be
ensuring typical use scenarios can be completed.

This suggests that testing of e-business applications
should focus on user-visible functionality. In Extreme
Programming, this user-visible functionality is described
in user stories. SCENTOR adds Unified Modeling
Language (UML) sequence diagrams on top of this
approach, which serves to make the scenarios slightly
more formal.

This slightly more formal representation of the
scenarios is enough to allow useful support and partial
automation for the tedious task of writing automated test
drivers. The developer would only need to add concrete
parameters and expected results for each step in the
scenario, and this forms a straightforward automated test
driver.

Tests based on typical-use scenarios ensure that the
focus of testing is on the most-used parts of the system.

The SCENTOR approach is also meant to support
incremental testing. It should be possible to add test cases
(individual tests with a single set of concrete parameter
values and expected results) at any time to the existing
test suites (collections of test drivers).

In addition to handling this basic functionality, a tool
that supports scenario-based testing of e-business
applications should do more. Many of the technologies
used in the development of dynamic e-business
applications will require that test drivers perform some
special setup first, before executing the actual functional
tests. SCENTOR integrates support for generating global
setup code (test setup code performed only once
immediately before an entire test suite is run). By doing
so, it allows multiple test cases to share this (sometimes
expensive) setup process.

The test execution sequence proceeds as follows: first,
the global (common) setup runs once. Then a group of
test cases is run, each possibly having its own setup code

that will run immediately before it, and its own teardown
code that will run immediately following it. Finally, any
global teardown code is executed.

In this fashion, SCENTOR can not only save time
required for test implementation, but can also reduce the
time required to run a group of tests, while maintaining a
modular test design.

3. From scenarios to test drivers

As a proof of concept, SCENTOR was designed and
implemented to support scenario-based testing of e-
business applications using Enterprise Java Beans (EJB)
[9]. SCENTOR is also targeted towards lightweight
development processes that include only a partial set of
UML models while maintaining the Extreme
Programming focus on the production of source code.
Figure 1 shows the progression from scenarios to test
drivers in SCENTOR.

Export from
Rational Rose

Load Into
SCENTOR

XMI File UML
Model

Extract Sequence
Diagrams

Specify Inputs
And Expected

Results

Specify Setup
And Teardown

Java Test
Drivers

XML Test
Specifications

Compile
Test Drivers

Run Tests

Figure 1: Moving from scenarios to test drivers

Scenarios are first modeled as UML sequence
diagrams, using a CASE tool such as Rational Rose.
This includes classes and methods participating in the
scenario. The UML model is then exported from the
CASE Tool in the vendor-independent XMI (XML
Metadata Interchange) format.

The developer would then load the XMI file into
SCENTOR, and could optionally load a previously

created test specification (in an XML format [11]) as well
(not shown in Figure 1).

Tests are specified based on the UML sequence
diagrams. A small suite of tests is typically based on the
set of messages sent by a single object in a UML
sequence diagram. This single object could, for example,
represent the whole user interface of the system. The
developer needs only to add concrete parameter values to

WASServlet :
EbolaServlet

completedSurvey
HomeIF :

createdCompl
etedSurvey :

mySurvey :
Survey

addAnswer(Answer)

addAnswer(Answer)
create(Survey)

setSurveyVersion(String)

getSurveyVersion()
getStoredSurvey()

Figure 2: A scenario expressed as a UML sequence diagram

Figure 3: Screenshot showing EJB setup code generation

the method call and specify the expected results of the
method call. To preserve the focus on source code and
avoid the need for developers to learn another language,
we decided to let the developer enter these results in the
underlying programming language (Java) instead of using
other formal languages (e.g. UML’s object constraint
language, OCL).

SCENTOR concretely helps in the development of test
drivers for Enterprise Java Beans by supporting
generation of common EJB-specific setup code. This
setup code would normally be shared among a group of
test cases in such a way that it is only executed once,
regardless of the number of tests running. Creating the
initial context for Bean lookups and retrieving references
to the EJB Home Interfaces are two tasks that are well
suited for this type of setup code; SCENTOR supports
both.

The main benefit of sharing the setup code among a
group of tests comes with reduced execution time for a
large group of tests. Looking up and retrieving a
reference to an EJB Home Interface takes quite some
time, and repeating that lookup for each test means test
drivers run much more slowly than if the call is only done
once for the entire suite.

When the developer adds more test cases to a suite that
has shared setup code of this nature, the setup code is
automatically inherited by the new test cases.

Developers can compile and execute the generated test
drivers from within SCENTOR if they wish, or may
employ another compilation and execution environment.

The Test specifications can be saved as an XML files
following the SCENTOR Test Specification DTD [11];
these files can later be loaded into SCENTOR for
modifications or additions.

4. An example

Consider the EBOLA Project [13], which includes an
online survey implemented using Enterprise Java Beans
[9]. In this example, SCENTOR is used to create
automated test drivers for part of EBOLA’s online survey
code.

First, the scenarios to test are modeled in Rational
Rose as UML sequence diagrams. Figure 2 shows one of
the sequence diagrams for our set of scenarios. This
UML model is exported to XMI format, and loaded into
SCENTOR.

Two suites of tests are created, one for each of the two
enterprise beans that comprise this part of EBOLA.
These suites are each based on a sequence diagram that
includes an EJB instance as a participant.

Several test cases are created in each of the two test
suites. Now, the EJB specific setup code is added. The

Figure 4: Compilation and execution
global test suite’s setup code creates an initial context,
which can then be accessed by any test it contains
(directly or indirectly). Since each of the smaller test
suites deals with a single EJB, the home interface will be
retrieved in its setup code. Figure 3 shows the generation
of code for the lookup of an EJB Home Interface.

There are two important results of this shared setup
process. First, the initial context is only created once
regardless of the number of tests run. The Home
Interfaces are also only looked up once. Second, the
initial context is available to all the tests we have
specified (they share it), and the Home Interfaces are then
accessible to any test in the suite whose setup retrieves
them. This minimizes the time required to run the test
drivers; the expensive setup operations that all the tests
require are only executed once.

Finally, the test drivers can be generated, compiled,
and run from within SCENTOR. The test drivers will
connect to an EJB server on the network, execute, and
display the results to the user. The user interface for this
is shown in Figure 4.

5. System architecture & implementation

SCENTOR is made available as a service on the
Internet. Users can connect to the SCENTOR web site
[12], define tests and execute them on our machines 1. An
overview of the architecture can be found in Figure 5.

Java servlets present a web interface to the user, and
also handle all other communication with the user (such
as transferring files). These servlets connect to the major
components of SCENTOR, which include the XMI
parser, the test specification, the code generator, the test
driver compiler, and the test driver executor.

The XMI parser reads in vendor-independent XMI
files created with a CASE tool, and extracts the sequence
diagrams from them. In addition, the type information for

1 SCENTOR is open-source software and can also be downloaded from
the Scentor web site.

objects participating in the sequence diagrams is
extracted, if present.

The test specification maintains the test cases, test
suites, and test setup components created by the
developer. It is also responsible for generating an XML
representation that can be saved by the user, and loaded
into SCENTOR in the future for further modifications and
additions.

Once a test specification is created, the code generator
translates the specification into Java source code. This
source code depends on the JUnit testing framework for
compilation and Execution.

The test driver compiler and executor are merely front-
ends to a java compiler and a java virtual machine,
respectively. The test drivers can be compiled and run
directly from SCENTOR, using these components.

As mentioned earlier, SCENTOR is available on the
Internet as a web application. As such, two more
components are part of the SCENTOR architecture: a web
browser and a web server. The web browser presents the

Application Server
HTTP
Server

Web
Browser

request response

Servlets

request

response

Code

Generator

Test
Driver

Executor

Test
Driver

Compiler

Test
Spec.

XMI

Parser

Figure 5: Tool Architecture for SCENTOR

user interface, and the web server forwards requests and
responses between the web browser and the servlets.

6. Related Work

SCENTOR takes some ideas concerning lightweight
development processes from Extreme Programming
discussed in [1], [2], and [10]. Not all the principles of
Extreme Programming need be adopted to realize benefits
[1]. One of the most prevalent principles, however, is the
use of continual testing which includes both unit tests and
functional scenario tests. SCENTOR aims to support
continual scenario testing. We assume an environment
where UML is used to describe the scenarios to be able to
automatically generated test drivers – avoiding repetitive
tasks seen in JUnit-based testing. In a complete
implementation of Extreme Programming, the scenarios
(user stories) would be written in English on index cards.

JUnit [7], and other related tools, provide a simple
framework for unit testing of software. Scenario tests can
be specified using JUnit, but no specific support for
scenario tests is included. Further, JUnit contains no
support specific to the testing of e-business applications.

TOTEM [3] is a project that investigates ways in
which UML diagrams can support derivation of test
drivers for all levels of the system. In contrast with the
lightweight UML modeling assumed by SCENTOR,
however, TOTEM assumes a much greater use of UML in
the development process.

Scenario-based testing of software in general is not a
new idea. Basing test scenarios on requirements (as
Extreme Programming does) is also not a new idea.
Discussions of scenario-based testing in general and
basing test scenarios on requirements can be found in
many published works, including [5], [6], and [8].
SCENTOR’s contribution in this area is a framework that
applies scenario-based testing to e-business projects that
utilize lightweight development processes.

SCENTOR assists developers in generating automated
test drivers. The effectiveness of test automation in
general, and the effectiveness of specific automation
techniques has been the basis of much discussion,
including [4], [8], and [14].

7. Summary and future work

SCENTOR assists developers by forming a bridge
between user scenarios and functional test drivers. By
removing some of the repetitive, mechanical work
required when creating automated test drivers, SCENTOR
also aims to reduce the time required to develop them.
Further, by supporting factored setup code explicitly, it is
possible to realize a speed increase when executing large
sets of tests. Test execution speed is crucial in a

framework where regression testing is a on-going activity
(as in Extreme Programming).

Future plans include an empirical evaluation of
SCENTOR’s effectiveness in reducing the time required
for automated test development. This is the next step for
the SCENTOR project.

In addition, there are other plans for the future of
SCENTOR. Currently, SCENTOR only generates
functional test drivers. We plan to extend SCENTOR’s
code generation capabilities to also generate test drivers
for load testing. Essentially, the test drivers generated for
load testing would simulate a load of N users performing
scenarios simultaneously. This can be used to measure
EJB server performance under varying loads.

SCENTOR also currently has no facility for displaying
the imported UML sequence diagrams graphically. Such
an addition to the user interface would allow for much
more intuitive selection of scenarios to use as the basis for
test cases.

8. References

[1] K. Beck, “Embracing Change with Extreme Programming”,
Computer, IEEE CS Press, Los Alamitos, Calif., vol. 32, no. 10,
Oct. 1999, pp. 70-77.
[2] K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley, Reading, Mass., 1999.
[3] L. C. Briand, Testing of Object-oriented software sysTEms
with the Unified Modeling Language (UML),
http://www.sce.carleton.ca/faculty/briand/totem/totem.htm
(current Feb. 10, 2001).
[4] M. Fewster and D. Graham, Software Test Automation:
Effective use of Test Execution Tools, Addison Wesley, Harlow,
England, 1999.
[5] M. R. Lyu, ed., Handbook of Software Reliability
Engineering, IEEE CS Press, Los Alamitos, Calif., 1996.
[6] B. Marick, The Craft of Software Testing, Prentice Hall,
Englewood Cliffs, N.J., 1995.
[7] Object Mentor, Inc., JUnit, Testing Resources for Extreme
Programming, http://www.junit.org/ (current 10 Feb. 2001).
[8] W. E. Perry, Effective Methods for Software Testing, Second
ed., John Wiley & Sons, New York, 2000.
[9] Sun Microsystems, Enterprise JavaBeansTechnology,
http://java.sun.com/products/ejb (current 23 Feb., 2001).
[10] J. D. Wells, Extreme Programming: A Gentle Introduction,
http://www.extremeprogramming.org (current 10 Feb. 2001).
[11] J. Wittevrongel, The SCENTOR Test Spec. DTD,
http://sern.ucalgary.ca/~milos/dtd/scentorTestSpec.dtd (current
23 Feb. 2001).
[12] J. Wittevrongel, The SCENTOR Web Site,
http://sern.ucalgary.ca/~milos/projects/scentor_intro.htm
(current 10 Feb. 2001).
[13] L. Wong, The EBOLA Web Site,
http://sern.ucalgary.ca/~milos/projects/ebola/ (current 10 Feb.,
2001).
[14] K. Zallar, “Practical Experience in Automated Testing,”
Methods and Tools, Martinig and Associates, vol. 8, no. 1,
Spring 2000, pp. 2-9.

