
Spotlight

72 JANUARY • FEBRUARY 2001 http://computer.org/internet/ 1089-7801/00/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

Integrating Java
and CORBA:
A Programmer’s Perspective

The introduction of Java’s proprietary remote
method invocation (RMI) with version 1.1 of
the Java Development Kit simplified the chal-

lenging task of developing distributed object-based
systems. RMI provides convenient integration with
Java; however, it lacks interoperability with other
languages. The Object Management Group’s common
object request broker architecture (CORBA), on the
other hand, is a platform- and language-neutral spec-
ification for developing distributed object systems.
CORBA provides services not covered by RMI, such
as managing transactional safety and persistency.

In this issue’s Spotlight, we use a small chat
room application to describe how a programmer
can combine Java RMI’s ease of use with CORBA’s
language neutrality. We start with an implementa-
tion based on a set of distributed objects using RMI.
We then adapt the example to CORBA or, more
specifically, the RMI-over-IIOP (Internet inter-ORB
protocol) specification developed by Sun and IBM.
RMI-over-IIOP obviates the need to learn another
language, namely the interface definition language
(IDL), to work with CORBA; it provides nearly full
RMI semantics by incorporating the Java-to-IDL
mapping. The necessary Objects-by-Value CORBA
enhancement is now standardized and part of the
IDL language as well. Since JDK 1.3 supplies an
ORB, a Java developer does not need additional
software to work with CORBA.

Before presenting the example, we briefly intro-
duce RMI and CORBA and their terminologies.
Even a short introduction describing the function-
ality of both specifications would go far beyond the
scope of this tutorial. We therefore encourage you
to look at the additional literature listed in the side-
bar, “Java RMI and CORBA Resources.”

Before starting this tutorial, you should make
sure that the new JDK 1.3 is installed on your

machine (available online at http://java.sun.com/
j2se/1.3/). The examples in this tutorial can be
downloaded from IC Online (http://computer.org/
internet/v5n1/rmitut.htm) or http://wwwagr.infor-
matik.uni-kl.de/~schaaf/rmitut/. We present only
a few central code fragments here.

Introduction to RMI
RMI was first included in JDK 1.1 to allow easy
development of distributed applications without
additional third-party software. Specifying a remote-
ly accessible object starts with defining a Java inter-
face that must inherit from java.rmi.Remote. The
remote interface specifies every remotely callable
method. Parameter types used in remote methods
can either be primitive types (like float), or they can
be serializable objects or remote interfaces. Serial-
izable objects will be passed as copies using the
Java object serialization service. A remotely
enabled object will be passed as a remote reference.

After specifying a remote interface, you must
provide an implementation class. Here, you can
specify additional methods, but only those stated
in the remote interface will be remotely accessible.
At runtime, the implementation class must be
exported after creation. This is done either by
inheriting the implementation class from
java.rmi.server.UnicastRemoteObject or by
an explicit call to the exportObject static method
of that class. Finally, you must create the stub and
skeleton classes with the rmic compiler that comes
with the JDK. These classes enable remote access
to the implementation methods (see Figure 1).

Imagine the Caller-object holding a remote ref-
erence to the remote object X represented by the
remote interface and the implementation class
X_Imp. Rather than invoking a method of X_Imp
directly, the Caller-object invokes a method of

Martin Schaaf • University of Kaiserslautern
Frank Maurer • University of Calgary

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 73

Java and CORBA

X_Stub, which is type-compatible because it also
implements the remote interface X. The stub mar-
shals the parameters and handles the transmission
to the skeleton, X_Skel, that gets created on the
server side when exporting the remote object X. The
protocol between stub and skeleton is the Java
remote method protocol (JRMP). The skeleton
unmarshals parameters, invokes the desired imple-
mentation method, and passes the results and
exceptions. If the result type is a class that imple-
ments a remote interface itself (let’s say, Y_Imp), the
skeleton creates and passes the associated serial-
ized stub containing the remote reference instead.
Because the stub is type-compatible with the
remote interface, a client awaiting a result of that
type will be satisfied. It now holds another stub that
redirects every invocation to the remote object Y.

While this is typically how a client gets a remote
reference, it has been assumed that the client
already had a remote reference to X. For retrieving
initial references, a name service associates remote
references with names. RMI provides the registry—
a simple transient naming service that is a remote
object itself—for this purpose. Last but not least,
RMI includes distributed garbage collection, which
unexports remote objects safely in order to free
resources on the server.

Further information is available at the Java RMI
homepage (http://java.sun.com/j2se/1.3/docs/guide/
rmi/) and the RMI specifications page (http://java.
sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html).
Several tutorials cover other aspects of RMI such as
activation or the usage of socket factories.

Introduction to CORBA
The term CORBA refers to a set of specifications
maintained by the OMG and first released in July
1992. CORBA aims to provide

■ access to services,
■ discovery of resources and object names,
■ error handling, security policies, and
■ language and platform neutrality.

Figure 2 depicts CORBA’s highest-level specifica-
tion: the object management architecture (OMA).

The heart of the OMA is the ORB that mediates
the information flow between objects. Every object
participating in a CORBA network is connected to
an ORB that comes, in practice, as a programming
library suitable for the programming language used
in a given software development project. Commu-
nication between ORBs is standardized by the gen-
eral inter-ORB protocol (GIOP). IIOP is a version of

this protocol, specialized for TCP/IP-based net-
works. These standards are the key to the interop-
erability CORBA provides among objects written in
different languages.

CORBA services are standardized objects pro-
viding functionalities like naming, persistence, and
transactions. CORBA domains describe some verti-
cal market standards (for instance, financial ser-
vices). Facilities like information management and
systems management, which are common to all
domains, are grouped within the CORBA facilities.
Neither are within the scope of this tutorial.

The IDL is another important CORBA standard;
it describes the interface of a remote CORBA object.
IDL definitions are comparable to RMI’s remote
interfaces. Because CORBA is language neutral, IDL
can be viewed as the lingua franca for describing
services implemented in heterogeneous languages.

X

Y
Implements

X_Imp

Y_Imp

X_Skel

Create

TCP/IP

Caller

X_Stub

Figure 1. RMI stubs and skeletons.

Application
objects

CORBA
domains

CORBA
facilities

CORBA sevices

Object request broker (ORB)

Figure 2. Object management architecture (OMA).

IDL consists of several basic data types mainly orig-
inating from C, such as array, union, or struct.
To allow a concrete programming language to
implement CORBA objects, the OMG has standard-
ized a set of mappings from IDL to languages such
as C, Cobol, Lisp, and Smalltalk. The IDL-to-Java
mapping is the base for the tool idlj, which can be
used for generating Java stubs, skeletons, and ties
from IDL definitions.

Originally, CORBA only allowed primitive data
types or remote references to be passed by remote
invocations of methods. The current IDL definition
incorporates the Objects-by-Value suggestions from
Sun and IBM, so it is now possible to transfer object
state and behavior as with RMI. Relying heavily on
this feature, the Java-to-IDL mapping lets a Java
programmer develop CORBA-based applications
without having to learn IDL. The developer can spec-
ify interfaces within Java using the interface con-
struct. The new rmic, which is included in JDK 1.3,
can create CORBA stubs, skeletons, and ties directly
from interface definitions in Java. It is also possible
to generate an IDL specification automatically and
use it as input for other IDL compilers to create ser-
vices or clients in other programming languages.

RMI Example
Our example RMI-based chat application uses peer-to-
peer communication: the client talks to the server,

and the server actively sends messages to the client.
Figure 3 shows the Unified Modeling Language dia-
gram introducing the object types involved.

A user consists of the interface User and the
implementation class UserImp. A chat room con-
sists of the interface ChatRoom and the implemen-
tation class ChatRoomImp. A chat room aggregates
remote interfaces of type User.

To enter a chat room, a user presents a previ-
ously created UserImp object as argument to the
chat room’s enter method. Because UserImp is an
implementation class of a remote object and enter
is a remote method of the chat room, a stub to
UserImp will be created and passed to the chat
room. The chat room then possesses a remote ref-
erence of the user, which is collected in a hash
table. To send a message, a user invokes the
distributeMessage method, resulting in the exe-
cution of the code shown at *1* in Figure 4.

Note that invocation of remote methods might
result in a remote exception. In our example, this
likely indicates that a user has terminated the client
without leaving the chat room first. To stabilize the
chat room, the remote references to these users
should be deleted because invoking methods of
unreachable remote objects can be very time con-
suming. Whenever the chat room observes a failed
user, it informs all other users by invoking the leave
method so they can update their view.

74 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Remote
Interface

name:String

User

UnicastRemoveObject
UserImp

+getName():String
+receiveMessage(m:Message):void

+UserImp(name:String)
+receiveMessage(m:Message):void

Remote
Interface

ChatRoom

+distributeMessage(message:Message):void
+enter(user:User):void
+getUserNames():Vector
+leave(userName:String):void

UnicastRemoteObject
ChatRoomImp

-users:java.util.HashTable
-clearFailedUsers:boolean=true

userNames:Vector

+ChatRoomImp()
+distributeMessage(message:Message):void
+enter(user:User):void
+leave(userName:String):void
+main(args:String[]:void

0..*

Figure 3. UML diagram for object types in example RMI-based chat application.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 75

Java and CORBA

package example.rmi;

import java.rmi.Naming;

import java.rmi.server.UnicastRemoteObject;

…

public class ChatRoomImp extends UnicastRemoteObject implements ChatRoom {

private java.util.Hashtable users = null;

private boolean clearFailedUsers = true;

…

public synchronized void distributeMessage(Message message) { *1*

Vector failedUsers = new Vector();

for (Enumeration e = users.keys(); e.hasMoreElements();) {

String userName = (String)e.nextElement();

User user = (User)users.get(userName);

try {

user.receiveMessage(message);

} catch (RemoteException ex) {

failedUsers.addElement(userName);

}

}

if (!clearFailedUsers) return;

clearFailedUsers = false;

for (Enumeration e=failedUsers.elements(); e.hasMoreElements();) {

leave((String)e.nextElement());

}

clearFailedUsers = true;

}

public synchronized void leave(String userName) {

Message message = new UserLeftMessage(userName);

distributeMessage(message);

users.remove(userName);

}

…

public static void main(String[] args) {

if (args.length < 1) {

System.out.println("Required argument: <name to register>");

return;

}

try {

Naming.rebind(“rmi://localhost/” + args[0],

new ChatRoomImp());

2

} catch (java.net.MalformedURLException e) {

e.printStackTrace();

} catch (RemoteException e) {

e.printStackTrace();

}

}

}

Figure 4. Chat room implementation class.

The clearFailedUsers flag avoids multiple
invocations of leave in case another user fails
while multicasting the leave message. All chat room
methods are synchronized to prevent users from
entering or leaving during message distribution.

In the main method, a reference to a chat room
implementation object is registered to a name you
provide. It is assumed that a registry is running on
the same host as the implementation object before
you start the server.

The client can retrieve the registered remote ref-
erence using the code fragment shown in Figure 5.
Here, the URL will be taken from a text field the
user inputs.

Compiling and Running the Example
We are now ready to compile and start the exam-
ple. We assume that you have successfully down-
loaded and unzipped the complete source code into
a directory named <top> (included in your CLASS-
PATH) and preserved the file structure of the zip-
file. On Windows machines, you can compile and
create RMI stubs and skeletons by invoking the fol-
lowing commands:

cd <top>

javac example\rmi*.java

javac example\rmi\ui*.java

rmic example.rmi.ChatRoomImp

rmic example.rmi.UserImp

Before running the chat room, start up the registry.
Make sure that all class definitions of objects you
want to register are present in the registry’s CLASS-
PATH.

rmiregistry.exe

Now you can start the server and client with:

java example.rmi.ChatRoomImp

<name to register>

java example.rmi.ui.ChatClient

You should see a small window, similar to the one
in Figure 6, where you have to provide the chat
room’s URL and your desired username.

RMI-over-IIOP Example
We will now move on to RMI-over-IIOP by migrat-
ing the example. The programmer does not have to
change much; providing some additional argu-
ments to the rmic stub compiler coming with JDK
1.3 mainly does the job. JDK 1.3 adopts the new
RMI-over-IIOP specification. Rather than specify-
ing an IDL interface, we can reuse our Java inter-
face definitions from the RMI-based example. Other
than that we just have to make some minor
changes to the implementation code. Since Java
now contains an ORB, no additional software from
third-party vendors is required.

The ChatRoomImp implementation class must
inherit from PortableRemoteObject of the pack-
age javax.rmi.* instead of UnicastRemote-
Object (see *1* in the code fragment in Figure 7).
Again, we could alternatively choose to export the
object directly by calling PortableRemote-

Object.export. Both alternatives implicitly ini-
tialize the ORB. We have to apply the same changes
to the UserImp class.

The next change (see *2* in Figure 7) concerns
registration of the chat room at the name service.
We use the generic Java naming and directory inter-
face (JNDI) for this. JNDI defines a set of operations

76 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Figure 6. Chat application client.

public void connect()throws ChatException,NotBoundException,

MalformedURLException,RemoteException,

UnknownHostException {

…

ChatRoom chatRoom =(ChatRoom)java.rmi.Naming.lookup(getURLTextField().getText());

chatRoom.enter(getUser());

…

}

Figure 5. Retrieving a remote reference from the RMI naming service.

for a naming service; an actual implementation can
be a CORBA naming service that we indicate at the
command line on startup. JNDI will also be used
when retrieving the reference to the chat room ser-
vice object *3* shown in Figure 8. In that code frag-
ment it is assumed that the user has provided a
name we can retrieve with the getNameText
method.

The last change in our implementation code is
to use the static narrow method of Portable-
RemoteObject to type-cast the remote reference,
when receiving a type-unknown reference from
the name service. This ensures type-safety.

Compiling and Running the Example
After completing these changes, we are ready to
compile and start the example. Compilation and
creation of CORBA stubs, ties, and skeletons is done
by invoking the following commands:

cd <top>

javac example\rmiiiop*.java

javac example\rmiiiop\ui*.java

rmic -iiop -always

example.rmiiiop.ChatRoomImp

rmic -iiop -always

example.rmiiiop.UserImp

Invoking the rmic with the –iiop parameter creates
the stubs/skeletons/ties directly. If you want to pre-
serve the IDL file generated from the interface
specifications, you can use the –idl parameter.

Now we start the transient name server that
comes with Java. You can think of it as a CORBA
equivalent for the RMI registry.

tnameserv.exe

Create and bind a chat room remote object to a
given name.

java -

Djava.naming.factory.initial=com.sun.j

ndi.cosnaming.CNCtxFactory

-

Djava.naming.provider.url=iiop://local

host:900

example.rmiiiop.ChatRoomImp <name

to register>

As you can see here, we have defined some addi-
tional properties. With the first property, we spec-
ify the CORBA naming service factory. Remember
that the JNDI interface is generic in the sense that

it can interface to arbitrary naming services. Final-
ly, we provide the same properties when invoking
the client.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 77

Java and CORBA

package example.rmiiiop;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;

…

public class ChatRoomImp extends

PortableRemoteObject implements ChatRoom { *1*

…

public static void main(String[] args) {

if (args.length < 1) {

System.out.println(“Required argument:

<name to register>”);

return;

}

try {

Context nc = new InitialContext(); *2*

nc.rebind(args[0], new ChatRoomImp());

} catch (NamingException e) {

e.printStackTrace();

} catch (RemoteException e) {

e.printStackTrace();

}

}

}

Figure 7. RMI-over-IIOP adapted implementation class
of a chat room.

public void connect() throws ChatException,

NamingException,

RemoteException {

…

Context nc = new InitialContext();

Object obj = nc.lookup(getNameText()); *3*

ChatRoom chatRoom = (ChatRoom)

PortableRemoteObject.narrow(obj,

ChatRoom.class);

4

chatRoom.enter(getUserInternal());

…

}

Figure 8. Retrieving a remote reference from a JNDI
naming service.

java -

Djava.naming.factory.initial=com.sun.j

ndi.cosnaming.CNCtxFactory

-

Djava.naming.provider.url=iiop://local

host:900

example.rmiiiop.ui.ChatClient

If everything works well, you should now see a
window like the one in Figure 6.

Conclusion
Within this tutorial, we adapted an example RMI-
based application to the new RMI-over-IIOP stan-
dard. While CORBA for Java has been available for
a fairly long time, it has never been so easy to
develop distributed applications based on this
standard. Instead of specifying remote interfaces
with CORBA IDL, it is now possible to use Java
interfaces. With the new standardized Java-to-IDL
mapping, it is even possible to pass objects by
value in remote method invocations. This extends
the original CORBA semantics of remote method
calls to RMI semantics. Because the Java-to-IDL
standard is relatively new, we cannot expected all
existing CORBA systems to support it. With RMI-
over-IIOP, however, your Java applications can
now connect easily to arbitrary CORBA object ser-
vices provided by software vendors like GemStone
or Bea because the applications can now talk IIOP.

Frank Maurer is codirector of the Alberta Software Engineer-

ing Research Consortium (ASERC) and an associate profes-

sor at the University of Calgary. He has a PhD in computer

science from the University of Kaiserslautern, Germany. He

is a member of the IEEE Internet Computing editorial board.

Martin Schaaf is working on a PhD at the University of Kaiser-

slautern. His research interests include knowledge manage-

ment techniques and distributed systems. He received the

Diplom from the University of Kaiserslautern.

Readers can contact the authors at maurer@cpsc.ucalgary.ca

or schaaf@informatik.uni-kl.de.

78 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Further information on Java RMI and CORBA is available online at a num-
ber of places.
Java Remote Method Invocation (RMI)homepage •

http://java.sun.com/j2se/1.3/docs/guide/rmi/.
RMI specifications • http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/

rmiTOC.html.
RMI tutorials • http://java.sun.com/j2se/1.3/docs/guide/rmi/

getstart.doc.html, http://java.sun.com/j2se/1.3/docs/guide/rmi/
rmisocketfactory.doc.html, and http://java.sun.com/j2se/1.3/docs/
guide/rmi/activation.html.

RMI-over-IIOP at IBM • http://www.ibm.com/java/jdk/rmi-iiop/.
RMI-over-IIOP at Sun • http://java.sun.com/products/rmi-iiop/.
RMI-over-IIOP programmer ’s guide • http://www.ibm.com/java/jdk/

rmi-iiop/docs/aix130/rmi_iiop_pg.html.
Java IDL • http://java.sun.com/j2se/1.3/docs/guide/idl/.
Object Management Group homepage • http://www.omg.org.
CORBA mapping specifications • http://www.omg.org/

technology/documents/formal/corba_language_mapping_specifica.htm.
CORBA Technology and the Java platform • http://java.sun.com/

j2ee/corba/.
Objects-by-Value specification • ftp://ftp.omg.org/pub/docs/orbos/98-

01-18.pdf.

Java RMI and CORBA Resources

E D I T O R I A L C A L E N D A RE D I T O R I A L C A L E N D A R

JANUARY/FEBRUARY
Usability Engineering in
Software Development

MARCH/APRIL
Global Software Development

MAY/JUNE
Organizational Change

JULY/AUGUST
Fault Tolerance

SEPTEMBER/OCTOBER
Software Organizational
Benchmarking

NOVEMBER/DECEMBER
Ubiquitous Computing

