
Examining Usage Patterns of the FIT Acceptance
Testing Framework

Kris Read, Grigori Melnik, Frank Maurer

Department of Computer Science, University of Calgary
Calgary, Alberta, Canada

{readk, melnik, maurer}@cpsc.ucalgary.ca

Abstract. Executable acceptance testing allows both to specify customers’
expectations in the form of the tests and to compare those to actual results that
the software produces. The results of an observational study identifying patterns
in the use of the FIT acceptance testing framework are presented and the data on
acceptance-test driven design is discussed.

1 Introduction

Acceptance testing is an important aspect of software development. Acceptance tests
are high level tests of business operations and are not meant to test internals or
technical elements of the code, but rather are used to ensure that software meets
business goals. Acceptance tests can also be used as a measure of project progress.
Several frameworks for acceptance testing have been proposed (including JAccept
[5], Isis [6], and FIT [2]). The use of acceptance tests have been examined in recent
studies from members of both academia [8, 7] and industry [5,10]. We are interested
in determining the value of executable acceptance tests, both for quality assurance as
well as to represent functional requirements in a test-first environment. To this end we
have arranged several experiments and observational studies using tools such as FIT
[2] and FitNesse [3] to work with executable acceptance tests. FIT is an acceptance
testing framework which has been popularized by agile developers. FIT allows tests
to be specified in tables, in multiple formats such as HTML, Excel, or on a wiki page.
Although users can specify the test case tables, developers must later implement
fixtures (lightweight classes calling business logic) that allow these tables to be
executed. Suitability of acceptance tests for specifying functional requirements has
been closely examined in our previous paper [4]. Our hypothesis that tests describing
customer requirements can be easily understood and implemented by a developer who
has little background on this framework was substantiated by the evidence gathered in
our previous experiment. Over 90% of teams delivered functioning tests and from this
data we were able to conclude that the learning curve for reading and implementing
executable acceptance tests is not prohibitively steep.

In this paper we expand on our previous results and investigate the ways in which
developers use executable acceptance tests. We seek to identify usage patterns and
gather information that may lead us to better understand the strengths and weaknesses
of acceptance tests when used for both quality control and requirements

representation. Further, examining and identifying patterns may allow us to provide
recommendations on how acceptance tests can best be used in practice, as well as for
future development of tools and related technologies. In this paper we report on
results of observations in an academic setting. This exploratory study will allow us to
refine hypotheses and polish the experimental design for future industrial studies.

2 Context of Study

Data was gathered from two different projects in two different educational institutions
over four months. The natures of the two projects were somewhat different; one was
an interactive game, and another a Web-based enterprise information system. The
development of each project was performed in several two to three week long
iterations. In each project, FIT was introduced as a mandatory requirement
specification tool. In one project FIT was introduced immediately, and in the other
FIT was introduced in the third iteration (half way through the semester). After FIT
was introduced, developers were required to interpret the FIT-specified requirements
supplied by the instructor. They then implemented the functionality to make all tests
pass, and were asked to extend the existing suite of tests with additional scenarios.

Fig. 1. Typical iteration life-cycle

The timeline of both projects can be split into two sections (see Figure 1). The first
time period begins when students received their FIT tests, and ends when they
implemented fixtures to make all tests pass. Henceforth this first time period will be
called the “ramp up” period. Subjects may have used different strategies during ramp
up in order to make all tests pass, including (but not limited to) implementing business
logic with in the test fixtures themselves, delegating calls to business logic classes
from test fixtures, or simply mocking the results within the fixture methods (Table 1).
The second part of the timeline begins after the ramp up and runs until the end of the
project. This additional testing, which begins after all tests are already passing, is the
use of FIT for regression testing. By executing tests repeatedly, developers can stay
alert for new bugs or problems which may become manifest as they make changes to
the code. It is unknown what types of changes our subjects might make, but
possibilities range from refactoring to adding new functionality.

Table 1. Samples of how a given fixture could be implemented

Example: In-fixture implementation
public class Division extends ColumnFixture {
 public double numerator, denominator;
 public double quotient() { return numerator/denominator; }
}
Example: Delegate implementation
public class Division extends ColumnFixture {
 public double numerator, denominator;
 public double quotient() {
 DivisionTool dt = new DivistionTool();
 return dt.divide(numerator, denominator);
 }
}
Example: Mock implementation
public class Division extends ColumnFixture {
 public double numerator, denominator;
 public double quotient() { return 8; }
}

3 Subjects and Sampling

Students of computer science programs from the University of Calgary (UofC) and
the Southern Alberta Institute of Technology (SAIT) participated in the study. All
individuals were knowledgeable about programming, however, no individuals had any
knowledge of FIT or FitNesse (based on a verbal poll). Senior undergraduate UofC
students (20) who were enrolled in the Web-Based Systems1 course and students from
the Bachelor of Applied Information Systems program at SAIT (25) who enrolled the
Software Testing and Maintenance course, took part in the study. In total, 10 teams
with 4-6 members were formed.

4 Hypotheses

The following hypotheses were formulated prior to beginning our observations:
HA: No common patterns of ramp up or regression would be found between teams

working on different projects in different contexts.
HB: Teams will be unable to identify and correct “bugs” in the test data or create new

tests to overcome those bugs (with or without client involvement).
HC: When no external motivation is offered, teams will not refactor fixtures to

properly delegate operations to business logic classes.
HD: When no additional motivation is given, students will not continue to the practice

of executing their tests in regression mode (after the assignment deadline).
HE: Students will not use both suites and individual tests to organize/run their tests.

1 http://mase.cpsc.ucalgary.ca/seng513/F2004

5 Data Gathering

A variety of data gathering techniques were employed in order to verify hypotheses
and to provide further insight into the usage of executable acceptance testing.
Subjects used FitNesse for defining and executing their tests. FitNesse [3] is an open-
source wiki-based tool to manage and run FIT tests. For the purposes of this study, we
provided a binary of FitNesse that was modified to track and record a history of FIT
test executions, both successful and unsuccessful. Specifically, we recorded:

- Timestamp;
- Fully-qualified test name (with test suite name if present);
- Team;
- Result: number right, number wrong, number ignored, number exceptions.

The test results are in the format produced by the FIT engine. Number right is the
number of passed assertions, or more specifically the number of “green” table cells in
the result. Number wrong is the number of failed assertions, which are those
assertions whose output was different from the expected result. In FIT this is
displayed in the output as “red” table cells. Ignored cells were for some reason
skipped by the FIT engine (for example due to a formatting error). Number exceptions
records exceptions that did not allow a proper pass or fail of an assertion. It should be
noted that a single exception if not properly handled could halt the execution of
subsequent assertions. In FIT exceptions are highlighted as “yellow” cells and
recorded in an error log. We collected 25,119 different data points about FIT usage.

Additional information was gathered by inspecting the source code of the test
fixtures. Code analysis was restricted to determining the type of fixture used, the non-
commented lines of code in each fixture, the number of fields in each fixture, the
number of methods in each fixture, and a subjective rating from 0 to 10 of the
“fatness” of the fixture methods: 0 indicating that all business logic was delegated
outside the fixture (desirable), and 10 indicating that all business logic was performed
in the fixture method itself (see Table 1 for examples of fixture implementations).

Analysis of all raw data was performed subsequent to course evaluation by an
impartial party with no knowledge of subject names (all source code was sanitized).
Data analysis had no bearing or effect on the final grades.

6 Analysis

This section is presented in four parts, each corresponding to a pattern observed in the
use of FIT. Strategies of test fixture design looks at how subjects construct FIT tables
and fixtures; Strategies for using test-suites vs. single tests examines organization of
FIT tests; Development approaches identifies subject actions during development;
and Robustness of test specification analyzes how subjects deal with exceptional
cases.

6.1 Strategies of Test Fixture Design

It is obvious that there are multitudes of ways to develop a fixture (a simple interpreter
of the table) such that it satisfies the conditions specified in the table (test case).
Moreover, there are different strategies that could be used to write the same fixture.
One choice that needs to be made for each test case is what type of FIT fixture best
suits the purpose. In particular, subjects were introduced to RowFixtures and
ActionFixtures in advance, but other types were also used at discretion of the teams
(see Table 2). Some tests involved a combination of more than one fixture type, and

Table 2. Common FIT fixtures used by subjects

Fixture Type Description Frequency
of Use

RowFixture Examines an order-independent set of values from a query. 12
ColumnFixture Represents inputs and outputs in a series of rows and columns. 0
ActionFixture Emulates a series of actions or events in a state-specific

machine and checks to ensure the desired state is reached.
19

RowEntryFixture Special case of ColumnFixture that provides a hook to add data
to a dataset.

2

TableFixture Base fixture type allowing users to create custom table formats. 30

subjects ended up developing means to communicate between these fixtures.
Another design decision made by teams was whether to develop “fat”, “thin” or

“mock” methods within their fixtures (Table 3). “Fat” methods implement all of the
business logic to make the test pass. These methods are often very long and messy,
and likely to be difficult to maintain. “Thin” methods delegate the responsibility of
the logic to other classes and are often short, lightweight, and easier to maintain. Thin
methods show a better grasp on concepts such as good design and refactoring, and
facilitate code re-use. Finally, “mock” methods do not implement the business logic
or functionality desired, but instead return the expected values explicitly. These
methods are sometimes useful during the development process but should not be
delivered in the final product. The degree to which teams implemented fat or thin
fixtures was ranked on a subjective scale of 0 (entirely thin) to 10 (entirely fat).

The most significant observation that can be made from Table 3 is that the UofC
teams by and large had a much higher fatness when compared to the SAIT teams.
This could possibly be explained by commonalities between strategies used at each
location. At UofC, teams implemented the test fixtures in advance of any other
business logic code (more or less following Test-Driven Development philosophy
[9]). Students may not have considered the code written for their fixtures as
something which needed to be encapsulated for re-use. This code from the fixtures
was further required elsewhere in their project design, but may have been “copy-and-
pasted”. No refactoring was done on the fixtures in these cases. This can in our
opinion be explained by a lack of external motivation for refactoring (such as
additional grade points or explicit requirements). Only one team at the UofC took it
upon themselves to refactor code without any prompting. Conversely, at SAIT
students had already implemented business logic in two previous iterations, and were
applying FIT to existing code as it was under development. Therefore, the strategy for
refactoring and maintaining code re-use was likely different for SAIT teams. In

summary, acceptance test driven development failed to produce reusable code in this
context. Moreover, in general, teams seem to follow a consistent style of
development – either tests are all fat or tests are all thin. There was only one exception
in which a single team did refactor some tests but not all (see Table 2, UofC T2).

6.2 Strategies for Using Test Suites vs. Single Tests

Regression testing is undoubtedly a valuable practice. The more often tests are
executed, the more likely problems are to be found. Executing tests in suites ensures

Table 3. Statistics on fixture fatness and size

Fatness (subjective) NCSS2 Team
Min Max Min Max

UofC T1 7 10 28 145
UofC T2 0 9 8 87
UofC T3 8 10 40 109
UofC T4 9 10 34 234
SAIT T1 0 1 7 57
SAIT T2 0 2 22 138
SAIT T3 0 0 24 57
SAIT T4 0 0 15 75
SAIT T5 1 2 45 91
SAIT T6 0 1 13 59

that all test cases are run, rather than just a single test case. This approach implicitly
forces developers to do regression testing frequently. Also, running tests as a suite
ensures that tests are compatible with each other – it is possible that a test passes on
its own but will not pass in combination with others.

In this experiment data on the frequency of test suite vs. single test case executions
was gathered. Teams used their own discretion to decide which approach to follow
(suites or single tests or both). Several strategies were identified (see Table 4).

Table 4. Possible ramp up strategies

Strategy Pros Cons
(*) Exclusively
using single tests

- fast execution
- enforces baby steps development

- very high risk of breaking other code
- lack of test organization

(**) Predominantly
using single tests

- fast most of the time execution
- occasional use of suites for

regression testing

- moderate risk of breaking other code

(***) Relatively
equal use of suites
and single tests

- low risk of breaking other code
- immediate feedback on the

quality of the code base
- good organization of tests

- slow execution when the suites are
large

Exclusively using single tests may render faster execution; however, it does not
ensure that other test cases are passing when the specified test passes. Also, it

2 NCSS is Non-Comment Source Lines of Code, as computed by the JavaNCSS tool:

http://www.kclee.de/clemens/java/javancss/

indicates that no test organization took place which may make it harder to manage the
test base effectively in the future. Two teams (one from UofC and one from SAIT)
followed this approach of single test execution (Table 5). Another two teams used
both suites and single tests during the ramp up. A possible advantage of this strategy
may be a more rapid feedback on the quality of the entire code base under test. Five
out of nine teams followed the strategy of predominantly using single test, but
occasionally using suites. This approach provides both organization and infrequent
regression testing. Regression testing using suites would conceivably reduce the risk
of breaking other code. However, the correlation analysis of our data finds no
significant evidence that any one strategy produces fewer failures over the course of
the ramp up. The ratio of peaks and valleys (in which failures occurred and then were
repaired) over the cumulative test executions fell in the range of 1-8% for all teams.
Moreover, even the number of test runs is not deterministic of strategy chosen.

Table 5. Frequency of test suites versus single test case executions during ramp up

Team Suite Executions Single Case
Executions

Single/Suite Ratio

UofC T1 (***) 650 454 0.70
UofC T2 (***) 314 253 0.80
UofC T3 (**) 169 459 2.72
UofC T4 (*) 0 597 Exclusively Single

Cases
SAIT T1 (**) 258 501 1.94
SAIT T2 (**) 314 735 2.40
SAIT T3 (**) 49 160 3.27
SAIT T4 (*) 8 472 59.00
SAIT T5 (**) 47 286 6.09
SAIT T6 (not included due to
too few data points).

8 25 3.13

During the regression testing stage we also measured how often suites versus
single test cases were executed (Table 6). For UofC teams, we saw a measured
difference in how tests were executed after the ramp up. All teams now executed
single test cases more than suites. Team 1 and Team 2 previously had executed suites
more than single cases, but have moved increasingly away from executing full test
suites. This may be due to troubleshooting a few problematic cases, or may be a result
of increased deadline pressure. Team 3 vastly increased how often they were running
test suites, from less than half the time to about three-quarters of executions being
performed in suites. Team 4 who previously had not run any test suites at all, did
begin to run tests in an organized suite during the regression period. For SAIT teams
we see a radical difference in regression testing strategy: use single test case
executions much more than test suites. In fact, the ratios of single cases to suites are
so high as to make the UofC teams in retrospect appear to be using these two types of
test execution equally. Obviously, even after getting tests to pass initially, SAIT
subjects felt it necessary to individually execute far more individual tests than the
UofC students. Besides increased deadline pressure, a slow development environment
might have caused.

Table 6. Frequency of suites versus single test case executions during regression (post ramp up)

Team Suite Executions Single Case Executions Single/Suite Ratio
UofC T1 540 653 1.21
UofC T2 789 1042 1.32
UofC T3 408 441 1.08
UofC T4 72 204 2.83
SAIT T1 250 4105 16.42
SAIT T2 150 3975 26.50
SAIT T3 78 1624 20.82
SAIT T4 81 2477 30.58
SAIT T5 16 795 49.69
SAIT T6 31 754 24.32

6.3 Development Approaches

The analysis of ramp up data demonstrates that all teams likely followed a similar
development approach. Initially, no tests were passing. As tests are continued to be
executed, more and more of the assertions pass. This exhibits the iterative nature of
the development. We can infer from this pattern that features were being added
incrementally to the system (Figure 2, left). Another approach could have included
many assertions initially passing followed by many valleys during refactoring. That
would illustrate a mock-up method in which values were faked to get an assertion to
pass and then replaced at a later time (Figure 2, right).

Fig. 2. A pattern of what incremental development might look like (left) versus what mocking
and refactoring might look like (right)

Noticeably, there were very few peaks and valleys3 during development (Table 7).
A valley is measured when the number of passing assertions actually goes down from
a number previously recorded. Such an event would indicate code has broken or an
error has occurred. These results would indicate that in most cases as features and
tests were added, they either worked right away or did not break previously passing
tests. In our opinion, this is an indication that because the tests were specified upfront,
they were driving the design of the project. Because subjects always had these tests in
mind and were able to refer to them frequently, they were more quality conscious and
developed code with the passing tests being the main criteria of success.

3 The number of peaks equals the number of valleys. Henceforth we refer only to valleys.

Table 7. Ratio of valleys found versus total assertions executed

Team “Valleys” vs. Executions
in Ramp Up Phase

“Valleys” vs. Executions
in Regression Phase

UofC T1 0.03 0.05
UofC T2 0.07 0.10
UofC T3 0.03 0.10
UofC T4 0.01 0.05
SAIT T1 0.06 0.12
SAIT T2 0.03 0.10
SAIT T3 0.04 0.09
SAIT T4 0.05 0.06
SAIT T5 0.05 0.09
SAIT T6 0.03 0.14

6.4 Robustness of the Test Specification

Several errors and omissions were left in the test suite specification delivered to
subjects. Participants were able to discover all such errors during development and
immediately requested additional information. For example, one team posted on the
experience base the following question: “The acceptance test listed … is not complete
(there's a table entry for "enter" but no data associated with that action). Is this a
leftover that was meant to be removed, or are we supposed to discover this and turn it
into a full fledged test?” In fact, this was a typo and we were easily able to clarify the
requirement in question. Surprisingly, typos or omissions did not seem to affect
subjects’ ability to deliver working code. This demonstrates that even with errors in
the test specification, FIT adequately describes the requirements and makes said
errors immediately obvious to the reader.

7 Conclusion

Our observations lead us to the following conclusions. Our hypothesis that no
common patterns of ramp up or regression would be found between teams working on
different projects in different contexts was only partly substantiated. We did see
several patterns exhibited, such as incremental addition of passing assertions and a
common use of preferred FIT fixture types. However, we also saw some clear
divisions between contexts, such as the relative “fatness” of the fixtures produced
being widely disparate. The fixture types students used were limited to the most basic
fixture type (TableFixture) and the two fixture types provided for them in examples.
This may indicate that rather than seeing a pattern in what fixture types subjects
chose, we may need to acknowledge that the learning curve for other fixture types
discouraged their use. Subjects did catch all “bugs” or problems in the provided suite
of acceptance tests, refuting our hypothesis and demonstrating the potential for
implementing fixtures despite problems. Our third hypothesis, that teams would not
refactor fixtures to properly delegate operations to business logic classes, was
confirmed. In the majority of cases, when there was no motivation to do so students
did not refactor their fixture code but instead had the fixtures themselves perform

business operations. Subjects were aware that this was bad practice but only one
group took it upon themselves to “do it the right way”. Sadly, the part of our subject
pool that was doing test-first was most afflicted with “fat” fixtures, while those
students who were writing tests for existing code managed by large to reuse that code.
In all cases, students used both suites and individual test cases when executing their
acceptance tests. However, we did see that each of the groups decided for themselves
when to run suites more often than single cases and vice versa. It is possible that these
differences were the result of strategic decisions on behalf of the group, but also
possible that circumstance or level of experience influenced their decisions.

Our study demonstrated that subjects were able to interpret and implement FIT test
specifications without major problems. Teams were able to deliver working code to
make tests pass and even catch several bugs in the tests themselves. Given that the
projects undertaken are similar to real world business applications, we suggest that
lessons learned in this paper are likely to be applicable to an industrial setting.
Professional developers are more experienced with design tools and testing concepts,
and, therefore, would likely overcome minor challenges with as much success as our
subjects (if not more).

References

1. Chau, T., Maurer, F. Tool Support for Inter-Team Learning in Agile Software
Organizations. Proc. LSO 2004, Springer, LNCS, Vol. 3096: 98-109, 2004.

2. Cunnigham, W. FIT: Framework for Integrated Test. Online http://fit.c2.com. Last
accessed on Jan 15, 2005.

3. Fitnesse. Online http://fitnesse.org. Last accessed on Jan 15, 2005.
4. Melnik, G., Read, K., Maurer, F. Suitability of FIT User Acceptance Tests for Specifying

Functional Requirements: Developer Perspective. Proc. XP/Agile Universe 2004, LNCS,
Vol. 3134, Springer Verlag: 60–72, 2004.

5. Miller, R., Collins, C. Acceptance Testing. Proc. XPUniverse 2001, July, 2001.
6. Mugridge, R., MacDonald, B., Roop, P. A Customer Test Generator for Web-Based

Systems. Proc. XP2003, LNCS, Vol.2675, Springer Verlag: 189-197, 2003.
7. Mugridge, R., Tempero, E. Retrofitting an Acceptance Test Framework for Clarity. Proc.

Agile Development Conference 2003, IEEE Press: 92-98, 2003.
8. Steinberg, D. Using Instructor Written Acceptance Tests Using the Fit Framework,

Lecture Notes in Computer Science, LNCS, Vol. 2675, Springer Verlag: 378-385, 2003.
9. Test Driven Development. Online http://c2.com/cgi/wiki?TestDrivenDevelopment. Last

accessed on Jan 15, 2005.
10. Watt, R., Leigh-Fellows, D. Acceptance Test Driven Planning, Proc.XP/Agile Universe

2004, LNCS, Vol. 3134, Springer Verlag: 43-49, 2004.

