
Issues in Scaling Agile Using an Architecture-Centric
Approach: A Tool-Based Solution

Kris Read, Frank Maurer

University of Calgary, Department of Computer Science

{readk, maurer}@cpsc.ucalgary.ca

Abstract. Agile software development processes are best applied to small
teams on small to medium sized projects. Scaling agile methodologies is desired
in order to bring the benefits of agile to larger, more complex projects. One way
to scale agile methods is via an architecture-centric approach, in which a project
is divided into smaller modules on which sub teams can use agile effectively.
However, a problem with architecture-centric modifications to agile methods is
the introduction of non-agile elements, for instance up-front design and
integration difficulties. These issues are discussed and a tool-based solution is
presented facilitating the adoption of the architecture-centric agile approach.

Keywords. Agile Methods, Scaling, CruiseControl, Continuous Integration,
Test Driven Design, Automated Testing

1 Introduction

Martin Fowler likes to say, “Scaling agile methods is the last thing you want to do.1”
At the Canadian Workshop on Scaling Agile Processes this generated quite a stir, but
it turns out that he meant it literally. The idea is that one should examine every other
alternative first, and consider scaling as a last resort. Nonetheless there is a need to
scale agile methods. Large projects are out there, projects for which a small team is
not ideally suited. If a team needs to deliver a lot of functionality but also has a lot of
time, the team size can be quite small. Likewise the team can be small if it has not
much time but can reduce the scope of the project. However, to deliver a lot of
functionality in a short amount of time, the business solution is to add more people.
Scaling a software development project would traditionally be accomplished through
heavyweight processes and stacks of documentation. But it is desirable to reduce the
project overhead in order to maximize productivity, and so the question becomes
“How do we scale Agile Methods?” To improve the scalability of agile software
processes, one solution is to follow a divide and conquer strategy based on
architecture.
 An architecture-centric strategy is nothing new – Ken Schwaber advocates using
the first iteration of an agile project to have a smaller team define the project
architecture, and then proposes multi-team coordination through a “Scrum of Scrums”
for the remainder of iterations. If the project is initially broken down into smaller
modules, each module can be built using an agile approach. This plan enables the
application of proven agile methodologies using small cohesive teams at a module
level. Following this strategy may also enable distributed software development in an

1 Keynote address, Canadian Workshop on Scaling Agile Methods, 2003.
 http://can.cpsc.ucalgary.ca/ws2003

agile way. Agile depends upon co-located teams for close communication, but if a
project were properly divided each sub-team could independently follow an agile
process. In addition, if organizations are interested in exploiting the commonalities
between its products or systems, an architecture-centric strategy may improve code re-
use through the definition of modules. However, there is in fact an intrinsic
contradiction between agile software development and the practice of separating a
project into modules. By adopting such a strategy, will our process remain agile?
Common sense says that there will be several incompatibilities between agile
processes and the architecture-centric approach. These incompatibilities include up-
front design, team inter-communication and module integration. This paper proposes
that these problems of architecture-centric agile software development can be
overcome through innovative tool support.

2 Concept

We sometimes assume that a comprehensive document is necessary for architecture-
centric development, or that every team needs to know precisely how their product
depends upon products developed elsewhere in order to construct it. This approach,
however, is the antithesis of the maxim “Responding to Change over Following a
Plan” stated in the Agile Manifesto2. Up-front planning can still be done in an agile
way, so long as we stay focused on doing only what is required. In fact, agile projects
normally have some overhead when user stories are gathered and prioritized,
development tools chosen, environments configured, and so forth. Defining the system
architecture can be included as one of the aforementioned startup costs, if the
architecture is defined in a quick, lightweight manner that is flexible to change. The
best way to assist agile developers with quickly generating such a definition is to
provide a simple tool that they themselves can understand and work with.
 In an ideal world, modules would work flawlessly with one another, and there
would be no integration problems. Anyone who has tried integration knows that this is
rarely the case. The interfaces between modules are problematic; even if these
interfaces are well documented, it is possible that over time requirements changes or
lack of communication between parties will result in incompatibilities. Without
knowledge of exactly how outputs are going to be used, there is no guarantee that
developers will be able to deliver them as expected. To address this issue, one can
apply the same concept of continuous integration already utilized by agile teams.

“An important part of any software development process is getting reliable
builds of the software. Despite it's importance, we are often surprised when this
isn't done. We stress a fully automated and reproducible build, including
testing, that runs many times a day. This allows each developer to integrate
daily thus reducing integration problems.” 3

In an architecture-centric agile environment, it is not enough to simply perform an
automated build and test whenever there is a change to the system. Because each
module is assuming that its fellow modules will be constructed according to the

2 Agile Alliance, Manifesto Website
 http://www.agilemanifesto.org
3 http://cruisecontrol.sourceforge.net

http://cruisecontrol.sourceforge.net/

architecture, tests based on the same (possibly incorrect) assumptions do not indicate
the health of the system. When Jack is developing a module, it does the project little
good if Jack also writes tests for his interface. Jack may be very well aware of what
functionality he is providing, but likely has no knowledge of the functionality that
other modules are expecting him to provide. It is thus very probable that Jill’s module,
which uses the module written by Jack, will have some specific need Jack knows
nothing about. Conventional continuous integration should still be done for each
module, but there must also be a higher level of continuous integration to ensure
compatibility between modules even before they are implemented. It is therefore
desirable to extend the concept of continuous integration such that some kind of
quality assurance and verification of the interfaces is performed automatically with
each build. The key to this continuous integration at the module level is getting the
tests right.
 The most effective arrangement would be for Jill to act as a customer for Jack at
the module level. Jill will write tests for the functionality that she expects from Jack,
and for her to do this before Jack writes his actual code. Jill doesn’t need to test Jack’s
entire interface, just the features that she herself will be using. Thinking of testing
before doing the development is not exclusive to agile; the “V-model” adaptation of
waterfall4 is one of the simplest examples of this, when you plan ahead to use your
design documents and specification documents to verify your product. Agile processes
can replace the “V-model” comparison of functional specifications to code with
automated unit tests; this new concept can replace comparing an architecture
specification to developed interfaces. The idea of API consumers writing tests is
similar to that already discussed by Newkirk5 for doing test first design of third party
software. Newkirk asserts that in addition to writing tests before writing code, you
should write tests before using code written by others. However in this case, the third
party software itself may not have been written yet. You are tailoring the tests as much
to your own requirements as to the functionality that will finally be provided.
 This extension of “test first” design could have quite a few benefits. Any problems
in the existing architecture would be uncovered early on in the iteration by test
authors. Incompatible tests or conflicting tests will reveal problems in the architecture
before more effort is wasted. Following this plan would enable an evolution of the
system architecture; just as doing test first design for regular code helps you think and
plan ahead better, so will doing test first design for module interfaces let you look
ahead and construct your architecture. This evolution of the architecture should also
involve actual customer representatives, who can make decisions about the entire
deliverable system if conflicts or questions of priority arise. If a change in
requirements influences the system architecture, new tests that verify the new
functionality or structure can be added. The continuous integration software can
facilitate this by notifying affected teams when changes are made. Changing the
architecture drastically is potentially a source of difficulty, but to address this we can
recall how refactoring handles changes to code. Changing a small amount of code can
sometimes have sweeping effects, but now and again we need to evaluate the cost-
benefit tradeoff and make a decision. If our general strategy is to make changes little
by little, and keep the architecture healthy, then flexibility is not necessarily lost.
Teams will not only have access to the architecture definition describing the modules,

4 Daich, G: Software Test Technologies Report. 1994
5 Newkirk, J.: A Light in a Dark Place: Test-driven Development of 3rd Party Packages. 2002

but also to a set of tests representing the functionality that they need to implement;
they can use these tests both as a knowledge sharing mechanism and as a contract
between modules. Jack knows he is finished when all of Jill’s tests pass. Likewise, Jill
knows Jack’s code will integrate with her own when the tests she provided are
successfully run by Jack. In essence, the author of a test becomes a customer for the
module developer. A hierarchy of customers is formed, with one or more actual on-
site customers at the top. The real customers speak with some of the teams, who then
define user stories and tests related to the child components. At each level the
developers have their own product backlog of user stories defined by the customers
with whom they interact. These user stories are complimented by the automated tests.

Fig. 1. Each team will do test first design for the portions of other modules' interfaces that they
use. In this example, two modules depend on Interface B and one depends on Interface A. This
means that three test suites will be written before development

In summary, architecture-centric software development can be combined with agile
software development processes while retaining the spirit of agile by following these
guidelines:

1. Design the module architecture in a quick and lightweight way
2. Provide the architecture in a format that is flexible to change
3. Require test first design at the interface level
4. Tests are written by module users not module providers
5. Test authors act as customers for dependant modules

(in addition to real on-site customers)

6. Module teams define their own product backlog of user stories
7. Do continuous integration of the module based system

3 The Tool: COACH-IT

At the University of Calgary work is being done on a lightweight architecture planning
and continuous integration tool for agile processes. COACH-IT, the Component
Oriented Agile Collaborative Handler of Integration and Testing, is an effort to
develop tool support for scaling agile practices using an architecture-centric approach.
The sequence executed by COACH-IT is as follows:

1. Users define an architecture using the COACH-IT input web application
2. Multiple repositories are monitored for code changes in each module
3. When a change is detected the module and related modules are downloaded
4. The modules are deployed and tests are run to ensure interface compatibility
5. Teams are notified directly of any problems via electronic mail
6. The “health” of the system is available to the teams via a web page

COACH-IT combines and extends existing continuous integration technologies in
order to provide an end-to-end solution for module definition and testing. The
following diagram shows the interaction of COACH-IT technologies:

ig. 2. Above is a conceptual drawing of how COACH-IT works. The tool has three main
functions: Architecture Definition, Continuous Integration and Developer Feedback. Note:
superscript references in Section 3 refer to entities in Fig. 2

F

The COACH-IT Input Web Application has been designed to assist agile practitioners

ith managing architecture definitions. In an agile project the focus is on producing
alue for the customer, and the architecture definition itself is not a deliverable. Using

thin this file are module names and (optionally)

hich are then

w
v
the COACH-IT tool any developer can quickly define a set of modules and assign
JUnit tests to the interfaces between those modules, thus minimizing design overhead.
A web application11 provides a simple to use, self-documenting interface with which
most developers are already familiar. The same application can also load and edit
current or previous architecture definitions; architecture definitions in an agile project
are likely to change. Although even the minimum necessary ADL can become
complex, a web interface hides this complexity and lets the developer concentrate on
delivering something real.
 The core of COACH-IT is the Architecture Definition Language file (ADL file)2 .
This file is a minimalist representation of the modules, interfaces and relationships in
the system. Defined wi
descriptions/annotations, module repository locations, module file locations, module
interfaces, module team contact information (e-mail), module relationships
(unidirectional), relationship test associations, test repository locations, test file
locations and test contact information (e-mail). Only these few items are required as
user input to create a simple architecture for continuous integration. The ADL file is
stored as XML, which makes it both extensible and flexible. Moreover, XML is easily
formatted for human viewing and is familiar to many developers. Finally, COACH-IT
uses XML as its document format so that it can be integrated with existing and future
tools that use XML as input and output. The core technologies underlying COACH-IT
(ANT and CruiseControl) both rely heavily on XML, and therefore using XSL to
generate required files makes sense. A sample COACH-IT ADL and the latest schema
are available on the COACH-IT home page, but are not included here.
 COACH-IT determines when modules are changed using a modified version of the
CruiseControl continuous integration tool4. The primary modification made to
CruiseControl allows the monitoring of multiple repositories, w
monitored individually according to custom settings and schedules. Each team is thus
able to configure their own repository to suit their unique needs5. Input to the
CruiseControl monitor is via an XML file generated from the ADL using an XSL
script3. The CruiseControl configuration file follows the standard CruiseControl
format but allows multiple project definitions (one for each module). More
information on CruiseControl is available at (http://crusecontrol.sourceforge.net).
When COACH-IT detects a changed module it calls an ANT build file to perform the
integration and testing6. This ANT file is likewise generated via the ADL file using
XSL. Each component will have one ANT file that will download the module and any
other dependant modules, deploy them on the application server7 and run the suite(s)
of associated JUnit tests8. Because these ANT files are generated using XSL scripts it
is simple to add additional ANT tasks if required; for more information about ANT
visit the Apache ANT page at (http://ant.apache.org).
 COACH-IT is also able to directly notify teams and individual developers via
electronic mail. In the event of a test failure or other change in system health,
COACH-IT can be configured to notify any and all involved parties, such as the

1 … 10 References to entities in Figure 2

http://crusecontrol.sourceforge.net/
http://ant.apache.org/

authors responsible for the test, the authors of the involved modules, the developers
who last committed, the team leaders, or the entire teams of the failed components.
This direct notification is a key component to why continuous integration is effective.
Alistair Cockburn has defined the concept of “information radiators” as anything that
will “increase team communication without unnecessary disruption” (Cockburn,
2003). The goal of COACH-IT is partly to act as such a radiator, providing as much
information as possible through everyday channels.

rol XML
rmat . In fact, each module creates its own logs compatible with the standard
ruiseControl web application. However, COACH-IT also includes a custom web

OACH-IT is being developed using JAVA, XSL and XML technologies, builds on
 runs on a free, open-source platform. At the

resent time COACH-IT is able to monitor multiple J2EE components in multiple

Fig. 3. Health of the system can be viewed for components, interfaces and relationships.
Initially a brief summary is shown, more detail is available by clicking on the links

Output from the CruiseControl monitor is also in standard CruiseCont

9fo
C
application based partially on CruiseControl that summarizes the results of tests across
the entire architecture10. Details and contact information are provided for each test in
the event of a failure. There is also a history feature that allows the user to browse
through past tests and system states interactively.

5 State of Implementation

C
CruiseControl and Apache ANT, and
p
repositories, downloading, deploying and testing them as required. Our ADL file
definition is stable and can be verified against an XML schema. Furthermore, the
COACH-IT web interface allows simple interactive editing and creation of ADL files
as well as an overall display of system health. COACH-IT is at the stage where it can

be self-hosted. In fact, COACH-IT has been designed in a modular way and is
therefore quite suitable for development using the previously discussed approach. If
you would like to see a demo of the system, or download it for your own use, please
contact the authors.

6 Future Work

Future work on COACH-IT first includes further refinements to the output web-

nstantly giving teams as much information as possible
bout their own component as well as the entire system. The COACH-IT system also

ty and/or satisfaction of teams using COACH-IT under the described

he architecture-centric strategy is still open to some criticism. Yes, there will be
finition, even if this overhead is

ssened through tool support. However, there is always a minimal amount of

application with the goal of co
a
needs to be generalized in such a way as to be applicable to non-J2EE projects.
Conceptually, COACH-IT can easily be integrated with existing visual modeling
(UML) tools through our XML based architecture definition. Conversion allowing
users of popular industry modeling tools to directly import their component structures
into COACH-IT is on the horizon. We would also like to integrate COACH-IT with
MASE, a tool to support agile planning and estimation developed at the University of
Calgary. MASE will facilitate developer and team communication in a non-intrusive
manner.
 A study of projects developed using an architecture-centric agile process with tool
support is in the planning stages. This study will be collecting data to evaluate the
productivi
methodology. In the future COACH-IT should also be compared with other tools used
to keep track of the state of a system under development, and possibly incorporate
some of the compatible features of these systems.

7 Conclusion and Potential Problems

T
some overhead in maintaining the architecture de
le
documentation necessary to help the developers do their work. To quote to Kent Beck,
“Contrary to the claims of some of XP's detractors you do in fact invest time modeling
when taking an XP approach, but only when you have no other choice. Sometimes it is
significantly more productive for a developer to draw some bubbles and lines … than
it is simply start hacking out code” (Beck, 2000). This approach was also designed
with an object-oriented refactoring environment in mind, and so may not be applicable
to other project types. Moreover, A team management process, like Scrum, is
essential when working on a large or distributed agile project. COACH-IT, and the
concepts proposed above, are meant to compliment existing agile processes. Lastly,
there is an element of trust involved, as in many agile practices. COACH-IT does not
restrict individuals from changing the architecture or tests at whim. Although this
attitude may work well for some teams, there is no solid data to defend it yet. The
concept and tool will undoubtedly be improved with experience, but by combining
lightweight planning with an architecture-centric design strategy we hope to get the
most benefit without compromising the spirit or practices of agile methods.

8 Acknowledgements

based heavily upon the CruiseControl Continuous
tegration Toolkit and Apache Ant. Credit should also go to xADL, an XML-based

nce Home Page. Web, 2003. http://www.agilealliance.com

The COACH-IT Software is
In
ADL developed by the Institute for Software Research at the University of California,
Irvine. The COACH-IT ADL is based roughly on the concepts and methods of xADL.
 Work on implementing COACH-IT has involved the efforts of graduate students
in a Distributed Software Engineering course (CPSC601.85) at the University of
Calgary and the University of Alberta. In alphabetical order: Yichuan Cao, Amy Law,
Tracy Li, Zhizhong Li, Anny Lin, Bill Luthi, Kris Read, Lance Titchkosky, Eileen
Wang, and Fakui Wang.

References

1. Agile Allia

. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and

4. s. Proceedings, 2003.

2
the Unified Process. John Wiley & Sons, February, 2002

3. Beck, K.: eXtreme Programming Explained. Addison Wesley, 2000
Canadian Invited Workshop on Scaling XP/Agile Method
http://can.cpsc.ucalgary.ca/ws2003/

5. COACH-IT Home Page. Web, 2003
http://pages.cpsc.ucalgary.ca/~readk/COACH-IT

n-Powered Methodology for Small Teams. 6. Cockburn, A.: Crystal Clear: A Huma
Draft, 2003. http://members.aol.com/acockburn/

7. CruiseControl Home Page. Web, 2003. http://cruisecontrol.sourceforge.net
Fowler, M.: C8. ontinuous Integration. Web, 2003
http://www.martinfowler.com/articles/continuousIntegration.html

9. Daich, G., Price, G., Ragland, B., Dawood, M.: Software Test Technologies
 Utah. 1994

12. ci.edu/projects/xarchuci/

Report. Software Technology Support Center, Hill Air Force Base,
10. Newkirk, J.: A Light in a Dark Place: Test-driven Development of 3rd Party

Packages. XP Agile Universe, 2002
11. Schwaber, K.: Agile Software Development with SCRUM. Prentice Hall, 2001

xADL Home Page. Web, 2003. http://www.isr.u

http://www.agilealliance.com/
http://can.cpsc.ucalgary.ca/ws2003/
http://pages.cpsc.ucalgary.ca/~readk/COACH-IT
http://members.aol.com/acockburn/
http://cruisecontrol.sourceforge.net/
http://www.martinfowler.com/articles/continuousIntegration.html

	Issues in Scaling Agile Using an Architecture-Centric Approach: A Tool-Based Solution
	1 Introduction
	2 Concept
	3 The Tool: COACH-IT
	5 State of Implementation
	6 Future Work
	7 Conclusion and Potential Problems
	8 Acknowledgements
	References

