

Fakultät Informatik

Master-Thesis

Refactoring of Acceptance Tests

Vorgelegt von: Heiko Ordelt
xxx
xxx
hordelt@gmail.com

Matrikelnummer: xxx

Zeitraum: 01.10.2007 – 31.03.2008

Erstgutachterin: Prof. Dr. Astrid Schmücker-Schend

Zweitgutachter: Prof. Dr. Peter Knauber

Praktischer Teil angefertigt bei:

Prof. Dr. Frank Maurer
Agile Software Engineering Group

University of Calgary
Department of Computer Science
2500 University Dr NW
Calgary, Alberta T2N 1N4
Canada

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und ohne Benutzung anderer als der

angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus

veröffentlichten und nicht veröffentlichten Schriften entnommen wurden, sind als solche kenntlich

gemacht. Die Arbeit hat in dieser oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegen.

Mannheim, 31.03.2008 ______________________________________

 Unterschrift

Heiko Ordelt

Refactoring of Acceptance Tests

i

Abstract

Executable Acceptance Test Driven Development (EATDD) is used to perform the test-first paradigm

on customer level. In EATDD, requirements of the system are first translated into business-facing

executable acceptance tests before developers start to work on that particular feature. It provides

the customer with the confidence that the system satisfies his expectations and helps developers to

understand the requirements better.

Since requirements can change over time, the appropriate acceptance tests have to be altered to be

up-to-date with the customers’ expectations. This process can be time-consuming and risky as

inconsistencies can be overlooked easily. Additionally, acceptance tests have to be modified to

improve their readability and understandability.

Refactoring of acceptance tests is used to keep fixture and acceptance test definition consistent. The

automated refactoring support for FitClipse allows the user to carry out changes to acceptance tests

in an efficient and safe manner. It decreases the risk of faults and helps keeping the tests up-to-date.

German Abstract

In Executable Acceptance Test Driven Development (EATDD) wird das “Test-First”-Paradigma auf die

Kundenebene angewendet. Dies erfolgt durch Übersetzen der Anforderungen eines

Software-Systems in geschäftsorientierte ausführbare Akzeptanztests. Die Entwicklung einer

bestimmten Funktionalität beginnt erst, nachdem der dazugehörige Akzeptanztest erstellt wurde.

Dies gibt dem Kunden die Gewissheit, dass das entwickelte System seine Erwartungen erfüllt und

hilft dem Entwicklungsteam die Anforderungen besser zu verstehen.

Da Systemanforderungen während der Entwicklung geändert werden können, müssen die

entsprechenden Akzeptanztests bei Bedarf angepasst werden um die Erwartungen des Kunden

widerzuspiegeln. Dieser Prozess kann sehr zeitaufwendig und fehleranfällig sein, da Inkonsistenzen

zwischen Test-Definition und Fixture leicht übersehen werden können. Des Weiteren müssen

Akzeptanztests modifiziert werden um die Lesbarkeit und Verständlichkeit zu verbessern.

Refactoring von Akzeptanztests hält Test-Definition und die dazugehörigen Fixtures konsistent. Die

für diese Arbeit entwickelte automatisierte Refactoring-Funktion in FitClipse erlaubt es dem

Benutzer Änderungen an Akzeptanztests effizient und sicher auszuführen. Diese Unterstützung

verringert das Fehlerrisiko und hilft die Tests effektiv und aktuell zu halten.

Heiko Ordelt

Refactoring of Acceptance Tests

ii

Publications

Content, ideas and figures from this thesis have appeared previously in the following publication:

Heiko Ordelt, Frank Maurer: Acceptance Test Refactoring, Proceedings 9th International Conference

on Agile Processes and eXtreme Programming in Software Engineering (XP2008), Limerick, Ireland,

Springer, 10-14 June 2008.

Heiko Ordelt

Refactoring of Acceptance Tests

iii

Acknowledgments

Without the help of many people, I would not been able to create this work. I would like to thank

these people by heart:

At first, Prof. Dr. Schmücker-Schend and Prof. Dr. Frank Maurer for supervising my thesis and making

my stay in Calgary possible as well as Prof. Dr. Peter Knauber for being my co-supervisor and giving

me the opportunity to join the master course.

The members of the ASE group of the University of Calgary, Johannes Fischer and Felix Riegger for all

the support and the great time we spent together.

Last but not least, I would like to use the opportunity to thank everyone who has helped me during

my studies. Your support has significantly contributed to my success.

Heiko Ordelt

Refactoring of Acceptance Tests

iv

Dedication

It was a long way.

To all people who have been supporting me over the last years.

Heiko Ordelt

Refactoring of Acceptance Tests

v

Table of Figures

FIGURE 3.1: LATE TESTING IN DEVELOPMENT PROCESSES WITH LONG FEEDBACK CYCLES .. 11

FIGURE 3.2: FREQUENT TESTING IN DEVELOPMENT PROCESSES WITH SHORT FEEDBACK CYCLES ... 11

FIGURE 4.1: THE STEPS OF TEST FIRST DESIGN (AMBLER, 2007).. 15

FIGURE 4.2: REFACTORING SYSTEM IN TEST DRIVEN DEVELOPMENT (AMBLER, 2007) ... 16

FIGURE 4.3: EXAMPLE ACCEPTANCE TEST EXECUTION OUTPUT .. 17

FIGURE 4.4: ACCEPTANCE TESTING CYCLE IN EXTREME PROGRAMMING... 18

FIGURE 4.5: EXECUTABLE ACCEPTANCE TESTING WORKFLOW .. 20

FIGURE 4.6: MULTI-MODAL TEST EXECUTION .. 21

FIGURE 4.7: EFFECT OF CHANGING REQUIREMENTS IN EXECUTABLE ACCEPTANCE TEST DRIVEN DEVELOPMENT 22

FIGURE 5.1: EXAMPLE OF TEST DEFINITION AND FIXTURE (COLUMNFIXTURE) ... 27

FIGURE 5.2: EXAMPLE OF TEST DEFINITION AND FIXTURE (DOFIXTURE) ... 28

FIGURE 5.3: TEST DEFINITION AND FIXTURE BEFORE “RENAME ACCEPTANCE TEST” REFACTORING WITH ONE FIXTURE 34

FIGURE 5.4: TEST DEFINITION AND FIXTURE AFTER “RENAME ACCEPTANCE TEST” REFACTORING WITH ONE FIXTURE 34

FIGURE 5.5: TEST DEFINITION AND FIXTURES BEFORE “RENAME ACCEPTANCE TEST” REFACTORING WITH MULTIPLE FIXTURES 34

FIGURE 5.6: TEST DEFINITION AND FIXTURES AFTER “RENAME ACCEPTANCE TEST” REFACTORING WITH MULTIPLE FIXTURES 35

FIGURE 5.7: TEST DEFINITION AND FIXTURE BEFORE “ADD COLUMN” REFACTORING OF GIVEN VALUE COLUMN 36

FIGURE 5.8: TEST DEFINITION AND FIXTURE AFTER “ADD COLUMN” REFACTORING OF GIVEN VALUE COLUMN 37

FIGURE 5.9: TEST DEFINITION AND FIXTURE BEFORE “ADD COLUMN” REFACTORING OF EXPECTED-VALUE COLUMN 37

FIGURE 5.10: TEST DEFINITION AND FIXTURE AFTER “ADD COLUMN” REFACTORING OF EXPECTED-VALUE COLUMN 38

FIGURE 5.11: TEST DEFINITION AND FIXTURE BEFORE “REMOVE COLUMN” REFACTORING OF AN EXPECTED-VALUE COLUMN 40

FIGURE 5.12: TEST DEFINITION AND FIXTURE AFTER “REMOVE COLUMN” REFACTORING OF AN EXPECTED-VALUE COLUMN 40

FIGURE 5.13: TEST DEFINITION AND FIXTURE BEFORE “REMOVE COLUMN” REFACTORING WITH GIVEN VALUE COLUMN 41

FIGURE 5.14: TEST DEFINITION AND FIXTURE AFTER “REMOVE COLUMN” REFACTORING WITH GIVEN VALUE COLUMN 42

FIGURE 5.15: EXECUTION RESULT AFTER “REMOVE COLUMN” REFACTORING WITH REFERENCES .. 42

FIGURE 5.16: TEST DEFINITION AND FIXTURE BEFORE “RENAME ACTION” REFACTORING .. 44

FIGURE 5.17: TEST DEFINITION AND FIXTURE AFTER “RENAME ACTION” REFACTORING .. 45

FIGURE 5.18: TEST DEFINITION AND FIXTURE BEFORE “ADD ACTION” REFACTORING ... 46

FIGURE 5.19: TEST DEFINITION AND FIXTURE AFTER “ADD ACTION” REFACTORING ... 47

FIGURE 5.20: TEST DEFINITION AND FIXTURE BEFORE “REMOVE ACTION” REFACTORING WITHOUT METHOD REFERENCES 48

FIGURE 5.21: TEST DEFINITION AND FIXTURE AFTER “REMOVE ACTION” REFACTORING WITHOUT METHOD REFERENCES 49

FIGURE 5.22: TEST DEFINITION AND FIXTURE BEFORE “REMOVE ACTION” REFACTORING WITH METHOD REFERENCES 49

FIGURE 5.23: TEST DEFINITION AND FIXTURE AFTER “REMOVE ACTION” REFACTORING WITH METHOD REFERENCES 50

FIGURE 6.1: THE THREE LAYERS OF ECLIPSE (GAMMA, ET AL., 2003 P. 5) .. 51

FIGURE 6.2: ECLIPSE PLATFORM OVERVIEW (GAMMA, ET AL., 2003 P. 6) ... 52

FIGURE 6.3: FITCLIPSE OVERVIEW .. 53

Heiko Ordelt

Refactoring of Acceptance Tests

vi

FIGURE 6.4: REFACTORING MENU OF FITCLIPSE .. 56

FIGURE 6.5: IMPLEMENTED USER INTERFACE OF RENAME REFACTORING (INPUT) .. 56

FIGURE 6.6: IMPLEMENTED USER INTERFACE OF RENAME REFACTORING (PREVIEW) .. 57

FIGURE 6.7: FITCLIPSE REFACTORING PACKAGE .. 58

FIGURE 6.8: REFACTORING EXTENSION ARCHITECTURE OVERVIEW ... 59

FIGURE 6.9: CLASS DIAGRAM OF TESTDEFINITIONPARSER ... 60

FIGURE 6.10: TESTDEFINITIONPARSER INDEXING OPERATION MODE .. 61

FIGURE 6.11: CLASS DIAGRAM OF FIXTUREPARSER .. 61

FIGURE 6.12: ABSTRACT SYNTAX TREE WORKFLOW (KUHN, ET AL., 2006) .. 62

FIGURE 6.13: CLASS DIAGRAM OF REFACTORINGTEST .. 63

FIGURE 6.14: CLASS DIAGRAM OF REFACTORINGTESTFACTORY.. 64

FIGURE 6.15: ROWFIXTURE TEST AND FIXTURE CODE .. 65

FIGURE 6.16: COLUMNFIXTURE TEST AND FIXTURE CODE ... 65

FIGURE 6.17: REFACTORINGTESTFACTORY SEQUENCE DIAGRAM .. 66

FIGURE 6.18: REFACTORING WORKFLOW .. 67

FIGURE 6.19: DIAGRAM OF REFACTORING CALLING HIERARCHY ... 68

FIGURE 6.20: SEQUENCE DIAGRAM OF THE ECLIPSE REFACTORING WORKFLOW .. 69

FIGURE 6.21: CLASS DIAGRAM OF CHANGE OBJECT HIERARCHY ... 70

FIGURE 6.22: TEST DATABASE STRUCTURE EXAMPLE ... 71

FIGURE 6.23: LOW FIDELITY PROTOTYPE OF "RENAME ACCEPTANCE TEST" REFACTORING .. 72

FIGURE 6.24: INPUT USER INTERFACE MASK OF "RENAME ACCEPTANCE TEST" REFACTORING ... 73

FIGURE 6.25: LOW-FIDELITY PROTOTYPE OF "ADD COLUMN" REFACTORING .. 74

FIGURE 6.26: INPUT USER INTERFACE MASK OF "ADD COLUMN" REFACTORING ... 75

FIGURE 6.27: LOW-FIDELITY PROTOTYPE OF "REMOVE COLUMN" REFACTORING .. 76

FIGURE 6.28: INPUT USER INTERFACE MASK OF "REMOVE COLUMN" REFACTORING ... 77

FIGURE 6.29: LOW-FIDELITY PROTOTYPE OF "RENAME ACTION" REFACTORING .. 78

FIGURE 6.30: INPUT USER INTERFACE MASK OF "RENAME ACTION" REFACTORING ... 78

FIGURE 6.31: LOW-FIDELITY PROTOTYPE OF "ADD ACTION" REFACTORING .. 80

FIGURE 6.32: INPUT USER INTERFACE MASK OF "ADD ACTION" REFACTORING ... 81

FIGURE 6.33: LOW-FIDELITY PROTOTYPE OF "REMOVE ACTION” REFACTORING .. 82

FIGURE 6.34: INPUT USER INTERFACE MASK OF "REMOVE ACTION" REFACTORING ... 83

FIGURE 6.35: REFACTORING ACCEPTANCE TESTING WORKAROUND .. 84

Heiko Ordelt

Refactoring of Acceptance Tests

vii

List of Tables

TABLE 3.1: ACCEPTANCE TESTING SYNONYMS (MAURER, ET AL., 2006) .. 12

TABLE 5.1: REFACTORING CATALOGUE FOR COLUMNFIXTURE .. 30

TABLE 5.2: REFACTORING CATALOGUE FOR DOFIXTURE .. 31

TABLE 6.1: FIXTURE RENAME PROCEDURE EXAMPLES OF “RENAME ACCEPTANCE TEST” REFACTORING 73

Heiko Ordelt

Refactoring of Acceptance Tests

viii

Table of Contents

ABSTRACT ... I

PUBLICATIONS ... II

ACKNOWLEDGMENTS ...III

DEDICATION .. IV

TABLE OF FIGURES .. V

LIST OF TABLES ... VII

TABLE OF CONTENTS .. VIII

1 INTRODUCTION ... 1

1.1 EXECUTABLE ACCEPTANCE TEST-DRIVEN DEVELOPMENT .. 1

1.2 REFACTORING OF ACCEPTANCE TESTS .. 2

1.3 THESIS GOALS ... 2

1.4 THESIS STRUCTURE ... 2

2 RELATED WORK ... 4

2.1 TEST REFACTORING IN GENERAL.. 4

2.2 EFFECTIVENESS OF ACCEPTANCE TESTS ... 5

2.3 REQUIREMENTS ON NEXT GENERATION FUNCTIONAL TESTING TOOLS .. 6

2.4 CURRENT TOOL SUPPORT .. 6

3 AGILE SOFTWARE DEVELOPMENT AND EXTREME PROGRAMMING (XP) ... 7

3.1 OVERVIEW .. 7

3.2 AGILE METHODS .. 8

3.3 EXTREME PROGRAMMING (XP) .. 8

3.4 TESTING IN XP ... 10

3.4.1 Time and Frequency of Testing ... 11

3.4.2 Unit Testing ... 12

3.4.3 Acceptance Testing ... 12

4 TEST DRIVEN DEVELOPMENT AS ONE CORE PRACTICE OF XP .. 15

4.1 UNIT TEST DRIVEN DEVELOPMENT .. 15

4.2 EXECUTABLE ACCEPTANCE TEST DRIVEN DEVELOPMENT .. 17

4.2.1 Overview ... 17

4.2.2 Tools .. 19

Heiko Ordelt

Refactoring of Acceptance Tests

ix

4.2.2.1 Fit Framework and FitLibrary ... 19

4.2.2.2 FitNesse.. 20

4.2.3 Multi-Modal Test Execution .. 21

4.2.4 Manual Acceptance Test Modification Issues ... 21

5 REFACTORING OF ACCEPTANCE TESTS ... 24

5.1 GOAL OF ACCEPTANCE TEST REFACTORING ... 24

5.2 SOURCE CODE REFACTORING ... 24

5.3 DEFINITION AND SEPARATION FROM SOURCE CODE REFACTORING .. 25

5.4 ANALYSIS OF FIT BASED ACCEPTANCE TESTS .. 27

5.5 REFACTORING CATALOGUE .. 29

5.5.1 Rename Acceptance Test .. 32

5.5.2 ColumnFixture ... 35

5.5.2.1 Add Column ... 35

5.5.2.2 Remove Column ... 38

5.5.3 DoFixture ... 43

5.5.3.1 Rename Action ... 43

5.5.3.2 Add Action ... 45

5.5.3.3 Remove Action ... 47

6 IMPLEMENTATION OF AUTOMATED REFACTORING TOOL SUPPORT ... 51

6.1 ENVIRONMENT OF IMPLEMENTATION ... 51

6.1.1 Eclipse Platform .. 51

6.1.2 FitClipse ... 53

6.2 USED ECLIPSE PLUG-INS .. 54

6.2.1 Java Development Tools ... 54

6.2.2 Language Toolkit .. 55

6.3 INTEGRATION INTO THE ECLIPSE REFACTORING FRAMEWORK .. 56

6.4 OVERALL STRUCTURE .. 58

6.4.1 Package Structure ... 58

6.4.2 Architecture and Design .. 59

6.4.3 Core Components .. 59

6.4.3.1 TestDefinitionParser .. 59

6.4.3.2 FixtureParser .. 61

6.4.3.3 RefactoringTest .. 63

6.4.3.3.1 RefactoringTestFactory ... 64

6.5 REFACTORING EXECUTION WORKFLOW .. 67

6.6 MULTIPLE TEST AND FIXTURE SUPPORT .. 70

Heiko Ordelt

Refactoring of Acceptance Tests

x

6.7 SPECIFIC REFACTORING IMPLEMENTATION .. 71

6.7.1 Rename Acceptance Test .. 72

6.7.2 Add Column ... 74

6.7.3 Remove Column .. 76

6.7.4 Rename Action .. 77

6.7.5 Add Action ... 79

6.7.6 Remove Action .. 82

6.8 CORRECTNESS OF THE SYSTEM .. 83

6.9 LIMITATIONS ... 84

7 CONCLUSION AND FUTURE WORK .. 85

7.1 PROBLEMS .. 85

7.2 CONTRIBUTIONS .. 86

7.3 FUTURE WORK .. 86

8 REFERENCES .. 89

Heiko Ordelt

Refactoring of Acceptance Tests

1

1 Introduction

1.1 Executable Acceptance Test-Driven Development

Test Driven Development (TDD) is a well-known software development technique that follows the

test-first approach. In TDD, developers write test code before any production code is written. This

among other aspects leads to better designed code and gives a regression safety net which helps to

find bugs quicker.

While TDD works on a level of methods and functions, Executable Acceptance Test Driven

Development (also called story tests (Kerievsky, 2004), customer tests (Beck, et al., 2004), example

driven development (Marick, 2003) and scenario tests (Kaner, 2003)) pushes the TDD paradigm up to

the level of features or requirements. Executable Acceptance Test Driven Development (EATDD)

requires that no code must be written for a feature unless one of the corresponding automated

acceptance tests fails.

Traditional methods of requirements elicitation include interviews, questionnaires, observation and

study of business documents (Maciaszek, 2001 p. 82). In Extreme Programming, requirements are

gathered by creating user stories together with the customer. Then, developers create acceptance

tests in collaboration with the customer who formalizes the user story into an executable and

readable specification (Melnik, 2007 p. 4). When at least one feature has been translated, the

development team can start to implement that feature.

However, during development it is very likely that the requirements of the system change which

results in outdated acceptance tests that do not match the actual acceptance criteria. The

development team uses the tests to see which features of the system are working and which still

need to be implemented. Therefore, the suitable acceptance tests of the changed requirements

have to be modified to be up-to-date. Once they are updated, the development team can start

working on that feature.

Furthermore, acceptance tests have to be very focused on a specific feature including enough

information for the development team to implement that particular feature as well as for the

customer to be confident that the system works as expected. At last, acceptance tests can quickly

grow in size and complexity. It is not easy to get the accurate test definition at first try.

Heiko Ordelt

Refactoring of Acceptance Tests

2

1.2 Refactoring of Acceptance Tests

As mentioned before, by following the Executable Acceptance Test Driven Development approach

the acceptance tests and the actual system requirements have to be up-to-date all the time.

Whenever the requirements of the system under development change, one or more acceptance

tests have to be modified.

In large-scale software development projects, the amount of acceptance tests and their size can

grow very quickly which results in a large test database. Carrying out modifications in such an

environment is time-consuming and error-prone. Additionally, the fixture that translates the test

cases into system calls has to be kept consistent with the test definition.

Furthermore, whenever production code is refactored unit tests can be used to check whether the

system’s behaviour has been kept unchanged. Acceptance tests lack such an important regression

safety net and thus modifications have to be made safely to minimize the risk of an unwanted

behaviour change.

Acceptance test refactoring helps to modify acceptance tests in a safe and less error-prone way.

Furthermore, automated acceptance test refactoring lowers the test maintenance effort in the same

way as source code refactoring tools lower it for source code updates.

1.3 Thesis Goals

This thesis has two goals:

The first goal is to find applicable ways to refactor acceptance tests. Although it is possible to

refactor manually, tool support is considered crucial. Therefore, the second goal is to extend the

existing functional testing development environment (FTDE) FitClipse with the capability of

automated refactoring of acceptance tests.

1.4 Thesis Structure

This thesis is organized as follows:

Chapter 2 presents an overview of publications that are related to the scope of this work. The

following chapter 3 introduces the reader to agile software development, the agile method Extreme

Programming (XP) and the testing techniques utilized. This builds a bridge to one of the core

practices of XP, Test Driven Development. Chapter 4 discusses Executable Acceptance Test Driven

Heiko Ordelt

Refactoring of Acceptance Tests

3

Development, Tools and issues of manual test modification and thus the motivation of this work.

The refactoring approach developed in chapter 5 is the foundation for the following implementation

of automated refactoring support in FitClipse which is described in Chapter 6. The thesis concludes

with a summary and the future work.

Heiko Ordelt

Refactoring of Acceptance Tests

4

2 Related Work

2.1 Test Refactoring in General

Test refactoring in general has been discussed by several authors. However, the publications address

unit test refactoring rather than acceptance test refactoring. Although unit testing is not the focus of

this work, the following will give a short overview of the work that has been done in this area.

Beck refactored production code as well as the appropriate unit test code in his examples but he

only looked at it on the level of code rather than on a level of purpose (Beck, 2003). However, it

showed that test code refactoring might be needed when production code is refactored but not

explicitly.

Deursen et al. published a paper (Deursen, et al., 2001) where they identified 11 test code smells,

which have a negative impact on the readability or maintainability. Additionally, they presented a set

of 6 ways of refactoring to avoid these problems. It primarily focused on the practice and did not

address issues like test code refactoring in a safe way. Nevertheless, they were the first ones who

differentiated between production code and test code refactoring.

In a later publication, Deursen and Moonen divided the production code refactoring into 5 different

types as mentioned by Fowler (Fowler, 2000) and they used this classification to identify which

refactoring types affect the test code (Deursen, et al., 2002). With this contribution, it was possible

to define which refactoring types must be applied after a production code refactoring has been

performed.

Based on these results, Guerra and Fernandes (Guerra, et al., 2007) developed a graphical

representation of the structure of JUnit tests to verify whether a test refactoring has been carried

out without changing the behaviour. They also created a catalogue of different types of unit test

code refactoring in their paper.

Heiko Ordelt

Refactoring of Acceptance Tests

5

2.2 Effectiveness of Acceptance Tests

Andrea discussed typical problems of functional tests and presented a list of characteristics which

enables functional tests to be effective requirement artefacts (Andrea, 2005). In addition, she

modified an ineffective test (based on the presented characteristics) to simplify its structure and

improve the readability. The five characteristics discovered are briefly described as follows:

 Declarative

Functional tests must serve the customer and the development team. The customer must be

able to see that the system satisfies the acceptance criteria. In contrast, developers must be

able to read and understand the tests to know what they have to code. Declarative tests are

written in the language of the business domain describing the requirements rather than in a

language of a graphical user interface or the application-programming interface.

 Succinct

The purpose of acceptance tests is to describe requirements of a software system in a

comprehensive way. Large test definitions are hard to follow and not focused enough to be

easy understandable. Therefore, functional tests should be kept small and to the point.

 Autonomous

A functional test is typically read by many different readers including the customer and

developers. It is important that the test is self-contained so that every reader understands it

the same way. Missing preconditions should be avoided so that readers are not confused

about the origin of data that is processed in the test. Furthermore, every test must be able

to run without any dependencies on other tests or suites.

 Sufficient

Functional tests should not be overloaded with all possible test cases. Rather than testing all

input combinations of a system, they should describe and test business rules. While unit

tests fill in the granular detail for business rules, functional tests focus on the important

workflow scenarios and key business rules.

Heiko Ordelt

Refactoring of Acceptance Tests

6

 Locatable

Each individual functional test is just one piece of a puzzle. In order to effectively serve as a

requirements specification, the reader must be able to connect the pieces together into a

complete picture (Andrea p. 30). In large-scaled systems, the number of acceptance tests

can grow very quickly. In this case, a database of well-named acceptance tests can help

developers to find all tests related to a feature easily and makes the developing more

efficient.

Not only does this show that acceptance tests can be improvable but it also shows the need to

modify them. Functional tests might be ineffective and in that case need to be changed to be

valuable for the development team as well as for the customer.

2.3 Requirements on Next Generation Functional Testing Tools

Andrea also discussed requirements on the next generation of functional testing tools (Andrea, 2007

p. 61). One important aspect of writing functional tests is that they have to be easy and safe to

maintain. Unit tests and acceptance tests of a system build a regression safety net that helps

developers at any time to ensure that the application behaves as expected. Whenever production

code is refactored, this regression safety net makes changes of the behaviour or introduced bugs

visible.

In contrast, functional tests do not have such a regression safety net thus the functional testing tool

must support the user with powerful and safe refactoring capabilities to keep functional tests

effective. They are even more important for a Functional Testing Development Environment (FTDE)

than for an Integrated Development Environment (IDE).

2.4 Current Tool Support

There are several functional testing tools available that support Executable Acceptance Test Driven

Development like FitNesse (FitNesse, 2008), AutAT (AutAT, 2005), ConFIT (ConFIT, 2007), FITpro

(Luxoft, 2007) and GreenPepper (Pyxis, 2008). However, none of these tools supports acceptance

test refactoring to carry out changes to functional tests.

Heiko Ordelt

Refactoring of Acceptance Tests

7

3 Agile Software Development and Extreme Programming (XP)

3.1 Overview

Agile software development is a set of concepts applicable for software developing projects. This

set, described by the Agile Manifesto (Manifesto, 2001), consists of four statements:

 Individuals and interactions over processes and tools

Processes and Tools should serve only one purpose: to help the individuals involved to do

their jobs better. If the processes and tools become too complex, people start having to

manage the process instead of their work. A flowing communication among team members

helps to keep a close relationship and increases the change for better decisions by involving

the whole team.

 Working software over comprehensive documentation

Documentation is an important artefact of software development amongst others to be able

to maintain the system after it has been fully implemented. However, the goal is to produce

a working software system that fits the needs of the customer. Therefore, agile teams

release working systems in frequent intervals with more functionality in each step. This

approach keeps the code simple and understandable and reduces the need of

documentation to a minimum. Furthermore, it satisfies the customer as he can see the

progress and development and is able to run the system under development at every

moment.

 Customer collaboration over contract negotiation

In agile environments, the presence of the customer is important and has advantages for

both sides. The developers can clarify questions about requirements immediately and see

whether they are on track or not. On the other hand, the customer stays in touch with the

developing team and can step in immediately to ensure he is receiving the system he

requested. Furthermore, useful ideas coming up during development process can be

integrated to make the software better.

Heiko Ordelt

Refactoring of Acceptance Tests

8

 Responding to change over following a plan

Changing requirements are most likely in every software development project and are hard

to avoid. The development should be in line with some kind of project plan but meeting the

customer’s goals of the project must have the highest priority. Being open for changes,

having the flexibility not to follow the plan exactly and small release cycles make agile

development deliver software the customer wants rather than software equivalent to a plan

created at the beginning of the project.

These four statements build the conceptual base of agile methods that are described in the

following.

3.2 Agile Methods

Agile Methods is a common term for a set of software development processes, which are in line with

the Manifesto for Agile Software Development (Manifesto, 2001). These processes are nonlinear,

iterative and lightweight and expedite the software development without compromising software

quality and user satisfaction (Wang, et al., 2006 p. 308). Among others, the following methods are

included: Extreme Programming (XP) by Beck (Beck, et al., 2004), Scrum by Schwaber (Schwaber, et

al., 2002), Crystal Clear by Cockburn (Cockburn, 2004 p. 3), Feature Driven Development (FDD) by

Palmer (Palmer, et al., 2002), Dynamic Systems Development Method by Stapleton (Stapleton, 1997)

and Adaptive Software Development by Highsmith (Highsmith, 2000).

From these methods, only Extreme Programming is related to this thesis’ scope of work and thus will

be further discussed.

3.3 Extreme Programming (XP)

Extreme Programming (XP) is a style of software development focusing on excellent application of

programming techniques, clear communication and teamwork (Beck, et al., 2004 p. 2). It was among

others created by Kent Beck who realized that most common failures in software development

projects can be traced to five different categories and that improvements in these areas would lead

to a significantly better development process (Crispin, et al., 2002 p. 4). Extreme Programming is

based on:

 Communication

Flowing communication in the developer team including the customer improves team

cohesion and helps to work together towards the same goal.

Heiko Ordelt

Refactoring of Acceptance Tests

9

 Simplicity

Starting with the simplest design possible and extending it systematically.

 Feedback

Feedback is generated early and often as possible. XP strongly recommends that these

feedbacks to be generated automatically.

 Courage

Developers must be able to express their opinions with courage. This is mandatory to

improve communication in the team.

 Respect

Every member of the team needs respect from his fellows.

These five values led to a set of 12 practices that represents the rules of Extreme Programming. The

primary practices are detailed described as follows:

 Sit Together as a whole team

All members of a team should sit in a room to be able to communicate face-to-face. It helps

people to work as a whole team rather than working alone. Even though they are together

all time, it is important to satisfy the need of privacy by providing private spaces.

 Informative workspace

Information about the project progress should be immediately visible by all team members.

For Example, by putting story cards on a wall that shows current and upcoming tasks that

give a quick overview over the state of the project.

 Pair Programming

The idea is to let two people develop together by sitting on one machine. Pair programming

is a dialog between two people simultaneously programming (and analyzing and designing

and testing) and trying to program better (Beck, et al., 2004 pp. 42-43). While one person is

coding, the other person reviews the code and gives immediate feedback.

 Stories

Extreme Programming uses stories to describe units of customer-visible functionality. They

include a short description of the feature and an estimation how long it will take to

implement it. Developers collaborate with the customer in planning meetings to create

stories and estimate the effort.

Heiko Ordelt

Refactoring of Acceptance Tests

10

 Short iterations

Short iterations allow the development team to react to changes and get early feedback

from the customer. A small working software release is created at the end of an iteration.

 Continuous integration

New features should be integrated into the system under development as soon as possible.

The longer the team waits to integrate, the more it costs and the more unpredictable the

cost becomes. In Extreme Programming, changes to the system are directly integrated and

tested. The development team will be notified when an error occurs and can then start to

work on the problem to solve it.

 Test first programming

Practicing test first programming means writing a failing test first and start coding to make

the test pass. Following this approach helps to increase the quality. Additionally, it helps to

keep the design as simple as possible as developers have to think about what the code

should do before they start working on the implementation.

In Extreme Programming, software testing is an important aspect to keep the code quality on a high

level. In the following, the time and frequency of testing in Extreme Programming as well as the

kinds of testing are explained.

3.4 Testing in XP

The complexity and size of today’s software systems make writing of bug-free code extremely

difficult, even for highly experienced programmers. The Chaos Report, created by the Standish

Group, shows a staggering 31.1% of projects will be cancelled before they are completed. Further

results indicate that 52.7% of projects exceeded their cost by 89% of their original estimates (The

Standish Group, 1995-2005). Termination, exceeding time and budget and reduced functionality are

the most common failures. The lack of sufficient testing is one of the most important reasons.

Software testing is any activity aimed to evaluate an attribute or capability of a program or system

determining that it meets its required results (Mathew, 2003 p. 281).

This shows the importance of testing and test first programming tries to decrease the number of

bugs by following an easy approach: Write a test and make it fail before writing or changing any

production code.

Heiko Ordelt

Refactoring of Acceptance Tests

11

3.4.1 Time and Frequency of Testing

In development processes with long feedback cycles, there is a long timeframe between testing

sessions where the actual codebase or system testing is performed. This means, new code that is

added by developers is not tested immediately. The result is an increasing amount of defects that

are very expensive to be eliminated (Beck, et al., 2004 p. 99). Additionally, many defects will remain

even after testing has been performed (see Figure 3.1). Most defects end up costing more than it

would have cost to prevent them (Beck, et al., 2004 p. 98). The more fixing defects costs, the more

likely is it to have remaining defects in the deployed code.

Figure 3.1: Late Testing in Development Processes with long Feedback Cycles

In contrast, Extreme Programming uses the Defect Cost Increase (DCI) principle to increase the cost-

effectiveness of testing. In other words, testing is performed frequently to fix defects sooner and

cheaper (see Figure 3.2). In order to prevent the number of defects to grow over the time, tests are

conducted often to reduce the number of bugs.

Figure 3.2: Frequent Testing in Development Processes with short Feedback Cycles

It is much harder to remove a defect a long time after it has been introduced. The cause of the bug

must be found and the affected code has to be changed in a way, so that the bug is fixed and the

Heiko Ordelt

Refactoring of Acceptance Tests

12

rest of the program stays unchanged. To keep this effort as low as possible, Extreme Programming

uses Test Driven Development that requires tests to be written before the production code.

3.4.2 Unit Testing

Unit testing represents the lowest level of testing that the system under test can undergo. Its goal is

to ensure that software units meet their specified requirements. The developer, working on a

software unit is responsible for designing and running a series of tests to ensure that the unit is

working as specified by the requirements. Additionally to the testing aspect, unit tests serve also as

documentation for developers. They show how to use the unit and the way it works in a short

understandable form.

3.4.3 Acceptance Testing

Acceptance testing is a testing discipline that operates on the highest level of a software system. The

purpose is to determine whether a system meets the customer’s requirements (Meyers, 2004 p.

185).The term acceptance testing itself is strongly related to the agile method Extreme Programming

(Beck, et al., 2004) and will be discussed in the context of this work. The following table shows most

of the synonyms for which acceptance testing is known:

Table 3.1: Acceptance Testing Synonyms (Maurer, et al., 2006)

Term Used by

Functional tests Beck (Beck, 1999)

System tests IEEE (IEEE, 1996), Erickson (Erickson, et al., 2003

pp. 120–128)

Formal qualification tests US Department of Defense (US, 1988)

Soap opera tests Buwalda (Buwalda, 2004 pp. 30-37)

Keyword-driven tests Kaner (Kaner, et al., 2002)

Scenario tests Kaner (Kaner, 2003)

Conditions of satisfaction Cohn (Cohn, 2005 pp. 18-22)

Examples, business facing example, example

driven development

Marick (Marick, 2003)

Coaching tests Marick (Marick, 2002)

Specification by example Fowler (Fowler, 2006)

Heiko Ordelt

Refactoring of Acceptance Tests

13

Story tests and story driven development Kerievsky (Kerievsky, 2005)

Customer tests Beck (Beck, 1999), Jeffries (Jeffries, 2001)

Customer inspired tests Beck (Beck, 1999)

According to the Standish Group Chaos Report (The Standish Group, 1995-2005), user involvement is

the most important factor of successful projects. It is a common knowledge that more than two-

thirds of all software projects today do not succeed for a variety of reasons: they are either

terminated, become obsolete, exceed time restrictions or budget, or deliver a reduced set of

functionality (Maurer, et al., 2006). Ambiguous and incomplete software requirements along with

insufficient testing are major contributors to these failures (The Standish Group, 1995-2005). It is

estimated that 85 percent of the defects in developed software originate in the requirements

(Young, 2001).

The purpose of acceptance testing is to demonstrate working functionality rather than to find bugs

(although bugs may be found by performing acceptance testing) (Maurer, et al., 2006). In XP, system

requirements are gathered in the form of user stories. Acceptance tests should be written by the

customer rather than by a developer (Cohn, 2004 p. 73). However, it has become a good practice to

let a developer and the customer create test definition together. Acceptance tests have to test the

system as a whole unlike unit tests, which test internal parts of the system on a very low level.

Acceptance testing has the following advantages:

 Improved communication

Acceptance testing builds a bridge between developers and customer by providing support

of specifying detailed functional requirements. This helps both sides to understand the

domain problem and the application better. Acceptance tests can help structure

conversation within the team as well as discussions with the customer by defining a

common language.

Heiko Ordelt

Refactoring of Acceptance Tests

14

 Regression safety net

Functional tests can serve as regression tests, which ensure that previously working

functionality continues to behave as expected (Maurer, et al., 2006 p. 1). In Extreme

Programming, the development team is working on the system until every acceptance test

passes. Due to the fact that this process is iterative, the code base is steadily increasing and

new functions are added which can cause already implemented functions to fail. In this case,

acceptance tests can help to find bugs occurring in already implemented parts of the system.

In other words, the development team is able to find regression failures by keeping track of

passing and failing tests.

 System documentation

Acceptance tests can also be seen as a partial replacement for documentation - especially

for requirements documents (Aarniala, 2006). Following the Extreme Programming process

in the long term, acceptance tests keep in sync with the actual system while requirements

documents may easily lag behind. Additionally, the tests show the functionality of the

system in a short and easily understandable format. This helps new developers start working

on the application and makes maintenance easier.

 Development progress tracking

Acceptance tests are an absolute criterion to decide whether a feature is complete or not.

Failing tests show that the story is not implemented in a way the customer will accept it.

Additionally, the amount of passing or failing tests shows developers and customer how the

project development is progressing.

 Improved effort estimation

Due to clear communication of all requirements of the system, effort estimates can be much

more accurate. Developers do not have to expect hidden customer expectations suddenly

popping up during development.

In Extreme Programming, test-driven development is a core practice that follows the “test first” rule.

The next chapter describes TDD as well as the two techniques utilized in detail.

Heiko Ordelt

Refactoring of Acceptance Tests

15

4 Test Driven Development as one Core Practice of XP

4.1 Unit Test Driven Development

Unit Test Driven Development (UTDD, also known as Test Driven Development or TDD) is a style of

development following the test first approach. Rather than writing production code first and testing

the code afterwards, developers create tests first and implement the code to make the tests pass.

This implies that every piece of code is covered by tests to ensure the correctness of the system

components. Figure 4.1 describes the workflow of Test Driven Development as a state diagram. It

makes clear that developing of new code starts with adding the proper test. The implementation of

a feature can only be seen as finished when all tests pass.

Figure 4.1: The Steps of Test First Design (Ambler, 2007)

Heiko Ordelt

Refactoring of Acceptance Tests

16

The steps of test first design are:

 Quickly add a test to the suite

Based on the imagination of how the application would work, invent the interface.

 Run all the tests

Run all the tests to see the newly added test is failing. At this time, a red bar should appear.

 Make the test pass

Change the system code to make the newly added test pass, also run the whole suite of the

tests to make sure all tests pass in order to prevent breaking other parts of the system. If

some other tests fail, they have to be fixed in order for the implementation to be completed.

 Improve the design

Refactoring needs to be done to remove duplicates that have been introduced to the system

and to improve the design.

This process will be repeated for every new unit (e.g. method) that is added. Once the system is

finished and all tests are passing, the system might need to be extended or changed to

accommodate the new requirements or to fix bugs.

Tests are written to define what it means for the code to work (Astels, 2003 p. 7). Running the tests

automatically several times a day ensures that bugs introduced when adding new code can be

detected immediately. Additionally, unit tests can be used to check whether all components of a

software system still work as expected. This is helpful when components are refactored to see

whether the behaviour has changed or not.

Figure 4.2: Refactoring System in Test Driven Development (Ambler, 2007)

Heiko Ordelt

Refactoring of Acceptance Tests

17

When the system has to be changed, the production code can be refactored while the unit tests

serve as a regression safety net. As long as they are passing, the developers can be sure that the

system works like before. If the tests run before refactoring and they run after, you can be confident

that the code behaviour has not changed (Astels, 2003 p. 493).

In contrast, when the system has to be extended, a new failing test is added. The developers extend

the production code to make the new test as well as all other tests pass (see Figure 4.2).

4.2 Executable Acceptance Test Driven Development

4.2.1 Overview

Executable Acceptance Test Driven Development (EATDD) or Story Test Driven Development is

similar to unit test driven development but involves writing one or more executable system-level

acceptance tests for a feature before the solution. Figure 4.3 shows exemplary the output of an

executed acceptance test. The purpose of acceptance tests, their structure and tools for executing

acceptance tests will be discussed further in this chapter.

Figure 4.3: Example Acceptance Test Execution Output

In Extreme Programming, all acceptance tests must be automated (Crispin, et al., 2002 p. 133). Due

to the iterative nature of processes in the agile world, manual regression testing at the customer

level is too time consuming to be practical and feasible given the short timeframes of agile iterations

(Maurer, et al., 2007 p. 245). Furthermore, manual testing has the following disadvantages:

 Unreliable

The effectiveness of manual testing is highly dependent on schedule pressure. Whenever,

the delivery date of the system under development comes closer, people start to cut

corners, omit tests and miss problems (Crispin, et al., 2002 p. 134).

Heiko Ordelt

Refactoring of Acceptance Tests

18

 Undermining the Extreme Programming testing practice

Manual testing can attract developers to omit writing unit tests because they want to spend

the saved time in implementing new features. In this case, rather than creating the

appropriate unit tests, manual testing is performed and one of the most important practice

of XP is undermined.

 Manual tests are divisive

Manual testing relies on the people performing the testing. It is possible that testers fail to

see something. When the stakes are high and something is missed, the blame will be fallen

the testing person (Crispin, et al., 2002 p. 135). If automated tests are used, the developers

could have caught the defect before it is checked by the testers.

Executable Acceptance Test Driven Development also pushes the test driven development paradigm

of agile methods up to the customer level. EATDD extends this by requiring that no code is written

for a new feature unless an automated acceptance test fails (ASE, 2008). The cycle of acceptance

testing in Extreme Programming is shown in Figure 4.4.

Figure 4.4: Acceptance Testing Cycle in Extreme Programming

In the following, every step is described briefly:

 Creating acceptance tests

Based on the stories that describe the system requirements in Extreme Programming, the

appropriate acceptance tests are created in collaboration with the customer and the

developers.

Creating
acceptance

tests

Creating
fixtures

Make
acceptance

tests fail

Make
acceptance
tests pass

Refactor

Customer
accepting

system

Heiko Ordelt

Refactoring of Acceptance Tests

19

 Creating fixtures

To make the created acceptance tests executable against the system under development the

developers create fixtures for all defined acceptance tests.

 Make the acceptance tests fail

As the feature described by the acceptance test has not been implemented yet the

acceptance tests must fail. This helps the team to see which features are finished and which

requirements are left to implement.

 Make the acceptance tests pass

Once the development has started, the developers have to follow the Unit Test Driven

Development approach to create the production code needed to make the acceptance tests

pass, one by one.

 Refactor

After the tests pass, the written code has to be refactored to delete duplicates, improve the

design and make the code better understandable.

 Customer accepting system

When all acceptance tests pass, the customer can run them to see whether the system

works as it is expected. If the customer accepts the system, the development can be seen as

completed. If not, the appropriate tests have to be modified and the process starts again.

As shown in this chapter, all acceptance tests must be automatically executable as manual

acceptance testing is not feasible and has many disadvantages.

4.2.2 Tools

4.2.2.1 Fit Framework and FitLibrary

The Framework for Integrated Tests (FIT) (Framework) is used for executable acceptance testing. It is

probably the most popular functional testing framework today. Tests written for FIT consist of two

parts: test definition and fixture (see Figure 4.5).

Heiko Ordelt

Refactoring of Acceptance Tests

20

Figure 4.5: Executable Acceptance Testing Workflow

The test definition can be created with business tools like word processors. Developers are

responsible for writing the fixture that is in charge of making the appropriate method calls in the

system under test. The fixture is written by the developers in the programming language of the

system that is supposed to be tested. FIT maps then the test cases in the test definition to the fixture

and returns the result of the test run. These results are shown by using three different color codes:

 Green

The test case ran successfully. The expected result specified in the test case equals the

returned value of the system.

 Yellow

An exception occurred. For example, the fixture is not consistent with the test definition or

an exception is thrown by the system under test.

 Red

The test case ran successfully but the returned result did not match the expected result.

FIT supports different formats of tests depending on the purpose of the test. One format, for

example, is testing of workflows or computations. An extended set of fixtures is provided by the

FitLibrary (FitLibrary) to allow FIT to run tests suitable for even more purposes.

4.2.2.2 FitNesse

FitNesse is a Wiki front-end testing tool which supports team collaboration to create and edit

acceptance tests. FitNesse uses the Fit framework to run acceptance tests via a web browser. It also

integrates FitLibrary fixtures for writing and running acceptance tests (Deng, et al., 2007). FitClipse

uses the wiki syntax introduced by FitNesse to define acceptance tests.

mapping

fail/pass

call

return

public class Test

extends Fixture {

…

}

Test Definition Fixture System

Heiko Ordelt

Refactoring of Acceptance Tests

21

4.2.3 Multi-Modal Test Execution

Software systems are often built in multiple layers (e.g. persistence layer, business layer and user

interface) (Gamma, 1995). This multi-layered architecture leads to better maintainable and

extendable systems. For example, modifications to one layer might only have an impact on the layer

directly above which needs less effort when changing a part of the system. When using this

architecture style, a new functionality is implemented across many layers. For example, the business

layer could be responsible for calculating and maintaining business rules, while the user interface is

responsible for gathering the input data and displaying the output result. These layers have to be

properly integrated in order for the functionality to become useful.

In multi-layered systems, a feature appears in different layers of the software architecture or

different components of the software. While following the Executable Acceptance Test Driven

Development approach, this feature must be covered by an acceptance test. This leads to

duplication of the test for all different layers that is time-consuming and error-prone to maintain.

Figure 4.6: Multi-modal test execution

Multi-modal test execution provides a one-to-many mapping between test definition and fixtures. In

other words, a test is executed against different layers or components of a software system by

calling different fixtures (Park, et al., 2008) (see Figure 4.6).

4.2.4 Manual Acceptance Test Modification Issues

As shown in chapter 2, acceptance tests might have to be modified to improve their effectiveness

und to make them better understandable. Additionally, a requirement may change, be removed, or

System

Result for

Web Layer

UI Layer

Web

Layer

Business

Layer

Result for

Business Layer

Result for

UI Layer

Test Definition

Heiko Ordelt

Refactoring of Acceptance Tests

22

a new requirement may be added at any phase of the development lifecycle (Maciaszek, 2001 p. 92).

During software development lifecycle, a change of the customer's requirements is very likely and

results in changed acceptance criteria. Due to the direct relationship to one or more acceptance

tests, these tests are outdated and are supposed to be adjusted as well.

Figure 4.7 shows the effect of changing requirements in Executable Acceptance Test Driven

Development. In this example, requirement A is split into two features covered by acceptance test A

and B. Acceptance test A is linked to fixture A.1 and A.2 while acceptance test B is linked to fixture B.

Obviously, every fixture makes calls in the system. The lines in red shows the affected elements of

the overall test structure when requirement A has changed. This clarifies that a small requirement

change can have a huge impact on several testing elements.

Figure 4.7: Effect of changing Requirements in Executable Acceptance Test Driven Development

Therefore, a manual adjustment of existing acceptance tests has the following disadvantages:

 Time-consuming

Big projects can have hundreds of features and therefore a large set of acceptance tests can

exist. As shown in Figure 4.7, a requirement can be associated with several acceptance tests

that are linked to multiple fixtures. Making changes in such test environments not only

consists of making the appropriate modifications but also finding relationships between

requirements, acceptance tests and fixtures. This makes carrying out changes very time-

consuming.

System

Requirement A

Requirement B

Acceptance

Test A

Acceptance

Test B

Acceptance

Test C

Fixture A.1

Fixture A.2

Fixture B

Fixture C

Heiko Ordelt

Refactoring of Acceptance Tests

23

 Error-prone

Even though acceptance tests should be kept small to make them better understandable,

this cannot always be achieved which makes it even harder to change the tests manually.

When acceptance tests are modified, the appropriate fixtures have to be kept consistent

(see Figure 4.7). This can easily lead to errors in test definition or execution failures due to

fixtures that have not been updated. Therefore, every change has to be applied very

carefully to minimize the risk of unexpected failures.

 Regression safety net

Acceptance tests along with unit tests are used to check whether a software system works

the way it is supposed to. When the system code base is changed, e.g. refactoring the source

code to improve the design, regression testing can be used to verify if the behaviour has

changed. In contrast, when acceptance tests are changed there is no guarantee that the test

behaviour is the same.

To provide a way of safe and consistent modifications of acceptance tests, the next chapter

introduces the developed refactoring approach. It builds the bridge for the following

implementation of automated refactoring support.

Heiko Ordelt

Refactoring of Acceptance Tests

24

5 Refactoring of Acceptance Tests

5.1 Goal of Acceptance Test Refactoring

As shown in 4.2.4 and discussed by Andrea (Andrea, 2005), acceptance tests might be modified to

improve their readability and to follow requirement changes. It was also shown that the manual

modification of acceptance tests is time-consuming, error-prone and might lead to an unexpected

change of the behaviour. Therefore, changes to acceptance tests have to be applied safely to avoid

those problems. Additionally, the fixture that translates the test cases into system calls has to be

kept consistent with the test definition. As a conclusion, the goal of acceptance test refactoring is a

consistent modification of test definition and fixture.

Refactoring of source code is already well known and is typically used to improve the design of code

and make it better to understand. Since source code refactoring is very similar to the goal of

acceptance test refactoring, it will be discussed further and the differences will be shown.

5.2 Source Code Refactoring

Source code refactoring is a technique to change source code with one main constraint: The

behaviour of the code must be preserved. It is defined as “a change made to the internal structure of

software to make it easier to understand and cheaper to modify without changing its observable

behaviour” (Fowler, 2000 p. 53).

In general, refactoring is not intended to fix bugs or add new functionality although bugs can be

discovered (Fowler, 2000 p. 57). Refactoring has three main purposes of use:

 Improving the design of software

Over time, the design of programs decays. As developers who have to add small features

tend to make changes without a full comprehension of the design the code loses its

structure. Among others, bad code design leads to duplicated code and makes future

modifications more expensive as developers have to understand more code.

Heiko Ordelt

Refactoring of Acceptance Tests

25

 Making software easier to understand

Developers are typically focusing to get the code working rather than making it easy to

understand. Other developers who work on the same code later on have to spend much

more time to understand the code and to make their changes. This situation can be avoided

by spending a little time after adding new functionality for code cleaning and design

improvement. In case the rule was not executed, to refactor code to make it comprehensible

refactoring even helps developers to understand code they have not seen before.

 Finding bugs

Trying to understand the code also helps to spot bugs. Refactoring means working on the

understanding what the code does and putting that understanding back into the code. In

that process a clarification takes place and bugs will be found.

All the points mentioned above can help to develop code more quickly (Fowler, 2000 p. 57).

Furthermore, refactoring is used to remove bad code smells (Fowler, 2000 pp. 75-87) which typically

makes code complicated and hard to maintain.

In Test Driven Development, refactoring is integrated in the development cycle. It is performed by

the developers after they finished working on the system to make the unit tests pass, to improve the

code’s internal consistency and clarity. To ensure that the behaviour of refactored code has not

changed unit testing can be used. This means, the unit tests run before and after the refactoring. If

both results are the same, the change has been carried out without changing the behaviour.

5.3 Definition and Separation from Source Code Refactoring

Fowler’s (Fowler, 2000 p. xvi) definition of refactoring explains the motivation for acceptance test

refactoring just partially. Some changes to acceptance tests are dealing with making them more

readable and more understandable and would fit under Fowler’s definition.

However, other changes in acceptance tests will change the external behaviour, as the intention is to

change the specification, e.g. removing a column of a test. In this case, the goal is to allow the user

to carry out those changes safely and to keep the test definition and the corresponding fixture

consistent.

Heiko Ordelt

Refactoring of Acceptance Tests

26

Additionally, depending on the refactoring it cannot be ensured that the external behaviour stays

the same. While analyzing acceptance test refactoring, two different kinds of refactoring could be

identified based on the state of the behaviour after applying the modifications:

 Behaviour preserving

The behaviour specified by the acceptance test has not been changed by the refactoring and

there is no user interaction needed to make the refactored test pass.

 Behaviour changing

The behaviour specified by the acceptance test has been changed by the refactoring and the

user is required to update the fixture and/or system under test manually to make the

refactored test pass.

This classification is important as not all kinds of acceptance test refactoring are behaviour

preserving (see Table 5.1 and Table 5.2 for details). However, the refactoring has to result in a

successful compilation of the fixture code and in executable acceptance test. Acceptance test

refactoring is defined as:

Acceptance test refactoring is the process of changing an acceptance test definition and the

corresponding fixture class so that the fixture class compiles successfully and test execution results in

either

 success (green)

whenever the change does not change the external behaviour of the system (behaviour

preserving) and

 fail (red)

whenever the change does change the external behaviour of the system (behaviour

changing).

In other words, changes to an acceptance test definition and/or its corresponding fixture should

never result in exceptions being thrown due to a mismatch between the test definition and the

fixture code.

Acceptance test refactoring tools can lower the test maintenance effort in the same way as code-

refactoring tools lower it for updates of the source code. Furthermore, automated refactoring tool

support can reduce the risk of inconsistencies between the test definition and the fixture code when

acceptance tests are changed.

Heiko Ordelt

Refactoring of Acceptance Tests

27

5.4 Analysis of Fit Based Acceptance Tests

To develop an acceptance test refactoring catalogue, the relationships between test definitions and

fixtures based on the FIT framework (Cunningham) and the FitLibrary extension (FitLibrary) have

been analyzed.

Although the FIT framework supports many different formats to specify the test definition, only wiki

code introduced by FitNesse (FitNesse, 2008) was used for the following analysis as well as the

implemented refactoring support.

Additionally, the work was initially focused on ColumnFixture and DoFixture, as these seem to be

most widely used fixture types (based on informal discussions with industry contacts).

FIT tests are written as tables in HTML and based on the used fixture the cells have different

meaning. ColumnFixture is often used to test computations. Test cases are written as tables with

given and expected-value columns. Given-value columns represent input parameters and expected-

value columns contain the anticipated output.

The first acceptance test example (see Figure 5.1) shows a test table that can be processed by a

ColumnFixture in the upper part and the corresponding fixture code in the lower part. It tests

whether a person’s credit application will be approved or not. Various criteria for consideration of

the applicant are if he is a staff member, the actual balance and how long the person has been a

customer of the bank. As output of the system, the approval decision of whether the credit

application is shown and, if yes, the credit limit is checked.

A.1 tests.CreditCondition

A.2 staff balance months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public boolean allowCredit() {...}

F.7

F.8 public double creditLimit() {...}

F.9

F.10 private double creditLimitCustomer() {...}

F.11

F.12 private double creditLimitStaff() {...}

F.13 }

Figure 5.1: Example of Test Definition and Fixture (ColumnFixture)

Heiko Ordelt

Refactoring of Acceptance Tests

28

The following relationships can be detected:

 The fixture class linked with this test is referenced in A.1

 The given-value columns staff, balance and months in A.2 are mapped to corresponding

fields in the fixture class (see F.2, F.3 and F.4).

 The expected-value columns allow credit() and credit limit() are mapped to the methods

allowCredit() and creditLimit() in the fixture code (see line F.6 and F.8).

In general, given-value columns are mapped to fields and expected-value columns are mapped to

methods. The FIT framework supports all primitive and non-primitive Java data types by

automatically converting the input to the field’s data type in the fixture.

DoFixture describes a sequence of actions in a workflow. An action is defined in a single row. A row

starts with a keyword in the first cell. Every odd cell of the row also contains keywords. Every

keyword has an associated value.

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose account type chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseAccountType(String type) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

F.14 }

Figure 5.2: Example of Test Definition and Fixture (DoFixture)

The second acceptance test example (see Figure 5.2) shows a test table that can be processed by a

DoFixture in the upper part and the corresponding fixture code in the lower part. It tests the process

of creating a chequing bank account as a workflow. First, the data of the account owner is entered

and the proper account type is chosen. The next step is to create the account and afterwards verify if

Heiko Ordelt

Refactoring of Acceptance Tests

29

the account has been created and that it has the proper type. The following relationships can be

detected:

 The fixture class linked with this test is referenced in A.2

 The keywords of the actions (see lines A.3 to A.8) are camel-cased and mapped to methods

in the fixture class in line F.3 to F.13.

 The parameters of the actions are mapped to parameters of the corresponding methods in

order of appearance.

In general, actions are linked to methods in the fixture. In contrast to ColumnFixture, there are no

fields used in DoFixture.

Multiple Fixtures

The ASE group of the University of Calgary has recently extended the FIT framework as well as the

FitLibrary to support multi-modal test execution as shown in 4.2.3. Since this extension is not

officially supported, multiple fixtures were not considered in the performed analysis to allow people

to reproduce the presented results. However, an “Rename Acceptance Test” refactoring example

with multiple fixtures is given in 5.5.1 which shows the syntax and how the refactoring could be

carried out for an easier understanding. In addition, the developed refactoring extension for

FitClipse supports multiple fixtures for all refactoring types. The appropriate implementation details

are explained in chapter 6.6.

5.5 Refactoring Catalogue

Based on the results of the analysis of the FIT framework the following catalogue of refactoring types

has been created. It summarizes each kind of refactoring briefly.

A refactoring is described by the type of fixture it can be applied to, a name, the input it expects,

special conditions which might have an impact on the changes, the changes to the test definition as

well as fixture and whether it changes the test behaviour or not. The alteration to the test definition

or fixture can be different at any time, based on the input or special conditions of the fixture.

Heiko Ordelt

Refactoring of Acceptance Tests

30

The following catalogue describes all refactoring types for ColumnFixture:

Table 5.1: Refactoring Catalogue for ColumnFixture

Refactoring Input Special
Conditions

Changes
Test

Definition

Changes Fixture Behaviour
Changing

Rename
acceptance
test

New
name

None Rename
referenced
fixture in
cell [0,0]

Rename class name

Rename constructor if
present

No

Add column Given-
value
column
name,
Position

None Add
column at
chosen
position

Add field of type String and
chosen name

No

Add column Expected-
value
column
name,
Position

None Add
column at
chosen
position

Add method with chosen
name with return value String
and no parameters

Add false return

Yes

Remove
column

Given-
value
column

Field not
referenced

Remove
column

Remove field of column No

Remove
column

Given-
value
column

Field
referenced

Remove
column

Remove field of column

Comment out the body of all
methods that reference the
removed field and all
methods that call commented
methods, change return value
to String, add a reminder
message as return value and
a TODO comment

Yes

Remove
column

Expected-
value
column

Method not
referenced

Remove
column

Remove method No

Remove
column

Expected-
value
column

Method
referenced

Remove
column

Remove method of column

Comment out the body of all
methods that reference the
removed method and all
methods that call commented
methods, change return value
to String, add a reminder
message as return value and
a TODO comment

Yes

Heiko Ordelt

Refactoring of Acceptance Tests

31

The following catalogue describes all refactoring types for DoFixture:

Table 5.2: Refactoring Catalogue for DoFixture

Refactoring Input Special
Conditions

Changes
Test

Definition

Changes Fixture Behaviour
Changing

Rename
acceptance
test

New
name

None Rename
referenced
fixture in cell
[1,1]

Rename class name

Rename constructor if
present

No

Rename
action

New
name of
existing
action

None Rename all
occurrences
of action

Rename methods
corresponding to the
changed action

Rename method calls
to method of changed
action

No

Add action New
action,
position

None Add action at
specified
position

Add method named by
camel-casing keywords
with corresponding
parameter

Add false return

Yes

Remove
action

Action,
position

Method not
referenced

No occurrence
of removed
action left

Remove
action at
specified
position

Remove method of
action

No

Remove
action

Action,
position

Method not
referenced

At least one
occurrence of
removed
action left

Remove
action at
specified
position

None No

Remove
action

Action,
position

Method
referenced

No occurrence
of removed
action left

Remove
action at
specified
position

Remove method of
action

Comment out the body
of all methods calling
the removed action
method, change return
value to String, add a
reminder message as
return value and a
TODO comment

Yes

Heiko Ordelt

Refactoring of Acceptance Tests

32

Refactoring Input Special
Conditions

Changes
Test

Definition

Changes Fixture Behaviour
Changing

Remove
action

Action,
position

Method
referenced

At least one
occurrence of
removed
action left in
test definition

Remove
action at
specified
position

None Yes

Next, each refactoring of the catalogue will be described in more detail. The following description

structure has been used:

 Name

 Motivation

 Summary

 Mechanics

 Examples

The name of the refactoring is unique and is used in this work to refer this one particular refactoring.

After the name, a motivation is given which shows the reasons for that refactoring from a non-

technical or business facing view. The summary shows the situations in which the refactoring can be

applied. In the third step, the mechanics explain systematically how to apply the refactoring to the

test definition as well as the fixture. This can differ between refactoring tasks, based on the input or

the existing structure of the fixture. As shown before, each refactoring is either behaviour changing

or behaviour preserving. Lastly, at least one example is given that shows in detail how the particular

refactoring works. In some cases, this will lead to different examples showing different behaviours.

5.5.1 Rename Acceptance Test

Motivation

The acceptance tests together with the fixtures of a project are stored in a repository so that every

team member can easily access and modify them. Additionally, a shared test repository is needed to

ensure that developers are working on the latest and most up-to-date tests. To distinguish between

acceptance tests and the system features which are supposed to be tested, each acceptance test has

a name associated. In addition, every pair of acceptance tests and fixtures is named equally. For

example, the test CreateBankAccountBranch could be associated with the fixture

Heiko Ordelt

Refactoring of Acceptance Tests

33

CreateBankAccountBranch.java. This structures the test database in an easy manageable way and

helps developers who are working on an acceptance test to find the corresponding fixtures quickly.

Summary

Whenever an acceptance test is supposed to be renamed, the corresponding fixture also has to be

renamed. In this case, the “Rename Acceptance Test” refactoring can be used to easily change the

name and ensure that the linked fixture is updated automatically.

Mechanics

The “Rename Acceptance Test” refactoring is carried out in the following way:

1. Rename acceptance test.

2. Change the name of linked fixture in the test definition in the corresponding cell

a. in ColumnFixture cell [0,0].

b. in DoFixture cell [1,1].

3. Change the filename of the fixture to new name.

4. If present, change name of constructor in fixture to new name.

How the name of the acceptance test is saved can differ with respect to the storage system that is

used to save the test database. This work assumes that the storage system is able to rename an

acceptance test and does not give any details on the actual operation.

Example: Single Fixture

In the simplest case, the acceptance test is linked to exactly one fixture. The following example

shows an acceptance test definition and the linked fixtures (DoFixture) before and after the

“Rename Acceptance Test” refactoring. The test is saved in the storage system as

CreateBankAccountBranch and is associated with the fixture CreateBankAccountBranch (see Figure

5.3).

A.1 fitlibrary.DoFixture

A.2 Start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose account type chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

Heiko Ordelt

Refactoring of Acceptance Tests

34

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2 ...

F.3 }

Figure 5.3: Test Definition and Fixture before “Rename Acceptance Test” Refactoring with one Fixture

The “Rename Acceptance Test” refactoring is applied to rename the test from

CreateBankAccountBranch to CreateBankingAccountBranch. The Figure 5.4 shows the changed test

definition and fixture (the changes are highlighted in bold).

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankingAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose account type chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankingAccountBranch extends DoFixture {

F.2 ...

F.3 }

Figure 5.4: Test Definition and Fixture after “Rename Acceptance Test” Refactoring with one Fixture

The acceptance test has been renamed to CreateBankingAccountBranch in the storage system, the

linked fixture in the second cell in A.2 has been updated and the fixture class in F.1 has been

renamed, too.

Example: Multiple Fixtures

A more sophisticated case is an acceptance test (DoFixture) linked to multiple fixtures. The following

example (see Figure 5.5) shows a test that is saved in the storage system as CreateBankAccount and

is associated with the fixtures CreateBankAccountBranch and CreateBankAccountWeb.

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch, tests.CreateBankAccountWeb

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose account type chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2 ...

F.3 }

F.4

F.5 public class CreateBankAccountWeb extends DoFixture {

F.6 ...

F.7 }

Figure 5.5: Test Definition and Fixtures before “Rename Acceptance Test” Refactoring with Multiple Fixtures

Heiko Ordelt

Refactoring of Acceptance Tests

35

The refactoring is applied to rename the test from CreateBankAccount to CreateBankingAccount. It

results in the following test definition and fixtures:

A.1 fitlibrary.DoFixture

A.2 Start tests.CreateBankingAccountBranch, tests.CreateBankingAccountWeb

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose account type chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankingAccountBranch extends DoFixture {

F.2 ...

F.3 }

F.4

F.5 public class CreateBankingAccountWeb extends DoFixture {

F.6 ...

F.7 }

Figure 5.6: Test Definition and Fixtures after “Rename Acceptance Test” Refactoring with Multiple Fixtures

The acceptance test has been renamed to CreateBankingAccount in the storage system, the linked

fixtures in the second cell in A.2 have been updated and fixture classes in F.1 and F.5 have been

renamed.

5.5.2 ColumnFixture

In the refactoring descriptions for ColumnFixture the following nomenclature is used:

 Column names ending with “()” are expected-value columns and are associated with a public

method without parameters which name equals the camel-cased column name.

 Column names not ending with “()” are given-value columns and are associated with a public

field in the fixture which name equals the camel-cased column name.

5.5.2.1 Add Column

Motivation

Column based acceptance tests as ColumnFixture are mostly used to test computations. They take

various input parameters and compare the output to the expected result. For example, a system

that is calculating the credit limit of a credit application could have as input parameters if applicant is

a staff member, the actual account balance and the duration of the membership. During

development, this feature could change to incorporate more parameters, like the information

whether the applicant already has a credit card, which has to be included in the decision.

Heiko Ordelt

Refactoring of Acceptance Tests

36

Summary

Whenever requirements change and a column based acceptance test has to be adjusted to include

more given-value or expected-value columns, the “Add Column” refactoring can be used to add the

columns needed.

Mechanics

The “Add Column” refactoring is carried out in the following way:

1. Add new column at the specified position in the test definition.

2. Add value “TODO” in every cell of the new column beginning after the table captions row in

the test definition.

3. If the new column is an expected-value column, add a new corresponding method with

return type String to the fixture.

4. If the new column is a given-value column, add a new corresponding field of type String to

the fixture.

Example: Add Given-Value Column

The following example shows an acceptance test definition and the linked fixtures (ColumnFixture)

before and after the “Add Column” refactoring. The test is saved in the storage system as

CreditCondition and is associated with the fixture CreditCondition (see Figure 5.7).

A.1 tests.CreditCondition

A.2 staff balance Months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public boolean allowCredit() {...}

F.7

F.8 public double creditLimit() {...}

F.9

F.10 private double creditLimitCustomer() {...}

F.11

F.12 private double creditLimitStaff() {...}

F.13 }

Figure 5.7: Test Definition and Fixture before “Add Column” Refactoring of Given Value Column

Heiko Ordelt

Refactoring of Acceptance Tests

37

The “Add Column” refactoring is applied with credit card as new column and “after months” as

specified position.

A.1 tests.CreditCondition

A.2 staff balance months credit card allow credit() credit limit()

A.3 false 6000 12 TODO true 3000

A.4 true 3000 12 TODO true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public String creditCard;

F.3 public double balance;

F.4 public int months;

F.5 public boolean staff;

F.6

F.7 public boolean allowCredit() {...}

F.8

F.9 public double creditLimit() {...}

F.10

F.11 private double creditLimitCustomer() {...}

F.12

F.13 private double creditLimitStaff() {...}

F.14 }

Figure 5.8: Test Definition and Fixture after “Add Column” Refactoring of Given Value Column

The Figure 5.8 shows the changed test definition and fixture (the changes are highlighted in bold).

The test definition has a new column credit card in A.2 and the fixture has a new public field

creditCard of type String in F.2.

Example: Add Expected-Value Column

Besides the given-value column, the “Add Column” refactoring can also be used to add expected-

value columns. The following example uses the same test definition and fixture as before and shows

the effect of adding an expected-value column with the “Add Column” refactoring.

A.1 tests.CreditCondition

A.2 staff balance Months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public boolean allowCredit() {...}

F.7

F.8 public double creditLimit() {...}

F.9

F.10 private double creditLimitCustomer() {...}

F.11

F.12 private double creditLimitStaff() {...}

F.13 }

Figure 5.9: Test Definition and Fixture before “Add Column” Refactoring of Expected-Value Column

Heiko Ordelt

Refactoring of Acceptance Tests

38

The “Add Column” refactoring is applied with credit card() as new column and “after credit limit()” as

specified position.

A.1 tests.CreditCondition

A.2 staff balance months allow credit() credit limit() credit card()

A.3 false 6000 12 true 3000 TODO

A.4 true 3000 12 true 5000 TODO

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public boolean allowCredit() {...}

F.7

F.8 public double creditLimit() {...}

F.9

F.10 private double creditLimitCustomer() {...}

F.11

F.12 private double creditLimitStaff() {...}

F.13

F.14 public String creditCard() {...}

F.15 }

Figure 5.10: Test Definition and Fixture after “Add Column” Refactoring of Expected-Value Column

The “Add Column” refactoring is applied to add an expected-value column to the test definition. The

Figure 5.10 shows the changed test definition and fixture (the changes are highlighted in bold). The

test definition has a new column credit card() in A.2 and the fixture has a new public parameter less

method creditCard() with return type String in F.14.

5.5.2.2 Remove Column

Motivation

In contrast to the “Remove Column” refactoring, requirement changes can lead to parameters that

are not needed anymore and can be removed. For example, in the credit limit example it might be

possible that the membership duration is not considered anymore and thus can be deleted.

Summary

Whenever requirements change and a column based acceptance test has to be adjusted to remove

needless given- or expected-value columns, the “Remove Column” refactoring can be used to

remove the unnecessary columns.

Heiko Ordelt

Refactoring of Acceptance Tests

39

Mechanics

The “Remove Column” refactoring is carried out in the following way:

1. Remove the chosen column in the test definition.

2. Remove all following cells in this column.

3. If the removed column is a given-value column and

a. the field to be removed is still in use in at least one method, remove the

corresponding public field in the fixture. Additionally, find all methods that have at

least one reference of that field. For every method, change the return type to String,

comment out the body and add a return statement that returns a string as a

reminder.

b. the field to be removed is not used in any method, remove the corresponding field

in the fixture.

4. If the removed column is an expected-value column and

a. the method to be removed is called in at least one method, remove the

corresponding method in the fixture. Additionally, find all methods that have at least

one call of that method. For every method, change the return type to String,

comment out the body and add a return statement that returns a string as a

reminder.

b. the method to be removed is not used in any method, remove the corresponding

method in the fixture.

Example: Remove Expected-Value Column without References

The following example shows an acceptance test definition and the linked fixtures (ColumnFixture)

before and after the “Remove Column” refactoring. The test is saved in the storage system as

CreditCondition and is associated with the fixture CreditCondition (see Figure 5.11).

A.1 tests.CreditCondition

A.2 staff balance Months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

Heiko Ordelt

Refactoring of Acceptance Tests

40

F.5

F.6 public boolean allowCredit() {...}

F.7

F.8 public double creditLimit() {...}

F.9

F.10 private double creditLimitCustomer() {...}

F.11

F.12 private double creditLimitStaff() {...}

F.13 }

Figure 5.11: Test Definition and Fixture before “Remove Column” Refactoring of an Expected-Value Column

The “Remove Column” refactoring is applied with allow credit() as column to be removed.

A.1 tests.CreditCondition

A.2 staff balance Months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public boolean allowCredit() {...}

F.7

F.8 public double creditLimit() {...}

F.9

F.10 private double creditLimitCustomer() {...}

F.11

F.12 private double creditLimitStaff() {...}

F.13 }

Figure 5.12: Test Definition and Fixture after “Remove Column” Refactoring of an Expected-Value Column

The “Remove Column” refactoring is applied to remove the expected-value column from the test

definition. The Figure 5.12 shows the changed test definition and fixture (the changes are

highlighted in bold). The method allowCredit() is not called in any other method (withheld due to

space constraints). Therefore, the public parameterless method allowCredit() in F.6 has been

removed in the fixture as well as the column allow credit() in A.2, it has been removed from the test

definition.

Example: Remove Given Value Column with References

Besides the expected-value column, also given-value columns could be removed with the “Remove

Column” refactoring. The following example (see Figure 5.13) uses the same test definition and

fixture shown above to present the effect of removing a given-value column with the “Remove

Column” refactoring.

A.1 tests.CreditCondition

A.2 staff balance months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

Heiko Ordelt

Refactoring of Acceptance Tests

41

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public boolean allowCredit() {

F.7 if (creditLimit() == 0)

F.8 return false;

F.9 return true;

F.10 }

F.11

F.12 public double creditLimit() {

F.13 if (staff)

F.14 return creditLimitStaff();

F.15 else

F.16 return creditLimitCustomer();

F.17 }

F.18

F.19 private double creditLimitCustomer() {...}

F.20

F.21 private double creditLimitStaff() {...}

F.22 }

Figure 5.13: Test Definition and Fixture before “Remove Column” Refactoring with Given Value Column

The “Remove Column” refactoring is applied with staff as the column to be removed. The resulting

fixture code and test definition can be seen in Figure 5.14.

A.1 tests.CreditCondition

A.2 staff balance months allow credit() credit limit()

A.3 false 6000 12 true 3000

A.4 true 3000 12 true 5000

F.1 public class CreditCondition extends ColumnFixture {

F.2 public double balance;

F.3 public int months;

F.4 public boolean staff;

F.5

F.6 public String allowCredit() {

F.7 /* TODO: Needs to be changed */

F.8 /*

F.9 if (creditLimit() == 0)

F.10 return false;

F.11 return true;

F.12 */

F.13 return "This test needs to be changed";

F.14 }

F.15

F.16 public String creditLimit() {

F.17 /* TODO: Needs to be changed */

F.18 /*

F.19 if (staff)

F.20 return creditLimitStaff();

F.21 else

F.22 return creditLimitCustomer();

F.23 */

F.24 return "This test needs to be changed";

F.25 }

F.26

F.27 private double creditLimitCustomer() {...}

Heiko Ordelt

Refactoring of Acceptance Tests

42

F.28

F.29 private double creditLimitStaff() {...}

F.30 }

Figure 5.14: Test Definition and Fixture after “Remove Column” Refactoring with Given Value Column

As briefly mentioned in the refactoring catalogue (see Table 5.1), the column staff in the test

definition as well as the field staff (see F.4) in the fixture is removed. As the field is still referenced in

the method creditLimit() (see F.19), the method body has been commented out, the return type has

changed to String, a TODO comment has been added and the method returns a string as a reminder

(see F.16 to F.25) for the developers and the customer to see that this fixture has to be adjusted.

Furthermore, the method allowCredit() has also changed (see F.6 to F.14) as it calls the method

creditLimit() and due to the changed return type of creditLimit() it must be edited, too.

Figure 5.15: Execution result after “Remove Column” Refactoring with References

Since this refactoring changes the behaviour (see Table 5.1), the test must fail. Figure 5.15 shows the

result after executing the refactored test. The test is consistent with the fixture and it fails returning

a message explaining the problem. The developers and the customer can immediately see that the

acceptance test has been modified and the fixture has to be adjusted manually to restore the

expected behaviour.

Heiko Ordelt

Refactoring of Acceptance Tests

43

5.5.3 DoFixture

In the refactoring descriptions for DoFixture the following nomenclature is used:

 Actions are associated to a specific method in the fixture that name matches the camel-

cased keywords (first and every odd cell), the number of parameters and the return value

Boolean.

5.5.3.1 Rename Action

Motivation

Acceptance test processable by DoFixture are typically used to test workflows or processes. The

structure is easily readable and business facing. In other words, workflows can easily be translated

into acceptance tests without the need to change the structure. The workflow is built upon single

actions that are executed. For example, the workflow could start with gathering the personal

information of the applicant, continue to create the bank account and check whether the account

has been created properly at last. It also might happen that the nomenclature changes after the

acceptance tests have been created or typing errors exist. In this case, the tests have to be updated

to be understandable by the customer and all stakeholders.

Summary

Whenever the business nomenclature changes or typing errors are present, the appropriate

acceptance tests can be updated with the “Rename Action” refactoring.

Mechanics

The “Rename Action” refactoring is carried out in the following way:

1. Rename all occurrences of the changed action in the test definition

2. Rename the corresponding method of the original action in the fixture to the camel-cased

name of the new action.

3. Find all method calls to the renamed method and update the reference with the new name.

Heiko Ordelt

Refactoring of Acceptance Tests

44

Example: Rename Action

The following example shows an acceptance test definition and the linked fixtures (DoFixture) before

and after the “Rename Action” refactoring. The test is saved in the storage system as

CreateBankAccountBranch and is associated with the fixture CreateBankAccountBranch (see Figure

5.16).

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3
 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String account) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

F.14 }

Figure 5.16: Test Definition and Fixture before “Rename Action” Refactoring

The “Rename Action” refactoring is applied with choose account type as new name of the choose

type of account action.

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose account type chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3
 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseAccountType(String account) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

Heiko Ordelt

Refactoring of Acceptance Tests

45

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

F.14 }

Figure 5.17: Test Definition and Fixture after “Rename Action” Refactoring

The Figure 5.17 shows the changed test definition and fixture (the changes are highlighted in bold).

All occurrences of the action choose type of account (see A.4) have been replaced by the new action

choose account type. Additionally, the method chooseTypeOfAccount(String account) (see F.5) has

been renamed to chooseAccountType(String account). If any other method had called the renamed

method directly, the appropriate call would have been renamed as well.

5.5.3.2 Add Action

Motivation

As mentioned before, DoFixture is used to translate business processes into executable acceptance

tests. It is very likely that process will be extended at some point. For example, to include ordering a

credit card after a bank account has been created which might not be apparent from the beginning

of the system development.

Summary

Whenever a workflow acceptance test based on a DoFixture has to be extended to be up-to-date

with process changes, the appropriate test can be updated with the “Add Action” refactoring.

Mechanics

The “Add Action” refactoring is carried out in the following way:

1. Define an action to insert with the needed keywords and parameters and specify the

position.

2. Add the defined action at the specified position to the test definition.

3. Add the appropriate method of the new action to the fixture.

Example: Add Action

The following example shows an acceptance test definition and the linked fixtures (DoFixture) before

and after the “Add Action” refactoring. The test is saved in the storage system as

Heiko Ordelt

Refactoring of Acceptance Tests

46

CreateBankAccountBranch and is associated with the fixture CreateBankAccountBranch (see Figure

5.18).

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3
 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String account) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

F.14 }

Figure 5.18: Test Definition and Fixture before “Add Action” Refactoring

The “Add Action” refactoring is applied with the new action issue credit card with one parameter

after the action create bank account.

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.6.1 issue credit card TODO

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3
 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String account) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

Heiko Ordelt

Refactoring of Acceptance Tests

47

F.14

F.15 public boolean issueCreditCard(String card) {

F.16 return false;

F.17 }

F.18 }

Figure 5.19: Test Definition and Fixture after “Add Action” Refactoring

The Figure 5.19 shows the changed test definition and fixture (the changes are highlighted in bold).

The new action issue credit card with one parameter has been added to the test definition after the

create bank account action (see A.6.1). Furthermore, a corresponding method issueCreditCard(String

card) has been added to the fixture (see F.15 to F.17). It returns the value false as it is has not been

implemented yet.

5.5.3.3 Remove Action

Motivation

In contrast to the “Add Action” refactoring, processes can be changed in a way that the workflow is

shrunk and thus some actions of a workflow acceptance test can be removed.

Summary

Whenever a workflow acceptance test based on a DoFixture has to be adjusted to be up-to-date

with process changes, the appropriate test can be updated with the “Remove Action” refactoring.

Mechanics

The “Remove Action” refactoring is carried out in the following way:

1. Remove the chosen action at the specified position from the test definition.

2. If no occurrence of the removed action is left in the test definition

a. and the corresponding method of the action is not called within the fixture remove

the method.

b. and the corresponding method of the action is called within the fixture find all

methods that reference the method. For every method, change the return type to

String, comment out the body and add a return statement that returns a string as a

reminder.

Heiko Ordelt

Refactoring of Acceptance Tests

48

Example: Remove Action without Method References

The following example shows an acceptance test definition and the linked fixtures (DoFixture) before

and after the “Remove Action” refactoring without method references. The test is saved in the

storage system as CreateBankAccountBranch and is associated with the fixture

CreateBankAccountBranch (see Figure 5.20).

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String account) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

F.14 }

Figure 5.20: Test Definition and Fixture before “Remove Action” Refactoring without Method References

The “Remove Action” refactoring is applied with action check that bank account does not exist in line

A.5 to be removed.

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String account) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {...}

F.10

F.11 public boolean checkThatBankAccountDoesNotExist() {...}

Heiko Ordelt

Refactoring of Acceptance Tests

49

F.12

F.13 public boolean checkThatAccountTypeIs(String is) {...}

F.14 }

Figure 5.21: Test Definition and Fixture after “Remove Action” Refactoring without Method References

The Figure 5.21 shows the changed test definition and fixture (the changes are highlighted in bold).

The action check that bank account does not exist without a parameter has been removed from the

test definition after the choose type of account action (see A.5). The method

checkThatBankAccountDoesNotExist() (see F.11) is not called in any other method (withheld due to

space constraints) and thus has been removed from the fixture.

Example: Remove Action with Method References

The following example shows an acceptance test definition and the linked fixtures (DoFixture) before

and after the “Remove Action” refactoring with method references. The test is saved in the storage

system as CreateBankAccountBranch and is associated with the fixture CreateBankAccountBranch

(see Figure 5.22).

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String type) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public boolean checkThatBankAccountDoesExist() {

F.10 return !checkThatBankAccountDoesNotExist();

F.11 }

F.12

F.13 public boolean checkThatBankAccountDoesNotExist() {

F.14 /* ... checking existence ... */

F.15 }

F.16

F.17 public boolean checkThatAccountTypeIs(String is) {...}

F.18 }

Figure 5.22: Test Definition and Fixture before “Remove Action” Refactoring with Method References

The “Remove Action” refactoring is applied with the action check that bank account does not exist to

be removed.

Heiko Ordelt

Refactoring of Acceptance Tests

50

A.1 fitlibrary.DoFixture

A.2 start tests.CreateBankAccountBranch

A.3 enter first name of applicant Heiko and second name Ordelt

A.4 choose type of account chequing

A.5 check that bank account does not exist

A.6 create bank account

A.7 check that bank account does exist

A.8 check that account type is chequing

F.1 public class CreateBankAccountBranch extends DoFixture {

F.2

F.3 public boolean enterFirstNameOfApplicantAndSecondName(String

applicant, String name) {...}

F.4

F.5 public boolean chooseTypeOfAccount(String type) {...}

F.6

F.7 public boolean createBankAccount() {...}

F.8

F.9 public String checkThatBankAccountDoesExist() {

F.10 /* TODO: Needs to be changed */

F.11 /*

F.12 return !checkThatBankAccountDoesNotExist();

F.13 */

F.14 return “This test needs to be changed”;

F.15 }

F.16

F.17 public boolean checkThatBankAccountDoesNotExist() {

F.18 /* ... checking existence ... */

F.19 }

F.20

F.21 public boolean checkThatAccountTypeIs(String is) {...}

F.22 }

Figure 5.23: Test Definition and Fixture after “Remove Action” Refactoring with Method References

The Figure 5.23 shows the changed test definition and fixture (the changes are highlighted in bold).

The action check that bank account does not exist has been removed (see A.5). Since the method

checkThatBankAccountDoesNotExist() (see F.17 to F.19) is referenced in the method

checkThatBankAccountDoesExist() (see F.9 to F.15) it is commented out and according to the

refactoring catalogue (see Table 5.2) the return value is changed to String and a reminder message is

returned.

Heiko Ordelt

Refactoring of Acceptance Tests

51

6 Implementation of Automated Refactoring Tool Support

6.1 Environment of Implementation

6.1.1 Eclipse Platform

Eclipse is an open-source software framework written primarily in Java. In its default form, it is an

Integrated Development Environment (IDE) for Java developers, consisting of the Java Development

Tools (JDT). Figure 6.1 shows the three main layers of Eclipse:

Figure 6.1: The three Layers of Eclipse (Gamma, et al., 2003 p. 5)

 Platform

The Plug-In Development Environment (PDE) extends the JDT with support for developing

plug-ins.

 Java Development Tools (JDT)

The Java development tools add a full featured Java IDE to Eclipse.

 Platform

The Eclipse platform defines a common programming language-neutral infrastructure.

Plug-In
Development
Environment

Java
Development

Tools

Platform

Heiko Ordelt

Refactoring of Acceptance Tests

52

The platform consists of several key components that are layered into a user interface

(UI)-independent core and a UI layer, as shown in Figure 6.2.

Figure 6.2: Eclipse Platform Overview (Gamma, et al., 2003 p. 6)

 Runtime

The run-time component defines the plug-in infrastructure. It discovers the available plug-

ins on start-up and manages the plug-in loading.

 Workspace

A workspace manages one or more top-level projects. A project consists of file and folders

that map onto the underlying file system.

 Standard Widget Toolkit (SWT)

The SWT provides graphics and defines a standard set of widgets.

 JFace

A set of smaller UI frameworks built on top of SWT supporting common UI tasks.

 Workbench

The workbench defines the Eclipse UI paradigm. It centers between editors, views and

perspectives.

Users can extend the capabilities by installing plug-ins written for the Eclipse software framework,

such as development toolkits for other programming languages and can write and contribute their

own plug-in modules.

Platform

UI

Workbench JFace SWT

Core

Workspace Runtime

Heiko Ordelt

Refactoring of Acceptance Tests

53

6.1.2 FitClipse

FitClipse (ASE, 2008) is an Eclipse plug-in developed by the ASE Group of the University of Calgary

supporting the creation, modification and execution of acceptance tests using the FIT framework

and FitLibrary (see 4.2.2.1). Figure 6.3 shows FitClipse running in an Eclipse environment.

Figure 6.3: FitClipse Overview

The FitClipse user interface is built on different Eclipse views as follows:

 Test storage view

The test storage view shows a hierarchy of the test structure of the current project. Tests are

shown with a unique name and can be organized in suites.

 Test result overview

When tests are executed, the result of the test run is shown in this view. It can contain

multiple test results and distinguishes between unimplemented failures (never been green

before) and regression failures (green at least once).

Heiko Ordelt

Refactoring of Acceptance Tests

54

 Test definition editor

To create and edit the test definition of acceptance tests the included editor can be used. It

is a simple text editor showing the test definition and allowing the user to change and save

the definition of a specific test.

 Detailed test result view

In addition to the general test result overview, FitClipse can also show details of a specific

test run in the test result view. The view shows the feedback from the output of the FIT

framework.

While FitClipse was originally developed to use FitNesse to store acceptance tests and test results,

the dependency of FitNesse has recently been removed and replaced with a XML based persistence

layer. Besides the main functionality of managing and running acceptance tests, it also supports

Executable Acceptance Test Driven Development by providing an automated fixture generation

feature.

6.2 Used Eclipse Plug-ins

6.2.1 Java Development Tools

JDT stands for Java Development Tools, the sub-project of the Eclipse project that develops tools for

programming in Java. The JDT subproject is broken down into components. Each component

operates like a project on its own, with its dedicated set of committers, bug categories and mailing

lists (Eclipse, 2008).

The following components belong to the Java Development Tools:

 APT

Java 5.0 annotation processing infrastructure.

 Core

Java IDE headless infrastructure.

 Debug

Debug support for Java.

 Text

Java editing support.

Heiko Ordelt

Refactoring of Acceptance Tests

55

 UI

Java IDE User Interface.

The JDT project provides the tool plug-ins that implement a Java IDE supporting the development of

any Java application, including Eclipse plug-ins. It adds a Java project nature and Java perspective to

the Eclipse Workbench as well as a number of views, editors, wizards, builders and code merging

and refactoring tools. The JDT project allows Eclipse to be a development environment for itself

(Eclipse, 2008).

6.2.2 Language Toolkit

At the EclipseCon conference in 2004, a great deal of interest sparked the idea of adding more

generic language IDE infrastructure to Eclipse. Many people have been impressed by the powerful

functionality in the Eclipse Java tooling and would like to be able to leverage that support in other

languages (Eclipse, 2007).

Therefore, the Eclipse Foundation started to extract some of the JDT functionality into a generic

layer. In Eclipse 3.0, the generic parts of the JDT refactoring infrastructure were put into a general

IDE layer. This common programming-language tooling layer is called the Eclipse Language Toolkit

(LTK). It provides an infrastructure for language-independent refactoring in two packages:

 org.eclipse.ltk.core.refactoring

The core package provides classes and interfaces for refactoring operations and a

mechanism to allow third parties to participate in a refactoring.

 org.eclipse.ltk.ui.refactoring

The UI package allows users to utilize some basic UI components for refactoring wizards.

This infrastructure is a logical starting point for writing refactoring support for languages other than

Java. The two important classes of the refactoring framework that define the base functionality are

the Refactoring class and the Change class.

The Refactoring class represents the entire refactoring lifecycle, including precondition checks,

generating the set of changes and post-condition checks. The Change class itself performs more

expensive validation on the input to determine whether the refactoring is appropriate and performs

the workspace modifications induced by it. A Change instance can also encapsulate an undo for

another change, allowing the user to back out of a refactoring after it has completed (Eclipse, 2007).

Heiko Ordelt

Refactoring of Acceptance Tests

56

6.3 Integration into the Eclipse Refactoring Framework

The FitClipse refactoring extension has been integrated in the Eclipse framework by using the Java

Development Tools (JDT) and the Language Toolkit (LTK). The test storage view of FitClipse has been

extended with a context menu that allows the user to first select an acceptance test and then select

the refactoring task he wants to apply (see Figure 6.4).

Figure 6.4: Refactoring Menu of FitClipse

When the desired refactoring has been chosen, an input mask gives the user the ability to insert all

input data needed for the appropriate refactoring. For example, Figure 6.5 shows the input mask of

the “Rename Acceptance Test” refactoring which consists of a simple textbox.

Figure 6.5: Implemented User Interface of Rename Refactoring (Input)

Heiko Ordelt

Refactoring of Acceptance Tests

57

The user has to enter the new name and after clicking on “Preview” the preview shows the resulting

changes to test definition and fixture code (see Figure 6.6).

Figure 6.6: Implemented User Interface of Rename Refactoring (Preview)

The preview is provided by the Eclipse framework and is exactly the same preview that is used for

the common source code refactoring. In the upper part, all single changes (e.g. changes to test

definition, changes to fixture etc.) are displayed. Every change can be selected which updates the

bottom part showing a comparison of the affected element before and after the refactoring.

However, some changes like renaming a Java file have no comparison. Additionally, the preview has

the capability to disable changes which will be ignored at the end. After clicking on the “OK” button,

the modifications will be applied immediately.

Heiko Ordelt

Refactoring of Acceptance Tests

58

6.4 Overall Structure

6.4.1 Package Structure

Refactoring Package Structure

Actions Core Parse Utils Wizards Tests

Figure 6.7: FitClipse Refactoring Package

The refactoring extension is separated into several packages:

The action package contains classes that build the connection between the FitClipse user interface

and the refactoring interface. When a user selects a refactoring task to be applied, the correct class

in the actions package is called triggering the refactoring process. All non-user interface classes that

are working with the refactoring framework are placed in the core package. It contains the

refactoring and processor classes. The parse package provides all needed parser like fixture parser

and test definition parser as well as the classes that include the fixture specific refactoring

implementations. Some helper classes used in the refactoring process are in the utils package. The

wizards package contains the refactoring wizard classes. Among others, this includes the main

wizard class that controls the workflow and the corresponding input page to allow the user to

specify the refactoring input. The tests package contains the unit and acceptance tests of the

refactoring extension. The unit tests are also used by the ASE group’s continuous integration server

that builds and checks the FitClipse several times a day.

Heiko Ordelt

Refactoring of Acceptance Tests

59

6.4.2 Architecture and Design

The refactoring extension was built by using the LTK and JDT plug-ins included in the Eclipse SDK.

Figure 6.8 shows an architectural overview of the whole application including the main components.

Eclipse SDKLegend

Eclipse Plugin

Uses

Component

Language Toolkit (LTK)

RefactoringProcessor

RefactoringWizard

FitClipse

FixtureParser

RefactoringTest

TestDefinitionParser

Refactoring

Java Development Toolkit (JDT)

ASTParser

Figure 6.8: Refactoring Extension Architecture Overview

It can be seen that FitClipse is running as a plug-in in an Eclipse environment. Due to the scope of

this work, only the refactoring package is shown which contains the three main components

RefactoringTest, FixtureParser and TestDefinitionParser. They will be discussed and explained

further later on in this chapter. FitClipse uses the Java Development Tools (JDT) and Language

Toolkit (LTK) plug-ins provided by Eclipse. The main component used in JDT is the ASTParser that is

able to parse Java source code. In the LTK plug-in, the RefactoringProcessor, responsible for the

refactoring lifecycle, and the RefactoringWizard, for the user interface support, are used. Next, the

main components of FitClipse will be described.

6.4.3 Core Components

6.4.3.1 TestDefinitionParser

The test definition parser component consists of the ITestDefinitionParser interface as well as

three classes that represent cells, rows and tables (see Figure 6.9).

Heiko Ordelt

Refactoring of Acceptance Tests

60

+getDocument()

+getAllCellsOfColumn()

+getCellByRelativeIndex()

+getCellByAbsoluteIndex()

+getRowsByTableIndex()

+getRowByRelativeIndex()

+getRowByAbsoluteIndex()

+getTables()

+getRowCount()

+getCellCount()

+getColumn()

«interface»

ITestDefinitionParser

WikiDocumentParser

TestDefinitionRowTestDefinitionCellTestDefinitionTable

Figure 6.9: Class Diagram of TestDefinitionParser

The purpose of the test definition parser is to process a test definition and to divide the tables into

different syntactical elements like cells, rows and tables Currently, the only ITestDefinitionParser

interface implementation provided is the WikiDocumentParser that is able to process wiki code

introduced by FitNesse. However, due to the defined interface it is easy to add support for more

input formats like HTML by simply implementing the interface.

The parser works with absolute and relative indexes. An absolute index of an element like a cell or

row is defined by its position compared to the beginning of the first table. The relative index of a cell

represents the position in a specific row. Along with the cell index, the relative index of a row is

defined by the position in a specific table. Figure 6.10 shows two test definitions that have the same

structure. The only difference is that the test definition on the left side is split into two tables while

test definition 2 is one whole table. It can be seen that the absolute index refers to the same rows

even if the test definition is split into several tables. This allows the parser to handle multiple test

definitions that have the same structure but are different in their table layout.

Heiko Ordelt

Refactoring of Acceptance Tests

61

AI: 0 RI: 0

AI: 1 RI: 1

AI: 2 RI: 0

AI: 3 RI: 1

AI: 0 RI: 0

AI: 1 RI: 1

AI: 2 RI: 2

AI: 3 RI: 3

Test Definition 1 Test Definition 2

Figure 6.10: TestDefinitionParser Indexing Operation Mode

The extracted information is used to present the structure of the test definition in the refactoring

user interface as well as to provide the Eclipse refactoring framework with the needed information

to carry out the appropriate refactoring changes to the test definition. The TestDefinitionParser

works completely on its own without any usage of the Eclipse framework. Only regular expressions

and lists are used to provide the needed functionality.

6.4.3.2 FixtureParser

The fixture parser component consists of the IFixtureParser interface that defines the mandatory

functionality for the fixture handling and modification. FitClipse has currently one implementing

class FixtureASTParser that relies on the ASTParser provided by the Eclipse framework. Its

purpose is to modify the linked fixtures of acceptance tests when they get refactored as well as

analyzing the structure. For example, removing a method or checking if a specific method exists.

Figure 6.11 shows all relevant classes and interfaces and their relationships in a class diagram.

+addField()

+addMethod()

+getFixtureType ()

+getConstructorName()

+getFixture()

+getSuperClassName()

+removeField()

+removeMethod()

+renameClassName()

+getClassName()

+checkIfFieldExists()

+renameMethod()

+checkIfMethodExists()

+getRewrite()

+renameCompilationUnit()

«interface»

IFixtureParser

FixtureASTParser

ParameterASTParser ASTRewrite «interface»

ASTVisitor

ConstructorDeclarationVisitor

FieldDeclarationVisitor MethodDeclarationVisitor

SuperClassVisitor

TypeDeclarationVisitor

«interface»

ICompilationUnit

Figure 6.11: Class Diagram of FixtureParser

Heiko Ordelt

Refactoring of Acceptance Tests

62

The ASTParser is provided by the Eclipse framework and is able to build an abstract syntax tree

(AST) of Java source code. The resulting AST is comparable to the DOM tree model of an XML file.

Just like DOM, the AST allows to modify the tree model and reflects these modifications in the Java

source code. The interface ICompilationUnit represents an entire Java compilation unit (source file)

which is typically the fixture file in this application.

The AST uses the Visitor design pattern which purpose is to perform computations on traversals

through data structures (Kastens, et al., 2007 p. 68). To find various elements like fields or methods

in the AST, the ASTVisitor interface has to be implemented. The refactoring extension includes

several implementations of the ASTVisitor interface like MethodDeclarationVisitor (to find

methods) or SuperClassVisitor (to find a super class). They are called for every node of the AST

while traversing through it and return the search element when it is found. See Figure 6.12 for an

overview of the typical usage of the AST.

Figure 6.12: Abstract Syntax Tree Workflow (Kuhn, et al., 2006)

First, the source code (given as a Java file or as string) is parsed by the ASTParser and an AST is built.

Afterwards, this AST can be modified either directly or with the help of the ASTRewrite class. It

collects descriptions of modifications applied to nodes of the AST and translates these descriptions

into text changes that can then be applied to the original source.

Heiko Ordelt

Refactoring of Acceptance Tests

63

6.4.3.3 RefactoringTest

+addColumn()

+removeColumn()

+getActionList()

+getActions()

+getActionByName()

+renameTest()

+getTestDefinition()

+setTestDefinition()

+getFixtureFile()

+getFixtureType()

+getColumns()

+getColumnByName()

+renameAction()

+getFixtureParser()

+getTestDefinitionParser()

+addAction()

+removeAction()

+getFixtureClassNames()

+getAllCellsOfColumn()

«interface»

IRefactoringTest

RefactoringColumnTest

RefactoringTest

RefactoringDoTest

Column Action

ActionPart

Figure 6.13: Class Diagram of RefactoringTest

The interface IRefactoringTest encapsulates a simple acceptance test and defines the functionality

that is needed for the various refactoring types. The abstract class RefactoringTest implements the

common functionality that is independent of the actual test type. Since FitClipse currently supports

ColumnFixture and DoFixture, the appropriate classes are extending the RefactoringTest class.

The RefactoringColumnTest class uses the Column class that is a simple container to store

information about a column. Additionally, the RefactoringDoTest class uses the Action and

ActionPart classes to save data about the actions in the test definition.

Heiko Ordelt

Refactoring of Acceptance Tests

64

6.4.3.3.1 RefactoringTestFactory

The RefactoringTestFactory uses the Factory design pattern (see class diagram Figure 6.14). Since

the calling class does not know which type of RefactoringTest it must instantiate, the factory class is

used.

-createTest()

+getTest()

RefactoringTestFactory

FixtureASTParser RefactoringColumnTest RefactoringDoTest

«instance»

«instance»

Figure 6.14: Class Diagram of RefactoringTestFactory

Its purpose is to take a generic test object that contains the test definition and a list of all linked

fixtures among other information and to return this object as the correct RefactoringTest instance.

This is needed because the test definition cannot be used to distinguish between different test

types. Figure 6.15 shows an acceptance test processed by a RowFixture. In this case, each cell in the

prime column represents a key that identifies one of the records that is expected to be returned (in

this case, a prime number).

Heiko Ordelt

Refactoring of Acceptance Tests

65

Figure 6.15: RowFixture Test and Fixture Code

In addition, Figure 6.16 shows a simple acceptance test processed by a ColumnFixure. A comparison

of both tests shows that it is not possible to distinguish between RowFixture and ColumnFixture

based on the structure of the test definition.

Figure 6.16: ColumnFixture Test and Fixture Code

Therefore, the only way to determine the test type is to analyze the fixture code and especially the

super class. The workflow of the test type recognition is shown in Figure 6.17 in detail.

Heiko Ordelt

Refactoring of Acceptance Tests

66

RefactoringTestFactory

FixtureParser

Requestor

getTest(test)

getFixtureType()

fixtureType

[fixtureType == ColumnFixture]:new RefactoringColumnTest()

[fixtureType == DoFixture]:new RefactoringDoTest()

Figure 6.17: RefactoringTestFactory Sequence Diagram

Since the RefactoringTestFactory is called from various objects, the Requestor object is a generic

representative for all objects that actually use the Factory. In the first step, the Requestor object

calls the RefactoringTestFactory providing a test object of the test to be recognized. The

RefactoringTestFactory uses the FixtureASTParser to get the fixture type. This is simply done by

getting the super class of the fixture and returning this value as the fixture type. The

RefactoringTestFactory returns the appropriate RefactoringTest object based on the test type

information.

Heiko Ordelt

Refactoring of Acceptance Tests

67

6.5 Refactoring Execution Workflow

The Eclipse refactoring framework (LTK) follows a specific workflow to perform a refactoring. The

general workflow is shown in Figure 6.18.

Figure 6.18: Refactoring Workflow

At the beginning of every refactoring task, the initial conditions are checked. This typically includes

basic activation inspections like confirming the consistent state of the workspace. The next step is to

gather the user input for the respective task. This can vary from being a request for simple to

request for complex input data. After all information has been provided, the refactoring framework

investigates if the refactoring can be carried out with the given parameter. A preview shows the

possible changes which gives the user the ability to see what will change and to gain confidence that

the changes match his expectations. As a last step, the changes will be carried out and the

refactoring process has finished.

Check
initial

conditions

Gather
user input

Check final
conditions

Show
preview

Apply
refactoring

Heiko Ordelt

Refactoring of Acceptance Tests

68

FitClipse

RefactoringProcessor RefactoringWizard

FixtureASTParser

RefactoringTest

WikiDocumentParser

ASTParser

Legend

calls

Class

Delegate

Figure 6.19: Diagram of Refactoring Calling Hierarchy

Figure 6.19 shows all used classes and their relationship during a full refactoring process. The

RefactoringProcessor is the link between the RefactoringWizard and the classes that perform the

condition checking.

The whole refactoring process is controlled by the RefactoringWizard. Depending on the current

step, it calls methods of the RefactoringProcessor class to get the result of the initial condition

check or the Change objects needed to build the preview. The Delegate class forwards only the

method calls from RefactoringProcessor to the RefactoringTest, which depends on the test type

RefactoringDoTest or RefactoringColumnTest. These classes use the FixtureASTParser and

WikiDocumentParser to create the changes. A detailed view of the workflow is given in Figure 6.20

as a sequence diagram. The objects of the “Add Column” refactoring can be understood as

representatives for every other refactoring task.

Heiko Ordelt

Refactoring of Acceptance Tests

69

AddColumnToAcceptanceTest

AddColumnProcessor

AddColumnWizard

AddColumnDelegate

checkInitialConditions()

true / false

open()

checkInitialConditions()

true / false

[false]: Initial condition failed

[true]: showWizard()checkFinalConditions()

checkFinalConditions()

true / false

true / false

[false]: Final condition failed

[true]: createChange()

createChange()

CompositeChange

CompositeChange

showPreview()

Figure 6.20: Sequence Diagram of the Eclipse Refactoring Workflow

The AddColumnToAcceptanceTest class is triggered by the FitClipse user interface after selecting a

refactoring task. First, it creates the needed objects AddColumnProcessor, AddColumnWizard and

AddColumnDelegate. Next, it starts the AddColumnWizard that takes the control over the

refactoring process and initiates test for the initial conditions. This task is forwarded to the

AddColumnDelegate that is returning whether it was successful or not. If it was successful, the

AddColumnWizard shows the input mask and gathers the refactoring input from the user.

Afterwards, the system makes sure that all changes are consistent. When the test for the initial

conditions fails, the responsibility is given back to the AddColumnToAcceptanceTest class, which

gives the user a graphical notification with a message explaining why the refactoring failed. If the

final test passes, the AddColumnDelegate creates a set of Change objects describing the changes to

be made during the refactoring. The AddColumnWizard uses this information to present a preview.

Heiko Ordelt

Refactoring of Acceptance Tests

70

All changes that take place after the preview are executed by the Eclipse refactoring framework and

cannot be controlled.

Change

CompositeChange NullChange TextEditBasedChange UndoTextFileChange

MultiStateTextFileChange TextChange

DocumentChange TextFileChange

Figure 6.21: Class Diagram of Change Object Hierarchy

The generated Change objects can be of various types. The refactoring extension mostly uses

TextFileChange to modify the fixture code and DocumentChange for modifications on the test

definition.

6.6 Multiple Test and Fixture Support

As mentioned in 4.2.3, FitClipse supports multi-modal test execution which means that one

acceptance test is linked with multiple fixtures. It is also possible that two acceptance tests use the

same fixture. Figure 6.22 presents an example test structure. It consists of three acceptance tests T1,

T2 and T3 as well as four fixtures F1, F2, F3 and F4. The tests T1 and T2 are both linked with fixture

F2.

Heiko Ordelt

Refactoring of Acceptance Tests

71

F1

T1 T2

F2 F3

T3

F4

Figure 6.22: Test Database Structure Example

When acceptance test T1 is refactored and fixture F2 is changed, T2 also has to be adjusted. If T2

would not be adjusted, it would be inconsistent with fixture F2. Furthermore, in this case F3 is also

affected and needs to be altered to be consistent with the acceptance test T2.

However, this example shows a special case where multiple tests and fixtures can be affected by one

single refactoring task. The refactoring extension supports this case by analyzing the test structure

and finding all linked fixtures.

It uses the FixtureManager class that was already available. The class is responsible to manage the

relationships between the fixtures and acceptance tests of a project. After providing an acceptance

test, it returns a list of all related tests and fixtures which are supposed to be part of this

modification. Instead of making the modifications of a refactoring to a single acceptance test and

fixture, it will be applied to all acceptance tests and fixtures returned by the FixtureManager class.

6.7 Specific Refactoring Implementation

In this chapter, every refactoring implementation is described in detail. The following description

structure is used:

 Name

 Low-fidelity prototype

 Look and functioning of user interface mask

 Implementation specifics

The name of the refactoring task refers to the refactoring implementation and description given in

chapter 5. After the name, the low-fidelity prototype is shown that was used to discuss the design

Heiko Ordelt

Refactoring of Acceptance Tests

72

before starting with the implementation. This leads to the user interface mask that was built in

FitClipse that is presented and described in its functioning. Rather than describing implementation

details, only specific details like additional features or special procedures are discussed.

6.7.1 Rename Acceptance Test

The “Rename Acceptance Test” refactoring activity implements the appropriate refactoring

described in 5.5.1. After selecting the task for an acceptance test in the test storage view, a user

interface mask (see low-fidelity prototype in Figure 6.23) is displayed.

Figure 6.23: Low Fidelity Prototype of "Rename Acceptance Test" Refactoring

The transfer from the low-fidelity prototype to the actual UI wizard can be seen in Figure 6.24. The

user interface mask has one text field that allows the user to change the name of the respective

acceptance test.

Heiko Ordelt

Refactoring of Acceptance Tests

73

Figure 6.24: Input User Interface Mask of "Rename Acceptance Test" Refactoring

There are two constraints regarding valid input:

 Different new name

The new name must be different to the old name to be valid. Additionally, it must start with

an uppercase character as the resulting fixture names must follow the valid Java class

naming conventions.

 Resulting fixtures do not exist

If at least one filename for the new Java classes does already exist in the workspace the

input value is not valid.

Implementation Specifics

The “Rename Acceptance Test” refactoring implementation automatically renames multiple fixtures

linked with an acceptance test to keep the relationship based on the name. When the name of the

acceptance test is changed, all fixtures with the matching file name are renamed as well. The

following example shows how the support for multiple fixtures works.

It is assumed that there is an acceptance test CreateBankAccount which is linked to the fixtures

CreateBankAccountBranch.java and CreateBankAccountWeb.java. Both fixtures have the same prefix

CreateBankAccount. When the acceptance test name is changed to CreateBankingAccount, the

prefix CreateBankAccount of both fixtures has to change as well.

Table 6.1: Fixture Rename Procedure Examples of “Rename Acceptance Test” Refactoring

Acceptance Test Name Fixture
Name 1

New Acceptance Test Name Resulting Fixture
Name 1

CreateBankAccount CreateBankAccountBranch CreateBankingAccount CreateBankingAccountBranch

CreateBankAccount CreateBankAccount CreateBankingAccount CreateBankingAccount

CreateBankAccount BankAccountCreation CreateBankingAccount BankAccountCreation

Heiko Ordelt

Refactoring of Acceptance Tests

74

However, when non-prefix changes are made they are not carried out to the fixture names. The

Table 6.1 shows some more examples that explain the procedure.

6.7.2 Add Column

The “Add Column” refactoring implements the refactoring description given in 5.5.2.1. After

selecting the refactoring task for an acceptance test in the test storage view, the user sees a user

interface mask (see low-fidelity prototype in Figure 6.25).

Figure 6.25: Low-fidelity Prototype of "Add Column" Refactoring

The implementation of the low-fidelity prototype can be seen in Figure 6.26. The user interface mask

consists of one text field as well as two radio buttons and a select box.

Heiko Ordelt

Refactoring of Acceptance Tests

75

Figure 6.26: Input User Interface Mask of "Add Column" Refactoring

The text field is used to enter the name of the new column. The values “before” or “after” together

with a selected existing column the position for the new column.

There are two constraints regarding valid input:

 New name valid Java identifier

The new name must be a valid Java field or method identifier since the value is used for the

new field/method when the fixture is modified. This is validated with help of the

JavaConventions.validateFieldName() and JavaConventions.validateMethodName()

methods that are provided by the Eclipse framework.

 Column does not already exist

The input gets only accepted if the column to insert does not already exist in the test

definition.

Implementation Specifics

The “Add Column” refactoring distinguishes automatically between expected- and given-value

columns by analyzing the value. If it ends with an opening and closing bracket, it is considered an

expected-value column. In contrast, if it ends with a character it is considered to be a given-value

column. This makes it easier for people who are familiar with the FIT framework as it uses the same

notation.

Heiko Ordelt

Refactoring of Acceptance Tests

76

If a given-value column is added and the respective field already exists in the fixture, the refactoring

will be carried out but without adding a field. This also applies to expected-value column if the

connected method already exists.

6.7.3 Remove Column

The “Remove Column” refactoring implements the refactoring description given in 5.5.2.2. After

selecting the refactoring for an acceptance test in the test storage view, the user sees a user

interface mask (see low-fidelity prototype in Figure 6.27).

Figure 6.27: Low-Fidelity Prototype of "Remove Column" Refactoring

The implementation of the low-fidelity prototype can be seen in Figure 6.28. The user interface mask

consists only of select box including the existing columns of the test definition.

Heiko Ordelt

Refactoring of Acceptance Tests

77

Figure 6.28: Input User Interface Mask of "Remove Column" Refactoring

The user can choose one of the columns to remove it. There is no validation of the input needed.

Implementation Specifics

The “Remove Column” refactoring distinguishes automatically between expected- and given-value

columns by analyzing the value. If it ends with an opening and closing bracket, it is considered an

expected-value column. In contrast, if it ends with a character it is considered to be a given-value

column.

If a given-value column is removed and the connected field does not exist in the fixture anymore,

the refactoring task will be completed without removing the field. This also applies to an expected-

value column if the representing method does not exist.

6.7.4 Rename Action

The “Rename Action” refactoring implements the refactoring description given in 5.5.3.1. After

selecting the refactoring for an acceptance test in the test storage view, the user sees a user

interface mask (see low-fidelity prototype in Figure 6.29).

Heiko Ordelt

Refactoring of Acceptance Tests

78

Figure 6.29: Low-Fidelity Prototype of "Rename Action" Refactoring

The implementation of the low-fidelity prototype can be seen in Figure 6.30. The user interface mask

consists of a table that shows the existing actions.

Figure 6.30: Input User Interface Mask of "Rename Action" Refactoring

The values of the keyword cells in the table can be modified after double-clicking on it. It is possible

to modify as many cells as required before continuing to the preview. In other words, the user

renames actions by changing the keywords in the table. Every keyword of an action might have a

parameter associated which is indicated by a checkbox after the keyword.

Heiko Ordelt

Refactoring of Acceptance Tests

79

There are two constraints regarding valid input:

 New name valid Java identifier

When the keywords of the actions are camel-cased they must be valid Java method

identifier as this value is used for the new method name in the fixture. The validity gets

checked with help of the JavaConventions.validateFieldName() and

JavaConventions.validateMethodName() methods that are provided by the Eclipse

framework.

 Unique action

When the keyword of an action is changed so that the resulting action is a duplication of an

existing action the wizard notifies the user about the invalid input by asking him to change

the keywords to an unique name.

Implementation Specifics

The “Rename Action” refactoring has no implementation specifics.

6.7.5 Add Action

The “Add Action” refactoring implements the refactoring description given in 5.5.3.2. After selecting

the refactoring for an acceptance test in the test storage view, the user sees a user interface mask

(see low-fidelity prototype in Figure 6.31).

Heiko Ordelt

Refactoring of Acceptance Tests

80

Figure 6.31: Low-Fidelity Prototype of "Add Action" Refactoring

The implementation of the low-fidelity prototype can be seen in Figure 6.32. The user interface mask

consists of two tables and two buttons to modify the actions.

Heiko Ordelt

Refactoring of Acceptance Tests

81

Figure 6.32: Input User Interface Mask of "Add Action" Refactoring

The upper table shows all existing actions similar to the user interface of the “Rename Action”

refactoring task. The lower table is used to create a new action. The number of keywords can be

adjusted by right clicking on the table and choosing a command from the context menu to either add

or remove a keyword. The keywords can be edited and the checkbox indicates if a parameter follows

the keyword. When the user has finished creating a new action, a position in the upper table can be

chosen und the action will be inserted above or below the selected position by clicking on the

respective buttons.

There is one constraints regarding valid input:

 New name valid Java identifier

When the keywords of the actions are camel-cased they must be valid Java method

identifier as this value is used for the new method name in the fixture. The validity gets

checked with help of the JavaConventions.validateFieldName() and

JavaConventions.validateMethodName() methods that are provided by the Eclipse

framework.

Heiko Ordelt

Refactoring of Acceptance Tests

82

Implementation Specifics

When an action is added and the respective method already exists in the fixture, the refactoring will

be completed without adding a method.

6.7.6 Remove Action

The “Remove Action” refactoring implements the refactoring description given in 5.5.3.3. After

selecting the refactoring for an acceptance test in the test storage view, the user sees a user

interface mask (see low-fidelity prototype in Figure 6.33).

Figure 6.33: Low-Fidelity Prototype of "Remove Action” Refactoring

Heiko Ordelt

Refactoring of Acceptance Tests

83

The implementation of the low-fidelity prototype can be seen in Figure 6.34. The user interface mask

consists of one table and one button.

.

Figure 6.34: Input User Interface Mask of "Remove Action" Refactoring

The table shows all existing actions like the user interface of the “Rename Action” refactoring task.

The user can select an action in the table and click on “Delete Action” which will remove the selected

action from the table. It is also possible to remove multiple actions before proceeding to the

preview.

Implementation Specifics

When an action is removed and the connected method does not exist in the fixture, the refactoring

will be completed without removing the method.

6.8 Correctness of the System

The FitClipse refactoring extension has been built using Executable Acceptance Test Driven

Development and therefore includes unit tests as well as acceptance tests. Every important

component gets tested by unit tests and every refactoring task gets tested by an acceptance tests.

However, due to limitations of the FIT framework which is not capable of executing fixtures in an

Eclipse instance (for testing Eclipse plug-ins), a workaround has been applied.

Heiko Ordelt

Refactoring of Acceptance Tests

84

PDE JUnit (Eclipse, 2004) runs JUnit tests in an separate Eclipse instance and is mainly used to test

Eclipse plug-ins. The acceptance tests for the refactoring tasks are written as workflows using the

DoFixture. As shown in 5.4, every action is mapped to a specific method in the fixture code.

Figure 6.35: Refactoring Acceptance Testing Workaround

These specific methods open an Eclipse instance and call methods in the PDE JUnit test which is

running in that instance. The PDE JUnit test method is doing the actual testing in the system and

returns a Boolean value which is processed by the fixture to indicate whether the action was

successful or not.

This way of executing the acceptance tests is very slow because an Eclipse instance has to be opened

for every action in the fixture. A single test might need several minutes before it is completed.

6.9 Limitations

The FIT framework supports multiple test tables in one test definition of different types. In other

words, an acceptance test can contain a ColumnFixture table and a DoFixture table together in one

test or test definition. Due to time constraints, this mixed test definitions have not been

implemented. The FitClipse refactoring tool supports multiple test tables in one test definition but

tables have to be of the same type and structure. However, this has no impact on the performed

analysis but is a limitation in the flexibility of the refactoring.

call

true/false

call

return

public class Test

extends Fixture {

…

}

Fixture SUT PDE JUnit Test

public class

PDETest {

…

}

Heiko Ordelt

Refactoring of Acceptance Tests

85

7 Conclusion and Future Work

7.1 Problems

The goal of this thesis was to find ways to make refactoring applicable for acceptance tests and to

extend FitClipse to support automated refactoring.

An early research about acceptance test refactoring showed that not much work in this area has

been done in the past. A few publications by Jennitta Andrea were available that discussed the need

for acceptance test refactoring but not how it should be performed. Due to time constraints, it was

not possible to conduct a survey to find out what types of refactoring would be beneficial for

experienced users in the industry. Therefore, a set of refactoring types has been created but,

unfortunately, there is no evidence that it is useful.

The next problem was to gain a proper understanding of the Eclipse framework. It was very time

consuming to find out how to work with the Language Toolkit and Java Development Tools plug-ins

for the refactoring integration. There is no literature available that describes the Eclipse refactoring

framework and the available information on the Internet is also rather poor. In the end, a small

tutorial describing a simple refactoring (Frenzel, 2006), a more sophisticated description of

“Introduce Indirection” refactoring for Java (Widmer, 2007) and a tutorial about the Abstract Syntax

Tree (Kuhn, et al., 2006) helped to get started.

Since the refactoring extension has been developed by using Executable Acceptance Test Driven

Development the FIT framework was used to create executable acceptance tests which test the

refactoring support. After finishing the first refactoring and implementing the fixture code of the

corresponding acceptance test, the problem that the FIT framework was not capable of executing

and testing Eclipse plug-ins came up. A quick research showed that there was no official solution and

thus a small extension had to be built to make it work. Although it is working and the refactoring

tasks can be tested by acceptance tests, it is extremely slow and not very well designed.

Heiko Ordelt

Refactoring of Acceptance Tests

86

7.2 Contributions

The work presented in this thesis can be seen as a first step towards a better understanding of

acceptance test refactoring. The following contributions have been made by this work:

 Academic contribution

As a foundation for the analysis of acceptance tests and possible refactoring types, a

definition of acceptance test refactoring has been created. It defines exactly the goal and

differentiates between behaviour changing and behaviour preserving refactoring tasks.

Furthermore, based on the definition a catalogue of acceptance test refactoring for

ColumnFixture and DoFixture has been created. This academic work can be used as a base

for additional research on this topic to get a deeper and more comprehensive understanding

of acceptance test refactoring.

 Refactoring support of FitClipse

Besides the academic contributions, an automated refactoring tool support has been

developed. FitClipse has been extended to allow users to refactor acceptance tests by type

of DoFixture and ColumnFixture. A total of six refactoring tasks were developed to support

users changing acceptance tests. The test definition and fixture are kept consistent and in

the case of a behaviour change, the user gets a clear message explaining the problem.

 Integration of Eclipse refactoring framework and extendibility

Not only has FitClipse been extended to support refactoring, but also a set of interfaces have

been created that allows an easy integration of new fixtures and refactoring types into

FitClipse. New fixtures can be implemented by simply realizing one interface. The fixture

parser as well as the test definition parser support many generic operations needed to add

new refactoring types.

7.3 Future Work

Several problems and limitations have to be solved in the future:

 Evaluation

The research of this work has not included an evaluation of the usefulness and usability

(except using the tool to maintain its own acceptance tests). The next step is to determine if

the refactoring support is beneficial to making the EATDD process easier and safer with

respect to changing requirements.

Heiko Ordelt

Refactoring of Acceptance Tests

87

 Extended fixture support

Currently DoFixture and ColumnFixture are supported. These two fixtures are very popular

and used very often (based on informal discussions with industry contacts). However, many

additional fixtures like DomainFixture (for Domain Driven Design) or RowFixture (for

checking results of queries) should be supported to make FitClipse attractive to a larger user

group. This makes it necessary to analyse the relationships between the appropriate fixture

and the test definition (as done in this work).

 Extending set of refactoring tasks

To give the user more flexibility in modifying acceptance tests, the catalogue of refactoring

tasks must be extended to support more kinds of refactoring. Furthermore, existing

refactoring types could be combined to perform several changes in one-step in order to

build even more sophisticated kinds of refactoring.

 Multiple test tables

Currently, FitClipse allows the refactoring of multiple test tables in one test definition.

Nevertheless, there is the limitation that every table must be of the same test type (e.g.

DoFixture) and must have the same structure. Due to this fact, the user is forced to separate

test tables into different acceptance tests which can lead to a higher maintenance effort.

 Support for more test definition formats

The current implementation works with wiki syntax for writing the test definition. This

notation is not very easy to use for users who have never worked with FitNesse before. Since

the FIT framework supports HTML as input format, a HTML editor in FitClipse would be

beneficial for non-technical users to create the appropriate tables or tests. The refactoring

support would have to be extended to support HTML. This can easily be achieved by

extending the ITestDefinition interface and implementing a parser that is able to work with

HTML tables instead of wiki tables.

 Refactoring history

The Eclipse framework supports keeping a history of applied refactoring changes to an

element like a Java file or an acceptance test. That feature can be used to track all changes

to acceptance tests, which may be helpful for developers and customers to detect

requirements that have been altered. Furthermore, it builds a safety net that can be used to

undo changes to acceptance tests if the new test does not match the expectations.

Heiko Ordelt

Refactoring of Acceptance Tests

88

 Refactoring from Java file to acceptance test

The actual refactoring implementation only allows users to perform a one-way refactoring

from acceptance test to fixtures. Additionally, it would be beneficial to refactor from the

Java file to the acceptance test. For example, a user removes a field in a ColumnFixture and

the appropriate column in the test definition is automatically removed. This would offer

developers to improve the structure or design of the fixture code without the need to keep

the test definition consistent.

 Acceptance testing of refactoring support

As shown in the problems section of this chapter, acceptance tests to check the refactoring

support of FitClipse have been created. However, the solution built for the FIT framework to

test the Eclipse plug-in is very slow and not well designed. This makes automated testing

almost impossible due to the time a test run takes. Another way to execute the test faster

has to be discovered and it should be considered optimize the design. This would make it

possible to test the refactoring extension with a continuous integration server automatically.

Additionally, the acceptance test’s regression safety net could be used better for future

development.

Heiko Ordelt

Refactoring of Acceptance Tests

89

8 References

Aarniala, Jari. 2006. Acceptance Testing. [Online] 2006. [Cited: March 25, 2008.]

http://www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf.

Ambler, Scott W. 2007. Introduction to Test Driven Design (TDD). [Online] 2007. [Cited: March 25,

2008.] http://www.agiledata.org/essays/tdd.html.

Andrea, Jennitta. 2005. Brushing Up On Functional Test Effectiveness. [Online] 2005. [Cited: March

10, 2008.] http://www.jennittaandrea.com/wp-

content/uploads/2007/03/brushinguponfunctionaltesteffectiveness_bettersoftware2005.pdf.

—. 2005. Brushing Up On Functional Test Effectiveness. [Online] 2005. [Cited: March 10, 2008.]

http://www.jennittaandrea.com/wp-

content/uploads/2007/03/brushinguponfunctionaltesteffectiveness_bettersoftware2005.pdf.

—. Brushing Up On Functional Test Effectiveness. [Online] [Cited: March 10, 2008.]

http://www.jennittaandrea.com/wp-

content/uploads/2007/03/brushinguponfunctionaltesteffectiveness_bettersoftware2005.pdf.

—. 2007. Envisioning the Next Generation of Functional Testing Tools. IEEE Computer Society. May

2007, Vol. 24, 3, pp. 58-66.

ASE Group. 2008. EATDD. [Online] University of Calgary, 2008. [Cited: March 25, 2008.]

http://ase.cpsc.ucalgary.ca/ase/index.php/EATDD/Home.

—. 2008. FitClipse. [Online] University of Calgary, 2008. [Cited: March 12, 2008.]

http://ase.cpsc.ucalgary.ca/index.php/FitClipse/FitClipse.

Astels, David. 2003. Test-Driven Development: A Practical Guide. s.l. : Prentice Hall, 2003.

AutAT. 2005. [Online] 2005. [Cited: March 11, 2008.] http://boss.bekk.no/boss/autat.

Beck, Kent and Andres, Cynthia. 2004. Extreme Programming Explained: Embrace Change. s.l. :

Pearson Education, 2004.

Beck, Kent. 1999. Extreme Programming Explained: Embrace Change. s.l. : Addison Wesley, 1999.

—. 2003. Test-Driven Development: By Example. s.l. : Addison-Wesley, 2003.

Heiko Ordelt

Refactoring of Acceptance Tests

90

Binder, Robert. 2000. Testing Object-Oriented Systems: Models, Patterns, and Tools. s.l. : Addison-

Wesley, 2000.

Buwalda, Hans. 2004. Soap Opera Testing. Better Software Magazine. 2004.

Cockburn, Alistair. 2004. Crystal Clear: A Human-Powered Methodology for Small Teams. s.l. :

Addison-Wesley Professional, 2004.

Cohn, Mike. 2005. Do-It-Yourself: A How-to Guide for Fixing a Failing Project. Better Software

Magazine. 2005, Vol. 7, 8.

—. 2004. User Stories Applied: For Agile Software Development. s.l. : Pearson Education, 2004.

ConFIT. 2007. [Online] 2007. [Cited: March 11, 2008.] http://bandxi.com/fitnesse/confit.html.

Craig, Rick D. and Jaskiel, Stefan P. 2002. Systematic Software Testing. s.l. : Artech House, 2002.

Crispin, Lisa and House, Tip. 2002. Testing: Extreme Programming. s.l. : Pearson, 2002.

Cunningham, Ward. Fit: Framework for Integrated Test. [Online] http://fit.c2.com/.

Deng, Chengyao, Wilson, Patrick and Maurer, Frank. 2007. FitClipse: A Fit-based Eclipse Plug-in For

Executable Acceptance Test Driven Development. Proceedings of the 8th International Conference

on Agile Processes in Software Engineering and eXtreme Programming (XP 2007). 2007.

Deursen, Arie van and Moonen, Leon. 2002. The Video Store Revisited – Thoughts on Refactoring

and Testing. Proceedings of the 3rd International Conference on Extreme Programming and Flexible

Processes in Software Engineering (XP 2002). 2002.

Deursen, Arie van, et al. 2001. Refactoring Test Code. Proceedings of the 2nd International

Conference on Extreme Programming and Flexible Processes in Software Engineering (XP2001). 2001.

Eclipse Foundation. 2008. JDT. [Online] 2008. [Cited: March 21, 2008.] http://wiki.eclipse.org/JDT.

—. 2004. What is a PDE JUnit test? [Online] 2004. [Cited: March 17, 2008.]

http://wiki.eclipse.org/FAQ_What_is_a_PDE_JUnit_test.

—. 2007. What is LTK? [Online] 2007. [Cited: March 16, 2008.]

http://wiki.eclipse.org/FAQ_What_is_LTK.

Heiko Ordelt

Refactoring of Acceptance Tests

91

Erickson, Carl, et al. 2003. Make Haste, not Waste: Automated System Testing. Extreme

Programming and Agile Methods - XP Agile Universe, Springer Lecture Notes in Computer Science.

2003.

FitLibrary. [Online] [Cited: March 25, 2008.] http://sourceforge.net/projects/fitlibrary.

FitNesse. 2008. [Online] 2008. [Cited: March 11, 2008.] http://fitnesse.org.

—. 2008. [Online] 2008. [Cited: March 11, 2008.] http://fitnesse.org.

Fowler, Martin. 2000. Refactoring: Improving the Design of Existing Code. s.l. : Addison-Wesley,

2000.

—. 2006. Specification By Example. [Online] 2006. [Cited: March 25, 2008.]

http://martinfowler.com/bliki/SpecificationByExample.html.

Framework for Integrated Test. [Online] [Cited: March 25, 2008.] http://fit.c2.com/.

Frenzel, Leif. 2006. The Language Toolkit: An API for Automated Refactorings in Eclipse-based IDEs.

[Online] 2006. [Cited: March 15, 2008.] http://www.eclipse.org/articles/Article-LTK/ltk.html.

Gamma, Erich and Beck, Kent. 2003. Contributing to Eclipse: Principles, Patterns, and Plug-Ins. s.l. :

Addison-Wesley, 2003.

Gamma, Erich. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. s.l. : Addison-

Wesley, 1995.

Guerra, Eduardo Martins and Fernandes, Clovis Torres. 2007. Refactoring Test Code Safely.

International Conference on Software Engineering Advances (ICSEA 2007), Cap Esterel, France. 2007.

Highsmith, James A. 2000. Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems. s.l. : Dorset House Pub., 2000.

IEEE. 1996. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer

Glossaries. 1996.

Javvin. 2007. Network Dictionary. s.l. : Javvin Technologies Inc, 2007.

Jeffries, Ron. 2001. What is Extreme Programming? [Online] 2001. [Cited: March 25, 2008.]

http://www.xprogramming.com/xpmag/whatisXP.htm.

Heiko Ordelt

Refactoring of Acceptance Tests

92

Kaner, Cem. 2003. Cem Kaner on Scenario Testing: The Power of What-If and And Nine Ways to Fuel

your Imagination. Software Testing and Quality Engineering Magazine. 2003, Vol. 5, 5.

—. 2003. How to design scenario tests. Software Testing and Quality Engineering Magazine. 2003.

Kaner, Cem, Bach, James and Pettichord, Bret. 2002. Lessons Learned in Software Testing: A

ContextDriven Approach: A Context Driven Approach. s.l. : John Wiley & Sons, 2002.

Kastens, Uwe, Waite, William McCastline and Sloane, Anthony M. 2007. Generating Software from

Specifications. s.l. : Jones & Bartlett Publishers, 2007.

Kerievsky, Joshua. 2005. Industrial XP: Making XP Work In Large Organizations. Cutter Consortium:

Agile Project Management. 2005, Vol. 6, 2.

—. 2004. Storytesting. [Online] 2004. [Cited: March 13, 2008.]

http://www.industrialxp.org/storytesting.html.

Kuhn, Thomas and Thomann, Olivier. 2006. [Online] 2006. [Cited: March 16, 2008.]

http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html.

Luxoft. 2007. FITPro. [Online] 2007. [Cited: March 11, 2008.] http://www.luxoft.com/fit.

Maciaszek, Leszek A. 2001. Requirements Analysis and System Design. s.l. : Addison-Wesley, 2001.

Manifesto for Agile Software Development. 2001. [Online] 2001. [Cited: March 25, 2008.]

http://agilemanifesto.org.

Marick, Brian. 2003. Agile Testing Directions: Business-facing team support. [Online] 2003. [Cited: 03

13, 2008.] http://www.testing.com/cgi-bin/blog/2003/09/05#agile-testing-project-4.

—. 2003. Exploration Through Example. [Online] 2003. [Cited: March 25, 2008.]

http://www.testing.com/cgi-bin/blog/2003/08/21.

—. 2002. XP/Agile Universe trip report. [Online] 2002. [Cited: March 25, 2008.]

http://www.pettichord.com/XP_Agile_Universe_trip_report.txt.

Mathew, Sajan. 2003. Software Engineering. s.l. : S. Chand & Company, 2003.

Maurer, Frank and Melnik, Grigori. 2006. Driving Software Development with Executable

Acceptance Tests. Agile Project Management. 2006, Vol. 7, 11.

Heiko Ordelt

Refactoring of Acceptance Tests

93

—. 2007. Multiple Perspectives on Executable Acceptance Test-Driven Development. Proceedings of

the 8th International Conference on Agile Processes in Software Engineering and eXtreme

Programming (XP 2007). 2007.

Melnik, Grigori. 2007. Empirical Analysis of Executable Acceptance Test Driven Development. Agile

Software Engineering Group. [Online] August 2007. [Cited: March 25, 2008.]

http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/MelnikPhD.pdf.

Meyers, Glenford J. 2004. The Art of Software Testing. s.l. : John Wiley and Sons, 2004.

Palmer, Stephen R. and Felsing, John M. 2002. A Practical Guide to Feature-Driven Development.

s.l. : Prentice Hall, 2002.

Park, Shelly and Maurer, Frank. 2008. Multi-modal Functional Test Execution. Proceedings 9th

International Conference on Agile Processes and eXtreme Programming in Software Engineering

(XP2008), Limerick, Ireland, Springer, 10-14 June 2008. 2008.

Pyxis Technologies Inc. 2008. GreenPepperSoftware. [Online] 2008. [Cited: March 11, 2008.]

http://greenpeppersoftware.com/en/products.

Schwaber, Ken and Beedle, Mike. 2002. Agile Software Development with SCRUM. s.l. : Prentice

Hall, 2002.

Stapleton, Jennifer. 1997. Dynamic Systems Development Method: The Method in Practice. s.l. :

Addison-Wesley, 1997.

The Standish Group. 1995-2005. Chaos Report. s.l. : The Standish Group, 1995-2005.

US Department of Defense. 1988. Military Standard Defense System Software, DOD-STD-2167A.

Section 5.3.3. Formal Qualification Testing. [Online] 1988. [Cited: March 25, 2008.]

http://www2.umassd.edu/swpi/dod/mil-std-2167a/dod2167a.html#section.5.3.

Wang, Lingfeng and Chen Tan, Kay. 2006. Modern Industrial Automation Software Design. s.l. :

Wiley-IEEE, 2006.

Watkins, John. 2001. Testing IT: An Off-the-Shelf Software Testing Process. s.l. : Cambridge

University Press, 2001.

Heiko Ordelt

Refactoring of Acceptance Tests

94

Widmer, Tobias. 2007. Unleashing the Power of Refactoring. [Online] 2007. [Cited: March 15, 2008.]

http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-

Refactoring/index.html.

Young, Ralph Rowland. 2001. Effective Requirements Practices. s.l. : Addison-Wesley, 2001.

	Abstract
	Publications
	Acknowledgments
	Dedication
	Table of Figures
	List of Tables
	Table of Contents
	Introduction
	Executable Acceptance Test-Driven Development
	Refactoring of Acceptance Tests
	Thesis Goals
	Thesis Structure

	Related Work
	Test Refactoring in General
	Effectiveness of Acceptance Tests
	Requirements on Next Generation Functional Testing Tools
	Current Tool Support

	Agile Software Development and Extreme Programming (XP)
	Overview
	Agile Methods
	Extreme Programming (XP)
	Testing in XP
	Time and Frequency of Testing
	Unit Testing
	Acceptance Testing

	Test Driven Development as one Core Practice of XP
	Unit Test Driven Development
	Executable Acceptance Test Driven Development
	Overview
	Tools
	Fit Framework and FitLibrary
	FitNesse

	Multi-Modal Test Execution
	Manual Acceptance Test Modification Issues

	Refactoring of Acceptance Tests
	Goal of Acceptance Test Refactoring
	Source Code Refactoring
	Definition and Separation from Source Code Refactoring
	Analysis of Fit Based Acceptance Tests
	Refactoring Catalogue
	Rename Acceptance Test
	ColumnFixture
	Add Column
	Remove Column

	DoFixture
	Rename Action
	Add Action
	Remove Action

	Implementation of Automated Refactoring Tool Support
	Environment of Implementation
	Eclipse Platform
	FitClipse

	Used Eclipse Plug-ins
	Java Development Tools
	Language Toolkit

	Integration into the Eclipse Refactoring Framework
	Overall Structure
	Package Structure
	Architecture and Design
	Core Components
	TestDefinitionParser
	FixtureParser
	RefactoringTest
	RefactoringTestFactory

	Refactoring Execution Workflow
	Multiple Test and Fixture Support
	Specific Refactoring Implementation
	Rename Acceptance Test
	Add Column
	Remove Column
	Rename Action
	Add Action
	Remove Action

	Correctness of the System
	Limitations

	Conclusion and Future Work
	Problems
	Contributions
	Future Work

	References

