
Leveraging the Jazz Platform for
Developing an Agile Planning Tool

Kai Nehring, Shelly Park, Frank Maurer
University of Calgary

Department of Computer Science
2500 University Dr. NW, Calgary, AB, Canada

(403) 220-3531

Nehring.kai@gmail.com, {parksh, maurer}@cpsc.ucalgary.ca

ABSTRACT
Tools often need to be integrated in and evaluated within a whole
development process. Research ideas often impact only a small
part of this process, but the impact of the idea can realistically
only be determined when it is integrated properly in the whole
process. This implies that if the new tool is not integrated with
other tools, its usefulness for the practitioner is often limited.
Researchers need to be creative, but also we need a framework
that has enough penetration in the market that learning the
technology will pay off in the long run for the students. In this
paper, we describe our experience with integrating our Agile
planning tool with Jazz platform. Our experience shows that we
were able to save a lot of development time, but faced several
obstacles as well.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Integrated environments, Interactive environments, Programmer
workbench; D.2.9 [Software Engineering] Management –
Programming teams, Software configuration management

General Terms
Management, Design, Human Factors

Keywords
Agile software engineering, collaborative programming, Jazz,
Eclipse, IDE, integrated development environment

1. INTRODUCTION
Tools developed in research settings are designed to facilitate
experiments, perform user studies, test the efficiency of new
algorithms, enhance our understanding of the software
development endeavor and help further the collaboration between
researchers and industry practitioners. Therefore, even more than
industry settings, rapid tool development is a necessity of research
work in order to facilitate the research within the given amount of

time and budget. However, tool development in a research setting
faces a high developer turnover rate, high learning curve for new
student developers and an unpredictable project outcome due to
the experimental nature of research projects. One way to develop
software tools quickly is to leverage the existing functionalities in
other systems by integrating different software together rather
than developing everything from scratch. However, most third-
party software is difficult to extend because they are not designed
to be integrated with other software. Trying to integrate between
software that is not originally designed to be extendible is very
difficult and the end-product may become very clunky and prone
to failures due to the awkward interfacing. Even if the source
code is available, extending and combining several different
software products for the purpose of developing new software can
be very difficult, because the existing code is too tightly coupled
with the original software design rather than allowing for the
flexibility of what the software may become.

Recently, development platforms such as Eclipse [1] have been
very successful, because of its extensibility and its plugin
architecture. Jazz [2] extends Eclipse development environment
by providing an additional set of collaboration functionalities for
software developers. The benefit of building software using the
Eclipse and Jazz platforms is that much of the reusable supporting
functionalities are already available to the developers and the
developers have access to a rich set of functionalities that are
tested by many users already. The developers can focus more on
developing new functionalities of the software rather than
spending unnecessary time building code again that has little
research value. Having these platforms can save time and
developers are still able to produce very robust software products
that can provide rich user experiences.

This is a position paper describing our experience with extending
AgilePlanner (based on the Eclipse platform) with collaborative
project planning features in Jazz. Agile planning meetings bring
developers and customers together to discuss the requirements for
a software product and to estimate the tasks for the upcoming
iteration. AgilePlanner supports distributed synchronous planning
meetings by providing a shared workspace for team members at
different locations. We describe how we integrated AgilePlanner
with the Jazz platform to take advantage of its advanced progress
tracking features. We discuss why the integration with Jazz was
important in the research work. However, we also describe some
of the difficulties we encountered while we were integrating Jazz
with Agile planner and discuss why. Furthermore, we discuss the
impact of development platforms, such as Jazz, particularly in
research and teaching settings and describe some of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FSE’04, Nov. 9-14, 2008, Atlanta, GA, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

difficulties that we still need to overcome in terms of
infrastructure integrations.

2. MOTIVATION
The AgilePlanner project started as a collaborative research
project between a university software engineering lab and
industry sponsors. The overall goal of the project was to
understand the relationship between requirements gathering, task
estimation, requirements negotiation, requirements representation
and the role of different stakeholders in Agile planning,
specifically to understand the role of planning tools. Agile
planning is an important step in agile software engineering,
because the meeting allows the customer and the developers to
discuss the goal of the next iteration and negotiate the
deliverables for the upcoming iteration [3]. AgilePlanner is a tool
based on a story card metaphor where the functionalities desired
by the customer are broken down into user stories and each user
story is written on an index card. The index card or story card is
used to estimate the resources required to complete the task and
the story cards remain as an artifact for tracking the progress of
the project.

AgilePlanner was built on top of the Eclipse framework using
plugin architecture. This allowed the developers to leverage the
features already existing in Eclipse and easily integrate other
existing Eclipse plugins with limited effort. Using Java graphics
libraries, the developers were able to use the index-card
metaphors to simulate physical manipulation of index cards in the
virtual world. This enhances the user interaction experience by
tapping into the natural human cognition in manipulating physical
objects [4]. The user experience is also augmented by allowing
the users to easily duplicate digital story cards across many
locations in order to carry out synchronous distributed agile
planning sessions. The tool allows the users to stack up the digital
story cards and flip the virtual story cards to associate acceptance
tests with user stories [5]. The digital tabletop version [6] also
allows the users to rotate the cards for multiple viewers around
the digital tabletop and augment the card manipulation with a
voice-recognition capability. AgilePlanner supports distributed
planning by providing a shared distributed workspace and
allowing team members to interact with each other in real time
through telepointers. The tool allows researchers to evaluate the
effectiveness of real-time distributed agile planning sessions.
Figure 1 shows a screenshot of AgilePlanner.

Figure 1: Agile Planner displaying a user story

Tools often need to be integrated in and evaluated within a whole
development process. Research ideas often impact only a small
part of this process, but the impact of the idea can realistically
only be determined when it is integrated properly in the whole
process. This implies that if the new tool is not integrated with
other tools, its usefulness for the practitioner is often limited. As a
result, research ideas fail not because they are bad ideas, but
because the research team does not have the development power
to integrate their ideas into the whole software engineering and
tool usage process. For example, being able to print information
from the tool, version it and integrate it with existing tools are
expected features in project planning tools, but these kind of
features are not novel ideas that can be published. Unlike in
industry settings where most of the developers’ time is devoted to
building robust software, the researchers are driven by the pursuit
of attaining new scientific knowledge and do not necessarily have
the development resources to build a new tool from scratch or
have the time to build very large, robust, defect-free software.
Therefore, platforms, such as Jazz, can reduce the development
effort of these kind of pure development tasks, which are essential
to the research project but hold little research value, in order to
allow researchers to focus their work on innovation.

Similarly, AgilePlanner also faced problems of needing many
features that hold little research value, but nevertheless required a
lot of development work in order to evaluate the tool from the
overall project planning process. Essentially, in order to evaluate
a small part of the project planning process that was relevant for
the research team, the research team was faced with a lot of
development tasks. Additionally, the deliverables must be robust
enough for user studies in order to obtain credible observational
data, but research team had very little resources in terms of testing
the software for defects.

The second issue in research settings is the high turnover rate of
the developers. The developer turn-over rate is very high in
academic settings because the students are only engaged in the
project for the duration of their research. Because there is always
a constant influx of students coming into the project to develop
the software, it is very difficult to transfer the development
knowledge to the new incoming students in a very short time
frame. It is not uncommon for the new students to rewrite parts of
the software again to their liking, which contributes very little in
terms of new functionalities, because understanding the code
design by the previous students are too difficult. Learning new
technologies and frameworks takes time and applying those to a
research project is a very difficult task. Therefore, building tools
based on well-known technologies where students can easily
apply transferable skills is very important in smooth hand-off
between students and facilitating collaborative development
between students.

AgilePanner lacks progress tracking and reporting capabilities.
These are available in the Jazz platform and required by many
industry teams. Thus, integrating AgilePlanner with Jazz allows
to reuse existing functionality while making a research prototype
much more applicable in industrial case studies. Working with
Jazz would mean reducing the development time drastically for
the student developers as we didn’t have to write the
functionalities that are already offered by Jazz. In the next section,
we describe the implementation details of the integration between
AgilePlanner and Jazz.

3. INTEGRATION
AgilePlanner supports synchronous distributed Agile planning,
but it was missing project management functionality, task
breakdown and project planning storage. We again started to look
for third-party software that we could easily extend in order to
add project planning and progress tracking aspect into the tool
without huge redundant coding work that provides little research
value. Integrating AgilePlanner with Jazz made a lot of sense
because AgilePlanner and Jazz were both built on Eclipse
framework and both were designed to facilitate our understanding
of the collaboration in software engineering process. Figure 2
shows the user interface of Jazz planning tool.

Figure 2: Jazz project planning page

The core component of Jazz is a small kernel that offers basic
functionality required for developing distributed collaborative
software development tool, but much of the rich collaboration
features are offered through built-in Jazz collaboration plugins
module. Jazz offers work item management, project reporting
abilities and team communication tools among many others. Jazz
also offers a huge number of APIs that allows third-party software
developers to extend Jazz.

However, Jazz doesn’t offer synchronous distributed planning
functionality like AgilePlanner. This meant that many of the
artifacts produced or required in AgilePlanner had to rely on
asynchronous communication interfaces in Jazz. In order to
integrate the synchronous AgilePlanner communication layer into
the asynchronous Jazz platform, we decided to build an adapter
between Jazz and AgilePlanner that acts as a translator in between.
Figure 3 shows the structure of the adapter layer. The Session
Manager takes care of the communication between Jazz and
AgilePlanner. The Component Manager hides the detailed
workings of the adapter from both Jazz and AgilePlanner. The
Error Facade catches Jazz specific exceptions and turns them into
AgilePlanner specific errors so that the error messages from Jazz
are appropriately handled by AgilePlanner.

Figure 3: Adapter controls the data synchronization between
AgilePlanner and Jazz

We found that using the Jazz API is quite complex. The Jazz API
offers the not only the ability to extend Jazz, but also to develop
components that are capable of replacing parts of Jazz completely.
If developers are not careful, the flexibility of the Jazz interface
can also lead to waste of huge amount of time trying to
understand Jazz code. Instead, we decided to create an abstraction
layer (AL) using Business Delegate design pattern [7]. Using
design patterns allows other developers to quickly understand
how the abstraction layer is designed and to be able extend the
abstraction layer later if necessary. The abstraction layer can be
developed and maintained independently as long the developers
understand the design of the abstraction layer. Additionally, any
sudden behavior changes in subsequent releases of Jazz will be
caught by the abstraction layer, making the maintenance and the
integration easier by decoupling AgilePlanner from Jazz. The AL
is packaged into a single jar file that not only includes AL code,
but also the necessary Jazz libraries. This design simplifies the
use of Adapter, shown in Figure 3, because any projects that use
the Adapter can simply import a single jar file.

4. DISCUSSION
The benefit of using Eclipse and Jazz platform is the easy
integration of new functionality. Even if the original platform
developers did not imagine how Eclipse and Jazz could be
extended by other developers, the amount of APIs that are
available through these platforms, in addition to many other
plugins, allow the researchers to be as creative as they can
without spending huge development hours. The tool developed on
Eclipse platform can also run as Eclipse plugin or as an
independently software, so the end-users are not restricted to
Eclipse environment in order to run the application separately. In
addition, as long as the developers know how Eclipse plugins
work, integrating other plugins developed on top of Eclipse to
their new tool is easy, because they all share the common Eclipse
plugin infrastructure underneath. For example, integrating the
project planning and team collaboration functionality from Jazz
into AgilePlanner only took several months (we are still
integrating more features now). It shows how quickly researchers
can develop a new functionality when they leverage platforms
such as Jazz and Eclipse.

However, based on our experience, there are still several
drawbacks. The first problem is dealing with the rate at which
Jazz platform was changing. The changes made in Jazz for the
new version was not obvious to the developers, hence sometimes
it leads to many hours trying to debug the application without
really understanding why. Our experience with integrating
infrastructures show that developing an additional layer between
two different software products was extremely helpful in order to
safeguard against code changes in either of the two software
products. By creating the adapter layer, we were able to narrow
down the integration problem but it still involved many hours of
navigating through Jazz APIs that were unfamiliar to the
developers. The knowledge transfer between the Jazz developers
and the researchers were very difficult because there were really
no easy way to ask the right questions.

The second issue was the learning curve of understanding the
code structure of Jazz in order to call the correct methods. Not all
levels of the Jazz classes were necessarily needed by
AgilePlanner and often too many layers of classes only added to
the confusion as to which APIs needed to be used. Much of the
coding done in the abstraction layer is to hide the unnecessary
complexities in Jazz for AgilePlanner. To take an example, the
following is the code required to create a working copy of the
team project area.

(ITeamAreaWorkingCoopy)((IProcessITemService
)connection.getRepositoryConnection().getCli
entLibrary(IProcessItemService.class)).getWo
rkingCopyManager().createPrivateWorkingCopy(
teamArea)

The major drawback of using Eclipse and Jazz platform from an
integration point of view is the number of hours required to
understand the APIs. Our experience shows that working with
existing platforms such as Jazz reduced the development time
drastically, but it highlighted the issue of how difficult it really is
to understand someone else’s code in a short period of time. The
problem with infrastructure integration is a catch-22 situation
between the API flexibility requirements and the complexity that
comes with it. We need flexibility in the API design so that it can
accommodate all kinds of creative research projects. We also
need a well-tested infrastructure that we can readily use. However,
flexible APIs give a lot of power to the developers and the
developers might get overwhelmed with too many possible
choices.

In theory, designing software for extensibility is good and desired,
not only for the original developers who may add more
functionality to the software in the future but also the third-party
users who would like to customize the software with their own
extensions. If the developers do not carefully plan out the
architecture ahead of time, the software code can become less
readable, difficult to understand and riddled with too many APIs
and interface layers. This problem is increased by a lack of good
documentation or example code that uses the API.

Even with the difficulties we encountered during the integration,
we still feel that using Eclipse and Jazz platform was the right
choice for the development requirements for our research. Despite

the difficulties in understanding the Jazz APIs, it saved
considerable amount of time. As a research community, what we
really need is a set of development environments and
infrastructure that everyone can commonly use and that is easy to
learn. More user involvement from the research community in
Eclipse development means more APIs would be available and
more platforms that we can take leverage. If other researchers can
also provide their tools as Eclipse plugins, we have a better
chance of integrating each other’s work and have more time for
research and less time coding. Much the same way our original
decision to use Eclipse and Jazz was influenced by the number of
users supporting the community and the easy accessibility to
these environments, more user involvement will encourage
development of Eclipse plugins that we can readily take
advantage of.

5. CONCLUSION
Researchers need to be creative, but also we need a framework
that has enough penetration in the market that learning the
technology will pay off in the long run for the students. The more
we gain re-usable software products that can be easily integrated
with others, such as Eclipse plugins, the more time we will have
for research. This is not an issue specific to research settings.
There really is no boundary between research and industry
settings for our necessity to develop better software faster by
reusing existing components. This is not just a goal for the
researchers but for industry practitioners as well. As with all
software, working with a new code base becomes easier with
more exposure. Additionally, the incentives to learn and use these
platforms increase if both researchers and industry practitioners
use them. It is important to try to build the bridge between the
industry and research settings, because researchers can definitely
take advantage of the good, robust code out there.

6. REFERENCES
[1] Eclipse, http://www.eclipse.org/

[2] IBM Rational Jazz

http://www-306.ibm.com/software/rational/jazz/

[3] Schuh, P. 2005. Integrating Agile Development in the Real
World, Charles River Media

[4] Morgan, R. 2008, Distributed Agile Planner: A Card-Based
Planning Environment for Agile Teams, MSc thesis,
University of Calgary

[5] Park, S., Maurer, F. 2008. The Requirements Abstraction in
User Stories and Executable Acceptance Tests, Research-in-
progress track, Agile Conference 2008, Toronto, Canada

[6] Wang,X., Ghanam, Y., Maurer, F. 2008, From Desktop to
Tabletop: Migrating the User Interface of Agile Planner,
Engineering Interactive Systems 2008, Proc. from 2nd
Conference on Human Centered Software Engineering (EIS.
HCSE 2008), Italy

[7] Business Delegate Pattern,
http://java.sun.com/blueprints/corej2eepatterns/Patterns/Busi
nessDelegate.html

