Leveraging the Jazz Platform for

Developing an Agile Planning Tool

Kai Nehring, Shelly Park, Frank Maurer
University of Calgary
Department of Computer Science
2500 University Dr. NW, Calgary, AB, Canada
(403) 220-3531

Nehring.kai@gmail.com, {parksh, maurer}@cpsc.ucalgary.ca

ABSTRACT

Tools often need to be integrated in and evaluaddun a whole
development process. Research ideas often impagtaosmall
part of this process, but the impact of the idea walistically
only be determined when it is integrated properiythie whole
process. This implies that if the new tool is nutegrated with
other tools, its usefulness for the practitioneroften limited.
Researchers need to be creative, but also we némamawork
that has enough penetration in the market thatnilegrthe
technology will pay off in the long run for the dents. In this
paper, we describe our experience with integratig Agile
planning tool with Jazz platform. Our experiencews that we
were able to save a lot of development time, boedaseveral
obstacles as well.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments —
Integrated environments, Interactive environmeRiggrammer
workbench; D.2.9 Joftware Engineering] Management —
Programming teams, Software configuration managémen

General Terms
Management, Design, Human Factors

Keywords
Agile software engineering, collaborative programgyi Jazz,
Eclipse, IDE, integrated development environment

1. INTRODUCTION

Tools developed in research settings are desigoefhdilitate
experiments, perform user studies, test the eff@ieof new
algorithms, enhance our understanding of the sofflwa
development endeavor and help further the collatwrdetween
researchers and industry practitioners. Therefren more than
industry settings, rapid tool development is a Bsitg of research
work in order to facilitate the research within tiigen amount of

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fitst page. To copy
otherwise, or republish, to post on servers oreddgistribute to lists,

requires prior specific permission and/or a fee.

FSE’'04 Nov. 9-14, 2008, Atlanta, GA, USA.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

time and budget. However, tool development in @aash setting
faces a high developer turnover rate, high learcinye for new
student developers and an unpredictable projecom# due to
the experimental nature of research projects. Oeae tev develop
software tools quickly is to leverage the existingctionalities in

other systems by integrating different softwareetbgr rather
than developing everything from scratch. Howeveosmthird-

party software is difficult to extend because theg not designed
to be integrated with other software. Trying toenate between
software that is not originally designed to be egible is very

difficult and the end-product may become very cluakd prone
to failures due to the awkward interfacing. Evernth& source
code is available, extending and combining sevelifferent

software products for the purpose of developing sefiware can
be very difficult, because the existing code is tightly coupled

with the original software design rather than alloyvfor the

flexibility of what the software may become.

Recently, development platforms such as EclipsehfiMe been
very successful, because of its extensibility atsl plugin
architecture. Jazz [2] extends Eclipse developneenvironment
by providing an additional set of collaboration étinnalities for
software developers. The benefit of building sofevasing the
Eclipse and Jazz platforms is that much of theaklessupporting
functionalities are already available to the depels and the
developers have access to a rich set of functibeslihat are
tested by many users already. The developers @as fimore on
developing new functionalities of the software eaththan
spending unnecessary time building code again fiaat little
research value. Having these platforms can savee tand
developers are still able to produce very robuftiveee products
that can provide rich user experiences.

This is a position paper describing our experienit extending
AgilePlanner (based on the Eclipse platform) wittlaborative
project planning features in Jazz. Agile planningetngs bring
developers and customers together to discuss tjuéreenents for
a software product and to estimate the tasks ferugpcoming
iteration. AgilePlanner supports distributed symcious planning
meetings by providing a shared workspace for tesambers at
different locations. We describe how we integratelePlanner
with the Jazz platform to take advantage of itsaamded progress
tracking features. We discuss why the integratidth Wazz was
important in the research work. However, we alsscdbe some
of the difficulties we encountered while we wergegrating Jazz
with Agile planner and discuss why. Furthermore,diszuss the
impact of development platforms, such as Jazz,icqudatly in
research and teaching settings and describe somdheof

difficulties that we still need to overcome in termof

infrastructure integrations.

2. MOTIVATION

The AgilePlanner project started as a collaboratiesearch
project between a university software engineeridp land
industry sponsors. The overall goal of the proje@s to

understand the relationship between requiremeriteegag, task
estimation, requirements negotiation, requiremessesentation
and the role of different stakeholders in Agile rpimg,

specifically to understand the role of planning I$ooAgile

planning is an important step in agile software ieeering,

because the meeting allows the customer and thelajers to
discuss the goal of the next iteration and negotitihe

deliverables for the upcoming iteration [3]. Agilafner is a tool
based on a story card metaphor where the funciimsatiesired
by the customer are broken down into user stomeseach user
story is written on an index card. The index cardtory card is
used to estimate the resources required to comfilet¢éask and
the story cards remain as an artifact for trackimg progress of
the project.

AgilePlanner was built on top of the Eclipse franoekvusing
plugin architecture. This allowed the developerdeerage the
features already existing in Eclipse and easilyegrdte other
existing Eclipse plugins with limited effort. Usintava graphics
libraries, the developers were able to use the xiuded
metaphors to simulate physical manipulation of indards in the
virtual world. This enhances the user interactiapegience by
tapping into the natural human cognition in maréginlg physical
objects [4]. The user experience is also augmehjedllowing
the users to easily duplicate digital story cardsoss many
locations in order to carry out synchronous distiéol agile
planning sessions. The tool allows the users tkaia the digital
story cards and flip the virtual story cards tooasste acceptance
tests with user stories [5]. The digital tabletogrsion [6] also
allows the users to rotate the cards for multiglvers around
the digital tabletop and augment the card manimrawith a
voice-recognition capability. AgilePlanner suppodistributed
planning by providing a shared distributed workspaand
allowing team members to interact with each otlmereal time
through telepointers. The tool allows researchersvialuate the
effectiveness of real-time distributed agile plangnisessions.
Figure 1 shows a screenshot of AgilePlanner.

| B mEs-—_GHHEHE X 100% ¥ | Help
| @ project: S n =g

[selsct = - -
[Name: Tests End Date: 2002/06/24
{7 Margues

=1oix]

Stat Date; 2008/06/10
Mast Likely: 0.0

Deseriplion Dema Ervionment
- AR Avallable Effor; 0.0

A |Text Area

Create User Stary

e
=

Feature

Create Agile Planner + Jazz Screenshots
Most Likely: 0.0 Dwiner. Kai Nehfing

LCreate screen shots of Agile Planner Story Card and it's
Jazz courterpart

In-Progress

'ESDME

%ye”owl
=

%grayl =
F——khakit 4] | _»rl

Figure1: Agile Planner displaying a user story

Tools often need to be integrated in and evaluadéun a whole
development process. Research ideas often impdgtaoamall
part of this process, but the impact of the idea czalistically
only be determined when it is integrated propenyttie whole
process. This implies that if the new tool is notegrated with
other tools, its usefulness for the practitionesften limited. As a
result, research ideas fail not because they adeideas, but
because the research team does not have the dexgibpower
to integrate their ideas into the whole softwargieeering and
tool usage process. For example, being able td priarmation
from the tool, version it and integrate it with gtkg tools are
expected features in project planning tools, bwséhkind of
features are not novel ideas that can be publishdike in
industry settings where most of the developersétimdevoted to
building robust software, the researchers are drivethe pursuit
of attaining new scientific knowledge and do notessarily have
the development resources to build a new tool femratch or
have the time to build very large, robust, defeeefsoftware.
Therefore, platforms, such as Jazz, can reducel¢kelopment
effort of these kind of pure development tasks,cltdare essential
to the research project but hold little researcluejain order to
allow researchers to focus their work on innovation

Similarly, AgilePlanner also faced problems of riegdmany
features that hold little research value, but ninedess required a
lot of development work in order to evaluate thel thom the
overall project planning process. Essentially, lidep to evaluate
a small part of the project planning process thas welevant for
the research team, the research team was facedawith of
development tasks. Additionally, the deliverablesstrbe robust
enough for user studies in order to obtain credifiservational
data, but research team had very little resourcésrins of testing
the software for defects.

The second issue in research settings is the higlover rate of
the developers. The developer turn-over rate i/ \@gh in

academic settings because the students are onhgedgn the
project for the duration of their research. Becahsee is always
a constant influx of students coming into the proj® develop
the software, it is very difficult to transfer thdevelopment
knowledge to the new incoming students in a vergrtstime

frame. It is not uncommon for the new studentsetarite parts of
the software again to their liking, which contriesitvery little in
terms of new functionalities, because understandhmg code
design by the previous students are too difficuétarning new
technologies and frameworks takes time and appltfioge to a
research project is a very difficult task. Therefobuilding tools
based on well-known technologies where students easily

apply transferable skills is very important in sriodand-off
between students and facilitating collaborative edgpment
between students.

AgilePanner lacks progress tracking and reportiagadbilities.
These are available in the Jazz platform and reduily many
industry teams. Thus, integrating AgilePlanner wiltdzz allows
to reuse existing functionality while making a rasd prototype
much more applicable in industrial case studiesriifig with
Jazz would mean reducing the development time idedigt for
the student developers as we didn't have to write t
functionalities that are already offered by Jamzthle next section,
we describe the implementation details of the iratgn between
AgilePlanner and Jazz.

3. INTEGRATION

AgilePlanner supports synchronous distributed Agilanning,
but it was missing project management functionalitpsk
breakdown and project planning storage. We agairest to look
for third-party software that we could easily exten order to
add project planning and progress tracking asp#ot the tool
without huge redundant coding work that providétteliresearch
value. Integrating AgilePlanner with Jazz made tadb sense
because AgilePlanner and Jazz were both built olipdec
framework and both were designed to facilitate unaterstanding
of the collaboration in software engineering praceSigure 2
shows the user interface of Jazz planning tool.

‘800 Task 168: Create Agile Planner
. \a w %) & https://192.168.8¢

+ Jazz Screenshots - IBM Rational Team Concert =

G Task 168

Summary: + [Create Agie

Doscription Edit

Discussion Add Comment

s 1/192.168.86

Figure 2: Jazz project planning page

The core component of Jazz is a small kernel tfffersobasic
functionality required for developing distributedllaborative
software development tool, but much of the richlatmration
features are offered through built-in Jazz collabion plugins
module. Jazz offers work item management, projegoiting
abilities and team communication tools among mahegrs. Jazz
also offers a huge number of APIs that allows tipiadty software
developers to extend Jazz.

However, Jazz doesn't offer synchronous distribupdahning

functionality like AgilePlanner. This meant that myaof the

artifacts produced or required in AgilePlanner hadrely on

asynchronous communication interfaces in Jazz. raeroto

integrate the synchronous AgilePlanner communioatger into

the asynchronous Jazz platform, we decided to kanldadapter
between Jazz and AgilePlanner that acts as a atangh between.
Figure 3 shows the structure of the adapter laybe Session
Manager takes care of the communication betweez aaz

AgilePlanner. The Component Manager hides the Igetai
workings of the adapter from both Jazz and AgileRéa. The

Error Facade catches Jazz specific exceptionsuand them into

AgilePlanner specific errors so that the error rages from Jazz
are appropriately handled by AgilePlanner.

<<subsystem>> =)
Jazz
n
<<subsystem>> | =]
Aapter <<delegate>> |
LT
<<component>> 5] T — =
Combataransger Abstraction Layer
2 inna: ~<<user >
< <component> > =1 < <component> > =i
Converter Connection Manager
| |
<<component> > =]
Error Facade
"
T
< cuses>
iy !
LT
<<subsystem>> =]
Agile Planner

Figure 3: Adapter controlsthe data synchronization between
AgilePlanner and Jazz

We found that using the Jazz API is quite complghe Jazz API
offers the not only the ability to extend Jazz, hlsb to develop
components that are capable of replacing partazd dompletely.
If developers are not careful, the flexibility dfet Jazz interface
can also lead to waste of huge amount of time dryto
understand Jazz code. Instead, we decided to @paibstraction
layer (AL) using Business Delegate design pattéfh Using
design patterns allows other developers to quickiglerstand
how the abstraction layer is designed and to be aktend the
abstraction layer later if necessary. The abstadéyer can be
developed and maintained independently as longdéwelopers
understand the design of the abstraction layer.ithally, any
sudden behavior changes in subsequent releasexofwill be
caught by the abstraction layer, making the maariea and the
integration easier by decoupling AgilePlanner frémzz. The AL
is packaged into a single jar file that not onlglides AL code,
but also the necessary Jazz libraries. This desigplifies the
use of Adapter, shown in Figure 3, because anyept®jthat use
the Adapter can simply import a single jar file.

4. DISCUSSION

The benefit of using Eclipse and Jazz platform he easy
integration of new functionality. Even if the omgil platform
developers did not imagine how Eclipse and Jazzldcde
extended by other developers, the amount of AP& tire
available through these platforms, in addition tansyn other
plugins, allow the researchers to be as creativehag can
without spending huge development hours. The tewelbped on
Eclipse platform can also run as Eclipse plugin ax an
independently software, so the end-users are rgitiaed to
Eclipse environment in order to run the applicateparately. In
addition, as long as the developers know how Eelipkigins
work, integrating other plugins developed on topEaiipse to
their new tool is easy, because they all sharednemon Eclipse
plugin infrastructure underneath. For example, graéng the
project planning and team collaboration functioafrom Jazz
into AgilePlanner only took several months (we astll

integrating more features now). It shows how quialdsearchers
can develop a new functionality when they leveratgforms
such as Jazz and Eclipse.

However, based on our experience, there are stillersl

drawbacks. The first problem is dealing with théerat which
Jazz platform was changing. The changes made in fdazthe

new version was not obvious to the developers, éisometimes
it leads to many hours trying to debug the apghbeatvithout

really understanding why. Our experience with indigg

infrastructures show that developing an additidager between
two different software products was extremely hdlpfi order to
safeguard against code changes in either of the switware
products. By creating the adapter layer, we weie &b narrow
down the integration problem but it still involvedany hours of
navigating through Jazz APIs that were unfamiliar the

developers. The knowledge transfer between the dezelopers
and the researchers were very difficult becauseethere really
no easy way to ask the right questions.

The second issue was the learning curve of undelistg the
code structure of Jazz in order to call the corneethods. Not all
levels of the Jazz classes were necessarily nedogd
AgilePlanner and often too many layers of classdg added to
the confusion as to which APIs needed to be usadhMf the
coding done in the abstraction layer is to hide theecessary
complexities in Jazz for AgilePlanner. To take aaraple, the
following is the code required to create a workoapy of the
team project area.

(| TeamAr eaWor ki ngCoopy) ((1 Processl TenServi ce
) connecti on. get Reposi t oryConnection().getd i
ent Li brary(1l ProcessltenService.class)).getW
r ki ngCopyManager (). creat ePri vat eWor ki ngCopy (
t eamAr ea)

The major drawback of using Eclipse and Jazz platfisom an
integration point of view is the number of hourgjuied to

understand the APIs. Our experience shows that ingriwith

existing platforms such as Jazz reduced the dewwdop time
drastically, but it highlighted the issue of hovifidult it really is

to understand someone else’s code in a short pefitithe. The
problem with infrastructure integration is a cag-situation
between the API flexibility requirements and thenpbexity that
comes with it. We need flexibility in the API desigo that it can
accommodate all kinds of creative research praojedte also
need a well-tested infrastructure that we can headie. However,
flexible APIs give a lot of power to the developeard the
developers might get overwhelmed with too many ibtss
choices.

In theory, designing software for extensibilityggod and desired,
not only for the original developers who may add reno
functionality to the software in the future butalbe third-party
users who would like to customize the software vtiteir own
extensions. If the developers do not carefully plaumt the
architecture ahead of time, the software code aegorne less
readable, difficult to understand and riddled with many APIs
and interface layers. This problem is increaseé lbgck of good
documentation or example code that uses the API.

Even with the difficulties we encountered during ihtegration,
we still feel that using Eclipse and Jazz platfouas the right
choice for the development requirements for oueaesh. Despite

the difficulties in understanding the Jazz APIs, daved
considerable amount of time. As a research commuwihat we
really need is a set of development environmentsl an
infrastructure that everyone can commonly use hatis easy to
learn. More user involvement from the research canity in
Eclipse development means more APIs would be &leiland
more platforms that we can take leverage. If otheearchers can
also provide their tools as Eclipse plugins, we ehav better
chance of integrating each other's work and haveentione for
research and less time coding. Much the same wayginal
decision to use Eclipse and Jazz was influencetthéyumber of
users supporting the community and the easy atiiysito
these environments, more user involvement will enage
development of Eclipse plugins that we can readike
advantage of.

5. CONCLUSION

Researchers need to be creative, but also we néednawork
that has enough penetration in the market thatnilegrthe
technology will pay off in the long run for the dients. The more
we gain re-usable software products that can biéydategrated
with others, such as Eclipse plugins, the more tiveewill have
for research. This is not an issue specific to amde settings.
There really is no boundary between research amiistry
settings for our necessity to develop better saftwiaster by
reusing existing components. This is not just al doa the
researchers but for industry practitioners as wells with all
software, working with a new code base becomeseeasith
more exposure. Additionally, the incentives to feand use these
platforms increase if both researchers and industagtitioners
use them. It is important to try to build the bedfetween the
industry and research settings, because researcherdefinitely
take advantage of the good, robust code out there.

6. REFERENCES
[1] Eclipse, http://www.eclipse.org/

[2] IBM Rational Jazz
http://www-306.ibm.com/software/rational/jazz/

[3] Schuh, P. 2005. Integrating Agile Development i fiteal
World, Charles River Media

[4] Morgan, R. 2008, Distributed Agile Planner: A C&dsed
Planning Environment for Agile Teams, MSc thesis,
University of Calgary

[5] Park, S., Maurer, F. 2008. The Requirements Abisbram
User Stories and Executable Acceptance Tests, RésEa
progress track, Agile Conference 2008, Toronto,adan

[6] Wang,X., Ghanam, Y., Maurer, F. 2008, From Desktop
Tabletop: Migrating the User Interface of Agile imter,
Engineering Interactive Systems 2008, Proc. frdfn 2
Conference on Human Centered Software EngineeEts) (
HCSE 2008), Italy

[7] Business Delegate Pattern,
http://java.sun.com/blueprints/corej2eepatternséiPas/Busi
nessDelegate.html

