
A Cross-Program Investigation of Students’ Perceptions of
Agile Methods

Grigori Melnik
University of Calgary

2500 University Drive NW
Calgary, Alberta, T2N 1N4, Canada

+1-403-210-9710

melnik@cpsc.ucalgary.ca

Frank Maurer
University of Calgary

2500 University Drive NW
Calgary, Alberta, T2N 1N4, Canada

+1-403-220-3531

maurer@cpsc.ucalgary.ca

ABSTRACT
Research was conducted on using agile methods in software
engineering education. This paper explores the perceptions of
students from five different academic levels of agile practices.
Information has been gathered through the collection of
quantitative and qualitative data over three academic years, and
analysis reveals student experiences, mainly positive but also
some negative. Student opinions indicate the preference to
continue to use agile practices at the workplace if allowed. A way
these findings may potentially be extrapolated to the industrial
settings is discussed. Finally, this report should encourage other
academics considering adoption of agile methods in their
computer science or software engineering curricula.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Life Cycle,
Productivity, Programming Teams, Software Process Models.

General Terms
Management, Performance, Design

Keywords
Agile methods, eXtreme Programming, empirical study,
perception analysis

1. INTRODUCTION
A fleet of emerging agile methods of software development (with
extreme programming being the flagship), once considered a
novelty, is now moving towards the mainstream of the software
industry. In a nutshell, agile methods are human-centric bodies of
practices and guidelines for building usable software in
unpredictable, highly-volatile environments. Essentially, all agile
methods encourage continual realignment of development goals
with the needs and expectations of the customer. They
concentrate on significantly improving communications and

interactions (among team members and with the customer),
promote continuous feedback, focus on “clean code that works”,
transparency, and merciless testing to achieve higher quality.

As the ideas of agile methods increase in popularity, a
controversy around them continues to grow. One of the problems
is that most of the evidence of agile methods effectiveness
available is anecdotal. Real-world examples argue for (see, for
instance, [1], [5]) and against ([12]) agile methods. Several
leading software engineering experts suggest that finding “home
grounds” and, perhaps, synthesizing, “balancing” the two (agile
with tayloristic) may provide developers with a comprehensive
spectrum of methods ([2], [3], [7]).

On the way of “crossing the chasm”, agile methods are slowly
entering academia and becoming part of the computer science and
software engineering curricula. Importantly, the newest
IEEE/ACM Computer Science – Software Engineering
Curriculum lists agile concepts and several practices (e.g.,
refactoring, test-driven development) as essential topics [8]. For a
comprehensive literature review of cases/studies supporting or
challenging agile practices in software engineering curriculum,
the reader is referred to Section 1 of [9].

We have been introducing agile methods in software engineering
courses at the University of Calgary and Southern Alberta
Institute of Technology since 2001. Perceptions of broad student
body on agile methods in general and individual development
practices were studied. Earlier studies ([9],[10]) concentrated
mainly on the qualitative analysis. A discussion on why agile
methods should be taught together with our lessons learnt and the
recommendations to other academics thinking of introducing agile
methods in their courses are contained in [9].

This paper not only updates the results of the three-year long
study but also contains the detailed analysis of the aggregated
quantitative data (including both perceptions and the related
associations).

2. STUDY OVERVIEW
The intent of our study is threefold: 1) to explore the perceptions
of agile practices from the students’ perspective; 2) to examine
associations between students’ perceptions of agile methods in
general and their perceptions of individual practices (pair
programming, project planning using the planning game, and test-
driven development, a.k.a. test-first design); 3) to investigate how
students’ perceptions vary (if at all) depending on the academic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

program, age and years of prior industry experience. The study
focuses on agile engineering practices that are coming from
eXtreme Programming (XP). Note that we are using the
expression “agile practices” to make it clear that we did not use
the full set of XP practices in our study (for the list of applied
practices per course see column “Practices” of Table 1).

The study instrument, a questionnaire, consisted of 20 items
which included both quantitative questions (on a 5-point Likert
summated scale, 1 “strongly disagree” to 5”strongly agree”) and
qualitative open-ended and Questions assessed students’
perceptions of the agile practices and also gathered their
suggestions on how the courses can be improved.

When looking at the students’ experiences, we asked a
number of questions:

 Did the students enjoy working on the projects using
agile practices?

 What worked for them?

 What problems did they encounter?

 Whether students believe that using XP improves the
capabilities of small development teams (code quality,
productivity)?

 Whether they would use agile practices in the future (if
allowed) or not?

 How did XP improve their learning?
Figure 2 contains the complete listing of quantitative questions
and the responses. The questionnaire was executed on the Web.
Students were given one week to anonymously respond.
In addition, interviews and discussions were conducted during the
course of the semester to get some informal feedback on other
aspects of agile methods that students were exposed to during the
courses (continuous integration, collective code ownership,
refactoring, coding standards).

Table 1. Programs and Courses.

Abbreviation Academic
program Institution Course URL(s) Instructor

(Semester) Practices Team
size

DIPL College-level
Diploma SAIT

Data
Abstraction &

Algorithms
(CS2)

http://webctce.sait.ca/
public/cmpp307_melnik/

Author 1
(F01, W02)
Non-author

(F03)

CS, CUST, PP, R,
TEST, TDD, SR,

YAGNI.
2

Software
Testing &

Maintenance

http://webct.mysait.ca
/script/M_APSE502

/scripts/serve_home

Author 1
(F02, F03)

CCO , CI, CS,
CUST, PG, PP, R,
TEST, TDD, SR,

YAGNI

2 – 4

Internet
Software

Techniques

http://mase.cpsc.
ucalgary.ca/EB/Wiki.jsp?

page=Root.APSE504w04

Author 1
(W02, W03,

W04)

CCO , CI, CS,
CUST, M, PP, R,
TEST, TDD, SR,

YAGNI

3 – 5 POSTDIPL

College-level
Post-Diploma

Applied
Bachelor’s

Degree

SAIT

Software
Engineering

Project

http://mase.cpsc.
ucalgary.ca/apse503

Author 1
(W03,W04)

CCO , CI, CS,
CUST, M, PG, PP,
R, TEST, TDD, SR,

YAGN.

6 – 9

Foundations
of Software
Engineering

http://sern.ucalgary.ca/
courses/cpsc/333/w03/

Non-author
(W03)

CI, CS, CUST, M,
PP, R, TEST, TDD,

SR, YAGN.
6 – 8

JUNIOR
University-
level Junior

Undergraduate

U of
Calgary Principles of

Software
Engineering

http://sern.ucalgary.ca/
courses/seng/311/w04/

Non-author
(W03,W04)

CI, CS, CUST, M,
PP, R, TEST, TDD,

SR, YAGNI
6 – 8

SENIOR
University-

level Senior
Undergraduate

U of
Calgary

Web-Based
Systems

http://mase.cpsc.
ucalgary.ca/EB/Wiki.jsp?

page=Root.SENG513w04

Author 2
(F02)

Author 1
(W03, F03,

W04)

CCO , CI, CS,
CUST, M, PG, PP,
R, TEST, TDD, SR,

YAGN.

4 – 7

GRAD University-
level Graduate

U of
Calgary

Agile
Software

Engineering

http://sern.ucalgary.ca/
courses/CPSC/601.93/F2003

Author 2
(W02, F02,

F03)

CCO , CI, CS,
CUST, M, PG, PP,
R, TEST, TDD, SR,
YAGNI + Scrum

6, 11

Note 1: Abbr. F01 = Fall 2001, W02 = Winter 2002 etc.

Note 2: Abbr. CCO = Collective Code Ownership, CI = Continuous Integration, CS = Coding Standards, CUST = On-site/On-call/Online Customer,
M = Metaphor/Architecture, PG = Planning Game, PP = Pair Programming, R=Refactoring, TEST = Unit Testing, TDD=Test-Driven Development,
SR = Short Releases, YAGNI = “You Ain’t Gonna Need it” (Simple Design).

3. COURSES AND STUDENT
POPULATIONS
The sample employed in this study consisted of 240 volunteers
out of 693 students who were asked to participate. These were
students from five different levels of computer science programs
at the Southern Alberta Institute of Technology (SAIT) and the
University of Calgary. Ages of the students ranged from 19 to 46
years (mode = 22, median = 27). All individuals were
knowledgeable about programming. The distribution of
respondents by programs and years of industry experience is
given in Table 3. Data was collected partially during and partially
at the end of academic semesters in which agile practices were
introduced. Data collection was anonymous and the instructors
(including authors of this paper and other instructors) were not
able to determine who participated in the study and who wrote
specific comments.
Table 1 outlines course and program characteristics. Detailed
descriptions of the programs, courses, environments, course
projects and tools can be found in Sections 3.1–3.5 of [10]. In all
courses with the exception of DIPL and JUNIOR, students were
introduced to the agile practices at the very beginning of the
course. The values of communication, simplicity and feedback
were strongly emphasized. As can be seen from Table 4, vast
majority of students in DIPL, POSTDIPL, and JUNIOR programs
were unfamiliar with agile methods. SENIOR students
acknowledged “somewhat familiarity”, unlike SENIOR and
GRAD groups were majority of students were familiar with agile
methods. This level of GRAD group interest in agile methods can
be by the fact that the course is not required for completion of
M.Sc. degree and, therefore, students taking this course were
interested in agile methods (with two individuals already having
prior industrial experience with XP).
We would also like to point out that students do not work full
time on a course. We estimate that on average a student spends
about 5-7h/week on the course assignment.1 Hence, the effort
going into a single iteration is approximately 20 hours per student
(which is much lower than in XP or any other agile method).

4. FINDINGS
The average response rate is 55% among SAIT students, 24%
among University of Calgary undergraduate students (note a
significantly larger population), and 83% among University of
Calgary graduate students (Table 2).

Figure 1 (answers shown by the academic program) illustrates
that the overwhelming majority of all respondents (78%) either
believe or strongly believe that using XP improves the
productivity of small teams. Seventy-six percent (76%) suggested
that XP improves the quality of code and 65% of all respondents
would recommend XP to the company they work for or may be
working in the future. Note that in question formulation, we did
not explicitly specify the baseline for comparison and left these
questions open for interpretation by the respondents (assuming
that they would be comparing quality and productivity aspects
with their prior experiences with any non-agile process).

1 This estimate is based on time sheets over 10 weeks from one of

the GRAD groups.

Table 2. Summary of Respondents by Academic
Programs

Academic
program Semester(s)

of invita-
tions sent

out

of
respondents

Response
rate

Fall 2001,
Winter 2002 41 25 61%

DIPL
Fall 2003 40 9 23%

Winter 2002 22 12 55%

Fall 2002 18 10 56%

Fall 2003 23 22 96%
POSTDIPL

Winter 2004 17 11 65%

Winter 2003 175 25 14%2
JUNIOR

Winter 2004 142 18 13%2

Fall 2002 55 19 35%

Winter 2003 62 19 31%

Fall 2003 33 20 61%
SENIOR

Winter 2004 24 16 67%

Winter 2002 12 9 75%

Fall 2002 11 8 73% GRAD

Fall 2003 18 17 94%

Total, All Programs 693 240 35%

We relied on the fact that respondents had a “natural”
understanding of such terms as “quality” and “productivity”
(many decisions in the industry are also made on such fuzzy
notions). In addition, allowing students to individually interpret
these terms provided an opportunity for them to take a self-
reflective view of their experiences.

Participant responses to all ranking questions are summarized in
Figure 2. The results are overwhelmingly positive. This holds for
XP in general and for individual practices. It also holds across all
levels of students (with graduate students being a little more
skeptical; Figure 2 and Table 5). Analysis of the results of
Spearman’s correlation test revealed that respondents who found
the experience of working in agile teams so positive to
recommend XP to their companies (current if employed by the
software product/service industry or future if not) were also more
likely to believe that:

 Using XP improved the quality of code (ρ=0.67,
p<0.0001);

 Using XP improved the productivity of small teams
(ρ=0.67, p<0.0001).

Some3 free-response comments strongly support the above
findings:

2 It is quite possible that this low response rate among junior

undergraduate students is attributed to the fact that the survey
invitations were sent after the term end.

3 Detailed qualitative analysis with categorization of students’
comments can be found in Section 5 of [10].

Table 3. Distribution of Respondents by Academic Programs
and Years of Industry Experience4

 none
< 1

year
1-3

years
3-5

years
5-10
years

> 10
years

DIPL 34% 33% 33% 0% 0% 0%

POSTDIPL 27% 9% 28% 15% 12% 9%

JUNIOR 37% 16% 26% 11% 5% 5%

SENIOR 26% 26% 34% 11% 0% 3%

GRAD 6% 17% 12% 18% 12% 35%

Across All
Programs 26% 19% 27% 12% 6% 10%

Table 4. Apriori Familiarity with Agile Methods4

 Very
familiar

Somewhat
familiar Unfamiliar

DIPL 11% 0% 89%

POSTDIPL 12% 55% 33%

JUNIOR 0% 26% 74%

SENIOR 3% 74% 23%

GRAD 29% 53% 18%

Across All Programs 10% 51% 39%

 “Quality is built into the process (not a supporting concept

but a core concept).”
 “I believe that XP helps get more work done in less time

and is very effective for small groups as it allows for the
group members not to get stuck for extended periods of
time.”

 “Focus on results. Focus on small, fast deliverables. Focus
on communication. Focus on minimalization. Focus on
teamwork. I love it.”

Furthermore, analysis revealed no significant correlation between
the participants’ age/program enrolled/years of industry
experience and beliefs that using XP improves the quality of code
and the productivity of small teams (Table 5). The only exception
to this is a weak negative correlation between the
program/academic level and the perceptions about the planning
game. More experienced respondents were less confident with the
estimation of user stories (ρ= -0.22, p<0.05) and less likely to
believe that using the planning game would make the team more
adaptive (ρ= -0.21, p<0.01). This is expected as more mature
students are well-aware of the inaccuracies of estimation (based
on their personal experiences both at school and at work). The
planning game seems to be the least popular practice (out of all
practices the quantitative data was gathered on). This can be
attributed to the lack of experience in project planning and
estimation and the fact that in many of the courses students used
technology that was new to them – which makes effort estimation
inherently difficult. However, a large number of student

4 N=113, these statistics reported are only based on the data of

fall 2003 and winter 2004 semesters since the earlier data was
not collected.

comments on the planning game were more positive than the
quantitative data leads us to believe:

 “The planning game resolves misunderstandings, gives a
good overview of the path and goal the iteration is
following. What worked well is having the customer
involved, this gives the team and the customer and good
idea of what can be accomplished.“

 “The planning game gives everyone a good understanding
of the requirements. The part that the developer assigned to
a user story gives the estimates for the user story is good.”

Students also related to the fact that the planning game helped to
steer the project in the right direction and the small releases
helped “to distribute the load more evenly” and “to keep the team
on track”.

All ten simple correlations between attitudes of individual XP
practices and the expressed willingness to recommend and use
XP in the future workplace were statistically significant
(p<0.0001) and ranged from 0.34 for the agreement that test-
driven development improves software design to 0.56 for the level
of personal enjoyment of pair programming. The data indicates
that students who agreed that using XP improved the quality of
code were more likely to believe that this (quality improvement)
was partially due to pair programming (ρ= 0.41, p<0.0001) and
test-driven development (ρ= 0.41, p<0.0001).

A further examination of the results indicates a weak positive
correlation between the age of respondents and attitudes towards
test-driven development (TDD), which might be explained by the
higher level of discipline of more mature students. Generally, this
practice is not easy to put into action because students are not
used to thinking the test-first way. We believe that the underlying
reason for this is that TDD is not about testing but about design.
Afterwards, doing design is hard – independently from how you
document it (as test code or in UML). TDD simply forces design
issues to the foreground while UML diagrams can be sloppy as
they are hard to evaluate by markers in an academic setting. This
impression was supported by respondents’ comments:

 “I think the test code is more a part of design then it is just
testing.”

 “I felt that testing first gave a better sense of "here is what
must be done", and how to approach it.”

Some of the students believed it was logically confusing and
“almost like working backwards.” They did not know how many
tests would be enough to satisfy that the desired functionality
would be implemented correctly. Also, some believed testing
involved too much work and they did not see the short-term
benefits.

To address some of the problems students were having with test-
driven development, we introduced an additional practice (in
winter 2004) – user-acceptance testing with FIT5. FIT tests are a
tabular representation of customer expectations that can be
understood by human beings. These tests were used as the
primary mode of communicating customer requirements to the

5 http://fit.c2.com

Q1. I believe that using XP improves the productivity of small teams.

Q2. I believe that using XP improves the quality of the code.

 Q3. I would recommend to my company to use XP.

 GRAD

 SENIOR

 JUNIOR

 POSTDIPL

 DIPL

Figure 1. Extreme Programming Perceptions Distribution by Academic Programs (N=240).

students. A well-defined test suite was provided by the customer
(instructor) up front. In a separate experiment designed to
evaluate the suitability of using FIT for specifying functional
requirements for the developers, we have found that these tests
can be easily understood, interpreted and implemented by
developers [11].

 It was also established that among those who would recommend
the use of XP or other agile practices to their companies, a large
number of respondents personally like pair programming and
prefer to work in pairs in the future (if allowed). Subjects felt that
doing code inspections by pairing continuously is more efficient
than traditional debugging. This finding was statistically
significant (ρ= 0.40, p<0.0001) and is contrary to the convention
(low popularity of pair programming in industry).

With regard to adapting XP as a development process, we believe
it is more difficult to make XP work in the academic environment
then in the industrial. This is simply because of scheduling
problems (impossible to collocate students every day) and the
amount of time a student can spend on the project per week
(impossible to get them to work on the project every day). The
logistic of the process is trickier and students constantly switch

between tasks (i.e. work on different courses). Other challenges
that students identified include: scalability and criticality,
customer’s availability, fixed-price contracts, and developer’s
abilities – all the issues currently being discussed in the industry.

5. LIMITATIONS OF THE STUDY
As with all empirical studies, threats to the internal and external
validity exist. The self-selection of study participants might have
skewed the results to the positive and negative extremes. Students
with any strong opinion might be more willingly answered the
questionnaires compared with students who simply did not care.
The overall response rate of 35% might counter that threat. The
instructors of the course and their enthusiasm for agile approaches
also create a bias. Responses from students in courses taught by
the authors are slightly more positive that from classes taught by
others. The study focuses on perceptions as the authors believe
that these have a substantial impact on actual performance (based
on organizational psychology studies that suggest that happy
teams are productive teams). We do not have any objective data
to validate the correlation between perceptions and actual
performance in the process. Our sample is taken from a broad set
of students in various educational programs and from different

0 2 3

17 12
2 4

13

23

13

6

6

10

19

2

5

24

36

8

15

10

1

4

5

0

20

40

60

80

100

120

Disagree Disagree Agree Agree
Strongly Somewhat Neutral Somewhat Strongly

1 1 19 126 7

27

14

9

24

3

7

8

51

7

19

12

5

2

2

1

0

20

40

60

80

100

120

140

160

Disagree Disagree Agree Agree
Strongly Somewhat Neutral Somewhat Strongly

0 1 3
17 13

0
6

29

20

8

9

6

18

2

8

12

44

9

18

12

1

2

2

0

20

40

60

80

100

120

140

Disagree Disagree Agree Agree
Strongly Somewhat Neutral Somewhat Strongly

Q17. Test-driven development
improves software
quality

Q16. Test-driven development
speeds up the testing
process

Q15. Test-driven development
helped to improve
software design

Q14. My team used test-
driven development for
our course assignment

Q12. Progress tracking works
well following XP
practices.

Q11. Using the planning game
makes the team more
adaptive to changing
requirements.

Q10. I'm confident with my
estimates on user
stories

Q8. If allowed by my
company, I will use pair
programming in the
future.

Q7. I believe that pair
programming improves
software quality

Q6. I believe that pair
programming speeds up
the development
process.

Q5. I personally like pair
programming.

Q3. I would recommend to
my company to use XP

Q2. I believe that using XP
improves the quality of
the code.

Q1. I believe that using XP
improves the
productivity of small
teams.

20%

23%

19%

30%

20%

27%

27%

3%

7%

5%

15%

18%

27%

29%

58%

53%

46%

48%

48%

58%

43%

37%

38%

44%

40%

45%

44%

44%

8%

12%

23%

7%

14%

7%

18%

32%

40%

35%

17%

23%

17%

16%

10%

8%

9%

9%

15%

6%

9%

23%

11%

10%

18%

9%

8%

7%

3%

4%

4%

7%

4%

3%

3%

5%

4%

5%

10%

5%

4%

4%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strongly Agree Somewhat Agree Neutral Somewhat Disagree Strongly Disagree

Figure 2. Cumulative Answers of Students from All Programs (N=240).

Table 5. Spearman’s Correlations of Items Reflecting Attitudes towards XP with Respondents’ Age,
Academic Program Enrolled, and Years of IT Experience.

Age

Academic
Level

(Program)

Years of
Experi-

ence

(A)

(B)

(C)

Extreme Programming in General

Position on whether using XP improves the quality of code (A) 0.15 -0.11 0.06 –

Position on whether using XP improves the productivity of small
teams (B) -0.07 -0.17 0.08 0.63* –

Willingness to recommend and use XP in the future (C) 0.03 -0.12 0.06 0.67* 0.71* –

Pair Programming

Level of personal enjoyment of pair programming (PP) 0.03 -0.12 0.08 0.45* 0.48* 0.56*

Agreement that PP speeds up the development process -0.07 -0.05 -0.03 0.31* 0.48* 0.36*

Agreement that PP improves software quality 0.19 -0.06 0.01 0.41* 0.45* 0.50*

Willingness to use pair programming in the future (if allowed)
(N=107) 0.10 -0.08 0.01 0.40* 0.48* 0.49*

Test-Driven Development (TDD)

Self-reported level of practicing TDD on the course
project/assignments
(N=106)

0.26** -0.13 0.15 0.38* 0.36* 0.48*

Agreement that TDD speeds up the testing process (N=104) 0.28** -0.14 0.08 0.43* 0.42* 0.44*

Agreement that TDD helps to improve software design (N=105) 0.23*** -0.05 0.16 0.27** 0.34* 0.34*

Agreement that TDD improves software quality (N=104) 0.25*** 0.00 0.17 0.41* 0.39* 0.47*

Planning Game

Agreement on whether using the planning game makes the team
more adaptive (N=100) 0.11 -0.21** 0.17 0.30** 0.44* 0.45*

Confidence with estimation of user stories (N=99) 0.18 -0.22*** 0.15 0.25** 0.35* 0.34*

Note 1: Generally, N=113 (statistics reported are based on the data collected during fall 2003 and winter 2004 semesters only). Values of N <113 are
attributed to the exclusion of the cases with the ‘N/A’ responses.
Note 2: *p<0.0001, **p<0.01, ***p<0.05

years in the educational program. In that sense, we are confident
that our sample is a good approximation of student populations.
Clearly, we cannot assume that similar results would be seen
when sampling from developers working in industry.

Nevertheless, we would like to point out that the results gathered
from our graduate student population – who often work full time
in industry – are not significantly different from the overall
results6.

6 There exist other studies looking into usefulness of using

academic courses for empirical validation of software
development processes in making decisions related to software
process improvement (e.g. [4], [6]).

6. SUMMARY
This research has explored and revealed student perceptions of
agile methods. Our three year experiences introducing agile
methods in the Computer Science courses indicate that students
are very enthusiastic about core agile practices and that there are
no significant differences in the perceptions of students of various
levels of educational programs. Overall, the results indicate that a
broad range of students (although not everyone) accepts and likes
agile practices. This holds for all ages and for various degrees of
prior industry experience. Qualitative insights reveal that
experience of working as an agile team promotes the development
of professional skills (communication, commitment, cooperation,
and adaptability). These positive views are, in our opinion, a
prerequisite for the widespread adoption of agile methods in
industry.

The overwhelmingly positive perceptions on agile methods seem
to indicate that developers too will support the adoption of agile
practices wholeheartedly (beyond merely paying lip service to the
methods because they are forced onto them by management).
Getting the buy in of front line workers for any disciplined
process increases the chances to reap real benefits. Thus, while
quantitative, industrial evidence of the efficiency and benefits of
agile practices is still sparsely available (or, for some practices,
not available at all), the results of the present study lead us to
believe that agile approaches will have a substantial impact on
software teams. Our future work will focus on validating this
hope. Leaders of agile software teams interested in collaborating
should contact the first author.

7. ACKNOWLEDGMENTS
The authors would like to thank all students from SAIT and
University of Calgary who provided us with their thoughtful
responses. The study is partially sponsored by NSERC, iCore, and
ASERC.

8. REFERENCES
[1] Bedoll, R. A Tail of Two Projects: How ‘Agile’ Methods

Succeeded after ‘Traditional’ Methods Had Failed in a
Critical System-Development Project. Proc. XP/Agile
Universe 2003, LNCS 2753: 25–34, 2003.

[2] Boehm, B. Get Ready for Agile Methods, with Care. IEEE
Computer, 35(1): 64–69, 2002.

[3] Boehm, B. and Turner, R. Balancing Agility and Discipline:
A Guide for the Perplexed. Addison-Wesley, Reading, MA,
2003.

[4] Ciolkowski, M., Muthig, D., and Rech, J. Using Academic

Courses for Empirical Validation of Software Development
Processes. Proc. EUROMICRO/ SPPI04, IEEE Computer
Society: 354–361, 2004.

[5] Highsmith, J. and Cockburn, A. Agile Software
Development: The Business of Innovation. IEEE Computer,
34(9): 120–127, 2001.

[6] Höst, M., Regnell, B., and Wohlin, C. Using Students as
Subjects – A Comparative Study of Students and
Professionals in Lead-Time Impact Assessment. Journal of
Empirical Software Engineering, 5(3): 201–214, 2000.

[7] Humphrey, W. Comments on eXtreme Programming. IEEE
Computer Society Dynabook. Online
http://computer.org/software/dynabook/HumphreyCom.htm
Last accessed on August 30, 2004.

[8] IEEE Computer Society/ACM Joint Taskforce on
Computing Curricula. Computing Curriculum- Software
Engineering (public draft 1), July 17, 2003.

[9] Melnik, G. and Maurer, F. Introducing Agile Methods in
Learning Environments: Lessons Learnt. Proc. XP/Agile
Universe 2003, LNCS 2753, Springer Verlag,: 172–184,
2003.

[10] Melnik, G. and Maurer, F. Introducing Agile Methods: Three
Years of Experience. Proc. EUROMICRO/ SPPI04, IEEE
Computer Society: 334–341, 2004.

[11] Melnik, G., Read, K., and Maurer, F. Suitability of FIT User
Acceptance Tests for Specifying Functional Requirements:
Developer Perspective. Proc. XP/Agile Universe 2004, LNCS
3134, Springer Verlag, 2004.

[12] Stephens, M. and Rosenberg, D. Extreme Programming
Refactored: The Case Against XP. APress, Berkley, CA,
2003.

