
Introducing Agile Methods: Three Years of Experience

Grigori Melnik, Frank Maurer
Department of Computer Science, University of Calgary

2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
{melnik, maurer}@cpsc.ucalgary.ca

Abstract

The paper summarizes three years of experience of

introducing agile practices in academic environments.
The perceptions of students from four different
academic programs (Diploma, Applied Bachelor’s,
Bachelor’s and Master’s) from two institutions are
analyzed. Specifically, pair programming, test-driven
development and project planning using the planning
game were studied in detail. Overwhelmingly,
students’ experiences are positive and their opinions
indicate the preference to continue to use agile
practices if allowed. No major problems with agile
techniques appeared in the evaluation contexts and
benefits in these contexts have been seen.

1. Introduction

In March 2002, Giga Information Group forecasted
that “within next 18 months more than two-thirds of all
corporate IT organizations [would] use some form of
agile software development process” [9]. At that time,
agile methods were considered a novelty. Now, two
years after, agile methods are closer to the mainstream
and are being applied in more and more domains. As
the ideas of agile methods increase in popularity, a
controversy around them continues to grow. One of the
problems is that there is a lot of anecdotal evidence but
very little empirical data of agile methods effectiveness
available. Real-world examples argue for (see, for
instance, [1], [3]) and against [10] agile methods.
Several leading software engineering experts suggest
that finding “home grounds” and, perhaps,
synthesizing, “balancing” the two (agile with
tayloristic) may provide developers with a
comprehensive spectrum of methods ([2],[4]).

Agile methods are slowly entering academia and
becoming part of the computer science curriculum.
Importantly, the newest IEEE/ACM Computer Science
– Software Engineering Curriculum lists agile concepts
and several practices (e.g., test-driven development,

refactoring) as essential topics [5]. For a
comprehensive literature review of cases/studies
supporting or challenging agile practices in software
engineering curriculum, we refer the reader to the
Section 1 of [7].

We have been introducing agile methods in software
engineering courses at University of Calgary and
Southern Alberta Institute of Technology since 2001.
Perceptions of broad student body on eXtreme
Programming (XP) in general and its individual
practices were studied.

In the next section, we present an overview of the
study. Section 3 describes the courses and the subjects
involved in the study qualitatively. In Section 4, we
present the empirical data collected over three years;
while Section 5 covers qualitative outcomes. We
conclude with a summary of our findings and an
outlook of the future work.

2. Study Overview

The intent of our descriptive study is to see what the

perceptions of students of agile practices are and how
they vary (if at all) depending on the programs they are
enrolled in. The study focuses on agile engineering
practices that are coming from eXtreme Programming1.
Concretely, we were interested in perceptions on XP in
general and three XP practices that we used in our
classes in particular: pair programming, project
planning using the planning game, and test-driven
development. The subjects of the study are students of
various academic levels, some of which had several
years of experience in software development.

We developed a questionnaire of 20 questions
which included both qualitative open-ended questions
that assessed students’ perceptions of the agile
practices and also gathered their suggestions on how
the courses can be improved and quantitative questions
(on a 5 point Likert summated scale, 1 “strongly

1 We are using “agile practices” to make clear that we did not use the
full set of XP practices in our study.

disagree” to 5 ”strongly agree”). These two approaches
complemented each other and provided both the depth
and the width of coverage on the topic.

When looking at the students’ experiences, we
asked a number of questions:
§ Did the students enjoy agile practices?
§ What worked for them?
§ What problems did they encounter?
§ Whether they would use agile practices in the

future (if allowed) or not?
§ How did XP improve their learning?

The survey was executed on the Web. Students were
given one week to respond.

Informal interviews and discussions were also
conducted during the course of the semester to get
some informal feedback on other aspects of XP that
were used in the courses (continuous integration,
collective code ownership, refactoring, coding
standards). The use of a mix of qualitative and
quantitative research methods provided an opportunity
to gain a better understanding of the factors that impact
students’ and developers’ experiences with agile
practices.

3. Courses and Student Populations

Students of four different levels of computer science

programs from the Southern Alberta Institute of
Technology (SAIT) and the University of Calgary were
exposed to agile methods. All individuals were
knowledgeable about programming. Data was collected
partially during the semester and partially at end of the
academic semester in which agile practices were
introduced. Data collection was anonymous and the
instructors were not able to determine who participated
in the study and who wrote specific comments. In total,
221 students took part in the study.

3.1. College-level Diploma Program

We studied 2nd year students of the Computer

Technology Diploma program at SAIT majoring in
Information Systems. Respondents were enrolled in the
second year Data Abstraction and Algorithms course
that is taught using Java as the primary language. This
is a required course for students in the program and it is
a prerequisite for several other required courses. A
strong emphasis is placed on designing and building
complex programs that demonstrate in-depth
understanding of abstract data types and ability to
choose an appropriate one. In this course we selectively
adopted the following practices: 1) test-driven

development; 2) pair programming; 3) all code must be
unit tested; 4) integrate often; 5) use collective code
ownership; 6) leave optimization till last.

Students were encouraged to follow consistent
coding styles and naming conventions. In some cases
code exchange was initiated during a work term and
teams had to utilize the components designed by their
peers (for example, sorting algorithms). We
emphasized the importance of human collaboration and
shortened life cycles.

During the first two observed semesters (fall 2001
and winter 2002), the course was taught by the first
author. The last semester (fall 2003) was not taught by
either of the authors.

3.2. College-level Post-Diploma Applied
Bachelor’s Degree Program

The Bachelor of Applied Information Technology

degree (BAI2) is a two-year post diploma program that
was designed in consultation with Alberta’s computer
industry. Students specializing in Information Systems
Development or Software Engineering major took part
in the study.

The subjects were enrolled in Software Testing and
Maintenance and/or Internet Software Techniques
courses. Software Testing and Maintenance is required
course in which students are introduced to the
fundamentals of testing. Students practice various types
of testing techniques by doing both testing and
development. The course used to be taught in the
second semester, but was moved to the first one after
summer 2002. This change has positively affected the
level of preparation for the courses such as Internet
Software Techniques and Software Engineering
Project, as the students were already familiar with unit
testing techniques, automatic build tools, version
control and collaboration systems. They were also
introduced to a set of basic refactorings. Internet
Software Techniques is an elective course that
introduces the concepts and techniques of Web
development. Students were asked to self-organize into
teams and work on all programming assignments using
the following practices of eXtreme Programming: test-
driven development, continuous integration, pair
programming, refactoring and collective ownership of
the code.

Both courses were taught by the first author who
also acted as a customer for the projects.

2 http://www.sait.ca/academic/information/programs/bai.htm and

http://mase.cpsc.ucalgary.ca/EB/Wiki.jsp?page=APSE504w04

3.3. University Bachelor’s of Science Program,
Junior Course

The junior course on Foundations / Principles of

Software Engineering3 gave an introduction to software
development problems and to the processes used to
address them. Both Tayloristic and agile methods were
discussed with eXtreme Programming being introduced
early in the course (at the second and third weeks of
classes). The course contained hands-on assignments
and a group project. The project entailed planning,
design, implementation, testing and integration of an
Online Car Rental System. Subjects worked in groups
of 6-8 students. The project involved three releases,
each providing a greater subset of the functionality of
the system than the previous release. The details were
described as the project progressed and the client (the
lecturer) was allowed to make changes to the future
requirements, while the requirements of the current
release remained frozen. Students were encouraged to
do planning via the planning game and keep track of
their project velocity.

This course was not taught by the authors of this
paper but by another professor.

3.4. University Bachelor’s of Science Program,
Senior Course

The senior course on Web-Based Systems4 was

taught by the second author in the fall 2002 and by the
first author since winter 2003. The course gives an
overview on a broad range of methods and techniques
for building Web-based applications. It includes
comprehensive hands-on software development
assignments (which are done in teams of 4-6 students)
that are designed to deepen the understanding of the
technologies. Students are encouraged to use pair
programming, but there is no way to enforce it in the
off-class time (yet student responses speak for
themselves – see further in Section 5). The final exam
consists of developing a small Web-based system and
is done online – the students must deliver clean code
that works.

Majority of respondents were majoring in Computer
Science with about 25% majoring in Electrical
Engineering and one student majoring in Environment
Design. In all semesters, students were introduced to
the agile practices (test-driven development, pair

3 http://sern.cpsc.ucalgary.ca/courses/cpsc/333/w03
4 http://sern.cpsc.ucalgary.ca/courses/SENG/513/F2002,

http://sern.cpsc.ucalgary.ca/courses/SENG/513/W2003/
http://sern.cpsc.ucalgary.ca/courses/SENG/513/F2003/ and
http://mase.cpsc.ucalgary.ca/EB/Wiki.jsp?page=SENG513w04

programming, continuous integration, coding
standards, refactoring, planning game) at the very
beginning of the course.

3.5. University M.Sc. Graduate Program

The subjects participating in the survey were

enrolled in a graduate course Agile Software
Processes5 as part of their M.Sc. program. Students
were either enrolled in the thesis-based or course-based
Master’s programs in Software Engineering via the
departments of Computer Science or Electrical
Engineering. Course-based students are usually part-
time and work full time in the local industry. Almost a
half of the students enrolled in the course had several
years of software development experience (most as
developers, with several people as team leads and
project managers). The course is not required for
completion of the M.Sc. degree.6 At least two of the
students had prior industrial experience with XP
practices.

The course discussed and applied agile software
development practices like eXtreme Programming,
Scrum, Agile Modeling, and Feature-Driven
Development. In the course assignment (project), the
students were split up into two groups of 6 students
each in winter 2002, one group of 11 students in fall
2002 and three teams of 6 in fall 2003. Each group in
the first terms developed a small Web-based system.
The group in the second term was responsible for
extending an existing research prototype. In the third
term, teams built a small application, with each team
getting its own independent set of tasks for the first
iteration. In the second iteration they had to combine
these into a single system and add some extensions to
it. The last iteration was dedicated to system
improvement and final release. The groups were
encouraged to apply agile practices, specifically XP
and Scrum. The instructor (the second author) acted as
a customer for development teams and defined features
to be implemented. In all semesters, the teams
estimated user stories, planned and steered the projects,
and designed, implemented and tested the system under
development.

We would also like to point out that students do not
work full time on a course. We estimate that on average
a student spends about 5-7h/week on the course

5 http://sern.cpsc.ucalgary.ca/courses/SENG/609.24/F2002/ and

http://sern.ucalgary.ca/courses/CPSC/601.93/F2003/
6 Hence, students taking this course are interested in agile methods.

Most of them had a positive bias while one student in the first
course expressed some reservation on XP practices at the
beginning of the course.

assignment (this estimate is based on time sheets over
10 weeks from one of the UofC groups). Hence, the
effort going into a release is approximately about 20
hours per student (which is much lower than in XP or
any other agile method).

Informal feedback from the student teams at the
time of the survey indicated that the first release was
strongly impacted by the ramp-up time for learning the
development tools (IBM WebSphere Studio, DB2,
CVS, Ant) and by environment instabilities (which
were resolved for the second release). After
overcoming these technical issues, the second survey
does not show the same impact. The feedback also
pointed to severe problems in scheduling pair
programming sessions as most of the students were part
time and only rarely available at the UofC.

4. Quantitative Results

Considering the relative simplicity of analyses

undertaken, the conclusions we report are descriptive
statistics only.

The average response rate is 55% among SAIT
students, 28% among University of Calgary

undergraduate students, and 83% among University of
Calgary graduate students (Table 1).

Figure 1 illustrates that the overwhelming majority
of all respondents (80%) either believe or strongly
believe that using XP improves the productivity of
small teams (mean=3.87; SD=0.91). Seventy-eight
percent (78%) of students (mean=3.90; SD=0.94)
suggested that XP improves the quality of code and
67% of all respondents (mean=3.74; SD=0.94) would
recommend to the company they work for or will be
working in the future, to use XP.

Figure 2 shows the cumulative results on all non-
open ended questions of the survey. The results are
overwhelmingly positive. This holds for XP in general
and for individual practices. It also holds across all
level of students (with M.Sc. students and junior
undergraduates slightly less optimistic).

Figure 3 demonstrates the dynamics of student
perceptions by academic years (Likert scale is used:
value 5.00 = ”strongly agree”, 1.00 = ”strongly
disagree”). Students of the year 2002-2003 are less
optimistic because the data included responses from the
junior undergraduate course. Based on the analysis of
their comments, it seems the main reason is the fact that
students felt overwhelmed with the assignments and the
project.

Table 1. Summary of Respondents by Academic Programs

Academic program Semester(s) # of invitations sent out # of respondents Response rate

Fall 2001,
Winter 2002

41 22 54%
College-level Diploma
(2 years)

Fall 2003 40 9 23%

Winter 2002 22 15 68%

Fall 2002 18 10 56%

Fall 2003 23 22 96%

College-level Post-Diploma Applied
Bachelor’s Degree (2+2 years)

Winter 2004 17 11 65%

University-level Junior
Undergraduate (2nd year of 4 year
program)

Winter 2003 175 25 14%

Fall 2002 55 19 35%

Winter 2003 62 19 31%

Fall 2003 33 20 61%

University-level Senior
Undergraduate
(4 years)

Winter 2004 24 15 63%

Winter 2002 12 9 75%

Fall 2002 11 8 73%
University-level Graduate
(4+2 years)

Fall 2003 18 17 94%

Total, All Programs 551 221 40%

Q1. I believe that using XP improves the productivity of small teams.

Q2. I believe that using XP improves the quality of the code.

Q3. I would recommend to my company to use XP.

 University of Calgary, Graduate Students

 University of Calgary, Senior Undergraduate Students

 University of Calgary, Junior Undergraduate Students

 SAIT, Diploma & Applied Degree Students

Figure 1. Extreme Programming Perceptions Distribution by Academic Programs.

5. Reflections: Qualitative results

We asked students to comment on what had worked

for their own team and what had not. The feedback was
collected via the survey (open-ended questions) and
individual interviews.

5.1. XP in general

The overall feedback on XP and the productivity of

small teams was positive:
§ “I believe that XP helps get more work done in less

time and is very effective for small groups as it
allows for the group members not to get stuck for
extended periods of time.”

§ “Focus on results. Focus on small, fast
deliverables. Focus on communication. Focus on
minimalization. Focus on teamwork. I love it.”
Students emphasized the improved communication

(both intra-team and with the customer) and the effect
it had on their project progress:

§ “It forced us to work together and to get used to
each other's style of programming... We got a lot
more done by talking to each other and getting
everyone's input...”

§ “The teamwork principles behind XP practices are
really helping us accomplish our tasks. Having the
customer available as part of the team allows us to
clarify requirements before we go ahead and
implement them incorrectly.”

In our opinion, it is more difficult to make XP work in
the academic environment then in the industrial. This is
simply because of scheduling problems (impossible to
collocate students every day) and the amount of time a
student can spend on the project per week (impossible
to get them to work on the project every day). The
logistic of the process is trickier. Both authors saw it
over and over again in all programs:
§ “I think it has worked well for us so far, however

there have been some hiccups. Since we are not all
co-located when a decision needs to be made we
usually have to wait until we have a meeting.”

2 6 16
40

25

1

5

6

12

1

5

23

36

8

15

10

1

0

4

5

0

20

40

60

80

100

120

140

Disagree Disagree Agree Agree
Strongly Somewhat Neutral Somewhat Strongly

2 7 8

46
26

0

9

0

14

2

7

8

51

6

19

12

1

2

1

0
0

20

40

60

80

100

120

140

Disagree Disagree Agree Agree
Strongly Somewhat Neutral Somewhat Strongly

0 1 9

46
33

3

9

1

11

1

8

12

43

9

18

12

1

0

2

2

0

20

40

60

80

100

120

140

Disagree Disagree Agree Agree
Strongly Somewhat Neutral Somewhat Strongly

Q17. Test-driven
development
improves software
quality

Q16. Test-driven
development
speeds up the
testing process

Q15. Test-driven
development
helped to improve
software design

Q14. My team used test-
driven development
for our course
assignment

Q12. Progress tracking
works well following
XP practices.

Q11. Using the planning
game makes the
team more adaptive
to changing
requirements.

Q10. I'm confident with
my estimates on
user stories

Q8. If allowed by my
company, I will use
pair programming
in the future.

Q7. I believe that pair
programming
improves software
quality

Q6. I believe that pair
programming
speeds up the
development
process.

Q5. I personally like
pair programming.

Q3. I would recommend
to my company to
use XP

Q2. I believe that using
XP improves the
quality of the code.

Q1. I believe that using
XP improves the
productivity of small
teams.

21%

25%

20%

30%

20%

28%

29%

4%

7%

5%

15%

19%

29%

31%

59%

53%

47%

48%

48%

58%

43%

36%

38%

45%

42%

46%

44%

45%

8%

11%

23%

6%

14%

6%

18%

33%

41%

35%

16%

22%

16%

14%

11%

9%

9%

10%

15%

6%

8%

24%

11%

11%

18%

10%

9%

7%

1%

2%

2%

5%

3%

2%

3%

3%

2%

4%

9%

3%

2%

2%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strongly Agree Somewhat Agree Neutral Somewhat Disagree Strongly Disagree

Figure 2. Cumulative Answers of Students from All Programs.

When asked to comment on the quality of code that
XP teams produce, 80% of the respondents agreed that
XP improves the quality (mean=3.90, SD=0.94):

§ “Generally by using XP the quality tends to be
better as there are not as much wasted functionality

implemented and what is implemented, is
implemented in a superior fashion to what
otherwise would be done.”

§ “Quality is built into the process (not a supporting
concept but a core concept).”
Students expressed concerns about the scalability of

agile methods. When asked to discuss other limitations
of agile methods, students brought up some of the
issues currently being addressed by the industry,
including:
§ “Primary issue is if a customer will be available.”

§ “This works great for small projects, but for
important mission-critical system?...”

§ “Limitations are related to developer ability.”
Notably, several students expressed the importance

of consistency and discipline while going agile:
§ “The limitation of extreme programming is the

degree to which it is pursued. As long as standard
XP practices are followed, it will work - but as soon
as corners start being cut it will lose effectiveness.
… It is too easy to fall into old habits.”
In addition, students recognized that “no process

will ever be a silver bullet. Good Programmers +
Good Processes = Good software. The negation of that
means if either factor is bad (the programmers or
processes), you're still going to get bad software.”

5.2. Pair programming

Most of the students found the interaction between

partners helpful. They emphasized the effect of pair
programming on their learning:
§ “I learnt many new things very fast by pair

programming which otherwise could have taken me
lot of time.”
Again, the logistics of getting together was hard and

it seriously impacted students’ ability to practice pair
programming. There were also some difficulties in
adjustments when there was a big difference in skill
level in a pair. A number of students suggested that
partners in a team should be matched according to their
qualifications and experiences. Here we detected a split
of opinions. In their understanding of the objectives of
pair programming, some students only focused on
getting the code written in a more efficient manner, and
not on mentoring. They found mentoring to be a
drawback of pair programming. If the partner did not
understand something, they would have to spend extra
time explaining it over, which under tight deadlines
was perceived to be a real problem. Other students
considered this to be a plus in collaborative learning:

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

2001-2002 2002-2003 2003-2004

Q1. I believe that using XP improves the productivity of small teams.

Q2. I believe that using XP improves the quality of the code.

Q3. I would recommend to my company to use XP

Figure 3. Dynamics of Perceptions (Means) by
Academic Years across All Programs.

§ “Not only did it allow programmers to catch

possible mistakes immediately…, but I noticed that
it allowed weaker programmers to learn from the
stronger partner while working on actual material
(as opposed to theory in a classroom).”
In fact, similarly to the findings of Simon [8], our

study recognizes that that pair learning and extreme
learning has the advantage of the traditional theories of
learning that treat learning as a concealed process.

5.3. Test-driven Development

Test-driven development – TDD (a.k.a. test-first

design) is not easy to implement because students are
not used to thinking the test-first way.
§ “Difficult to write test cases before writing the code

for the functionality.”
We believe that the underlying reason is that TDD is

not about testing but about design. And doing design is
hard – independent from how you document it (as test
code or in UML). Hence, TDD simply forces design
issues forward while UML diagrams can be sloppy.
This impression was supported by some of the
students: “I think the test code is more a part of design
then it is just testing.”

Some of the students believed it was logically
confusing and “almost like working backwards.” The
students did not know how many tests would be
enough. Also, some believed testing involved too much
work and they did not see the short-term benefits.

To address some of the problems students were
having with test-driven development, in the winter
2004 semester, we introduced an additional practice –
user-acceptance testing with FIT7. FIT tests are a
tabular representation of customer expectations. These

7 http://fit.c2.com

tests were used as the primary mode of communicating
customer requirements to the students. A well-defined
test suite was provided by the customer (instructor) up
front. In a separate experiment designed to evaluate the
suitability of using FIT for specifying functional
requirements for the developers, we have found that
these tests can be easily understood, interpreted and
implemented by developers.

Overall, more than three-quarters of respondents
recognize the fact that test-first design speeds up the
testing process (mean=3.88, SD=1.00) and a similar
number of students believes that it improves the
quality of code (mean=3.96, SD=0.97).

Many students mentioned that it is a matter of habit,
and that it takes time to get accustomed to this highly-
disciplined approach.

The XP approach of test-driven development is
quality-driven. Several students even considered it to
be the most important practice of agile methods:
§ “I think it's the foundation for successes of agile

methods. I wish I applied [TDD] for my previous
projects, that would have saved me so much time.”

§ “TDD is the only way our team does development.”
Our evidence shows that even though not all

students absorbed the concept of TDD as
enthusiastically as the authors of the last two quotes
above, they did realize the importance of testing.

5.4 Planning game

The Planning game is used to predict what will be

accomplished by the due date. As Jeffries points out,
“the emphasis is on steering the project – which is quite
straightforward – rather than on exact prediction of
what will be needed and how long it will take – which
is quite difficult” [6].

Based on the quantitative evaluation (see q.10-12 of
Figure 2), the planning game was the least popular
practice. This can be attributed to the lack of
experience in project planning and estimation:
§ “Estimates were very hard to come up with and

were not very accurate.”
However, a large number of student comments on

the planning game were more positive than the
quantitative evaluation would indicate:
§ “Useful approach for forcing one to decide and

estimate up front, at beginning of iteration.”
§ “The planning game resolves misunderstandings,

gives a good overview of the path and goal the
iteration is following.”
Some students even indicated that they “plan on

using the planning game in the future whether it is

required or not”.
Students also related to the fact that the planning

game helped to steer the project in the right direction
and the small releases helped “to distribute the load
more evenly” and “to keep the team on track”.

6. Summary

Our three year experiences introducing agile

methods in the Computer Science curricula show that
students are very enthusiastic about core agile practices
and that there are no significant differences in the
perceptions of students of various levels of educational
programs and experiences. No major problems with
agile techniques appeared in the evaluation contexts
and benefits in these contexts have been seen. Overall,
the results indicate that a broad range of students
(although not everyone) accepts and likes agile
practices. And this is in our opinion a prerequisite for
their widespread adoption in industry.

References

[1] Bedoll, R.. “A Tail of Two Projects: How ‘Agile’

Methods Succeeded after ‘Traditional’ Methods Had
Failed in a Critical System-Development Project”. Proc.
XP/Agile Universe 2003, LNCS 2753: 25–34, 2003.

[2] Boehm, B., Turner,R. Balancing Agility and Discipline:
A Guide for the Perplexed. Addison-Wesley, MA, 2003.

[3] Highsmith, J., Cockburn, A. “Agile Software
Development: The Business of Innovation”. IEEE
Computer, 34(9): 120–127, 2001.

[4] Humphrey, W. “Comments on eXtreme Programming”.
IEEE Computer Society Dynabook. Online
http://www.computer.org/SEweb/Dynabook/Humphrey
Com.htm. Last accessed on March 1, 2004.

[5] IEEE Computer Society/ACM Joint Taskforce on
Computing Curricula. Computing Curriculum- Software
Engineering (public draft 1), July 17, 2003.

[6] Jeffries, R. “What is Extreme Programming”. Online:
http://www.xprogramming.com/xpmag/whatisxp.htm#pl
anning Last accessed March 1, 2004.

[7] Melnik, G., Maurer, F. “Introducing Agile Methods in
Learning Environments: Lessons Learnt”. Proc.
XP/Agile Universe 2003, LNCS 2753: 172–184, 2003.

[8] Simon, H. “Learning to Research about learning”. In S.
Carver & D. Klahr (Eds.), Cognition and instruction:
Twenty-five years of progress. Lawrence Erlbaum
Associates, Mahwah, NJ:.205–226, 2001.

[9] Sliwa, C. “Users Warm Up to Agile Programming”.
ComputerWorld, 36(12): 8, 2002.

[10] Stephens, M., Rosenberg, D. Extreme Programming
Refactored: The Case Against XP. APress, Berkley, CA,
2003.

