
Direct Verbal Communication as a Catalyst of Agile Knowledge Sharing

Grigori Melnik, Frank Maurer
Department of Computer Science

University of Calgary, Calgary (Canada)
{melnik, maurer}@cpsc.ucalgary.ca

Abstract

This paper discusses the role of conversation and

social interactions as the key element of effective
knowledge sharing in an agile process. It also presents
the observations made during a repeated experiment
on knowledge sharing conducted in various groups of
professionals and students. The study suggests that the
focus on the pure codified approach is the critical
reason of Tayloristic team failure to effectively share
knowledge among all stakeholders of a software
project. Drawing on the knowledge-as-relationship
perspective of knowledge sharing we theorize that
verbal face-to-face interaction facilitates achieving
higher velocity by software development teams.

Keywords: agile methods, knowledge sharing,

verbal communication, conversation, social interaction.

1. Introduction

Effective knowledge sharing is key to building a
competitive advantage in any organization.
Traditionally, two perspectives on knowledge sharing
are debated by epistemologists. One, “codification
approach”, is based on the notion of knowledge-as-
object (supported by [1], [13], [23], [28]). Such objects
can be created, collected, stored, and reused. To be
effectively managed and transferred, these objects have
to be codified (in the form of documentation,
knowledge bases, experience factories, etc.). Another
view, “personalization approach”, is based on the
sociology of knowledge and embraces the notion of
knowledge-as-relationship ([3], [4], [19], [20]).
According to this view, knowledge is uncertain, soft,
and embedded in work practices and social
relationships.

The view of knowledge-as-objects currently
dominates software engineering practices.

Documentation1 is used as the main knowledge
transfer2 medium. Documentation is required by
engineering standards at every phase of the software
development lifecycle (IEEE, ISO/IEC, PMI, CMM
etc.). Some of the persistent problems with such
approach are inadequacy, incompleteness,
inconsistency, and ambiguity of the written
documentation. In a recent investigation of how
software engineers use documentation, Lethbridge,
Singer, and Forward indicate that almost 70% of
subjects (members of Tayloristic3 teams in 12
corporations and 1 government site) confirmed that
documentation is always outdated relative to the
current state of a software system [18]. Writing
documentation is not easy. Doing so in a clear and
unambiguous way is even more difficult. Regardless of
the format (prose, diagrams), confusions often arise. In
addition, the long knowledge transfer chains with many
intermediaries suffer from information distortion and
loss and lead to situations when the product delivered
is not what the customer really wanted/needed.

Agile methods of software development consider
face-to-face interactions (with the customer and among
the development team members), “clean code that
works”, and suites of test drivers as the primary devices
for knowledge sharing. The view of knowledge-as-
relationship is fundamental. The knowledge is
considered to be socially constructed and collectively
held. User stories, narratives, and metaphors are
viewed as important instruments for knowledge
sharing. Yet, documentation is not entirely rejected.

1 In this paper we refer to process and system documentation, and

not to user documentation.
2 The role of documentation in knowledge preservation of the

system is not discussed here.
3 We prefer to use term “Tayloristic” when discussing traditional,

non-agile methodologies. We believe that the latter should not be
referred as “plan-driven”, because agile methods are also plan-
driven. In fact, we would argue that agile methods may involve
more planning activities than Tayloristic approaches but of
shorter cycles (iterations). The term “task-based” should also be
avoided as it points to the side effect of a Tayloristic method,
rather than the cause.

Agilists advocate the use of “lean and mean”
documentation when a need is formulated (internally or
externally) and documentation satisfies that particular
need.

Paraphrasing a Groucho Marx’s aphorism –
“Outside of a dog, a book is man’s best friend; inside
of a dog, it’s too dark to read” – Ron Jeffries, one of
the champions of eXtreme Programming, advises
“Outside your extreme programming project, you will
probably need documentation: by all means, write it.
Inside your project, there is so much verbal
communication that you may need very little else.”
Jeffries concludes “Trust yourselves to know the
difference” [15].

2. Tayloristic Knowledge Sharing:
Knowledge-as-objects

Tayloristic3 development approaches emphasize
strong conformance to a plan through up-front
requirements gathering and up-front systems design. In
order to control change, knowledge of all possible
requirements, design, development, and management
issues is externalised to multitudes of documents
(“codified”) to ensure all issues are first captured and
then addressed.

The emphasis on using knowledge-as-objects
(documentation in paper or electronic formats) for
knowledge sharing is reinforced by practices such as
“document what you do” and “do what has been
documented” as defined in SEI-CMM [22]. Such
practices encourage process groups in an organisation
to press development teams to produce multitude of
documents throughout a software project.

10% communication error ⇒
(90%)5 = 59% info gets to developer

5% communication error ⇒
(95%)5 = 77% info gets to developer

Figure 1. Knowledge Sharing: Tayloristic Way.

Labour division is often rigorously enforced and
specializations dominate. People are deemed to be
easily replaceable. Tayloristic methods result in long
chains of knowledge transfer (as depicted in Figure 1).

Many intermediaries are involved and the original
content mutates as it is passed through the conduits of
analysts, architects, designers, project leaders etc. The
more conduits there are in this chain, the more
information is lost or distorted.

For example, let us consider a chain of six players:
Customer → Analyst → Architect → Designer → Lead
Developer → Developer. Assuming that 5% of
communication error occurs at every knowledge
transfer, only 77% of the original information gets
correctly to the developer. In a similar scenario with
10% of communication error, the portion of the correct
information transferred the developer is reduced to
59%. For longer chains, the amount of information is
further reduced.

Similar observations are made by Keil and Carmel.
In an exploratory study of 31 software development
projects, they came to a conclusion that “less successful
projects suffered not only from a low number of
[customer-developer] links4 but from a low number of
direct links”. Seventy two (72%) percent of less
successful projects involved either zero or just one
direct link between customer and developer [16].

Moreover, since people on one end of the chain
(information producers) do not know what people on
the other end (information consumers) really need, they
tend to over-document. This results in even more
documentation produced that has practically no value5.
The more documentation is written in the first place –
the more effort will be required to find appropriate
information, maintain the documents and keep them
up-to-date.

In a Tayloristic process, direct communication
between the customer and the developer is discouraged.
The communication chain fails to go both ways
(depicted as dotted arrows in Figure 1), though selected
feedback is sometimes provided.

3. Agile Knowledge Sharing: Knowledge-
as-relationships

In contrast, agile methods are human-centric bodies
of software development practices and guidelines that
consider individuals and interactions
as crucial factors of the project success. Essentially, all

4 Keil and Carmel define “customer-developer link” as both a

channel (i.e. a medium for communication) and a technique (i.e.,
a method of communication). From a practical standpoint, they
chose not to separate these two dimensions because they found
that the subjects of their study (managers) themselves do not
distinguish between the two dimensions.

5 Unless each conduit adds specific value that is defined and
recognized by the team members and/or the customer.

agile methods encourage continual realignment of
development goals with the needs and expectations of
the customer. They concentrate on significantly
improving communications (among team members and
with the customer) and promote continuous feedback.
Knowledge formation and sharing is recognized as a
highly social (rather than technical/mechanical/formal)
process.

10% communication error ⇒
90% info gets to developer

5% communication error ⇒
95% info gets to developer

Figure 2. Knowledge Sharing: Agile Way.

People are no longer treated as “plug-compatible
programming units”6. Cross-functional teams are used
to facilitate better knowledge sharing. The knowledge
transfer chains are shortened by direct communication
and collaboration (see Figure 2). This ensures what we
call “high-velocity knowledge sharing”. Drawing on
the example from the previous section, a 10%
communication loss will result in 90% of information
transferred correctly to the developer (compared to
59%) and a 5% communication loss will result in 95%
(compared to 77%). Thus, from a communication
perspective, direct contact between customer and
developer is preferable to indirect because it decreases
filtering and distortion that may occur.

It is important for both customer and developer to
have a common frame of reference – a common basis
of understanding. If this common perspective does not
exist, then “shared meaning must be established before
mutual understanding can occur.” [9]

Unlike Tayloristic managers who trivialize the
power of conversation, the agile teams embrace the
power of it. Conversation is considered to be the major
communication device. An impressive number of
theories in software development community ([27], [7],
[2]), human-computer interaction (e.g. [21]),
management science ([8],[9]) and applied psychology
([10],[29]) speak to the issue of communication media
use and, in particular, to the importance of face-to-face

6 A term coined by Kent Beck and used in [11], for example.

conversations. In view of that, practitioners of software
development (Weinberg [27]) and agile communities
(Cockburn [7], Ambler [2]) independently analyze
project experiences, use informal7 curves and
hierarchies of communication media
effectiveness/richness (see Figure 3, for example)
and unanimously contend that the most
effective type is “person-to-person, face-to-face” [7].

C
om

m
un

ic
at

io
n

E
ff

ec
tiv

en
es

s

Form of Communication

Paper
Audiotape

Videotape

2 people
on email

2 people
on phone

2 people at
whiteboard

Figure 3. Alistair Cockburn’s Modes of
Communication Curve (reproduced from [7])

In management science, Media Richness Theory ([8],
[9]) suggests that direct face-to-face channels offer the
prospect of richer communication because of the ability
to transmit multiple cues (e.g. voice inflection, body
language) and to “facilitate shared meaning” with rapid
mutual feedback and personal focus, feelings and
emotions infusing the conversation.

Furthermore, the easier it is to communicate, the
faster change happens [5]. Via “high-touch”
communication (vs. “high-tech” communication in
Tayloristic teams) and high-velocity knowledge
sharing, agile teams become effective and fast-moving
– they manage to deliver the product sooner to the
customer. Specifically, in extreme programming, this
“high-touch”, “warm” interaction takes the form of user
stories communicated by conversation, sketches on a
whiteboard discussed by the team, code/system
knowledge shared during pair programming sessions,
and collective code ownership. In Scrum, daily scrums
and post-sprint meetings ensure collaborative
teamwork and knowledge sharing as the project
progresses. Agile Modelling promotes the principle
that “Everyone Can Learn from Everyone Else”. This
principle defines a mindset that enables communication
– “someone who believes they can learn something
from the person(s) they are communicating with, is

7 These popular curves are based on project experiences of these
practitioners and are not scientifically substantiated.

much more receptive than someone who believes
otherwise” [2].

If facts need to be communicated, written
documentation, as a medium, can be used (since facts
are precise). If concepts, ideas or desires need to
communicated, verbal channels are considered to be
more effective in facilitating this type of knowledge
sharing as they allow rapid mutual feedback.

It is important to recognize that conversation goes
beyond simple sharing of information. It stimulates
further thinking. As Theodore Zeldin points out,
conversation is “a meeting of minds with different
memories and habits. When minds meet, they don’t just
exchange facts: they transform them, reshape them,
draw different implications from them, engage in new
trains of thought. Conversation doesn’t just reshuffle
the cards: it creates new cards.” (in [29], p.14).
Conversation and social interaction help to create
common knowledge out of an experience. This
common knowledge can be rapidly adjusted, clarified,
and reinterpreted.

4. Knowledge Sharing Exercise

In this paper we draw upon the experiences of
conducting a simple knowledge sharing exercise in the
classes we teach and presentations we make. Our
observations of the outcomes of these exercises and
discussions with participants provided a holistic
overview of the knowledge sharing process that we
present here.

The participants (97 in total) were asked to form
small teams of 6 – 9 people8. Further, each team
divided itself into three categories of IT workers:
analysts, messengers and developers. The simplified
job descriptions of each category were explained to the
participants and certain time was given for teams to
self-organize (at least one person was required for each
subteam; however, teams were allowed to freely decide
how many analysts, messengers and developers they
would need). Analyst’s job involved describing
requirements in prose on paper. Messengers carried
notes from analysts to developers and back. They were
not allowed to communicate in any way with other
groups. Developers were responsible for implementing
the specification. Analysts and Developers were
separated in various locations (rooms, hallways etc.) so
that they could not overhear conversations of the other

8 In all cases, except for the University graduate class, subjects

were allowed to choose their own teammates. Graduate students
were assigned randomly, based on their seating arrangement in
the auditorium.

subteams. Subjects were not allowed to swap jobs
during the exercise.

The task was simple enough for the participants to
perform – specify a sample drawing so that the
developers could reproduce it. Examples of such
drawings are shown in Figures 4 and 5. Messages could
only contain prose in English, in usual left-to-right
multi-line format. Teams were given 20 minutes to
accomplish the task. In all experiments flip chart paper
(27x34") was used, except for two teams of graduate
students who used colored Letter format paper.
Assigned drawings were created by the authors of the
paper and contained two or three abstract figures (see
Figures 4 and 5, section on the left-hand side9). In one
experiment the sample drawings (Figure 4d) were more
structured and symmetrical than in others.

Clearly, in the academic environment the
assumption of subjects having a similar background is
met. This was not guaranteed with the teams of
practitioners due to the randomness of team
distribution.

One critical point of view on the exercise might be
that drawing abstract figures does not adequately
reflect the activities undertaken during software
development. Although our exercise is intentionally
simplified, we argue that it does resemble enough of
such activities to be examined. Both software
development and the act of drawing pictures are mainly
about recognizing patterns and creating their
representations – coded or visual. “A program is
constructed from some basic patterns, and the
construction rules can in turn be expressed as other
types of patterns”10 [6] In both activities (drawing and
developing software) patterns need to be recognized,
externalized for sharing and finally applied. Therefore,
the authors believe the described exercise is
appropriate.

5. Study Subjects

Twenty eight computer professionals employed in
Calgary, Alberta area were subjects of this study. In
particular, 50% identified themselves as software
developers, 25% as project managers, and remaining
25% as system administrators. These practitioners
attended a presentation on agile methods given by the
first author at a regular meeting of the Calgary Unix
Users Group (CUUG). Four teams were formed, one of

9 Figures reproduced in this paper were captured with a digital

camera and then traced into black-and-white line-art for
publication purposes.

10 Thus, a special subject called Design Patterns.

which consisted entirely of the employees from the
same company who knew each other well.

In addition, students of three different levels – (1)
College-level Post-Diploma Applied Bachelor’s11, (2)
University B.Sc., and (3) University M.Sc. – of
computer science programs from the University of
Calgary and the Southern Alberta Institute of
Technology (SAIT) were the subjects of this exercise.
All individuals were knowledgeable about
requirements engineering, systems analysis and
programming (no junior students were involved). Two
thirds of the graduate students had prior industrial
experience. SAIT students had 4 teams formed;
University undergraduates – 4 teams, and University
graduates – 2 teams. The total number of subjects
(practitioners and students) was 97 with 14 teams
formed.

6. Common Observations and Discussion

Overall, our observations were consistent across
both industry teams and student teams. Therefore, the
following discussion refers to all types of teams.
Whenever significant differences occur, we emphasize
those individually.

¨ Typical role distribution
Teams opted to the following role distribution: 1
messenger, 2–4 analysts, 3–5 developers. In several
cases, a team would have a lead “developer” in charge
of drawing. We observed only two development teams
(one from industry and one from the undergraduate
class) subdividing the task and having subteams of
developers work on figures simultaneously. The rest
performed “gang development” working on one figure
at a time.

¨ Inability to complete the task on time
Nine teams did not manage to complete the task on
time. In fact, two teams ended up with lots of written
specification but no drawing produced at all. During
the post-exercise discussion, the teams recognized the
fact that analysts spent most of the time analyzing the
drawing and creating the first set of specifications
leaving no time for developers to implement it. This
invites an analogy with the situation in software
industry – where in 2002 roughly 66% of the projects
failed or were challenged (according to the CHAOS
Report [25]). Often no working code is produced even
though lots of comprehensive specification is written
causing a situation known as “analysis-paralysis”.

11 Similar to a B.Tech degree offered by some U.S. polytechnic

institutions and colleges.

¨ Quality of produced result depends on the
complexity of the original

The level of complexity and abstractionism was a
significant factor in the exercise. Most of the complex
abstract curves (see bottom curves of Figure 4a and 4c,
top design in Figure 5a and in the middle of Figure 5c)
were not attempted. Only two teams tried to break the
complicated curves into simpler pieces and
transformations. One team attempted to follow the
abstract curve as a path with the instructions to turn
left, right, do a half-loop, turn 90 degrees and so on.
However, when a more structured design was offered,
the teams managed to produce a drawing very close to
the one required (see Figure 4d, for example). This
observation is supported by the Media Richness Theory
postulate that certain media are better to transmit
information depending upon whether the information is
used in situations of uncertainty and equivocality
([8],[9]). Media are characterized as high or low in
“richness” based on their capacity to facilitate shared
meaning. A rich medium facilitates insight and rapid
understanding. In case of abstract drawings, the
degrees of uncertainty and equivocality were quite high
(based on the comments of the experiment subjects).
As a result, a medium providing higher “richness” was
needed. Media Richness Theory ranks face-to-face
communication as the “richest” medium. Research in
the organization communication suggests that people
express themselves more naturally and less formally
when speaking (relative to writing). This was also
confirmed during the post-experiment informal group
discussions: one participant exclaimed, “We would
have done a better job if we were allowed to converse”.

¨ Time estimates were not negotiated by the teams
None of the teams attempted to negotiate the time
allotted or the scope of the task. Certainly, in an
academic setting the students are not accustomed to
negotiating time given for the assignment. However,
similar observations are made with regard to industrial
teams (and not only during our experiment). As Watts
Humphrey points out, “Most engineers are so focused
on the job that they don’t think about what the manager
is saying. When managers say the delivery date is nine
months, they are making a bid. And you [developers]
buy it without a counter offer. You’d never buy a house
or a car or a boat this way. You’d debate the number”
[14]. Our study shows that practitioners did not even
attempt to “debate the number”. They took on the task
without proper evaluation of its complexity. Several
participants mentioned at the end of the exercise that
they knew it would be impossible to complete the task.

SAIT Team 1: Original SAIT Team 1: Product

(a)

SAIT Team 2: Original SAIT Team 2: Product

(b)

SAIT Team 3: Original SAIT Team 3: Product

(c)

UofC Team 1: Original UofC Team 1: Product

(d)

UofC Team 2: Original UofC Team 2: Product

(e)

UofC Grad Team 3: Original UofC Grad Team 3: Product

(f)

Figure 4. Selected Original Drawings and Results Produced by Student Teams.

Industry Team 1: Original Industry Team 1: Product

(a)

Industry Team 2: Original Industry Team 2: Product

(b)

Industry Team 3: Original Industry Team 3: Product

(c)

Industry Team 4: Original Industry Team 4: Product

(d)

Figure 5. Original Drawings and Results Produced by Industry Teams

¨ Written documentation is not easy to produce
Many participants struggled with specifying
requirements using natural language. Their descriptions
suffered from noise (information irrelevant to the
problem), silence (omission of important aspects of the
problem), and equivocality (several possible
interpretations of the same phrase). Consider a sample
communication log depicted in Figure 6. The original
drawing and the product are shown in Figure 5c. The
first batch of specifications written by analysts suffers
from all three “sins”: noise (“Think Abstract”-“About
What?”-“Never Mind”), silence (no indication of
where the digit 8 starts; numerous clarifications are
needed), and ambiguity (“ski-jump”; “East”). The
written specification simply does not convey enough
information for developers to perform their task.
Another example of equivocality and misinterpretation

can be seen in the specification of team 5d (Figures 7
and 5d). Their indication of the “portrait orientation,
approx 8½ x 11 ratio” was interpreted by the
developers as explicit indication of the dimensions of
the drawing. This resulted in designating a small area
of the given flipchart for drawing. As evident from
additional three logs (Figures 7–9) included in the
paper, requirements specifications written by other
teams suffer from similar flaws12. Analyzing Figure 8,
the phrase “looks like a tree” is clearly ambiguous.
“What kind of tree?” developers ask. “Is it leafy or just
branches?” There are numerous shapes of trees and the
above specification only confuses them. Analysts
struggle with finding the right words. They discard the

12 Reader is invited to attempt drawing the figures based on the

specifications provided. Compare your results with the original
drawings.

tree idea and try another one, which, apparently, is no
better – “squiggly head with a horn”. Developers are
puzzled. They request clarification. However, instead,
they receive the third description – “Woodstock
[character] of Peanuts [cartoon]”. Unsurprisingly, the
result is not what was desired (see the top half of the
Product, Figure 5a).

¨ Written documentation has low communication
bandwidth

The process of sharing knowledge in written language
is time and effort consuming. Something that could
have been easily discussed in a conversation takes
longer to transmit via written documentation. As
cognitive science indicates, the translation of thought to
speech is much faster then the transition of thoughts to

writing [12]. Moreover, this translation is less
cognitively demanding [17]. Our evidence also
suggests that knowledge sharing is more intensive in
the direction from analysts to developers. Generally,
developers are discouraged from communicating to the
customer. There were even three development teams in
our study that have never communicated back to the
analysts (see Figure 9, for example). When asked why,
they believe, the teams failed to produce satisfactory
results, practitioners and students recognized that
written communication was hard and did not allow
timely adjustments of the messages communicated.

¨ Important details are overlooked
Admittedly, analysts tend to overlook the details that
are important to the customer. For example, in our

Analysts Specify: Developers Clarify: Analysts Respond:

Start with making a large
digit 8…

Start where? at top? go clockwise on
upper circle?

Yes

...stop at 40%... of length? Yes

Without lifting your pen start a smaller 8, stop at 20%... start where? at top?

go clockwise on upper circle

Yes

Yes

without lifting your pen go 1.5 in East East? Do you mean right? Yes

make a full teardrop (counter clockwise) (@170°) start where? oriented how?

ski-jump (18’’ inc’s) start where, at top?

with a almost enclosed loop on bottom OK.

 Where do we put this?

Think abstract About what? Never mind

Figure 6. Sample Communication Log13 (Team 5c).

Analysts Specify: Developers Clarify: Analysts Respond:

(portrait orientation, approx 8 1/2 x 11 ratio)

The figure consists of 3 major components:

at bottom, five dashes spanning width of image (approx 1/10 of
the way up from bottom)

One component has been described.
What are the other two (2) components?

top left

zigzag: in approx 10% from the top left draw a line to center of
page (same height), continue back to left, but down approx 10%
of page height

continue: down right, to center (same height)

continue left and down (as above).

What the heck is this?

add to zigzag: at top left corner, short vertical line extending
upward (approx same length as dashes)

?

add to zigzag: right Vertex: short vertical line centered on vertex

middle 2/3 of page:

large figure eight rotated 45° clockwise, drawn as like intersecting
sine waver 90° of phase, so a bit of each wave extends part the
intersecting figure eight.

with each loop of the eight, a circle approx half radius of loop

Figure 7. Sample Communication Log13 (Team 5d).

13 Verbatim, without correction of spelling or grammatical errors.

Analysts Specify: Developers Clarify: Analysts Respond:

Top Picture:

- looks like tree (basic shape)

- continuous line around outside

- ‘Nose’ to left

- Foot shape at bottom

- Squiggly head with horn at top

- Looks like profile

What kind of tree?

fur, leafy (apple tree), or just branches?

- sqigly head on top of rest of picture or
does it describe whole picture?

Top Picture:

- looks like ‘woodstock’
(Peanuts) in profile

- toe to left of picture

- never mind tree

- describes whole

Bottom Picture

- right side of ‘H’ is open at 11:00 in counter clockwize circle

- ‘P’ is offset with bottom line extended through stem like a
kite in appearance

RAN OUT OF TIME…

Figure 8. Sample Communication Log13 (Team 5a).

Analysts Specify: Developers Clarify: Analysts Respond:

In Top Right Corner of sheet

- Chinese character for wood

- Height is half the vertical legth of sheet

- width is half the horizontal length of sheet

- vertical line in character extended

In the bottom left section. Two diagonal intersecting curve from
buttom left to top right. These two intersecting line intersect 3
times. In the middle intersection is surround by two individual
circle

 Additional Info:

In the 2 area enclosed by
these 2 intersecting lines,
there are 1 circle per each
area.

Figure 9. Sample Communication Log13 (Team 4e).

study none of the teams (with the exception of one)
produced the drawing using the correct color. It was
never explicitly stated whether specific colors needed
to be used. Teams were allowed to pick markers of any
color. However, without any clarification or
consultation with the client, teams simply assumed the
color did not matter. Another example when details
were overlooked is in the selection of paper orientation.
Two teams produced the results upside down (e.g.
Figure 4a) and one other team produced the drawing
rotated at 90 degrees clockwise (Figure 5b). These
situations are notoriously common in industry when
analysts or surrogate customers (possibly supervisors,
internal or external consultants etc.) are used for
specifying requirements – they often perceive the needs
of the real customer differently and, as a result,
specifications produced are not aligned with true
customer needs.

¨ Periods of inactivity cost money
While the analysts were busy describing the figures in
natural language, the developers were idle. This, in
fact, was observed not only during the initial stage of

specifying the first set of requirements, but during the
whole exercise. These “intermissions” are usually not
long enough for the developers to engage in other
development activities.

¨ Knowledge of subject domain helps
Without doubt, knowledge of the subject domain helps
in both requirements specification and their
implementation. The teams that could deduce in the
figures specific meanings that were known to both
analysts and developers did very well with
implementing those figures. For example, a Japanese
hieroglyph for a tree was used in one of the drawings
(Figures 4c, 4e, 5b), and a Cyrillic character “? ” was
utilized in Figure 4a. Of course, this requires common
knowledge to be present. If the analyst described a
figure as a Japanese hieroglyph for a tree, then the
developers need to know what it looks like, otherwise
that information will have no value to them. For that
reason, emergent common knowledge as well as insight
in the background knowledge of the receiver of the
shared information plays an important role in effective
communication.

¨ The customer is never consulted
Evidently, the customer was never asked questions
about the original drawing or the task that the teams
were assigned to perform. Although the customer was
present and available at all times, teams proceeded to
act based on initial instructions provided. There
seemed to be no need to interact with the customer.
This is very typical in Tayloristic processes.

7. Conclusions

Since knowledge is the most strategic resource in
today’s world, effective knowledge sharing is
imperative for a software engineering team to succeed.
To achieve that, effective communication, which
involves both content and relationship dimensions, is
required. The pure codified view of knowledge-as-
object cultivates the use of externalized knowledge in
the form of written documentation (predominantly in
Tayloristic teams). Our exercises collectively
demonstrate ineffectiveness of such knowledge sharing
when complex cognitive artifacts are used. We believe
the higher is the level of abstractionism (complexity),
the more is the need for interactive knowledge sharing
via direct verbal communication. These findings are
drawn upon our experiment, the arguments of the
Media Richness Theory and research in Cognitive
Psychology. Face-to-face channels offer the prospect of
richer communication because of the ability to transmit
multiple cues (e.g. physical presence, voice inflection,
and body language). Such direct links are particularly
important when there are high levels of equivocality
(ambiguity) and uncertainty – situations especially
likely to occur in communication of requirements. It is
important to recognize that any communication, formal
or informal, requires common knowledge in order to
adequately interpret messages communicated. In
addition, it is also important to be aware of the
background knowledge of the information recipient to
streamline what needs to be shared and what can be
omitted in the communication.

Finally, one additional argument is a speculative
one, based on the study of customer-developer links in
software development by Keil and Carmel [16]. We
believe the shortened knowledge transfer chain in an
agile process results in high-velocity accomplishments
and the success of the software development project.
In contrast, long chains of intermediaries result in
ineffective communication between customer and
developer, because intermediaries filter and distort
messages (mostly unintentionally) and they may not
have a complete understanding of customer needs.

8. Future Work

There is a great deal of future research that needs to
be conducted on communications and knowledge
sharing in software teams. Although our current
exercise looked in detail at knowledge sharing in
Tayloristic teams, it does not empirically address the
issue of the effectiveness of communication among
agile team members. Additional experiments with
various subjects are planned. We intend to look at how
effectiveness of communication changes in industry
work groups, if analysts were allowed to preview the
work of developers (as was suggested by one of the
participating teams). Also, we will look deeper in the
psychology and team dynamics – a similar exercise can
be performed with established teams (for people who
worked together for some time). Furthermore, we plan
to perform experiments involving knowledge transfer
chains with various numbers of intermediaries.

We hope that our observations will provoke
discussion and future studies on a wider selection of
subjects and would like to invite any interested parties
to take part in the future experiments.

Acknowledgements

The authors would like to acknowledge the great

insights and help of Michael Richter, Marquis Bureau,
Vladimir Melnik, and Kristopher Read. In addition, we
thank all students and practitioners, who took part in
the exercise and provided us with their valuable
feedback. Current research was partially supported by
the National Sciences and Engineering Research
Council of Canada (NSERC) and the Alberta
Informatics Circle of Research Excellence (iCore).

References

[1] Alavi, M., Leidner, D. Knowledge Management

Systems: Issues, Challenges, and Benefits,
Communications of the AIS, 1(7): 2–36, 1999.

[2] Ambler, S. Communication. The Essay. Online:
http://www.agilemodeling.com/essays/communication.
htm Last accessed Feb 14, 2004.

[3] Boland, R., Tenkasi, R. Perspective Making and
Perspective Taking in Communities of Knowing,
Organization Science, 6(4): 350–372, 1995.

[4] Brown, J., Duguid, P. The Social Life of Information.
Harvard Business School Press, Boston, MA, 2000.

[5] Burke, J. Connections. Little Brown & Co, New York,
NY, 1995.

[6] Chang, S. Handbook of Software Engineering and
Knowledge Engineering, Vol. 1. World Scientific, River

Edge, NJ: vi, 2001.
[7] Cockburn, A. Characterizing People as Non-Linear,

First-Order Components in Software Development.
Proc. 4th International Multi-Conference on Systems,
Cybernetics, and Informatics, Orlando, FL, Vol.1.
International Institute of Informatics and Systemics,
Skokie, IL, 2000.

[8] Daft, R., Lengel, R. Organizational Information
Requirements, Media Richness and Structural Design.
Management Science, 32(5):554–571, 1986.

[9] Daft, R., Lengel, R., Trevino, L. Message Equivocality,
Media Selection, and Manager Performance:
Implications for Information Systems. MIS Quarterly,
11(3): 355-366, 1987.

[10] Doherty-Sneddon, G., Anderson, A., O'Malley, C.,
Langton, S., Garrod, S., Bruce, V. Face-to-face and
Video Mediated Communication: a Comparison of
Dialogue Structure and Task Performance. Journal of
Experimental Psychology (Applied), 3(2):105-125,
1997.

[11] Fowler, M. The New Methodology. ThoughtWorks,
Inc., Chicago, IL, 2000. Online:
http://www.thoughtworks.com/library/newMethodology
.pdf. Last accessed Feb 1, 2004.

[12] Gould, J. An Experimental Study of Writing, Dictating,
and Speaking. In Requin, J. (ed.), Attention and
Performance VII. Lawrence Earlbaum, Hillsdale, NJ,
1978.

[13] Hansen, M., Haas, M. Competing for Attention in
Knowledge Markets: Electronic Document
Dissemination in a Management Consulting Company,
Administrative Science Quarterly, 46(1): 1–28, 2001.

[14] Humphrey, W. The Watts New? Collection. Carnegie
Mellon Software Engineering Institute, Pittsburgh, PA,
1998, p.13.

[15] Jeffries, R. Essential XP: Documentation. Online:
http://www.xprogramming.com/xpmag/expDocumentati
onInXP.htm . Last accessed January 28, 2004.

[16] Keil, M., Carmel, E. Customer-Developer Links in
Software Development. Communications of the ACM,
38 (5): 33–44, 1995.

[17] Kroll, B. Cognitive Egocentrism and the Problem of
Audience Awareness in Written Discourse. Research in
the Teaching of English, 12: 269–281, 1978.

[18] Lethbridge, T., Singer, J., Forward, A. How Software
Engineers Use Documentation: The State of the
Practice, IEEE Software, 20(6): 35–39, 2003.

[19] Nidumolu, S., Subramani, M., Aldrich, A. Situated
Learning and the Situated Knowledge Web, Journal of
Management Information Systems, 18(1): 115–150,
2001.

[20] Nonaka, I., Konno, N. The Concept of “Ba”: Building a
foundation for Knowledge Creation, California
Management Review, 40(3): 40–55, 1998.

[21] O'Conaill, B., Whittaker, S., Wilbur, S. Conversations
Over Videoconferences: an Evaluation of the Spoken
Aspects of Video Mediated Interaction. Human
Computer Interaction, 8(4): 389-428, 1993.

[22] Paulk, M., Curtis, B., Chrissis, M., Weber, C. Capability
Maturity Model, Version 1.1. IEEE Software, 10(4):
18–27, 1993.

[23] Szulanski, G. The Process of Knowledge Transfer: A
Diachronic Analysis of Stickiness, Organizational
Behavior and Human Decision Processes, 82(1): 9–27,
2000.

[24] Taylor, F. Principles of Scientific Management. Norton,
New York, NY, 1967.

[25] The CHAOS Chronicles. The Standish Group
International, West Yarmouth, MA. Online
http://www1.standishgroup.com//chaos/intro2.php.
Last accessed January 20, 2004.

[26] Watzlawick, P., Beavin, J., Jackson, D. Pragmatics of
Group Communication: A Study of Interactional
Patterns, Pathologies, and Paradoxes. Norton, New
York, NY, 1967.

[27] Weinberg, J. The Psychology of Computer
Programming, Dorset House, New York, NY, 1998.

[28] Zack, M. Managing Codified knowledge, Sloan
Management Review, 40(4): 45–58, 1999.

[29] Zeldin, T. Conversation. Harvill Press, London, UK,
1998.

