
Agile Methods: Crossing the Chasm

Frank Maurer
Department of Computer Science,

University of Calgary
Calgary, Alberta, Canada
maurer@cpsc.ucalgary.ca

Grigori Melnik
Department of Computer Science,

 University of Calgary
Calgary, Alberta, Canada
melnik@cpsc.ucalgary.ca

Abstract

An armada of emerging agile methods of software

development (with eXtreme Programming and Scrum
being the most broadly used) is both gaining
popularity and generating lots of controversy. This
high-level tutorial gives an overview of agile methods
and provides background to understand how agile
teams are addressing modern software engineering
challenges. Analysis of empirical evidence is used to
discuss strengths and limitations of agile methods in
various contexts. The participants are introduced to
the innovation diffusion models and environments, and
discuss what is needed for agile methods to cross the
chasm and move into the mainstream of software
development.

1. Tayloristic foundations of software
engineering

The principles of software engineering formulated
by the Waterfall methodology and its variants are
strongly rooted in the Tayloristic paradigm. Taylorism,
or “scientific management” – a movement in
management theory introduced at the turn of the 20th
century – represented ambitious ideals: increased
productivity through the application of quantitative
analysis, scientific method and appropriate procedural
modifications, and thereby reduced the cost of
production while being able to increase the wage paid
to the workers. Applied to software engineering,
Taylorism promotes a strong conformance to a plan
through upfront requirements gathering and upfront
systems design. It also encourages strict division of
labor and the use of role-based teams (of business
analysts, system architects, programmers, testers etc.)
These factors plus the reliance on repeatability of the

process are the main reason Tayloristic methods are
failing in software development [3].

2. Agile movement

A more humanistic and collaborative approach to
software development is “agilism”, which promotes
“individuals and interactions over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation, and
responding to change over following a plan” [1]. It is
recognized, that while there is value in the items on the
right, the items on the left are valued more. Essentially,
all agile methods encourage continual realignment of
development goals with the needs and expectations of
the customer.

3. Main agile practices

An overview of the main practices of individual
methods (including eXtreme Programming [2], Scrum
[3], and Lean Programming [5]) is given. Many of the
practices are not fundamentally new (for example,
software inspections were introduced in 1970s; rapid
prototyping – in 1980s). A conceptual foundation of
how these practices meld together and enhance these
“older” practices is discussed. Some empirical
evidence is analyzed and the application of agile
methods is elaborated by discussing their strengths and
limitations in the context of existing research and
industrial cases.

Among other topics, the tutorial addresses the
issues of knowledge sharing (in agile and Tayloristic
teams), project management, quality assurance, and
social aspects and implications of agile methods. The
facilitators focus on value and people to help software
development teams achieve higher velocity and deliver
superior value to the customers.

4. Crossing the chasm

Several innovation diffusion models and
environments that promote innovation and lead to
sustainable leadership are presented. These include
Rogers’ Technology Adoption Lifecycle [6], which
defines five categories of adopters of innovation based
on the normal distribution: innovators, early adopters,
early majority, late majority and laggards. Moore goes
further and argues for the existence of deep and
dividing gap (chasm) that lies between early market
success with visionaries and the mainstream
acceptance by more pragmatic adopters [4]. To achieve
market success with an innovation, the originator must
find some way of leaping over this chasm (Figure 1) so
that the process becomes mainstream. In facilitators’
opinion, agile methods are at the edge of this chasm
from early adopters to the mainstream of software
development. The tutorial participants will be engaged
in a discussion of what contemporary actions are
needed to cross this chasm and to supersede the
outdated relic of Taylorism in software engineering.

Figure 1. Diffusion of Innovation.

5. Topical outline

The tentative roadmap includes but is not limited to
the following topics:

I. Agile methods overview:
I.1. Motivation for agile methods: the current state

of the industry;
I.2. Introduction to agile methods – defining

agility: chaordic perspective, collaborative
values and practices, barely sufficient
methodology;

I.3. Agile methods vs. Tayloristic methods;
I.4. Why agile methods may work;
I.5. Sweet spots (for agile and Tayloristic);

II. The big picture: crossing the chasm – getting to the
mainstream.

III. A survey of agile methods – practices/elements
explained.

IV. Knowledge sharing (agile vs. Tayloristic):
IV.1. Implications of Media Richness Theory;

IV.2. The role of externalised knowledge
(documentation, experience factory etc.);

IV.3. Continuous knowledge sharing.
V. Agile project management:

V.1. Business contracts;
V.2. Team formation;
V.3. Agile planning and estimation;
V.4. Agile project tracking and coordination;
V.5. Risk management.

VI. Quality assurance:
VI.1. Quality-as-value-to-some-person perspective;
VI.2. The role of testing;
VI.3. Traditional QA vs. agile QA;
VI.4. Executable acceptance testing;
VI.5. Test-driven development;
VI.6. Dealing with para-functional requirements.

VII. Initial empirical evidence.
VIII. Conclusions.

7. Summary

Since all problems are different, all solutions and
processes are situational and context-based. They
depend on the context of the project and on the
environment. Agile methods help to succeed in
unpredictable environments, which are the reality
today. They do it by encouraging continual
realignment of development goals with the needs and
expectations of the customer. Agile methods
concentrate on significantly improving
communications and interactions among all
stakeholders, focus on “clean code that works”,
transparency, and relentless testing to achieve higher
quality. Yet agile methods are not a silver bullet and
agile practices only work in context.

10. References

[1] Beck, K et al. Manifesto for Agile Software

Development, 2001. Online:
http://www.agilemanifesto.org

[2] Beck, K. Extreme Programming Explained – Embrace
Change, 2/e, Addison Wesley, Boston, MA, 2005.

[3] Beedle, M., Schwaber, S. Agile Software Development
with SCRUM, Prentice Hall, NJ, 2001.

[4] Moore, G. Crossing the chasm. Harper Business, New
York, NY, 1995.

[5] Poppendieck, M., Poppendieck, T. Lean Software
Development: An Agile Toolkit, Addison-Wesley,
Boston, MA, 2003.

[6] Rogers, E. Diffusion of innovations, 3/e. The Free Press,
New York, NY, 1983.

