

Process Support for Distributed Extreme
Programming Teams

Frank Maurer
University of Calgary

Department of Computer Science
Calgary, Alberta, Canada, T2N 1N4

+1 (403) 220 3531
maurer@cpsc.ucalgary.ca

Sebastien Martel
University of Calgary

Department of Computer Science
Calgary, Alberta, Canada, T2N 1N4

smartel@cpsc.ucalgary.ca

ABSTRACT

Extreme programming (XP) is arguably improving the productivity
of small, co-located software development teams. In this paper, we
described an approach that overcomes the XP constraint of co-
location by introducing a process-support environment (called
MILOS) that helps software development teams to maintain XP
practices in a distributed setting. MILOS supports project
coordination, information routing, team communication, and pair
programming.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – programming
teams.

General Terms
Management

Keywords
virtual software development teams, distributed extreme
programming, process support

1. INTRODUCTION
Extreme programming (XP) [3, 4, 9] is one of the most innovative
software development approaches of the last years. The XP
movement seems to be driven by disappointment with current
software development practice: low productivity and low user
satisfaction are seen as commonplace. Software development teams

are often delivering huge amounts of documentation (for example
requirements specifications, system architecture descriptions,
software design documents, test plans) instead of delivering
useful functionality to the client. Sometimes, projects are
cancelled before the system is deployed – wasting all the effort
that was already spent on analysis and design.
XP, on the other hand, focuses development effort on activities
that deliver high-quality functionality to the end user as fast as
possible. Deliverables usually are restricted to high-level use
cases (user stories), source code and test code. XP has in its
original form proposed by Beck [3] two severe limitations. First,
it does not scale well to larger teams. Second, it requires the XP
team to be collocated. Overcoming the collocation requirement
while preserving the high productivity and quality of XP
processes is one goal of our approach and the focus of this paper.
In Section 2 we give an overview on our MILOS approach.
Section 3 and 4 provides a detailed usage scenario while section 5
describes the state of implementation. We conclude with a
summary and a look on future work.

2. THE MILOS APPROACH
The overall goal of the MILOS approach is to support process
execution and organizational learning for virtual software
development teams. In this paper, we focus on how MILOS
supports Distributed XP (DXP). [8] describes the knowledge
management aspect in more detail.
The support provided by MILOS should be minimally intrusive to
reduce overhead: MILOS stands for “Minimally Invasive Long-
term Organizational Support”. The MILOS approach can be
applied for open source projects as well as for commercial teams
that are distributed over the world. It was adapted to support
Distributed XP.
We now describe requirements that were underlying the
development of MILOS. Then we explain the overall structure of
the approach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright 2002 Frank Maurer & Sebastien Martel.

2.1 Requirements on Tool Support for Virtual
Teams

Using XP and open source processes as a baseline, the work
process of virtual software teams can be improved in several ways.
Project coordination: XP teams are usually much more closely
coordinated than open source projects. Hence, project coordination
support is strongly required for DXP. This should allow the team
to assign tasks to developers, set deadlines and get an overview on
the current state of the project. Team members on the other hand
should be able to access their to-do lists and retrieve relevant
information for performing their tasks easily.
Synchronous communication: XP replaces documentation by
synchronous, face-to-face communication. Face-to-face
communication is not feasible in a distributed team and needs to be
replaced by technical means. Besides using e-mail for
communication, synchronous communication like audio and video
calls or text chat may be helpful. If two developers want to do pair
programming, application sharing is needed.
Active notifications and information routing: Instead of merely
making information available for pull access, it would be useful
push to important information to the users as soon as it becomes
accessible. This may help to overcome the missing informal
communication that happens in coffee breaks & lunches or by
simply overhearing conversations in the pair programming area of
an XP project. This push approach should include notifications
when important events occur in a project. For example, a manager
needs to be notified when a task gets delayed or a developer needs
to be notified when an update of another component becomes
available that she is using. The change notification mechanism of
MILOS is discussed in [7].
Integrate process execution with knowledge management: In
virtual teams, members frequently change. Hence, there is a high
demand on bringing new members up to speed on their tasks and in
preserving good sources of knowledge for the organization. As
software development often has to struggle with fast changing
technology, keeping the contents of an experience base up to date
is a demanding task and needs to be integrated as much as possible
with the everyday processes of executing processes. While XP
relies primarily on face-to-face communication for knowledge
exchange, the MILOS approach to DXP includes means for
building a process centered experience base for the team.
MILOS provides overviews on the current state of all tasks of a
project as well as project management queries to find late tasks.
MILOS also allows accessing the information produced as the
output of a task easily.
Team members are able to access the project plans and the
information related to each task using a standard Web browser.

3. USING MILOS DXP FOR DISTRIBUTED
EXTREME PROGRAMMING
The following scenario illustrates the infrastructure provided by the
MILOS framework to support distributed extreme programming.

Team members access the Internet with a Web browser and
connect to the MILOS server. First, they login to the MILOS
system to access their workspace. From their workspace they may
retrieve the list of current projects, user stories, currently
available tasks, task estimation, and pair programming facilities.
Pair programming is supported via NetMeeting. We now
illustrate MILOS using an example taken from [3].

3.1 Creating User Stories
After the creation of an initial project and the assignment of a
project manager to it, the customer is ready to enter story cards
into the MILOS system (see Figure 1).

The top part of the main screen displays a menu that allows
accessing all components of MILOS (Workflow Engine,
Resource Pool, Process Model, etc). Below that a menu is
displayed that allows for manipulating the selected component
(here, is allows to access the workflow execution support
component). The left side shows the hierarchical task
decomposition of all projects. Selecting a task in the task
decomposition will display detailed task information on the right
side. The programmers can then contact the customer, either
through the MILOS framework or by conventional means, and
discuss the story with them if need be. They can revise the
description of the user story – creating a new version of the
existing card. In addition, they can then add notes to the story
card pertaining to implementation details and split up the story
into several smaller stories if the scope is too large. They would
then proceed to decompose the story into specific programming
task that will be needed to satisfy the next build. The workflow
engine of MILOS handles the creation and changes of tasks.

3.2 Task Creation
For each user story, the MILOS system automatically creates a
top-level process “Design and implement user story <story
number>”. The input of this process is the newly created user
story. Then the programmer can decompose the user story into
smaller and more concrete tasks. A possible decomposition of the
above user story could have two separate sub-tasks (see Figure 2).

Figure 1. Story Card

Given the user story, the programmer may create a sub-task called
“create m/frame” and another one called “create RM boundary”.

After having decomposed user stories into concrete programming
task, the programmer may describe the task in more detail using the
workflow engine user interface. Tasks are associated with specific
projects and can be assigned to various team members. For each
task, the manager enters planned start and end dates. In addition,
the users are able to define the inputs and outputs of processes. The
story card automatically becomes an input of all subtasks.
Furthermore, the users are able to specify the information flow
between tasks by defining the output of one process to become the
input of another (see below).

 Specifying the information flow allows the MILOS system to
provide access to input information that was created as the output
of another task: the output of a task, e.g. a source code file, is
transferred to the MILOS server and stored in a version
management system. From there, any successor task may access the
current version as well as older versions. As this is done via HTTP
requests, tunneling through a firewall usually is not a problem.
The programmer is able to estimate the effort and the forecasted
end dates (see Figure 4). The effort simply consists of the total
number of workdays needed to complete the task (measured in
ideal engineering time). To set the forecasted end date, the
developer takes the required effort as well as his overall workload
into account.
The team lead can keep a close eye on the progress of each task by
watching the “percentage complete” values and steer the team in
the correct direction if the requirement for the next build will not

be met. After having signed-up for some task, a programmer can
pair with another programmer through the MILOS framework.

4. PAIR PROGRAMMING
Using Microsoft NetMeeting, MILOS provides an audio and
video link between two developers and the ability to share the
desktop between them. These capabilities are used to support pair
programming in a distributed setting. The MILOS system keeps
track of who is logged on to the system and provides the
possibility to contact the responsible team member for a task or
any other team member that is currently logged in. Figure 5 is a
screenshot of shared desktop using NetMeeting. The screen
shows the MILOS environment in the back, NetMeeting on the
top right and a VisualAge for Java window at the top left. The
programmer (sitting at a remote machine) just enters a method
definition. The local team member inspects the code and can
comment on it using audio/video conferencing. The local
programmer may also take over and edit the method from his
machine.

The screen might seem cluttered at first. However, we tried to
show as much features as possible. Normally a programmer
would only look at the other desktop, see the top left corner, and
switch between screens when needing to look up a function
definition or when video conferencing. After the pair
programming team has completed a task, they can update the task
status and mark it as completed. They can also upload any output

Figure 5. Pair programming with NetMeeting

Figure 2. Task Decomposition

Figure 3. Defining the inputs of a task

Figure 4. Estimating effort needed

files to the MILOS server that, in turn, would route them to other
team members who would need them.

4.1 Initial Results and Lessons Learned
We were using MILOS for our own development processes over
the last time. Although we do not yet have statistical valid data, we
can provide some initial results. Even though we did not
quantitatively measure the gain in productivity offered by
distributed extreme programming at this time, we can provide the
following insight as to its advantage.

• Overall, we were able to apply XP in a distributed
setting.

• Having the computing power of two machines while
having the impression of only using one is sometime
useful. Since NetMeeting is only bandwidth intensive
and does not use much CPU time the person receiving
the shared desktop can use their CPU to regenerate code
or compiling a new build.

However, we also ran into some problems attributed to various
hardware and software technologies.

• Due to network latency, it is better for the programmer
that is typing to share their desktop. This even holds for
high-bandwidth connections. When switching position,
the other programmer can share their desktop. This
allows smoother programming since there is no delay for
the programmer who is actually typing.

• When pair programming with different screen size and
resolution the pair should find a resolution that is
comfortable for both developers. If the two resolutions
differ by a too great amount, one of the programmers will
need to use the scrollbars extensively.

• Using video conferencing AND audio on a dial up
modem (56K) is not practical. The team should use
broadband access or only audio conferencing with team
members that only have access to dial-up Internet.

• The video link is often unnecessary if the pair
programming together is already acquainted.

• Color, fonts and sound scheme needs adjustment in order
to be properly viewed when sharing desktops. For
example, unless having access to a high bandwidth
connection enabling “sharing in true color mode” is not
practical.

• There is no need to acquire video equipment able to
capture 40 frames per second in 600x800 resolution
when the link to your teammates can only sustain a
bandwidth of 40KB/sec.

• NetMeeting is restricted to 1 to 1 audio/video
communication. Using tools like the Microsoft
Conference Server would provide the necessary support
for multiple client videoconferencing.

5. STATE OF IMPLEMENTATION
MILOS is Web-based and accessible as a web service on the
MILOS web site1 from any machine connected to the Internet
using a standard Web browser. MILOS DXP uses the EJB-based
version as its basis and adds its extensions.
All the core functionality described in the paper is implemented
so far that we were using MILOS for our own development
processes. Nevertheless, the system still has some bugs and we
are currently (April 2002) stabilizing the implementation as well
as improving its usability by using feedback from our
development team.
MILOS and MILOS DXP are open source software that can be
downloaded from the MILOS Web site.

6. RELATED WORK
Related work comes mainly from two areas: Software Process
Support and (Distributed) Extreme Programming. As we already
discussed XP and DXP, we focus here on related work in process
support.
Most process improvement approaches, e.g. capability maturity
model, SPICE, QIP, require describing the development
processes more or less formally. Within the framework of
software process modeling, several languages were developed that
allow for describing software development activities formally [1,
6, 11]
Software process models represent knowledge about software
development. They describe activities to be carried out in
software development as well as the products to be created and
the resources & tools used. These models can be a basis for
continuous organizational learning as well as the actual basis for
the coordination and the management of the software engineering
activities.
Software process modeling and enactment is one of the main
areas in software engineering research. Several frameworks have
been developed (e.g. procedural [11], rule-based [10, 12], Petri
net based [2], object-oriented [5]).
Process modeling and enactment approaches usually are used to
rigorously define heavy-weight processes. They are weak
concerning light-weight approaches like XP and do not directly
support key XP practices. They also are not good at providing a
good communication and collaboration infrastructure for virtual
teams.

7. CONCLUSION AND FUTURE WORK
In this paper, we described our approach for supporting virtual
software teams in distributed extreme programming. The MILOS
system is an Internet-based process-centered process support
environment that supports communication, collaboration and
coordination of DXP teams.
With MILOS DXP, we are aiming at an improved efficiency of
virtual teams. Whereas undoubtedly the introduction of new tools

1 http://sern.ucalgary.ca/~milos

at first results in an increased workload, we argue that, in the long
run, the proposed approach will improve productivity of virtual
software development teams (although it will most probably not
reach the same productivity levels as collocated teams).
Our future work will focus on four aspects:

• Stabilizing the MILOS implementation and usability
improvements

• Formal evaluation of the approach

• Extreme federations

• Knowledge management for DXP
Stabilizing the MILOS implementation and usability
improvements: After porting MILOS to WebSphere Server 4.0, we
encountered some bugs and instabilities. As we were using MILOS
for our own process support, we were experiencing some sub-
optimal user interaction. We are planning to fix these this summer
(Summer 2002). MILOS is offered as a Web-based service to the
software development community. We expect to get valuable
feedback from MILOS users to determine future improvements.
Formal evaluation of the approach: We would like to set up
controlled experiments to evaluate the feasibility and the benefits
& problems of distributed extreme programming. In addition, we
would like to compare the productivity and quality of XP teams
and DXP teams to determine the influence of collocation on
productivity.
Extreme federations: One of the problems of XP is scalability
concerning team size: XP works for small teams of five to ten
people but there is some doubt that it works with even a mid-sized
team of twenty people. One way to scale it up could be to have
loosely coupled federations of XP teams that work together on a
single project. This poses several interesting research questions:

• How can we preserve XP productivity and quality in multi-
team environment?

• Do we need additional documentation and, if so, how
much more? And what needs to be documented to enable a
smooth work of the Extreme Federation.

• Do Extreme Federations needs a component architecture to
work?

• How fixed need the interfaces between components of
individual XP teams be? How much flexibility and/or
adaptability of requirements do Extreme Federations loose
compared with “normal” XP teams?

Knowledge management for DXP: XP is very weak in conserving
the knowledge gathered by the development team. It’s focus on
verbal communication for knowledge exchange makes it difficult
to preserve information in a storable format. As a result of keeping
development knowledge primarily in the heads to the people, XP
will run into trouble when the members of the development team
change frequently or when the development on the system stops for
some time and is then resumed. Hence, an approach is needed that
integrates knowledge management and DXP.

8. ACKNOWLEDGEMENTS
The work on MILOS DXP was supported by the NSERC
(National Science and Engineering Research Council of Canada),
ASERC (Alberta Software Engineering Research Consortium),
The University Of Calgary, and Nortel Networks with several
research grants.
We specifically would like to thank Sandra Barlot, Subhendu
Chattopadhyay, Darryl Gates, Christine Jia Li, Raul Nemes,
Philip Nour, and Jay Wallace for implementing and testing the
MILOS DXP system.

9. REFERENCES
[1] Armitage, J., and Kellner, M. (1994). A conceptual schema
for process definitions and models. In D. E. Perry, editor, Proc. of
the Third Int. Conf. on the Software Process, IEEE Computer
Society Press.
[2] Bandinelli, S., Fuggetta, A., and Grigolli, S. (1993). Process
Modeling-in-the-large with SLANG. In IEEE Proceedings of the
2nd Int. Conf. on the Software Process, Berlin (Germany).
[3] Beck, K.: Extreme Programming Explained: Embrace
Change, Addison-Wesley Pub Co, 1999, ISBN: 0201616416
[4] Kent Beck, Martin Fowler: Planning Extreme Programming,
Addison-Wesley Pub Co, 2000, ISBN: 0201710919
[5] Conradi, R., Hagaseth, M., Larsen, J. O., Nguyen, M., Munch,
B., Westby, P., and Zhu, W. (1994). Object-Oriented and
Cooperative Process Modeling in EPOS. In PROMOTER book:
Anthony Finkelstein, Jeff Kramer and Bashar A. Nuseibeh (Eds.):
Software Process Modeling and Technology, 1994. Advanced
Software Development Series, Research Studies Press Ltd. (John
Wiley).
[6] Curtis, B., Kellner, M., and Over, J. (1992). Process
modeling. Comm. of the ACM, 35(9): 75–90.
[7] Dellen, B.: Change Impact Analysis Support for Software
Development Processes, Ph.D. thesis, University of
Kaisersalutern, Germany, 2000
[8] Holz, H., Könnecker, A., Maurer, F.: Task-Specific
Knowledge Management in a Process-Centred SEE, Proceedings
of the Workshop on Learning Software Organizations LSO-2001,
Springer, 2001.
[9] Jeffries, R., Anderson, A., Hendrickson, C.: Extreme
Programming Installed, Addison-Wesley Pub Co, 2000, ISBN:
0201708426
[10] Kaiser, G. E., Feiler, P. H., and Popovich, S. S. (1988).
Intelligent Assistance for Software Development and
Maintenance, IEEE Software.
[11] Osterweil, L. (1987). Software Processes are Software Too.
In: Proc. of the Ninth Int. Conf. of Software Engineering,
Monterey CA, pp. 2-13.
[12] Peuschel, P., Schäfer, W., and Wolf, S. (1992). A
Knowledge-based Software Development Environment
Supporting Cooperative Work. In: Int. Journal on Software
Engineering and Knowledge Engineering, 2(1).

