
Integration of Agile Planner into IBM/Rational

Jazz Development Environment

Kai Nehring

Acknowledgements

I'd like to thank several people who supported me during my work. First, Prof.
Dr. Schm•ucker-Schend from University of Applied Sciences in Mannheim and
Prof. Dr. Maurer from the University of Calgary for supervising my work and
allow me to carry out my Master-Thesis in Calgary as well as Prof. Dr. Knauber
from University of Applied Sciences in Mannheim for being my co-supervisor.

Last, but not least, the members of the ASE workgroup and Brady Lill for
their support and patience.

1

Declaration

Ich versichere, dass ich diese Master-Thesis selbstst•andig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe. Diese Arbeit hat in dieser
oder •ahnlicher Form keiner anderen Pr•ufungsbeh•orde vorgelegen.

Calgary, 28. August 2008 ______________________________

2

Contents

1 Introduction 1
1.1 About this Thesis . 1
1.2 Motivation and Goals . 1

1.2.1 Planning environment . 1
1.2.2 Approach . 2
1.2.3 Realization and future aspects 2
1.2.4 Future aspects . 2

2 Related Work 3
2.1 Background . 3

2.1.1 Story Card Metaphor . 3
2.1.2 Distributed Planning . 3
2.1.3 Synchronous Planning . 5

2.2 Progress Tracking and Reports 5
2.2.1 Progress Tracking . 5
2.2.2 Reports . 6

2.3 Agile Planner . 6
2.3.1 Planning history . 8
2.3.2 Reporting . 8
2.3.3 Support for di�erent input devices 8

2.4 Jazz . 8
2.4.1 Work Items . 8
2.4.2 Reporting . 8

2.5 Adding support for reporting tools to Agile Planner 9
2.5.1 Advantages of Agile Planner - Jazz integration 10

3 Approach 11
3.1 Synchronous and asynchronous synchronization 11

3.1.1 Synchronous synchronization 11
3.1.2 Asynchronous synchronization 12

3.2 Functional Requirements . 14
3.2.1 Story Card added on Agile Planner / Work Item added

on Jazz . 14
3.2.2 Story Card deleted on Agile Planner 14

3

3.2.3 Story Card altered on Agile Planner / Work Item altered
on Jazz . 14

3.2.4 Work Item and the associated Story Card are simultane-
ously altered . 14

3.2.5 Iteration added on Agile Planner 15
3.2.6 Story Card added to or removed from an Iteration on

Agile Planner . 15
3.2.7 Work Item added to or removed from an Iteration on Jazz 15

3.3 Non-Functional Requirements . 15
3.3.1 Testability . 15

3.4 Accessing Work Items . 15
3.4.1 Server plug-in . 15
3.4.2 Client . 16
3.4.3 Conclusion . 16

3.5 Adapter . 16
3.5.1 Adapter . 18
3.5.2 Converter . 19
3.5.3 Error Facade . 19
3.5.4 Session Manager . 21
3.5.5 Component Manager . 21
3.5.6 Entity{Mapping . 21

3.6 Prototypes . 21
3.6.1 Session Management . 25
3.6.2 Accessing Work Items . 25
3.6.3 Converting Data . 25

4 Realization 26
4.1 Prototypes . 26

4.1.1 Create and save a Work Item 26
4.1.2 Simplify the API by adding an Abstraction Layer 27

4.2 Building an Abstraction Layer 27
4.2.1 The Business Delegate Design Pattern 28
4.2.2 Abstraction layer code . 28
4.2.3 Service Lookup . 29
4.2.4 Query Builder . 29
4.2.5 Dealing with copies of work items 31
4.2.6 Component Manager . 31
4.2.7 Resulting architecture of the abstraction layer 31

4.3 Abstraction Level . 32
4.3.1 Di�erences from the Business Delegate design pattern . . 32

4.4 Composition of the di�erent components 33
4.4.1 Problems caused by indirect references 33
4.4.2 Reusability . 33
4.4.3 Resulting composition . 34

4.5 The Adapter Component . 34
4.5.1 Converter . 34

4

4.5.2 The adapter class . 37
4.6 Agile Planner's Synchronization Facility 37

4.6.1 Synchronizing Iterations 37
4.6.2 Update Story Cards on Jazz 39
4.6.3 Add story cards which have been newly created on Jazz

to Agile Planner . 39
4.7 Architectural overview . 39

4.7.1 Logical View . 39
4.7.2 Development View . 39
4.7.3 Process View . 42
4.7.4 Physical View . 43
4.7.5 Use Case View . 43

4.8 Integration into Agile Planner . 46

5 Problems and solutions 47
5.1 Use cases . 47

5.1.1 Work Item and the associated Story Card are simultane-
ously altered . 47

5.1.2 Jazz can not delete items 47
5.1.3 Support to merge changes 48

5.2 Jazz . 48
5.2.1 Documentation . 48
5.2.2 Functionality . 48
5.2.3 Usability . 48
5.2.4 Jazz updates . 49

5.3 Agile Planner . 49

6 Evaluation 50
6.1 Improved accuracy . 50

6.1.1 Time tracking . 50
6.1.2 Interview . 50

6.2 Consistent user interface and behaviour 51
6.2.1 Evaluate the time spent on daily tasks 51

6.3 Migration to Jazz . 51
6.3.1 Using Jazz with 3rd party tools 52
6.3.2 Role based workow . 52

7 Prospects 53
7.1 Enhancements . 53

7.1.1 Preserve status changes from Jazz 53
7.1.2 Work Item Types . 53
7.1.3 Reason for item resolution 53
7.1.4 Enhanced Iteration Support 54

7.2 New Features . 54
7.2.1 Con�gurable synchronization 54
7.2.2 Work Item (Change) History 54

5

7.2.3 Categories . 55
7.2.4 Milestones . 55
7.2.5 Advanced GUI-support 55

8 Conclusion 56

A Use Case Description 60
A.1 Story Card added on Agile Planner 61
A.2 Work Item added on Jazz . 61
A.3 Story Card deleted on Agile Planner 61
A.4 Story Card altered on Agile Planner 62
A.5 Work Item altered on Jazz . 62
A.6 Work Item and the associated Story Card are simultaneously altered 62
A.7 Iteration added on Agile Planner 63
A.8 Story Card added to Iteration on Agile Planner 63
A.9 Work Item added to Iteration on Jazz 63
A.10 Work Item removed from Iteration on Jazz 64
A.11 Story Card removed from Iteration on Agile Planner 64

B Acronyms 65

6

List of Tables

2.1 Feature Overview: Agile Planner and Jazz 10

3.1 Agile Planner Attributes . 22
3.2 Jazz Attributes . 23
3.3 Attribute{Mapping . 24

7

List of Figures

2.1 Story Cards in an Agile Development 4
2.2 Story Cards and Iteration in Agile Planner 7

3.1 Synchronous Planning . 12
3.2 Asynchronous Synchronization 13
3.3 Jazz Plug-in overview . 17
3.4 Jazz Services . 18
3.5 Static View of the adapter. [Key: UML Component Diagram] . . 19
3.6 Example of an error facade [Sie]. 20

4.1 Example of the Business Delegate Design Pattern. 29
4.2 Overview of the resulting abstraction layer. 32
4.3 Overview of the resulting adapter. [Key: UML Component dia-

gram] . 35
4.4 Conversion: Story Card to Work Item. [Key: UML Sequence

diagram] . 36
4.5 Story Cards which have been created on Jazz. [Key: UML Se-

quence diagram] . 38
4.6 Overview of the synchronization process. [Key: UML Activity

diagram] . 40
4.7 Logical Overview . 41
4.8 Development View . 42
4.9 Process Overview . 44
4.10 Physical View . 44
4.11 Use Cases of the Adapter . 45

8.1 Report: number of tasks assigned to developers. 57
8.2 Report: number of open tasks vs. closed tasks. 58
8.3 Report: number of distinct tasks di�erentiated by their type. . . 59

8

Listings

4.1 Code to create a work item . 26
4.2 Code to save a work item . 27
4.3 Query Builder Interface . 30
4.4 Query Builder: . 30

9

Abstract

More and more development teams are working in a distributed manner.
Even though such teams are distributed, they still must work on the same
project. Distribution makes project planning very di�cult because it is neither
economic nor realistic to bring all of the teams together for short, but necessary
meetings.

Every project is based on decisions that inuence the progression of the
project directly. These decisions are based on the information that is available
to a developer or project manager. Reporting tools are therefore very important
to keep track of the project's status.

Virtually no tool supports distributed synchronous planning and reporting
capabilities that are necessary for e�ective project planning in distributed teams.
This thesis discusses a solution to this problem. That is, how to create a toolset
which allows distributed synchronous planning and the ability to create reports.

The focus of this thesis is set on the integration of Agile Planner with IB-
M/Rational Jazz development environment.

Chapter 1

Introduction

1.1 About this Thesis

Project management is important in software development projects in order to
prevent them from losing their focus. Project management is comprised of two
important tasks: project planning and progress tracking and reporting. This
thesis sets its focus on progress tracking and reporting.

1.2 Motivation and Goals

Progress tracking and reporting is a very important task in project management.
At the same time, more and more projects are carried out in a distributed
manner. The demand for software tools which cover both, distributed planning
and progress tracking and reporting is high. The goals of this thesis are

1. To create an environment which o�ers distributed synchronous planning
and the ability to create reports

2. To discuss an approach which allows Agile Planner to work with Jazz

3. Realization of the approach to allow Agile Planner to work with Jazz

4. Future aspects|how can Agile Planner/Jazz be improved

1.2.1 Planning environment

Although a variety of planning tools exist, non of them supports distributed
synchronous planning and the ability to track progress and create reports. The
goal of this thesis is to create such an environment.

1

1.2.2 Approach

Chapter 3 discusses how it can be achieved that Agile Planner is able to work
with Jazz. It explains how synchronization works as well as requirements. It
�nally discusses several ways how both tools could work together.

1.2.3 Realization and future aspects

Chapter 4 and chapter 5 explain how the adapter is actually built and what the
problems were.

1.2.4 Future aspects

Chapter 6 describes useful information for an evaluation in the event of a possible
migration to Jazz/Agile Planner. Chapter 7 introduces improvements to Agile
Planner's/Jazz' functionality.

2

Chapter 2

Related Work

2.1 Background

2.1.1 Story Card Metaphor

Agile approaches often use the so called story card metaphor to de�ne function- One task per
story cardality that should be implemented1. The actual functionality is broken down into

small user stories that explain what the system is supposed to do. These user
stories are then written on index cards. Since index cards are limited in space,
the user story must be concise to �t on one side of the card as shown in Figure
2.1. If a user story is too long and therefore needs to much explanation, the
user story will be divided2 into further stories. Furthermore, each story card is
comprised of a meaningful title and often time estimations, that is how much
time that particular user story approximately takes to carry out.

2.1.2 Distributed Planning

More and more projects are carried out in a distributed manner. Big devel- Participants
can join meet-
ings from
different
locations

opment groups are divided into smaller groups which are often in charge of
only a single duty. Many of these groups are specialized to a single sector, e.g.
databases, user interfaces, and so forth. Larger companies often build compe-
tence centres for these teams and these centres are rarely housed in a single
building.

Even though such teams are distributed, they still must work on the same
project. Distribution makes project planning very di�cult because it is neither
economic nor realistic to bring all of the teams together for short, but necessary
meetings. One solution for this problem is video{conferencing which connects
all of the teams together during a planning meeting. However, one problem still
remains: who keeps track of all the decisions?

1In fact, everything, even problem reports are written down on story cards
2Sometimes called triaged

3

Figure 2.1: Story Cards in an Agile Environment. The violet story card shows
a failure. The yellow story card shows a new feature. Both cards include an
estimated time to work on these tasks and the responsible developer.

4

2.1.3 Synchronous Planning

Synchronous planning meetings are suitable for distributed teams. Each team Participants
experience
real time
updates

is able to keep track of any given event, e.g. a new feature will be generated.
Modern software solutions allow realtime updates of a workspace which holds
planning artifacts such as story cards; refer to 2.1.1. Synchronous means that
all teams will experience each update, such as adding text to an artifact or move
a story card on the desktop within a reasonable amount of time.

2.2 Progress Tracking and Reports

Reporting and therefore progress tracking is important to determine the project's
health. This information is also required to plan future steps which keep the
project alive.

During project execution, task progress and task deadlines need
to be monitored while any issues and problems that arise need to
be addressed. When actions are taken to address speci�c prob-
lems, those corrective actions need to be accounted for as well.
Project progress tracking ensures that misunderstanding and con-
fusion over project process is reduced or eliminated and that there
are smooth transitions when tasks are handed o� among team mem-
bers. Project progress tracking further ensures that project changes
are monitored and the impact of change is well understood and
anticipated.[CBC+06]

2.2.1 Progress Tracking

2.2.1.1 Why progress tracking?

The overall objective of project progress tracking is to increase aware- Make the
project's
progress
visible

ness and visibility of a project's process, which in turn increases the
likelihood of project success. Insu�cient project progress tracking
can result in the entire process being treated as a black box. The
black box phenomenon can cause a number of potential problems
to arise. For example, project members may engage in unproduc-
tive e�orts or lose track of a critical change in the customer's re-
quirements, project development approach, or individual task as-
signments. Without closely monitoring such changes, it is virtually
impossible for project members to estimate change related risks and
to identify alternatives that can be employed to mitigate such risks
in a timely fashion. As a result, projects are frequently subject to
cost over-runs and cancellation.[CBC+06]

5

2.2.1.2 How to accomplish progress tracking?

One technique for task progress tracking is to use technology to
maintain a task list for team members.[CBC+06]

Specialized tools o�er lists of tasks. Each developer can see at least his or Tools o�er
task-lists
including their
current status

her tasks often combined with priority and due dates. The developer who is
responsible for a speci�c task marks it in-progress if it is executed or completed
if it is �nished. Such to-do lists are better suited for self-monitoring than plain
text descriptions. Furthermore, project managers can easily see if a task has
been �nished and has the ability to change the priority if required.

2.2.2 Reports

Once progress information have been acquired it must be processed into a mean-
ingful form. To do this a report generator must perform multiple steps3, such
as

• Sorting data

• Manipulate4 data

• Create charts

• Deliver report, e.g. as PDF

Reports are created for a particular target group. Each group requires its Custom rep-
resentations
of project
information

own format depending on the intended use, e.g. for a presentation for a cus-
tomer. That also means that one set of data can be represented in di�erent
ways. A report generator regards this by using templates. A template de�nes
how a report should be created. It contains information about

• Header, footer

• What data should be used, i.e. which column in a table

• Which type of chart should be created, if any

• Where should the data be placed

2.3 Agile Planner

Agile Planner is a project planning tool that uses story card metaphor to per-
form planning tasks, illustrated in Figure 2.2. It also supports distributed syn-
chronous planning.

Although Agile Planner is a adequate for planning sessions, it lacks in few
important features, such as Reporting.

3Not necessarily all steps are required to create a report
4For example, convert hours in days

6

Figure 2.2: Story Cards and Iteration in Agile Planner. The red story card is
part of the current iteration. The yellow story card is in the backlog|task is
de�ned but not executed in the current iteration.

7

2.3.1 Planning history

Agile Planner's capabilities to preserve the planning history are very limited.
The workspace becomes unreadable if all previous iterations and story cards are
kept. Even though it would be possible to keep previous versions of a project
plan by storing them in a repository, it is di�cult to handle and error prone.

2.3.2 Reporting

Agile Planner o�ers no reporting capabilities.

2.3.3 Support for different input devices

Agile Planner supports multiple input devices such as

• Desktop and notebook computers

• Digital Tables

• PDAs

It is possible to use di�erent input devices simultaneously during a planning
meeting. For example, a development team uses a digital table to perform a
planning meeting. A developer can join this meeting on his or her laptop while
he or she is out of the o�ce.

2.4 Jazz

IBM/Rational Jazz is a complete development environment that o�ers project
planning, reporting capabilities, and many other features.

2.4.1 Work Items

Work items represent tasks similar to story cards described in section 2.1.1.
However, unlike Agile Planner, Jazz o�ers no graphical representation of work
items.

2.4.2 Reporting

Every project is based on decisions which inuence the progression of the project
directly. These decisions are based on the information that is available to a de-
veloper or project manager. Jazz o�ers a data warehouse that stores historical Reports are

generated
based on
information
from the data
warehouse

data about the project. The developer can then use BIRT to access this infor-
mation and create a report based on a report template. This template describes
not only what information should be displayed, it also describes the way in
which the information will be shown, e.g. as a table, a chart, . . .

Although Jazz o�ers the possibility to create customized reports, it also
comes with few of the most often used report templates, such as:

8

• How many work items are open?

• How many bugs contain a speci�c component?

• How much time has been spent on a component?

• . . .

2.5 Adding support for reporting tools to Agile
Planner

The ability to create reports is very important for e�ective project planning.
Although there is a need to add reporting capabilities to Agile Planner it is not
wise to reinvent everything. Instead, existing reporting tools could be used to
ful�ll user's needs.

There are many tools available which o�er more or less advanced reporting Create an
interface
between Agile
Planner and
Jazz

capabilities, such as BIRT and Jazz. The conclusion is therefore to add the
ability to use these tools with Agile Planner.

A reporting tool needs access to all current planning information and to
previous planning information to create meaningful reports. Agile Planner's
ability to store information about previous iterations is very limited. Therefore,
tools such as BIRT, which simple generates a report out of a data set, can not
be used. Jazz on the other hand uses its own repository to store all planning
information and is therefore the best choice.

Table 2.1 compares important features of Agile Planner and Jazz. The table
also shows that Jazz o�ers exactly the features that Agile Planner needs.

2.5.0.1 Synchronous Planning

Every user who participates on a planning meeting will see updates in real time.

2.5.0.2 Distributed Planning

The planning information will be stored on a dedicated server. All team member
need access to this server in order to retrieve or update planning information.

2.5.0.3 Task based planning

Planning is performed in tasks as explained in story card metaphor.

2.5.0.4 Reporting capabilities

The ability to create reports out of (planning)information. It is desirable that
the tool is able to create custom reports but it is not a requirement.

9

Table 2.1: Feature Overview: Agile Planner and Jazz

Feature Agile Planner Jazz
Synchronous Planning X -
Distributed Planning X X
Task Based Planning X X

Reporting Capabilities - X
Store Planning History - X

Extendable X X

2.5.0.5 Store planing history

Since some reports require a complete planning history, the tool must preserve
it and be able to hand it over to the reporting tool.

2.5.0.6 Extendable

The tool must be extendable in order to add or use its functionality. This can
be through public interfaces or though the source code of the tool itself.

2.5.1 Advantages of Agile Planner - Jazz integration

Jazz supports work items which is basically just another version of story cards.
Jazz lacks in the planning process itself that means it doesn't support syn-
chronous planning meetings. Distributed teams especially need this functional-
ity to make planning meetings easier and less error prone. Agile Planner o�ers Use the best

features from
both systems

not only distributed synchronous planning but also a variety of input devices
as explained in Section 2.3.3. Therefore, Jazz is not capable of replacing Agile
Planner despite of its enormous set of functionality.

10

Chapter 3

Approach

To take advantage of Agile Planners sophisticated planning features and Jazz'
advanced tracking and reporting capabilities, both servers must be able to syn-
chronize with each other. The planning information must be transferred from
Agile Planner Server to Jazz Server and vice versa. This must happen before
and after a planning meeting to keep both systems synchronized1.

3.1 Synchronous and asynchronous synchroniza-
tion

The Agile Planner Server is responsible for persisting a projects planning data.
The server runs on a local system or on a remote system and is necessary for
distributed planning. All clients connect to the server which is often a dedicated
server. Agile Planner uses two di�erent methods to synchronize with either
connected clients or remote services, such as Rally or Jazz in the future:

• Synchronous

• Asynchronous

3.1.1 Synchronous synchronization

During a planning meeting, Agile Planner uses synchronous synchronization to Send real
time updates
to all the
clients

update all clients which are connected to the server if one or more client perform
a change on the current plan. Clients send their changes to the server which
propagates to all other clients, illustrated in Figure 3.1. Since updates will be
performed in real time they are synchronous.

1The first synchronization is necessary to use the latest planning information during the
planning meeting, the second to update Jazz’ database after the planning meeting

11

client changes
a story card

sends updates
to server

server propagates
updates to clients

clients update
their screens

client

server

connection

message
transfer

Figure 3.1: Synchronous Planning. The client updates planning information and
sends changes to the server. The server propagates the updates to all clients,
which update their screens.

3.1.2 Asynchronous synchronization

It is not necessary to update remote services in real time during a planning
meeting. In fact, real time updates rely on fast network connections. Remote
services which are connected through the internet often use a slow connection,
potentially a slow dial up modem connection. Hence, the emerging delay would
slow down the planning meeting because all users have to wait until all updates
have been performed.

Agile Planner Server uses asynchronous synchronization to synchronize plan-
ning data with other services, such as Rally or Jazz in the future. Unlike with Establish

connections
to external
services on
demand

synchronous synchronization mode, the server connects the target system on
demand. For example, no network connection must be maintained during the
planning meeting.

The user triggers the synchronization process on the client which sends a
message to the server. The server connects the remote service and synchronizes
its data with the remote service. If the update has been performed successfully,
Agile Planner server disconnects itself from the remote service and sends the
updated project plan to all connected clients which update their workspaces,
e.g. display the updated planning information, shown in Figure 3.2

12

client
triggers

sync

server
performs

sync

server
sends

updates

client
updates
screen

client

server

remote
service

connection

message
transfer

Figure 3.2: Asynchronous Synchronization. The client triggers the synchroniza-
tion operation. The server synchronizes the project with the remote service
and sends an update to the clients after the synchronization process has been
finished successfully. The clients update their screens to display the current
project.

13

3.2 Functional Requirements

The following situations can occur during an Agile Planner-Jazz-synchronization
(a more detailed use case description can be obtained from Appendix A):

• Story Card added on Agile Planner

• Work Item added on Jazz

• Story Card deleted on Agile Planner

• Story Card altered on Agile Planner

• Work Item altered on Jazz

• Work Item and the associated Story Card are simultaneously altered

• Iteration added on Agile Planner

• Story Card added to Iteration on Agile Planner

• Story Card removed from Iteration on Agile Planner

• Work Item added to Iteration on Jazz

• Work Item removed from Iteration on Jazz

The following descriptions use the term task to refer to either a story card
or a work item, depending of the system which initiates the described action.

3.2.1 Story Card added on Agile Planner / Work Item
added on Jazz

Agile Planner and Jazz shall be able to create new tasks. After the synchro-
nization, the new task shall be available on both systems.

3.2.2 Story Card deleted on Agile Planner

It shall be possible to delete a task on Agile Planner. The changes shall be
reected on Jazz after synchronization.

3.2.3 Story Card altered on Agile Planner / Work Item
altered on Jazz

Agile Planner and Jazz shall be able to alter existing tasks.

3.2.4 Work Item and the associated Story Card are simul-
taneously altered

It shall be possible to alter the same task simultaneously on both systems.

14

3.2.5 Iteration added on Agile Planner

Agile Planner shall be able to create new iterations. Those iterations shall be
available on Jazz after the next synchronization.

3.2.6 Story Card added to or removed from an Iteration
on Agile Planner

It shall be possible to associate a task with an iteration on Agile Planner.
Furthermore, it shall be possible to remove this association later if required.
Both cases shall be reected on Jazz after the next synchronization.

3.2.7 Work Item added to or removed from an Iteration
on Jazz

Jazz shall be able to associate a task with an iteration and remove this associ-
ation if required.

3.3 Non-Functional Requirements

Unlike functional requirements, non-functional requirements are not reected
through the systems functionality but might be reected in its response time
during operation or its testability during development or maintenance.

3.3.1 Testability

Since Agile Planner and Jazz are developed by distinct companies, changes
in their interface or behaviour will occur. It shall be possible to test Jazz'
functionality without Agile Planner so that behavioural changes in Jazz can be
detected early.

3.4 Accessing Work Items

There are two ways to access work items which are stored on the Jazz server;

• through the Server plug-in

• through Jazz' Plain Java Client Library

3.4.1 Server plug-in

The Jazz server could be extended by a custom plug-in that o�ers an easy to
use access-point to the repository and Jazz' planning tools. Agile Planner would
need a communication facility to send and receive data to and from the Jazz
server. The actual server plug-in would be divided into two distinct plug ins | a

15

Service plug-in which allows communication with Agile Planner and a Common
plug-in to access work items on the server as shown in Figure 3.3.

However, this approach has several disadvantages. The service plug-in must Less code in
Agile Planner
but higher
coupling with
Jazz

use Jazz' authentication and user management facility to keep access to the
server restricted. Otherwise the plug-in would be a potential security risk.
Furthermore, the high coupling between the common plug-in and the internal
Jazz services and its plug-in registration procedures could make the plug-in very
sensitive to any changes within Jazz.

3.4.2 Client

Jazz' Eclipse plug-ins can be used like any other Eclipse plug-ins2 but Jazz also
o�ers Plain Java Client Library. This can be used in any Java application and
is not restricted to Eclipse plug-ins. Although the Plain Java Client Library
is more exible, it needs some more attention. The Client Library o�ers a set Lower cou-

pling with
Jazz but more
code in Agile
Planner

of interfaces that can be used to gain access to Jazz' server extentions, which
are responsible for the actual functionality. The Jazz server sends most of the
necessary instances of the classes which implement the interfaces to the client
at runtime. The client library uses a service interface to communicate with
the Jazz service on the actual server, which o�ers the counterpart to the client
service interface as shown in Figure 3.4.

The Client Library o�ers interfaces to virtually all of Jazz' features. The
amount of dependent Jazz services could be reduced by using the client library
instead.

3.4.3 Conclusion

Server plug-ins need to interact with lots of Jazz' components. The high cou-
pling to Jazz increases the probability that changes in Jazz could have an impact
on the plug-in. The use of the Plain Java Client Library would cause an in-
creased amount of Jazz related code on Agile Planner Server but o�ers fewer
dependencies to Jazz since access to fewer Jazz components is required. There-
fore, using the Plain Java Client Library to access Jazz is the better choice in
this particular case.

3.5 Adapter

In order to enable both systems to exchange information an adapter must be
placed between both systems. To prevent high coupling between the systems
the adapter must transform all data types. This way Agile Planner only has to
deal with story cards and Jazz with work items.

The adapter3 (illustrated in Figure 3.5) would be comprised of multiple sub-
components, such as

2via their extention points
3This is the adapter-component

16

Jazz Kernel

Service-
Plugin

Common-
Plugin

Client-
Library

Application X

Client-
Library

Application Y

Plug-in related Code

Jazz related

3rd party related
Communication

Jazz Server

Figure 3.3: Jazz Plug-in overview. The Jazz Server Plug-in is comprised of a
common- and a server-plug-in. 3rd-party application use the client library to
connect with the service plug-in, which delegates method calls to the common
plug-in.

17

Figure 3.4: Jazz Services. The client interface communicates through a commu-
nication layer with a server interface which o�ers a speci�c functionality. [taken
from http://jazz.net]

• Adapter4

• Converter

• Error Facade

• Session Manager

• Component Manager

3.5.1 Adapter

The adapter o�ers functionality which will be used by Agile Planner to retrieve
necessary information from Jazz or to update information on Jazz. Methods
such as

• Retrieve all work items from Jazz

• Update work item on Jazz

• Create new iteration on Jazz

• . . .
4This is the actual adapter-class

18

<<subsystem>>
Jazz

<<subsystem>>
Agile Planner

<<subsystem>>
Adapter

<<component>>
Error Facade

<<component>>
Component Manager <<component>>

Converter
<<component>>
Session Manager

<<component>>
Adapter

<<use>><<use>>

<<use>>

Figure 3.5: Static View of the adapter. [Key: UML Component Diagram]

3.5.2 Converter

The converter transforms all data objects which have to be exchanged between
the two systems. Besides work items, iterations need to be transformed as well.
The converter is the only instance which knows everything about particular
Agile Planner and Jazz data objects.

3.5.3 Error Facade

Jazz throws exceptions in case of a problem. This exception is Jazz-speci�c and
therefore for internal use only. Agile Planner is not part of Jazz and should not De-couple

both systemsknow internal details of Jazz. Therefore Agile Planner should not know Jazz'
TeamRepositoryException.

The Error Facade is a layer between the adapter and Agile Planner. It
forwards all method calls to the appropriate (sub-)component inside the adapter
and returns results to the caller if required. The most important task is to catch
exceptions. Very simple error facades just catch exception and maybe write a
note into the log-�le or the console.

More sophisticated error facades often try to repair the problem. The facade Possibility to
add diagnosis
and repair in
the case of an
error

could call a Diagnostic&Repair-Agent, such as SQL-Expert, which tries to create
a detailed diagnosis and then tries to repair the problem if possible. If the agent
fails too or if no agent is available, the error facade creates an appropriate
exception which will be caught by the original caller, illustrated in Figure 3.6.
More about error facades can be obtained from [Sie].

19

Figure 3.6: Example of an error facade [Sie].

20

3.5.4 Session Manager

Session management will be part of the adapter as well. This reduces the amount
of components which Agile Planner has to work with. The session manager
creates and maintains a connection to Jazz.

3.5.5 Component Manager

The component managers responsibility is to instanciate all adapter-subcompo- Configures
the adapternents, link them together, and to deliver a fully functional adapter to the caller.

This approach o�ers multiple advantages.
The complexity of the actual adapter is hidden from the user who uses

the adapter. The user only knows the adapter-interface and the component
manager, which delivers an instance of the adapter.

Each subcomponent of the adapter can be replaced by another without noti-
fying the actual user. The component manager is the only authority who knows
each of the subcomponents and how to instanciate and con�gure them.

3.5.6 Entity–Mapping

It is most unlikely that both systems use the same data model. It is therefore
necessary to analyse both data models and categorize all attributes into one of
the following categories:

identical Fields which store the same information in the same representation5.

adaptable Fields which store the same information in di�erent representations. It is
possible to transform the representation between the di�erent formats.

emulated A �eld in one model has no correspondent �eld in the other model but the
information must be preserved anyhow.

insignificant A �eld in one model has no correspondent �eld in the other model and
there is no need to transfer the information between the systems.

Table 3.1 and 3.2 give a quick overview of the data models. Table 3.3 applies
the categories to the the models.

3.6 Prototypes

New systems always create a high learning curve. It is wise to build at least
one prototype to increase the developers personal experience. Then, when most
of the problems are known and hopefully solved, the actual component(s) can
be designed and implemented. The prototypes should comprise at least session
management, work item access and data conversion.

5The representation refers not only to the data types but also to the content itself, e.g.
fields of type String could store a description as plain- or XML-Text.

21

Table 3.1: Agile Planner Attributes
Field Datatype Description
id long Unique identi�er to distinguish story cards
name String Short description of the task
description String Full description of the task
acceptanceTestText String Description of the FIT{test
acceptanceTestUrl String Uniform resource location address of the

FIT{test
�tID String Identi�er of the FIT{test
color String Colour of the story card in the workspace
height int Height of the story card in the workspace
width int Width of the story card in the workspace
locationX int Location of the start point of the story card

in X{position
locationY int Location of the start point of the story card

in Y{position
rotationAngle oat Rotation Angle of the story card in table

top view
parent long Identi�er of story card's parent entity, i.e.

an iteration
bestCaseEstimate oat Minimum time to �nish the task
mostLikelyEstimate oat Estimated time to �nish the task
worstCaseE�ort oat Maximum time to �nish the task
actualE�ort oat Actual time spent
owner String Developer who's in charge of this task
rallyID boolean Has this card a Rally{ID
handwritingImage byte Stores a picture of the card's surface if it

contains content that has been written by
hand

22

Table 3.2: Jazz Attributes
Field Datatype Description
summary String

(HTML)
Quick summary of the task, used as
headline

description String
(HTML)

Full description of the task

id int Unique identi�er to distinguish work
items

internalState String Points out the state, such as new or in-
progress

internalResolution String Reason for resolution, such as fixed or
invalid

resolutionDate Timestamp Date when the work item has been re-
solved

internalSeverity String Describes the severity of the task
creationDate Timestamp Date when the work item has been

saved
creator Contributor Developer or Manager who created this

task
internalPriority String Work item's priority
dueDate Timestamp Task must be �nished by that date
owner Contributor Developer who's in charge of this task
category Category Points to a sub-project
internalComments Comment Useful information or discussion about

the current task
internalSubscriptions Contributor Contributor who should be noti�ed if a

change occurs
workowSurrogate String
tags String Keywords that describe the task
workItemType String Type-information, such as task or bug
duration long Estimated time to �nish the task
timeSpent long Actual time spent on that task
projectArea ProjectArea Project area which contains the work

item
resolver Contributor Developer who has set the work item to

resolved
internalApprovals Approval Points to an approval|such as ap-

proved by Quality Assurance
internalApproval-
Descriptors

Approval-
Descriptor

target Iteration Iteration that this work item belongs to
internalSequence-
Value

String

foundIn Deliverable

23

Table 3.3: Attribute{Mapping
Agile Planner Jazz Category
id id adaptable
name summary adaptable
description description adaptable
acceptanceTestText - emulated
acceptanceTestUrl - emulated
�tID - emulated
color - emulated
height - emulated
width - emulated
locationX - emulated
locationY - emulated
rotationAngle - emulated
parent - emulated
bestCastEstimate - insigni�cant
mostLikelyEstimate duration adaptable
worstCaseEstimate - insigni�cant
acutalE�ort timeSpent adaptable
owner owner adaptable
rallyID - insigni�cant
handwritenImage - insigni�cant
- internalState insigni�cant
- internalSeverity insigni�cant
- resolutionDate insigni�cant
- internalResolution insigni�cant
- creationDate insigni�cant
- creator insigni�cant
- internalPriority insigni�cant
- dueDate insigni�cant
- category insigni�cant
- internalComments insigni�cant
- internalSubscriptions insigni�cant
- workowSurrogate insigni�cant
- tags insigni�cant
- workItemType insigni�cant
- projectArea insigni�cant
- resolver insigni�cant
- internalApprovals insigni�cant
- internalApprovalDescriptors insigni�cant
- target insigni�cant
- internalSequenceValue insigni�cant
- foundIn insigni�cant

24

3.6.1 Session Management

The session management establishes a connection to Jazz and performs user
authentication.

3.6.2 Accessing Work Items

Once a connection has been established, access to the actual work items is
required. The most important actions are to read, write, and alter work items.
Iteration and user management are also associated with work item management
and have to be performed as well.

3.6.3 Converting Data

Jazz' work items have to be converted to Agile Planners story cards and vice
versa. The required conversion leads to further tasks such as creation of at-
tributes to store customized data as shown in Table 3.3. It is di�cult to predict
the impact of these tasks. Therefore a prototype is necessary to clarify this �rst.

25

Chapter 4

Realization

4.1 Prototypes

As mentioned in section 3.6, multiple prototypes have �rst been created to learn
more about Jazz and its API. The prototypes highlighted the complexity of Jazz.

4.1.1 Create and save a Work Item

A work item is the most important object that is used among Jazz' agile plan-
ning tool. Therefore, the �rst step is to create a new work item. The code in Jazz-API is

too complexListing 4.1 illustrates how to create a work item, while Listing 4.2 shows the
necessary code to save the work item to a Jazz server.

Listing 4.1: Code to create a work item

1 IWorkItem workItem = null ;
2 IWorkItemClient c l i e n t = r e p o s i t o r y . g e tC l i en tL ib ra ry (

IWorkItemClient . class) ;
3

4 IWorkItemType workItemType = c l i e n t . findWorkItemType (
projectArea , WorkItemTypes .DEFECT, monitor) ;

5

6 ICategoryHandle category ;
7 List<ICategory> f i n d C a t e g o r i e s = c l i e n t . f i n d C a t e g o r i e s (
8 pro jec tArea . getPro jectArea () ,
9 ICategory .FULL PROFILE, monitor

10) ;
11

12 category = f i n d C a t e g o r i e s . get (0) ;
13

14 IWorkItemHandle handle = c l i e n t .
getWorkItemWorkingCopyManager () . connectNew (

15 workItemType , monitor

26

16) ;
17

18 WorkItemWorkingCopy wc = c l i e n t .
getWorkItemWorkingCopyManager () . getWorkingCopy (

19 handle
20) ;
21

22 workItem = wc . getWorkItem () ;
23 workItem . setCategory (category) ;

Listing 4.2: Code to save a work item

1 IWorkItemWorkingCopyManager manager =
2 r e p o s i t o r y . g e tC l i en tL ib ra ry (IWorkItemClient . class) .

getWorkItemWorkingCopyManager () ;
3 manager . connect (
4 workItem ,
5 IWorkItem .FULL PROFILE,
6 monitor
7) ;
8

9 WorkItemWorkingCopy copy = manager . getWorkingCopy (
10 workItem
11) ;
12 workItem = copy . getWorkItem () ;
13

14 copy . save (monitor) ;
15 manager . d i s connec t (workItem) ;

The code in listing 4.1 and listing 4.2 demonstrate that even simple oper-
ations, such as creating an empty work item or saving a work item, can be
quite complex. In fact, the code has been simpli�ed for readability by omitting
exception handling.

4.1.2 Simplify the API by adding an Abstraction Layer

It is obvious that the Jazz API is too complex to simply use it. If used in
the adapter, the complexity would confuse developers and would set their focus
on how to implement the functionality instead of the method's purpose. An
additional software layer must be introduced to simplify the Jazz API, the so
called Abstraction Layer.

4.2 Building an Abstraction Layer

The abstraction layer will be placed between Jazz and the actual adapter and An additional
layer simpli-
fies the Jazz-
API

consists of several methods. Each of these methods calls one or more methods

27

on Jazz and returns the result if necessary. Since abstraction layers are com-
mon in software architecture, many design patterns exist which can be applied.
Depending on the realization of the adapter, the Remote Facade [ACM] or the
Business Delegate [ACM] design pattern can be used to encapsulate Jazz' API.
The most important di�erence between both patterns is that the Remote Fa-
cade is implemented on the server while the Business Delegate is used on the
client side.

As discussed in section 3.4, access takes place via the Jazz client library.
Therefore, the Business Delegate design pattern will be used.

4.2.1 The Business Delegate Design Pattern

This design pattern is often used to hide the client from the complexity of Delegator for-
wards method
calls to the
server

the server API and to reduce the network load by caching important objects.
Furthermore, it allows the client to test the server functionality through a set
of tests without worrying about client related code. If the client application
suddenly behaves di�erent or some functionality fails the test set can be used
to verify that the server still works as expected. In the latter case, the failure
has been caused by the client application.

The sequence diagram in �gure 4.1 illustrates the principles of how the del-
egator operates. First, the client calls a method on the delegator. Next, the
delegator invokes one or more methods on the server and delivers the results to
the caller. The client uses a simpli�ed method that hides the complex server
API.

Unlike the pattern description in [ACM], the abstraction layer doesn't trans-
late exceptions nor data types. Data objects transformation is not necessary
since the adapter will perform those. Exceptions remain untouched because an
error facade (3.5.3) will transform them if necessary.

4.2.2 Abstraction layer code

The abstraction layer is comprised of all methods that are necessary for the Heavily relied
upon meth-
ods separated
into distinct
interfaces

adapter to ful�ll any given task. Most of the code will be in one class called
JazzUtilities. This includes the creation of work items, iterations, users as well
as methods to alter work items.

Although many methods will be in a single class they are separated into two
distinct interfaces to make them easier to use.

Management Includes all methods to manage the development environment, such as
adding users, iterations, . . .

Utility Includes all methods that are very often used by the adapter, such as
creating and altering work items, . . .

28

Business Delegate

ServerClient

createObject3:

invokeX5:

invokeY7:

initialized instance of Object9:

returns instance of Object4:

6:

8:

create1:

createObject2:

Figure 4.1: Example of the Business Delegate Design Pattern.

4.2.3 Service Lookup

The actual Jazz client library only o�ers a few concrete classes. In fact, the
developer uses interfaces most the time. At runtime, the Jazz server sends an
instance of the proper class, that implements a speci�c interface, to the client. Caches in-

stances of
classes from
Jazz

This allows for easy upgrades on the server side since no client code will be
a�ected as long as neither the interfaces nor the concrete classes change.

Although the client could ask for an instance of a class if needed, storing the
instances on the client reduces the network load. Therefore, a Service Lookup
class will be responsible for fetching the instances from the server, store them
locally and return them upon a clients request.

4.2.4 Query Builder

The adapter often needs access to a speci�c work item. Thus, it is not practical Separate the
creation and
execution of
queries

to retrieve all work items if just a single one is needed. To alleviate this problem,
the adapter uses di�erent queries to retrieve speci�c items. A query consists of
two parts:

Query A logical expression that is comprised of the attribute that should be
compared, a value to compare with and a boolean expression, such as
equals, includes, . . .

29

Query Execution Sends the expression to Jazz' query engine, which executes the query and
returns the result.

Since the query execution code remains identically, the creation of the ex-
pression will be separated from the execution code. A Query Builder [Sie] o�ers
an easy to use interface that consists of all possible queries1, shown in Listing
4.3. The Query Builder class builds the actual query and returns an expression
object, demonstrated in Listing 4.4.

Listing 4.3: Query Builder Interface

1 public Express ion workItemByID (Attr ibuteOperat ion op , int
id)

2 throws TeamRepositoryException ;
3

4 public Express ion workItemBySummary (
5 Attr ibuteOperat ion op ,
6 St r ing text
7) throws TeamRepositoryException ;
8

9 public Express ion workItemByIterat ion (
10 Attr ibuteOperat ion op ,
11 I I t e r a t i o n i t e r a t i o n
12) throws TeamRepositoryException ;
13

14 public Express ion workItemByState (
15 Attr ibuteOperat ion op ,
16 State s t a t e
17) throws TeamRepositoryException ;
18

19 public Express ion workItemByAPID(
20 Attr ibuteOperat ion op ,
21 long id
22) throws TeamRepositoryException ;

Listing 4.4: Query Builder:

1 public Express ion workItemByState (Attr ibuteOperat ion op ,
State s t a t e)

2 throws TeamRepositoryException {
3

4 Express ion exp = null ;
5 IQueryab leAttr ibute a t t r i b u t e ;
6

7 a t t r i b u t e = QueryableAttr ibutes . getFactory (
IWorkItem .ITEM TYPE) .

1This approach can be used since no user defined queries are necessary

30

8

9 f i n d A t t r i b u t e (
10 projectArea ,
11 IWorkItem .STATE PROPERTY,
12 lookup . ge tAud i tab l eC l i en t () ,
13 monitor
14) ;
15

16 exp = new Attr ibuteExpres s i on (a t t r i bu t e , op ,
s t a t e) ;

17

18 return exp ;
19 }

New queries can be easily added to the Query Builder without a�ecting other
classes. The execution code will be in JazzUtility.

4.2.5 Dealing with copies of work items

Often work items need to be altered but Jazz always sends copies of the actual Simplify the
management
of work item
copies

work items to the client. For this reason, the clients need to request a mutable
copy of the work item that they want to alter. The client can then alter and
save the work item, but they also have to keep track of each copy since they
are marked as delivered mutable on Jazz. The client has to close the connection
in order to reset this mark on the Jazz server. Therefore, a Copy Manager is
needed to deal with this procedure.

The Work Item Copy Manager checks out copies of a speci�c work item.
It stores the copy locally in order to deliver multiple copies to clients. It then
closes the connection to the Jazz Work Item Copy Manager when a work item
copy is no longer needed.

4.2.6 Component Manager

The Component Manager creates instances of all the classes and glues them Configures
the abstrac-
tion layer

together. It then delivers the fully con�gured abstraction layer to the client.
The client doesn't need to know what classes are actually necessary in order

to perform all tasks nor need to know the names of the classes. This makes it
easier to replace a sub-component since only the component manager needs to
know about the change.

4.2.7 Resulting architecture of the abstraction layer

The abstraction layer component is the result of all previously mentioned classes.
They are divided into multiple packages depending on their visibility. All public Separate

the public
and private
components

classes and interfaces are stored in a package (ca.ucalgary.jazzconnect) while all
implementations, except for the component manager, are stored in a di�erent

31

<<subsystem>>
Abstraction Layer

<<component>>
Component Manager

<<component>>
Jazz Utilities

<<component>>
Query Builder

<<component>>
Connection Manager

<<subsystem>>
Jazz

internal

<<component>>
Work Item Copy Manager

<<component>>
Service Lookup

<<delegate>>

<<delegate>>

<<use>>

<<use>>

<<use>>

<<use>>

<<delegate>>

<<delegate>>

<<use>>

<<use>>

Figure 4.2: Overview of the resulting abstraction layer.

one (ca.ucalgary.jazzconnect.internal). By convention, no component or class
that uses the abstraction layer should ever use one or more classes from the
*.internal package directly. If it does, it's considered highly coupled to this
speci�c implementation and an update of the referenced class can cause in-
compatibilities. Figure 4.2 illustrates the resulting structure of the abstraction
layer.

4.3 Abstraction Level

The prototypes have shown that it is very di�cult to use the Jazz API directly.
A single operation can require multiple lines of Jazz related code. Using the
Jazz API in the adapter would make it di�cult to keep the focus on the actual
adapters functionality. Instead, an abstraction layer will be introduced that
encapsulates Jazz speci�c code, similar to the Business Delegate design pattern
[ACM].

4.3.1 Differences from the Business Delegate design pat-
tern

Unlike the Business Delegate design pattern presented in [ACM], the abstraction Doesn’t
transform
objects and
exceptions

layer will not hide Jazz completely. Hiding Jazz completely would cause to
introduce new data objects to hide Jazz' work items, iterations and exceptions.
Instead, only the functionality will be encapsulated while the data objects and

32

exceptions remain the same. The resulting abstraction layer is pretty similar
to the Remote Facade design pattern [ACM] except that the facade would be
implemented on the server side.

The adapter is comprised of a converter that transforms data objects into
suitable representation, that includes

• Work Items to Story Cards

• Story Cards to Work Items

• Jazz Iterations to Agile Planner Iterations

• Agile Planner Iterations to Jazz Iterations

Exceptions will not be transformed until they reach the ErrorFacade, refer
to 3.5.3.

4.4 Composition of the different components

So far, there are two major components, the abstraction layer and the actual
adapter. It would be possible to separate both in to their own projects and
resulting jar-�les but it is not feasible because of problems caused by indirect
references and a lack of reusability.

4.4.1 Problems caused by indirect references

The abstraction layer encapsulates most parts of Jazz so that it is easier to use.
Therefore, this component must contain all necessary Jazz libraries. On the
other hand, the adapter needs knowledge about Jazz' internal workings such as
exceptions (refer to 4.3.1). Combine

abstraction
layer and
adapter into
one project

Since the libraries are already available in the abstraction layer, there is no
need to copy them into the adapter-project too. Furthermore, if one or more
library must be replaced, it must be done in multiple places.

Problems can arise at runtime when the adapter needs access to Jazz li-
braries which are in the abstraction layer package since they must be indirectly
referenced. If the libraries are not exported correctly, then a runtime exception
will occur.

4.4.2 Reusability

The abstraction layer is highly customized to meet the adapters requirements. Abstraction
layer can not
be reused in
other projects

It is doubtful that the abstraction layer can be reused in another project without
major changes. A generic version of the abstraction layer could cause the loss
of the simpli�ed and easy to use interface, and in the worst case, could interfere
with the adapters requirements.

33

4.4.3 Resulting composition

According to 4.4.1 and 4.4.2, separation of both components is not useful.
Therefore, both components will be merged into a single project as shown in
Figure 4.3.

4.5 The Adapter Component

Section 3.5 has given a quick overview of the adapter component. The following
sections explain the important sub-components in more detail.

4.5.1 Converter

The converter o�ers methods to convert story cards into work items and vice
versa.

4.5.1.1 Convert Story Cards to Work Items

Two situations can occur which have a huge inuence on the whole conversion
process:

1. The story card counterpart already exists on Jazz

2. The story card is new, e.g. no counterparts exists on Jazz

If a story card's counterpart already exists on Jazz, the associated Jazz
work item might have be altered if the related information has been changed.
Therefore the converter must query the work item. The query searches for the
Agile Planner ID in the Jazz repository. The retrieved work item can then be
altered and saved to Jazz.

The query returns an empty list of work items if the counterpart to the
current story card does not exist on Jazz yet. The converter must then create a Creates work

item on de-
mand

new work item, add Agile Planner speci�c attributes to the newly created work
item and copy all story card information to the new work item, illustrated in
Figure 4.4.

4.5.1.2 Convert Work Items to Story Cards

Unlike the conversion of story cards into work items, the converter always creates
a new story cards even if it already exist in Agile Planner. The convert-method
simply copies all attributes from the work item to a new story card.

It is possible that work items do not have Agile Planner speci�c attributes.
This occurs if they have been created on Jazz and not yet copied to Agile
Planner. In that case the story card ID will be set to 0.

34

<<
su
bs
ys
te
m
>>

Ad
ap

te
r

<<
su
bs
ys
te
m
>>

Ab
st

ra
ct

io
n

La
ye

r

<<
co
m
po
ne
nt
>>

Er
ro

r F
ac

ad
e

<<
co
m
po
ne
nt
>>

Co
m

po
ne

nt
 M

an
ag

er

<<
co
m
po
ne
nt
>>

Co
nn

ec
tio

n
M

an
ag

er
<<
co
m
po
ne
nt
>>

ad
ap

te
r

<<
co
m
po
ne
nt
>>

Co
nv

er
te

r

<<
su
bs
ys
te
m
>>

Ja
zz

<<
su
bs
ys
te
m
>>

Ag
ile

 P
la

nn
er

<<
us
e>
>

<<
us
e>
>

<<
us
e>
>

<<
de
le
ga
te
>>

<<
us
e>
>

<<
us
e>
>

Figure 4.3: Overview of the resulting adapter. [Key: UML Component diagram]

35

[WorkItem
does not
exist]

opt

QueryBuilder JazzUtilitiesConverterAdapter

3:

5:

7:

getWIByAPID2:

ExecuteQuery4:

createWorkItem6:

copyAttributeValues8:

9:

convert1:

[WorkItem
does not
exist]

opt

Figure 4.4: Conversion: Story Card to Work Item. [Key: UML Sequence dia-
gram]

36

4.5.2 The adapter class

The actual adapter class simply o�ers methods to retrieve speci�c information, Provides high
level function-
ality to work
with Jazz

such as story cards, iterations, and methods to update this information on Jazz.
To achieve this, the adapter uses queries which are de�ned in QueryBuilder. It
then converts the delivered work items to story cards by using the converter.

Once converted, all story cards which have newly been created on Jazz must
be �ltered out because they require special treatment.

4.5.2.1 Filtering out story cards

As discussed in Section 4.5.1.2, the ID 0 has been assigned to story cards which Items created
on Jazz need
special treat-
ment

have been created on Jazz and not been copied to Agile Planner yet. The �lter
simply removes cards with ID 0 from the list of story cards and adds them to a
new list for later processing.

4.5.2.2 Story Cards with ID 0

All story cards with the ID of 0 have been added to a special treatment list.
Since they have been created on Jazz, the associated work items on Jazz do not
include the custom attributes which store Agile Planner speci�c information. Add Ag-

ile Planner
speci�c at-
tributes to
work items

The �rst step is therefore to add Agile Planner speci�c attributes to the
work items. Before the attributes can be copied from the story card to the work
item, the story card's ID must be set. Agile Planner o�ers a method createID
which will be used to create a unique identi�er. The work item can now be
saved to Jazz.

Since the work item now includes all custom attributes and the Agile Planner
ID, the adapter can update the work item just like the others, illustrated in
Figure 4.5.

4.6 Agile Planner’s Synchronization Facility

Agile Planner Server must perform several tasks to synchronize its planning data
with Jazz. The whole synchronization process is encapsulated in one single class
on Agile Planner Server. The process, shown in Figure 4.6, can be divided into
a few logical steps:

1. Synchronizing Iterations

2. Update story cards on Jazz

3. Add story cards which have been newly created on Jazz to Agile Planner

4.6.1 Synchronizing Iterations

A new iteration might have been created since the last synchronization. The
synchronization facility requests the latest iteration from Jazz, compares this
with Agile Planner's current iteration and creates a new one on Jazz if required.

37

APIDGenerator JazzUtilitiesConverterAdapter

4:

9:

11:

13:

2:

7:

convert1:

createID3:

setCardID5:

getAttributeList6:

addAttributesToWorkItem8:

setAPID10:

saveWorkItem12:

updateCard14:

Figure 4.5: Story Cards which have been created on Jazz. [Key: UML Sequence
diagram]

38

4.6.2 Update Story Cards on Jazz

New story cards might have been created or already existing story cards might
have been altered during the planning meeting. Those changes must be copied
to Jazz.

The synchronization facility �rst receives all story cards from Jazz which are Update only
those story
cards which
already exist
on Jazz

either associated with the current iteration or not associated with an iteration
and not resolved yet. The latter indicates that the story cards belong to the
backlog. It then updates each story card on Jazz, that includes all story card
attributes and the status. It also resolves all story cards on Jazz which have
been deleted on Agile Planner since the last synchronization using the di�erence
quantity of Agile Planners current story cards and the story cards received from
Jazz at the beginning of the process, as shown in 4.1.

JazzCards\AgileP lannerCards ≡ {card|(card ∈ JazzCards)∧(card /∈ AgileP lannerCards)}
(4.1)

4.6.3 Add story cards which have been newly created on
Jazz to Agile Planner

Story cards may have already been created on Jazz since the last synchronization
operation. The facility receives all story cards which have been newly created
on Jazz and adds them to the current project.

4.7 Architectural overview

Di�erent people are often involved in integration projects, such as developers
and integrators. Each of these roles are interested in di�erent aspects of the
overall system. The architecture will therefore be illuminated from di�erent
perspectives using Kurchten's 4+1 View [Kru].

4.7.1 Logical View

The logical view represents all logical parts of the overall system, illustrated in
Figure 4.7. Agile Planner uses the adapter to receive and update information
from Jazz. Since Agile Planner can not handle Jazz' data objects, a converter
translates data objects back and forth. The abstraction hides Jazz' complexity
by o�ering convenient methods to access Jazz' functionality. The abstraction
layer itself communicates directly with Jazz and uses its functionality.

4.7.2 Development View

The development view represents software layers and services and how they are
built on each other, illustrated in Figure 4.8

39

add new and changed WI to
current iteration

set new iteration
 to current

get all unresolved WI

create new Iteration
 on Jazz

get all WI for the
current iteration

create new WI

save WI on Jazz

create card

update WI

AP updates
overwrite WI updates

(another) AP
 card available

card has changed

no changes

no new WI available

card exists in Jazz

new WI available

card doesn’t exist in Jazz

no further AP
 card available

Figure 4.6: Overview of the synchronization process. [Key: UML Activity
diagram]

4.7.2.1 Jazz Service Supporter

Jazz Service Support o�er Jazz speci�c services to the Jazz Utilities, such as
Query Builder or the Work Item Copy Manager. Supporter classes o�er services
to simplify Jazz Utilities or to extract redundant code.

4.7.2.2 Jazz Utilities

Jazz Utilities o�er low level Jazz related services to layers above. They o�er a
simple interface to Jazz' functionality, and delegate method calls to Jazz.

4.7.2.3 Adapter Service Supporter

Adapter Service Supporter o�er services which are low level from the adapter's
point of view. They are also speci�c to Agile Planner as well as to Jazz.

4.7.2.4 Adapter Service

Adapter Service is comprised of high level functionality which is needed by the
synchronization process. It o�ers methods to retrieve or update Jazz' work
items.

40

<<component>>
Adapter

<<component>>
Agile Planner

<<component>>
Abstraction Layer

<<component>>
Converter

<<component>>
Jazz

Figure 4.7: Logical Overview. [Key: UML Structure Diagram]

41

Jazz Utilities

Low level Jazz functionality: create
 and save Work Items, Iterations,

Adapter Service Supporter

Low level service:
converter, etc.

Adapter Service

High level functionality:
update Work Items, etc.

Synchronization Service

High level services for Agile
Planner: synchronize project, etc.

Jazz Service Supporter

Query Builder
Service Lookup
Work Item Copy ManagerJazz libraries

etc. Ja
zz

 s
pe

ci
fic

A
gi

le
 P

la
nn

er
 s

pe
ci

fic

external Dependency
Component Name

Short description of the
responsibilities

Figure 4.8: Development View

4.7.2.5 Synchronization Service

The synchronization Service is responsible to synchronize an Agile Planner
project with an external service, such as Jazz.

4.7.3 Process View

The process view shows the di�erent processes and how they communicate with
each other, illustrated in Figure 4.9.

4.7.3.1 Agile Planner

Agile Planner client is used by developers during planning meetings. There are
a number of di�erent versions of Agile Planner, such as a stand-alone version

42

and a version for table top2 systems.

4.7.3.2 Agile Planner Server

The server is responsible for persisting planning data and for distributing plan-
ning information to all clients.

4.7.3.3 Synchronization Facility

The synchronization facility gets the current project from the Agile Planner
server and synchronizes its planning information with Jazz.

4.7.3.4 Adapter

The adapter o�ers methods to retrieve and send planning information to and
from Jazz. The converter is part of the adapter and is responsible for converting
data objects between Agile Planner and Jazz.

4.7.3.5 Abstraction Layer

The abstraction layer simpli�es the access to Jazz. It simply delegates method
calls to Jazz and returns the result to the caller.

4.7.3.6 Jazz

Although Jazz can be distributed among multiple servers3, it often runs on a
single Server.

4.7.4 Physical View

The physical view shows how each component can be distributed across multiple
computers, illustrated in Figure 4.10. Although Jazz can be further divided so
that the application and the DBMS run on separate servers, they often run on
the same server.

4.7.5 Use Case View

The use case view represents the functionality of the system, e.g. what the
user can do with the system. A more detailed description can be obtained from
Appendix A.

2Digital Tables
3The Jazz Application (Server) and the Database Management System can run on dedi-

cated Server.

43

Agile Planner Server

Agile Planner APDT

Synchronization
Facility

Agile Planner

Abstraction
Layer

Adapter

Jazz

Figure 4.9: Process Overview. [Key: UML Structure Diagram]

Agile Planner

JazzAgile Planner Server

Figure 4.10: Physical View. [Key: UML Structure Diagram]

44

W
or

k
Ite

m
 a

lte
re

d
on

 J
az

z

St
or

y
Ca

rd
 a

dd
ed

 to
 It

er
at

io
n

on
 A

gi
le

 P
la

nn
er

W
or

k
Ite

m
 a

dd
ed

 to
 It

er
at

io
n

on
 J

az
z

Ite
ra

tio
n

ad
de

d
on

 A
gi

le
 P

la
nn

er

W
or

k
Ite

m
 a

dd
ed

 o
n

Ja
zz

St
or

y
Ca

rd
 a

dd
ed

 o
n

Ag
ile

 P
la

nn
er

St
or

y
Ca

rd
 a

lte
re

d
on

 A
gi

le
 P

la
nn

er

W
or

k
Ite

m
 a

nd
 th

e
as

so
ci

at
ed

 S
to

ry

Ca
rd

 a
re

 s
im

ul
ta

ne
ou

sl
y

al
te

re
d

St
or

y
Ca

rd
 re

m
ov

ed
 fr

om

Ite
ra

tio
n

on
 A

gi
le

 P
la

nn
er

St
or

y
Ca

rd
 d

el
et

ed
 o

n
Ag

ile
 P

la
nn

er

W
or

k
Ite

m
 re

m
ov

ed
 fr

om
 It

er
at

io
n

on
 J

az
z

Ja
zz

Ag
ile

 P
la

nn
er

Figure 4.11: Use Cases of the Adapter. [Key: UML Use Case Diagram]

45

4.8 Integration into Agile Planner

Agile Planner server already has the ability to synchronize with a remote service|
the Rally web service. Therefore, the sync-message, which will be send from
the client to the server, already exists an be reused. Agile Planner server then
has to invoke the sync-method of the synchronization facility to trigger the
synchronization process.

46

Chapter 5

Problems and solutions

Systems which are as big as Agile Planner and Jazz are usually quite complex.
Therefore, integration often causes lots of problems.

5.1 Use cases

Some problems arose during development which were covered during planning
of the adapter/abstraction layer. Solutions for some of the following problems
have been omitted because chapter 7 o�ers general enhancements which covers
these problems.

5.1.1 Work Item and the associated Story Card are simul-
taneously altered

Planning meetings will be performed on Agile Planner. Therefore, Agile Plan-
ner's planning information will be up-to-date and Jazz' planning information
can be overwritten.

A more sophisticated version of the adapter could o�er abilities to merge
information from both sources if required, discussed in chapter 7.1.

5.1.2 Jazz can not delete items

Once a work item has been created on Jazz it is not possible to delete it after-
wards. The only possibility to remove a work item is to set it to RESOLVED.
The latest version of Jazz o�ers the possibility to add further information about Resolved is

uses as a
synonym for
deleted

why a work item has been resolved.
Unfortunately, the Jazz version that has been used to create the prototypes

and the abstraction layer didn't support this feature in the same way the �nal
version of Jazz does. Therefore, support for this additional feature has been
omitted.

47

5.1.3 Support to merge changes

It is most likely that changes will be performed on both systems. Although
Agile Planner o�ers up-to-date planning data after a planning meeting some
information, such as time-spent, should simply not be overwritten. Future ver-
sions of the adapter could o�er the possibility to customize the synchronization
process and even the ability to merge manually if required.

5.2 Jazz

Jazz has been built from scratch. Despite IBM's e�ort to grant 3rd party
developer early access to Jazz the beta versions lacked in functionality as well
as in usability.

5.2.1 Documentation

The documentation of Jazz' interfaces itself and how to use them was incom-
plete and not completely available. JUnit-Tests which were meant to test Jazz'
interfaces as well as to document how the client library can be used often con-
tained deprecated code. Fortunately, IBM o�ered a developer forum where 3rd
party developers can ask questions which were answered by other 3rd party
developers and IBM employees.

5.2.2 Functionality

Some of Jazz' functionality, such as user authorization, was not implement dur-
ing development of the abstraction layer. Therefore, tests which were meant
to test the abstraction layer's user management failed and had to be omitted.
An updated version, which included user authorization, caused lots of problems
because a few operations were limited to speci�c roles such as administrator or
developer. It took some e�ort to con�gure a user before all required functionality
could be used.

5.2.3 Usability

The usability su�ered from unclear interfaces which contain several dozens of
methods and vague descriptions. It was not always obvious how a method
works and what is required to use it. For example, an iteration depends on a
development line and vice versa. Therefore, it was not possible to add a new
iteration without modifying the development line. Both, the new iteration and
the altered development line, have to be save simultaneously since Jazz checks
dependencies. Besides the JUnit-Test examples from IBM, Trial-and-Error lead
to the goal during the prototype phase.

48

5.2.4 Jazz updates

Each major Jazz update brought in new client libraries. Previous versions of
Jazz libraries were not compatible with newer Jazz versions. Therefore, each
Jazz update caused an update of all libraries.

5.3 Agile Planner

Agile Planner has been built by students with di�erent designing and program-
ming skills. Furthermore, most of its code is either undocumented or not su�-
cient documented which makes it di�cult to understand. JUnit-Tests covered
less than a quarter of the whole code. Therefore, no regression tests exist for
many classes and changes on one or more classes may cause problems every-
where.

Fortunately only a few classes had to be altered to integrate the Jazz adapter
to Agile Planner so that its impact was limited. The performed changes were
covered by JUnit-tests so that it was possible to show that the system's be-
haviour didn't change.

49

Chapter 6

Evaluation

This section discusses ways to evaluate Jazz. Although a full evaluation is very
time consuming, the potential bene�t can be tremendous.

6.1 Improved accuracy

The Jazz client allows the user to keep track of the time spent on a work item.
The client's GUI includes a start-stop button to indicate that work on a speci�c
task has been started or stopped. Jazz counts the minutes spent on a work item
and saves this information in the work item. Unlike counting the time manually,
Jazz' time-count is less error prone.

6.1.1 Time tracking

Developers should be asked to both write down their time manually as usual
and use Jazz' time count. They should start this procedure at the beginning of
an iteration and evaluate the data after the iteration to determine the degree of
accuracy. They should repeat this procedure for two more iterations to improve
overall statistics.

6.1.2 Interview

Developers should be interviewed after a short learning period 1.

• Did Jazz' time tracking interfere with your workow?

• How often did you forget to start or stop time tracking?

• How can we improve the workow?
1the learning period is important since developers have to get used to the new workflow

50

6.2 Consistent user interface and behaviour

Jazz is a complete development environment which o�ers

• Planning tools

• Reporting tools

• Source control

• Build Environment

• . . .

Since each tool has been developed by the same company it is likely that
they are following the same usability guidelines. Therefore, the con�guration
and administration of all parts of Jazz are consistent in its usage. Developers
as well as administrators do not have to learn how to use multiple tools.

6.2.1 Evaluate the time spent on daily tasks

Developers and administrators should track the time they need to perform daily
tasks. After a short learning period, they should repeat the same tasks with
Jazz. An evaluation will show whether Jazz reduces the amount of time to ful�ll
the work or not.

6.3 Migration to Jazz

A migration raises multiple questions which have to be solved �rst, such as

• Does Jazz o�ers the functionality we need?

• Can Jazz be (easily) extended?

• Can we customize Jazz to ful�ll our needs?

• How can we transfer our current development process to Jazz?

• How much time will a migration take?

• How much time is necessary to train developers and administrators?

• Is it possible to migrate to other systems once we migrated to Jazz?

• How much will the migration costs be (Hardware, Software, Training,
Support, Licenses)?

• How much time/money will we save if we use Jazz?

• Does scale Jazz with our needs (bigger projects)?

51

6.3.1 Using Jazz with 3rd party tools

Jazz o�ers the possibility to use Jazz' own components or (partly) 3rd party
components, such as subversion. Each organization should evaluate if Jazz'
functionality is capable to replace their existing tools if required. Once a Jazz
component has been replaced by a 3rd party component, how does it impact on
the daily workow?

6.3.2 Role based workflow

Jazz forces a development team to take roles for each task. A role de�nes what
a person is allowed to do. For example, a developer is allowed to submit code
to the repository but not to create new iterations. An administrator can create
new users but can not submit �les to the repository.

How does these restrictions impact on the current workow?

52

Chapter 7

Prospects

Although the Jazz adapter is fully functional, it only o�ers basic functionality.
In order to become more practical for everyday use, some enhancements to Agile
Planner and Jazz are required.

7.1 Enhancements

7.1.1 Preserve status changes from Jazz

During synchronization, a Jazz work item will be overwritten by its correspond- Do not over-
write Jazz' in-
formation

ing Agile Planner story card. Although this is appropriate most of the time,
speci�c information, such as status and time-spent-information should be pre-
served. An even more advanced approach will be described in section 7.2.1.

7.1.2 Work Item Types

New work items, created from the adapter, always use the type bug, even if Support dif-
ferent types
of tasks

it's a new feature or an enhancement. Although the user can change this type
information later in Jazz, the adapter should be able to set the appropriate type
if possible. Since Agile Planner de�nes type information by the colour of the
card and the colour-type-association can be changed by the user, minor changes
on Agile Planner itself might be necessary.

7.1.3 Reason for item resolution

A work items status can be set to Resolved which indicates that the task has Distinguish
completed
from deleted

been completed. Even though this might be adequate in most cases, additional
information about why a work item has been resolved can be useful to improve
project statistics. Jazz o�ers multiple resolution choices, such as Fixed, Dupli-
cate, Invalid, . . . The adapter should make use of this to distinguish completed
cards from deleted cards.

53

7.1.4 Enhanced Iteration Support

The abstraction layer only o�ers basic support for iterations. Therefore, the
adapter can not implement all required functionality to o�er a broad spectrum
of features. Even though some functionality is applicable, minor changes to the
abstraction layer might be necessary.

7.1.4.1 Multiple Iterations

Currently, the Jazz-adapter supports just one iteration. If more than one iter- Support more
than one iter-
ation

ation exist in Agile Planner, all but the �rst will be ignored. Since it is most
likely that multiple iterations exist in a plan (e.g. a plan for the iteration after
the current one) the adapter should be able to deal with multiple iterations.

7.1.4.2 Change Iteration Information

Information, regarding to an iteration, can change over the time, such as start-
or end-date. Thus, the adapter should be aware of these changes.

7.2 New Features

Although the current adapter and its integration in Agile Planner has gone
beyond a proof-of-concept, it still lacks particular functionality that would make
it more useable.

7.2.1 Configurable synchronization

Currently, Agile Planner story cards overwrite Jazz' work items on each syn- Support cus-
tomizable
synchroniza-
tion

chronization; changes on Jazz are not considered yet. However, section 7.1.1
showed that some information should be preserved. The user should be able
to customize the synchronization process. He or she could choose the following
behaviour for each attribute

Always Agile Planner Indicates that Agile Planners information always takes
priority.

Ask Agile Planner provides a dialog that shows the conicting values and o�ers
the user the possibility to choose the right one that will be used on both
systems.

Always Jazz Indicates that Jazz' information always takes priority.

7.2.2 Work Item (Change) History

The information that a work item carries can change over the time. A history
of changes could be useful, especially if �elds such as description or summary
are a�ected. Jazz o�ers the item type auditable to keep track of these changes.

54

Once implemented, the change history could be used to restore to a previous
state if they have been changed by accident.

7.2.3 Categories

A project can be divided into sub-projects, e.g. the Agile Planner project is Support sub-
projectscomprised of Agile Planner itself, Fitclipse, Green Pepper, Jazz connectivity,

. . .
Jazz supports this sort of sub-project association. This also makes it also

possible to generate more detailed reports, such as

• How much time has been spent on a sub-project?

• Which sub-project needs the most attention?

• . . .

7.2.4 Milestones

A milestone is a collection of tasks or goals which are combined into a single
event. A milestone has been reached if all tasks, designated to this speci�c
milestone, have been �nished. Jazz o�ers support for milestones by associating
iterations to milestones. This information can be used later to display how many
iterations and therefore how much time has been spent to achieve the goal.

7.2.5 Advanced GUI-support

The GUI-support is rudimentary and not very attractive at the moment. Us-
ability su�ers and therefore the motivation to use it.

7.2.5.1 Configuration dialog

A con�guration dialog would make the con�guration easier and less error-
prone. Besides a dialog to enter username and password, the con�guration-
requirements discussed in 7.2.1 are best represented by GUI elements.

7.2.5.2 Change History

If work item change history (refer to 7.2.2) is implemented, a dialog could o�er
all available versions and a quick preview of the entire story card. An additional
option restore could o�er a user-friendly way to restore previous states.

55

Chapter 8

Conclusion

The need for more advanced tools exists, such as tools which support syn-
chronous distributed planning and reporting. Although no single tool encom-
passes all of these demands, the combination of these tools do. At the same time
it is not necessary to reinvent the functionality that the chosen tool doesn't sup-
port. Agile Planner now successfully works with Jazz and uses Jazz' features to
make Agile Planner more valuable.

As a result, Agile Planner can be used to perform distributed synchronous
planning meetings. Jazz can be used to track the progress of a project and to
create reports, illustrated in Figure 8.1, 8.2, and 8.3.

Although Agile Planner Jazz integration caused a few problems, it took
less e�ort to combine both system than to reinvent reporting capabilities from
scratch in Agile Planner.

56

Figure 8.1: Report: number of tasks assigned to developers.

57

Figure 8.2: Report: number of open tasks vs. closed tasks.

58

Figure 8.3: Report: number of distinct tasks di�erentiated by their type.

59

Appendix A

Use Case Description

This chapter documents use cases in a formal way. Each use case is described
by several sections.

Summary A brief description of the use case.

Actors Several actors might be involved. Each use case is comprised of a primary
actor that initiates the use case or provides essential information to start
with. There might be one or more secondary actors who are involved in
the use case.

Precondition All preconditions must be true to start a use case.

Description A brief description of the action. The sequence of actions will be executed
in the same order as described. It describes the behaviour of the system
and not the implementation itself.

Exceptions An exception can occur during execution. Each exception belongs to a
line in the description �eld.

Postcondition Describes the condition if the execution stops, usually by execution of the
last line of the description �eld.

The following use case example explains a login procedure.
Summary Login to the system using username and password
Actors User (primary), System (secondary)
Precondition User's account must exist and be active
Description [1] Users enters username and password into the �elds on the login

screen
[2] Users presses login-button
[3] System checks username and password

Exceptions [3] Password is invalid
Postcondition User has been logged in successfully or must provide login-

information again when login-procedure was not successfull

60

A.1 Story Card added on Agile Planner

Summary Add work item to Jazz when a story card has been added on Agile
Planner

Actors Agile Planner (primary), Jazz (secondary)
Precondition Story card has been added successfully on Agile Planner, corre-

sponding work item must not exist on Jazz
Description [1] Check that corresponding work item does not exist

[2] Create work item
[3] Copy attributes from story card to the work item
[4] Save work item on Jazz

Exceptions [1] Corresponding work item already exists
[4] Can not save work item

Postcondition Work item has been added successfully

A.2 Work Item added on Jazz

Summary Add story card to Agile Planner when a work item has been added
on Jazz

Actors Jazz (primary), Agile Planner (secondary)
Precondition Work item has been added successfully on Jazz, corresponding

story card must not exist on Agile Planner
Description [1] Check that corresponding story card does not exist

[2] Create story card
[3] Copy attributes from work item to story card
[4] Save story card on Agile Planner

Exceptions [1] Corresponding story card exists
[4] Can not save story card

Postcondition Story card has been added successfully

A.3 Story Card deleted on Agile Planner

Summary Story card has been deleted on Agile Planner, corresponding work
item has to be set to resolved

Actors Agile Planner (primary), Jazz (secondary)
Precondition Story card counterpart exists on Jazz
Description [1] Check that corresponding work item exists

[2] Set corresponding work item to resolved
[3] Save altered work item

Exceptions [1] Work item does not exist
[3] Can not save work item

Postcondition Work item has been set to resolved

61

A.4 Story Card altered on Agile Planner

Summary Story card has been altered on Agile Planner, Jazz' counterpart
has not been changed

Actors Agile Planner (primary), Jazz (secondary)
Precondition Story card exists on Agile Planner and it's counterpart on Jazz
Description [1] Retrieve corresponding work item

[2] Story card changes are copied to work item
[3] Save altered work item

Exceptions [1] Work item does not exist
[3] Work item can not be saved

Postcondition Jazz Work item has been updated

A.5 Work Item altered on Jazz

Summary Work item has been altered on Jazz, Agile Planner's counterpart
has not been changed

Actors Jazz (primary), Agile Planner (secondary)
Precondition Work item exists on Jazz and it's counterpart on Agile Planner
Description [1] Retrieve corresponding story card

[2] Copy changes to story card
[3] Save altered story card

Exceptions [1] Story card does not exist
[3] Story card can not be saved

Postcondition Agile Planner Story card has been updated

A.6 Work Item and the associated Story Card
are simultaneously altered

Summary Resolve conicts and update Work item
Actors Jazz (primary), Agile Planner (secondary)
Precondition Work item and Agile Planner's counterpart has been altered si-

multaneously
Description [1] Retrieve corresponding work item

[2] Story card changes are copied to Jazz|Work item changes will
be overwritten
[3] Save altered work item

Exceptions [1] Work item does not exist
[3] Work item con not be saved

Postcondition Conict has been resolved and work item has been updated

62

A.7 Iteration added on Agile Planner

Summary Add previously created iteration on Jazz
Actors Agile Planner (primary), Jazz (secondary)
Precondition Iteration has been created on AgilePlanner
Description [1] Check that iteration doesn't exist on Jazz

[2] Create iteration on Jazz
[3] Save iteration on Jazz

Exceptions [1] Iteration already exists on Jazz
[3] Can not save iteration on Jazz

Postcondition Iteration has been added on Jazz

A.8 Story Card added to Iteration on Agile Plan-
ner

Summary Add work item to an iteration on Jazz
Actors Agile Planner (primary), Jazz (secondary)
Precondition Story card and iteration exist on Jazz
Description [1] Check that corresponding work item exists on Jazz

[2] Check that iteration exists on Jazz
[3] Set work item's iteration on Jazz
[4] Save work item on Jazz

Exceptions [1] Work item does not exist
[2] Iteration does not exist
[4] Work item can not be saved

Postcondition Work item's iteration has been set to current iteration

A.9 Work Item added to Iteration on Jazz

Summary Add story card to current iteration on Agile Planner
Actors Jazz (primary), Agile Planner (secondary)
Precondition Story card and iteration exist on Agile Planner
Description [1] Check that corresponding story card exists on Agile Planner

[2] Check that iteration exists on Agile Planner
[3] Set story card's iteration on Agile Planner
[4] Save story card on Agile Planner

Exceptions [1] Story card does not exist
[2] Iteration does not exist
[4] Story card can not be saved

Postcondition Story card has been added to iteration

63

A.10 Work Item removed from Iteration on Jazz

Summary Remove the association of an iteration to a story card on Agile
Planner

Actors Jazz (primary), Agile Planner (secondary)
Precondition Story card counterpart must exist
Description [1] Check that story card exits

[2] Remove iteration from story card
[3] Save story card

Exceptions [1] Story card doesn't exist
[2] Story card can not be saved

Postcondition Association with iteration has been removed

A.11 Story Card removed from Iteration on Ag-
ile Planner

Summary Remove the association of an iteration to a work item on Jazz
Actors Agile Planner (primary), Jazz (secondary)
Precondition Work item counterpart must exist
Description [1] Check that work item counterpart exists

[2] Remove iteration from work item
[3] Save work item

Exceptions [1] Work item doesn't exist
[2] Work item can not be saved

Postcondition Association with iteration has been removed

64

Appendix B

Acronyms

API Application Programming Interface

BIRT Eclipse Business Intelligence and Reporting Tools

GUI Graphical User Interface

65

Bibliography

[ACM] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns.
Prentice Hall, second edition.

[CBC+06] Fang Chen, Robert O. Briggs, Gail Corbitt, Jay F. Nunamaker Jr.,
James Sager, and Stanley C. Gardiner, editors. Project Progress
Tracking Template - Using a Repeatable GSS Process to Facilitate
Project Process Management, 2006.

[Kru] Philippe Kruchten, editor. Architectural Blueprints - The 4+1 View
Model of Software Architecture.

[Sie] Johannes Siedersleben. Moderne Softwarearchitektur. dpunkt.verlag,
�rst edition.

66

Index

Abstraction Layer
components

architecture, 31
component manager, 31
query builder, 29
service lookup, 29
work item copy manager, 31

Abstraction layer, 27
Business Delegate, 28

Adapter
components, 16
purpose, 18
realization, 37

Agile Planner
integration, 37
problems, 49
reporting, 8

Architecture
overview, 39
view

development, 39
logical, 39
physical, 43
process, 42
scenarios, 43

Attributes, 21
Agile Planner, 22
Jazz, 23
mapping, 24

Component Manager
abstraction layer, 31
purpose, 21

Converter, 19
conversion

story card to work item, 34
work item to story card, 34

purpose, 19

Error Facade
purpose, 19

Jazz
migration to, 51
problems

documentation, 48
functionality, 48
updates, 49
useability, 48

reporting, 8

Planning
distributed, 3, 9
synchronous, 5, 9

Progress tracking, 5

Reporting, 6
Agile Planner, 8
Jazz, 8

Requirements
functional, 14{15, 60{64
non-functional, 15
problems, 47{48

Synchronization
asynchrounous, 12
realization, 37

iterations, 37
story card updates, 39
story cards from Jazz, 39

synchronous, 11

Work Item
accessing

client, 16

67

server plug-in, 15
conversion, 34
copy, 31
prototype, 26

68

