
The Role of Blogging in Generating a Software Product Vision

Shelly Park, Frank Maurer
University of Calgary, Department of Computer Science, Calgary, Alberta, Canada

{sshpark, fmaurer}@ucalgary.ca

Abstract

The core problem with requirements engineering is

that often even the customers have no clear idea what
they need; they don’t know how to express it; or even if
they express it really well, what they thought they need
wasn’t what they really need. Despite having the
technical skills and being able to speak the domain
language, generating requirements for software
developers by the developers is found to be quite a
difficult task. We discuss four types of strategies for
expressing one’s desire for requirements. We analyze
how stories turn into consensus.

1. Introduction

It is estimated that 85% of the defects in software
originates from the requirements [1]. Part of the
problem is vague requirements due to a customer’s
uncertainty about their needs, which account for 49%
of the requirements problem [1]. The core problem is
often even the customers have no idea what they need;
they don’t know how to express it; or even if they
express it really well, what they thought they need
wasn’t what they really need. Rittel and Webber
defined a “wicked problem” as figuring out what the
problem is the problem. Wicked problems have no
stopping rule; solutions to wicked problems are not true
or false, but good or bad; there is no immediate and no
ultimate test of a solution to a wicked problem [2].

Software developers get trapped in a wicked
problem dilemma when they become a customer or a
domain expert and need to generate requirements for
other developers. Despite having the technical skills
and being able to speak the domain language of the
software development discipline, generating
requirements is found to be quite a difficult task.

This is a short position paper that looks into the
knowledge creation in product visioning process for a
software tool. Particularly, we are looking at how
stakeholders express their wishes for a new tool that no

one has yet seen. What makes this particular tool
visioning process interesting is that it is happening over
the Internet through blogs and online forums.

We are starting to look at the role of blogging for
software tool visioning process, the types of knowledge
that people present in this media form, how people
express their wishes and what kind of requirements are
being generated for the tool through this
communication form. Basically, what we are analyzing
is a process of discussions and consensus building that
is something between pure anecdotal evidence/single
expert opinion and hard-core empirical studies as in a
traditional scientific approach. In a sense, this Internet-
based process can be seen as an alternative to
traditional peer review in science. It may be faster but
it is more error-prone process. This paper will not
delve into the actual tool requirements that were
generated so far, but discuss the processes and
behaviors observed during the requirements generation
through this communication form.

2. Motivation

The tool that we are studying is an executable

acceptance testing tool or story testing tool. Recently,
there is a strong desire in the requirements and testing
communities to create a link between testing and
requirements engineering, because they both have a lot
to gain from each other [3]. The concept of creating an
executable and testable requirements specification
recently gained a lot of interest and the Agile software
development community is organizing various
workshops to inspire a group of volunteers to build a
tool that can help write requirements in a testable and
executable way. Andrea [4] recently published an
article describing what her vision of such tool looks
like.

Our interest in this tool building process is multi-
fold. While we were ultimately interested in joining
this group to help build such tool, we were also
interested in observing the social phenomenon that was

driving this loosely associated group of developers to
come up with the requirements for such tool(s).
Although they shared a very similar vision of what the
success may look like, everyone had a very different
view of what the implementation may look like. In
essence, these loosely associated practitioners were
stakeholders for a tool building project that is still
trying to discover what its requirements should be.

The first generation of tools that mapped the
requirements to the software implementation was
developed already several years ago. For example, Fit
[5] is one of the first generation of such tools. Some
developers used unit tests to achieve the same goal.
However, practicing this idea in real development
projects was much harder, because these tests needed
to be read and written by customers who have no
software engineering background. There was also the
question of how much is good enough.

Through trial and error, many practitioners gathered
empirical knowledge or often just hunches of what
works and what doesn’t. What is fascinating about this
process is that this loosely associated and globally
distributed group of practitioners are continuously
generating and adding more knowledge to the
community without a centralized control or a
centralized repository, but rather through many blog
sites and message boards. A blog entry from more
notable bloggers would trigger discussions. The blog
readers would respond to the blog entry by creating
another new blog entry. Such actions would propagate
through various development communities.

Because the knowledge is scattered throughout the
Internet, we started to collect and compare people’s
opinions and views. We want to find out what the
requirements for this tool look like once we collect
everyone’s opinions and how the consensus was
reached in this online community.

3. Methodology

The research began when we participated in the first

functional testing tool workshop organized by Agile
Alliance in October 2007 [6]. This particular tool-
building community keeps track of each other’s
progress mainly through a message board [7]. We
started our data collection by going through the entries
in the message board and branching to blogging sites as
they were recommended by the users in the message
board. The blogging site may recommend another
blogging sites, then we branched again to collect more
data from the recommended blog sites. By doing so, we
had a collection of social networks of people who read
and had influences on the blogger and we can also

gather what kind of topics their colleagues were
interested in. What happened was a very large network
of message threads consisted of message boards, blogs,
tool websites and book/article/thesis recommendations
as what this group of practitioners thought were
relevant and knew about.

We pursued content analysis of the entries and
categorized the contents into four main headings:
existing tools, the writer’s training background and
jobs, principles or methodologies, and opinions. Based
on the data provided, we looked at how people
expressed their wishes or explained a concept in their
own words. What we noticed is that there was a pattern
to the types of requirements that people specified and
also how they specified it.

While we are still in the data collection phase, we
have browsed 11 sites with roughly 1158 pages so far.
We are still around message #100 for the main
discussion forum [7]. People mentioned 21 tools that
they thought were important or relevant for this tool
development. We discovered 12 principles or
methodologies that people thought were relevant for
this tool building project. We collected 18 different
types of opinion categories. Most people who
contributed articles to this data worked as a test
automation engineer, although they had a wide variety
of jobs in their career including developer, project
manager, coach, process analyst, researcher and an
entrepreneur. Almost everyone is capable of
programming code. Most people were currently
engaged in consulting roles and they worked on several
development projects to draw their opinions from.

4. Requirements by Stories and Demo

The community is still in the requirements
generation stage. People are still bouncing each other’s
ideas and figuring out what knowledge needs to be
explicitly communicated. They are expressing their
needs and wants based on their past experience. But the
group achieved consensus on a few topics.

The general opinions so far from the community are
as follows. Some projects succeeded, but not everyone
saw the results as they originally envisioned using
executable acceptance tests. Maintaining the
requirements specification became a hassle. Customers
couldn’t write requirements in a testable way. Teaching
customers how to write and use Fit specification was
also a hassle. Developers didn’t like Fit as much as
xUnit tests, so executable specification didn’t become
popular among the developers as much as test-driven
development. Requirements elicitation involved a lot of

communication but the tool didn’t fully support or
facilitate better communication with the customer.

The general opinion is that they saw an opportunity
in this concept, but something seems to be missing
when they try to practice it. The community is trying to
express in words what that missing component might
be. If they can figure out that missing component, they
might be able to create a requirement specification and
develop a tool to address the problem.

We tried to figure out how people express that
mysterious missing component. The process is like
blind men trying to express what an elephant looks like
by touching only a part of an elephant in a dark room
[8]. Nobody has the whole picture, but they are trying
to express their experience in a way that can help the
community reach a consensus on the requirements.

From these discussions, we noticed that there are
two forms of communication for expressing their
requirements wishes: story telling and demo. The
stories are always told in three distinct ways. There are
three types of stories: metaphor stories, war stories and
editorials.

By “Metaphor stories”, we mean the contributor is
specifying the requirements by alluding to similar
objects or experiences. Often they convey the kinds of
satisfaction that they want to experience through the
new software tool instead of how it should be done. For
example, one of the contributor said, “I’ve been
learning piano this past year…and I’m completely in
love with musical notation. It is aesthetically beautiful
and very powerful. (Msg #9)”[7].

The second type of stories is war stories. The
contributor tries to convey a situation where the idea
being presented either worked or didn’t work. They
may even describe how they implemented a tool. They
add their view of the situation, but they do not get into
a deep methodological debate or complex analysis
behind what they saw or experienced. For example,
here is an example that tells one’s experience of
integrating requirements with testing. “My next
exposure to agile was as the head of a larger test
organization when the development team decided we
needed to do a crash conversion to Scrum to meet some
insane – I mean visionary – requirements and product
deadlines. So in crash courses of reading and Scrum
master training, the hardest part of that conversion was
figuring out how to accommodate testing.(Msg #7)”[7].

The third type of stories is editorials. These entries
have strong opinions and the contributor often tries all
arsenals at hand to either reject or promote an idea.
These articles try to emotionally appeal to others why
the readers should also feel the same way. For example,
here is an example contribution. “FIT’s

reflectopornographic architecture introduces a great
deal of overhead when writing and maintaining tests
and diagnosing test failures. That overhead might be
worth it if FIT helps you communicate with users and
customers. However, if the FIT specifications are not
read by anyone outside the development team, then the
overhead is just not worth it”[9].

There is a lot of communication happening between
the stakeholders and they do this through these three
types of stories. Ultimately, all three forms of stories
are meant to influence the requirements in some way
and meant to convince others why their viewpoint is
important.

Software developers are domain experts in software
engineering. The uniqueness about this group of
domain experts is that they can develop the tool by
themselves without needing another group to make the
tool for them. Therefore, if words do not express what
they are thinking about, these developers would simply
build the tool first, present to the community and see
how people react. The tools are readily downloadable
and any developers can readily try the tool. We
categorized this as “requirements by prototyping”. If
this was any other group of domain experts, this may
involve drawing, playing or showing. The action of
creating such tool results in an artifact that everyone
can point at. Thus, we call this type of presentation as
“requirements by demonstration” or “requirements by
prototyping”.

The effects of these four types of communication
method are still unknown. Do certain types of
communication methods work better than others in
generating requirements? For example, could metaphor
stories help direct the community to simpler, more
abstract solutions? Does the act of comparing and
contrasting between different metaphors help create
requirements better? How useful are war stories? How
do others perceive one man’s experience and integrate
that information into the requirements? Could editorials
help shape the direction for the community? Could
tools without requirements help or hinder the process?
Another important aspect is the different impact factors
that people have. The same statements coming from
more notable and respected person in the community
may have more impact than a novice person. These are
questions that are still unanswered and we are still
seeking more answers.

5. Interpreting the Stories

As mentioned in section 2, our analysis shows that

people mentioned 21 tools, 12 principles or
methodologies and 18 different types of opinions. The

authors suspect that these are not an exhaustive list.
The product visioning or the problem structuring
process is much closer to creative brainstorming
sessions than a process that simply collects software
requirements features.

People come into the brainstorming session with
certain opinions or beliefs. Thus, people tend to
respond to topics that they can mostly agree on, rather
than topics that they do not necessarily have any
interest in or have any knowledge about. People do not
necessarily disagree with another person’s opinion.
Even if they do, they will simply start another thread
rather than respond directly to the existing thread. Our
observation is that people try to express their opinion in
a way that produces a least amount of conflict with
other contributors. Therefore, the contrasting views are
not easy to pick up in this online medium. The
contributors need to have the necessary knowledge to
actually appreciate what the other contributors are
saying. There are often a lot of unspoken gaps between
the readers and, thus, in what they can appreciate.

What eventually dominates the requirements
discussion is the one with the most amounts of
interested contributors or the topics that most number
of people knows about. While that observation is
obvious, it has some fundamental implications. For
example, out of 21 tools mentioned, only 6 tools were
discussed more than once. Out of the 12 principles, 5
of them were discussed by more than one person. Out
of the 18 opinion types, 5 opinions are discussed by
multiple threads. Generally, only a few opinions or
tools get talked about more than once. Unfamiliarity
with certain topic is what causes a communication rift
between different stakeholder groups.

There are three main categories of contributors:
developers, testers and business people. What becomes
very obvious is the interpretation of the definitions.
Some of the equivalent names for executable
specification include functional tests [10], customer
tests [11], specification by example [12] and scenario
tests [13] among many. Although they mean more or
less the same thing, their word choice shows different
preferences on how they choose to view this concept.

Testers interpreted ‘testing’ to mean an automated
testing framework much the same way other
automation testing tool or testing scripts work. They
cared about finding defects and performing regression
tests. Developers interpreted ‘testing’ to mean test-
driven development. They worried about the overhead
of maintaining another set of tests in addition to unit
tests and they cared a great deal about test refactoring.
People from more business oriented view interpreted
them as in knowledge transferring artifact. Therefore,

this group talked about tacit knowledge, information
visualization and user centered design.

The details of the social networks and how the
consensus was reached will be discussed more in our
future works. The summary of the actual requirements
will also be discussed further in our future works.

5. Conclusion

Blogging is an interesting form of communication
medium and an interesting venue for collecting and
discussing empirical data for generating a product
vision for a new software tool. The difficult part of
gathering information through blogs is that the context
information for different topics is often hidden to most
contributors and conflicting information is not readily
available to detect. Therefore, the contributors make
decisions without fully appreciating the implication of
the other sides of the issues.

10. References

[1] Hooks, I., Farry, K. Customer-Centered Products:
Creating Successful Products through Smart Requirements
Management. American Management Association, New
York, NY, 2001
[2] Rittel, H., Webber, M. “Dilemmas in a General Theory of
Planning”, Policy Sciences, 4, 155-169, 1973
[3] Graham, D. "Requirements and Testing: Seven

Missing-

Link Myths," IEEE Software, vol. 19, pp. 15-17, 2002

[4] Andrea, J., “Envisioning the Next Generation Testing

Tools”, IEEE Software, May 2007

[5] Fit, http://fit.c2.com

[6] Agile Alliance Functional Testing Tools Visioning

Workshop, Oct 2007,

http://www.agilealliance.org/show/1938

[7] Agile Alliance Functional Testing Tools Discussion

Forum: http://tech.groups.yahoo.com/group/aa-ftt

[8] Saxe, J., “The Blindmen and the Elephant”,

http://en.wikisource.org/wiki/The_Blindmen_and_the_El

ephant

[9] Pryce, N.,

http://nat.truemesh.com/archives/000702.html

[10] Beck, K. Extreme Programming Explained: Embrace
Change, 1/e. Addison-Wesley, Boston, MA, 1999
[11] Jeffries, R. “What is XP?” Online:
http://xprogramming.com/xpmag/acsFirstAcceptanceTest.ht
m
[12] Fowler, M. “Specification by Example”. Online:
http://www.martinfowler.com/bliki/SpecificationByExa
mple.html
[13] Kaner, C. “Cem Kaner on Scenario Testing: The Power
of ‘What-If…’ and Nine Ways to Fuel Your
Imagination”, Better Software, 5(5):16–22, 2003

