
Scaling Agile Methodologies for Developing a Production Accounting
System for the Oil & Gas Industry

Harprit Grewal
CGI

harprit.grewal@cgi.com

Frank Maurer
University of Calgary

maurer@cpsc.ucalgary.ca

Abstract

This report discusses using Agile
methodologies in what can be described as a
medium to large scale project [1]. In this report,
we will discuss the impact Agile methodologies
had on the project over the period of two and half
years and the lessons learned while scaling agile
techniques to a relatively large team. We will
discuss some interesting experiences – good and
bad – encountered during the course of this
project.

1. Introduction

Oil and gas companies use “production
accounting” to account for products produced and
the need to allocate the correct shares to various
stakeholders. Production Accounting tracks oil &
gas and their by-products as they travel through a
complicated network of Wells, Batteries,
Gathering System, Gas Plant, and End-point
facilities.

This paper discusses the Production
Accounting Solution (PAS), an enterprise
application developed by CGI together with four
upstream oil & gas companies, which automates
many of the tasks of the production accountants.
The PAS project is in its 3rd year of development.
The current software development team consists of
approximately 80 developers, business analysts,
and QA staff.

The large number of stakeholders involved in
the domain and the practices carried out by various
players make the successful development of such a
system very challenging. The company has made a
number of prior attempts (each using non-agile
methods) to commence the PAS project, but each
failed. Given the increasing number of world-wide
Agile success stories, the architects of the PAS

project decided to use Agile practices in
developing the solution.

The Production Accounting Solution was born
out of a need to will replace four legacy systems,
each of which were developed over a decade ago.
None of these systems had all the features that
would totally automate the tasks of the production
accountants. More importantly, getting new
features added to these systems and getting
support for the existing features was getting
increasing difficult. Some of the major players
decided that it was time to agree on a common
solution that would ultimately become the industry
standard.

This project is an interesting case study as
there are few projects of this size that have used
Agile in its purest form. There are numerous
reports on employing agile methodologies, but
most of them have focused on improving a failing
process or using agile from scratch on smaller
sized projects [2]. What makes this project
different is that it is one of the few projects of this
size that has followed agile practices from the
beginning and continues to do so.

2. Technologies and Methodologies

During the initial stages of the project (end of
2003 and beginning of 2004) we made a number
of technical decisions: the project would be
developed using the Java 2 Enterprise Edition
platform; we would use Oracle as the database
backend; Eclipse was adopted as the development
platform; and we chose Concurrent Versioning
System for version control.

Since the project was large and complex in
nature and most of the areas were new to the
project development team, Agile methodologies
were suited to mitigate the potential risks. We
believed that the biggest risk on the project was
understanding the domain and delivering what the
production accountants wanted. Having the

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

business representatives work with the
development team mitigated this risk by
decreasing the feedback loop. We chose eXtreme
Programming as the development process because
the idea of developers communicating with the
business users through stories and developing the
system in small chunks appealed. However, there
was some initial opposition to pair-programming
as it was deemed to be expensive. The
development team had to convince the sponsors
that this was indeed beneficial and would pay in
the long run. After some negotiation, the approval
for pair-programming was given.

Each of the four sponsor companies provided
between two to four full-time production
accountants to work with the development team.
These business users were co-located with the
development team in an open environment where
they shared the pods (a collection of work stations
arranged in certain configuration) with the
developers and were, essentially, part of the
development team. We referred to these as cross-
functional teams as it was the implied job of the
production accountants to impart their knowledge
to the developers and for the developers to
explain, at a high level, to the production
accountants what was involved in developing the
stories so that the business can understand that
some stories that look easy on the surface can have
ripple affects on the system and they need to treat
those stories as non-trivial.

We decided very early in the project to hold
daily Scrum meetings to manage the progress of
sprint and product backlogs. To ensure that the
meetings were brief we insisted that team
members only talk about relevant information and
anything that needed extended discussion be taken
off-line.

Test driven development was a major part in
the development process. One of our development
rules was that no source code be checked in
without its accompanying tests. The tests were
mostly functional tests and were mostly resistant
to implementation changes. Initially, the tests were
executed against the database, but as the number
of tests grew, running the tests was becoming a
bottleneck. In order to reduce run time and speed
up the feedback loop from tests (currently sitting
at about 16000 JUnit tests), we developed an in-
memory version of the tests which gave
developers feedback in less than fifteen minutes.
Every effort was, and is, made to speed up the
tests even more. The time spent in writing and
running these tests was a worthwhile investment.
Cruise Control rebuilt the system each night and

ran the test suite. Any failures resulting from the
nightly build were fixed as soon as possible.

3. How Agile Played Out

Large-scale Agile was a new experience for
most of the development team. Most staff had
worked on smaller projects with varying use of
agile methodologies. PAS was not one hundred
percent XP, as some tasks were trivial and did not
need pairing.

We decided at the start of the project not to
release the system into production after every
sprint. The reason for this was that PAS was a
replacement system intending to replace systems
that have been in production for ten to twenty
years and while there are strategies available to
phase in the new system and phase out the old one,
they all come with heavy costs of implementation,
training. Plus, the sponsor companies wanted to
avoid their users having to juggle between two
systems. We decided that PAS would be made
available after some milestones were achieved, the
most important of which was that the system
should be able to perform all the tasks that the
current systems were performing.

For the first year, the development team was
small comprising of eight to ten developers with
the same number of business people. New
developers were often hired in small batches, of
usually 2 or 3 developers, in order for them to pair
with the more experienced developers and
assimilate the patterns used on the system. The
developers were selected based not just on their
technical abilities but their willingness to be part
of a dynamic team and learn a radical new way of
developing software. Due to this selection process,
the turnover rate on PAS was extremely low. Even
those who left the project said that they were
happy with the project, but had to leave for other
reasons. Overall, the development team was highly
motivated and wanted the project to succeed.

4. Adding Resources to the Project

The development started in March 2004 when
the two team leads and the development manager
started implementing the framework on which the
system would be developed. The first release of
the system happened on April 2nd, 2007. Most of
the development for the first release was
completed by the end of December 2006.

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

Developers per Sprint

0 0 2
9 9

13 13 1313 14 14 16 18 1818 18 16 13
17 20 20

26 26 28 27 27 27 29 32 3536

8 10
11

6 4
0 1 2 4 5 4 3 1 1 1

5 8 14
10 7 9

4 5
5 6 8 9 8 4 1 0

2
2 3 2

2

0

5

10

15

20

25

30

35

40

Spri
nt

2

Spri
nt

4

Spri
nt

6

Spri
nt

8

Spri
nt

10

Spri
nt

12

Spri
nt

14

Spri
nt

16

Spri
nt

18

Spri
nt

20

06
 01

 (S
pri

nt
22

)
06

 03
06

 05
06

 07
06

 09
06

 11

Dev # New (<3 mon) Mumbai

Figure 1. Developers on PAS

Figure 1 shows the number of developers for
every sprint from the beginning till November
2006. For the first year, the development team
was small comprising of eight to ten developers
with the same number of business people. The
project reached its maximum number of
developers in July 2006. Hiring happened mostly
in small numbers so that the new team members
could more easily be integrated into the
development effort. Not all the developers on the
project did necessarily write Java code all the time.
There are some developers who would develop
tests using Ruby and some build WebFocus
reports. The numbers also include the developers
from Mumbai (India) who were part of this project
for about 5 months.

The project was divided into three main
streams focusing on three areas of the domain. The
product owner was responsible for coordinating
the activities between the teams.

A GUI team was used by the main teams as
needed; and there was one team responsible for
refactoring the system architecture and design.

This last team’s main goal was to maintain a
backlog of items that need to be cleaned up and to
make the codebase more intuitive and manageable.
We chose to have a separate team for refactoring
because the developers did not understand the
domain well in the beginning and there were parts
of the system that were used by other sub-teams
and could have had affected them. The
refactorings team (usually senior developers)
would look at parts of the system and complete the
refactorings with minimal impact on the progress
of the development teams.

Towards the end of the project, a performance
team was formed to identify and improve
performance bottlenecks of the system.

5. Scaling Agile Practices

5.1. Scrum of Scrums

As the team grew, the daily standup meetings
were getting longer and losing focus. It was
decided that each team would have its own
individual stand-up and the team leads would have
a Scrum of Scrums to discuss the cross-team
issues coming out of their teams’ stand-ups. This
freed up the teams to focus their backlogs. Scrums
again were meaningful for the developers as they
could actually make sense of what the other
members of their team were working on.

The teams did not run totally independent of
each other. For instance, each team gave end-of-
sprint demonstrations to the entire project, which
was useful for sharing knowledge about new
functionality recently added to the system by each
teams.

The Scrum of Scrum was a little more formal
than a daily standup. A team lead would tell others
team leads what stories/bugs their team members
were working on. They would also discuss the
burndown charts and discuss issues that would
prevent them meeting their sprint goals. This
would allow other team leads to know if they
needed to re-prioritize something in their own
stream or if it would impact anything what they
were working on. Each team lead would go back
and share relevant information with their team
members.

It was suggested, at some point, that a team
member (not necessarily the team lead) from each
team would go to other teams and relay what
his/her team was working on so that they can be
aware of any impact on their work. This was
rejected by developers as most of the time the
information shared was not useful. Therefore, we
decided that the team lead would share highlights
of what the other teams were working on and it
was up to the people who might be affected to
contact and talk to the relevant developers.

5.2. eXtreme Programming – When and
How

PAS team leads strived to disseminate
knowledge about the system by rotating team
members between teams and mandating pair
swapping every few days. As the project
progressed and neared its deadline, teams
sometimes chose to drop some agile principles. As

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

a result of this, some people started to work
individually either to work on trivial features
and/or bugs. Sometimes this became a habit. One
of the team leads noticed that code quality was
starting to degenerate as a result of lack of pair-
programming.

Teams were asked for alternatives to pair-
programming in order to maintain the code
quality. The alternatives such as code inspection
were rejected as boring, time consuming, and
biased. All teams agreed that pair-programming
was the best approach going forward.

Individuals sometimes worked alone for trivial
changes. The senior members were given the
implicit task of ensuring that enough pairing was
going on in the team and that developers were
pairing with not just the same person but with all
the developers on the team.

5.3. The Workings of Agile Teams

As the project grew, the teams were still
located on the same floor but worked in separate
team pods. Each team had their own set of
business representatives and testers. However, the
developers were free to go to other pods and talk
to other business users if they thought they would
get a better answer there. As they arrived, new
team members were introduced to the project
during boot-camps which explained what the
system was trying to achieve and what patterns
were used in the system. During the course of the
project, a testing course was offered three times
and attendance for the new members was
mandatory while the experienced developers were
free to join if they needed a refresher.

We initially intended for team members to
swap between teams in order to pick up
knowledge from other areas, but, this did not
happen. Each team was implementing a very
specialized area of the system and the learning
curve was too steep for the developers to leave
their own field and efficiently pick up the
workings of a different area. Team members
focused on implementing functionality within their
speciality and resisted swapping between teams.

6. Agile, PAS, and Offshore
Development

In order to save costs while increasing the
productivity of the team, management decided to
recruit the services of the developers from CGI’s
India office. A pilot was started where three team

members from India, (one development manager
and two developers) joined the project in Calgary
for three months to understand the methodology
and the domain. They then returned to India and
tried to work remotely. However, due to large time
difference between Calgary and India
(approximately 12 hours), it was difficult for the
Indian team to contribute. Effective
communication, one of the main pillars of agile
approaches, was difficult to sustain as India
developers had no access to the business people
during their normal business hours unless they
worked night shifts. Also, since there was no
written documentation, conversation by phone for
every little detail seemed awkward.

We tried many ideas to make use of the
resources in India. For instance, India team was
given the task of working on bugs. However, we
found that fixing bugs was sometimes as
complicated as writing new stories because the
developers there needed information to fix the
issue without making any assumptions. That too
needed access to the business users, which was the
most difficult task. It is to be noted that PAS used
bug-cards to log bugs, rather than storing them
electronically. Using the India team to fix bugs
meant that we would have incurred the overhead
of storing and maintaining them electronically, as
well the possibility of the attached documentation
becoming outdated.

Even though the developers in India were
extremely talented and experienced, they found
themselves unable to contribute fully as they did
not have the necessary resources at their disposal.
Therefore, we decided that the project would not
use this facility.

Having the client close to the developers not
only helps in developing code without making
assumptions, it also helps productivity as the
feedback loop is considerably shortened. Keeping
the project completely localized in Calgary meant
some higher costs labor compared to moving a
part of it to India, but it was worth keeping the
system as close to reality by getting continuous
verification and feedback from the business users.

7. Effects of Scaling Agile on
Productivity

Data was collected for the 32 sprints [1].

Sprint Test Code

Lines

Source

Code Lines

Test Source

Ratio

01 15889 9773 1.6

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

02 23094 14738 1.6
03 32149 21898 1.5
04 36611 26539 1.4
05 55028 30890 1.8
06 67741 39737 1.7
07 82498 51505 1.6
08 94690 55034 1.7
09 109534 64051 1.7
10 121446 71539 1.7
11 131968 80309 1.6
12 139354 85539 1.6
13 153269 97306 1.6
14 163423 106762 1.5
15 173817 114921 1.5
16 190395 122263 1.6
17 204126 151493 1.3
18 217843 160541 1.5

19 233657 170826 1.4

20 183442 183442 1

21 269634 194728 1.4

22 287591 208509 1.4

23 291345 217079 1.3

24 315160 227663 1.4

25 337281 235987 1.4

26 346227 248247 1.4

27 367101 262384 1.4

28 372190 265886 1.4

29 385159 270948 1.4

30 406993 279785 1.5

31 419903 296380 1.4

32 432932 309595 1.4

Table 1. Test lines and source lines and

ratio

As can be seen from Table 1, it is clear that the
amount of test code was always more than the
production code. For every line of production
code, there was anywhere from 1.3 to 1.6 lines of
test code written. The only change in the
consistency was from sprint 16 to sprint 17 when a
lot of tests were removed that supported only a
small amount of production code (and thus were
deemed unnecessary and/or redundant). The
number of tests and assert statements increased
consistently over all sprints.

When new members were added, team
productivity was decreased and less test and
production code was created per developer hour.
Experienced developers would have to pair with
the new developers that caused their productivity
to decrease. After the new team members
familiarized themselves with the project, team
productivity went up again to the average level.

Agile methodologies work better with a limited
turnover in the team. On a project of the size and
duration like PAS, people will leave. One
intermediate developer left the project in
September 2005 (Sprint 18) and four other senior
developers left at the end of October 2005 (Sprint
19). This had an impact on the project as new
developers were brought in and it took time to
train them in the domain as well as the
methodology that we were using. Not only were
five developers lost, another five developers
effectively were slowed down in training the new
hires before they could contribute to their fullest
ability.

Not every phenomenon in the data can be
explained with other empirical data. Motivation
can also play a big part in affecting productivity.
In Peopleware, DeMarco and Lister note that “the
major problems of our work are not so much
technological as sociological in nature” [3].
According to them motivation is one of the key
success factors in software development along
with Communication, Staffing, and Low turnover.
As developers work on a project for an extended
period of time, their motivation tends to be
reduced. Therefore, some decline in the
productivity can be attributed to the drop in
motivation of the experienced developers. Another
explanation is that the system is becoming larger
over time and that makes it harder to incorporate
changes.

Effort or velocity was never really tracked
formally for the most of the project. Story count
was the only metric that was relevant for longest
time on the project. A story was a piece of
functionality as perceived by the business users. If
the functionality seemed too large, it was
subdivided in to sub-stories. The total numbers of
stories were divided by the duration of the project
and that was the goal of every sprint.

8. Summary and Conclusions

PAS demonstrates that Agile methodologies
namely eXtreme Programming and Scrum can be
scaled to teams of 40+ developers. XP was
adapted by allowing the developers to do trivial
tasks individually. Sometimes Pair Programming
was used as a training tool while at other instances
it was used a powerful tool to turn ideas into high-
quality code.

When Scrum for the whole team was getting
unwieldy, it was divided into a Scrum of Scrums
where the team leads would get together to discuss

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

the results of their individual teams’ scrums. The
quality of the system, as perceived by the
customer, is of high standards. The motivation of
the developers was very high. Even though this
was the most difficult project that most of our
developers ever worked on, they found it to be
very challenging and personally rewarding to be
associated with it. The sponsor companies’
representatives would come over to the
development site and express their appreciation for
the system.

The project has been a refreshing, challenging,
and a very good learning experience for a lot of
people. It has proved that software development
does not have to be chaotic process where
developers have to burn their midnight oil (no pun
intended) to get some functionality in the system
with sparse or no testing - leading to even more
chaos. One of the things that were desired towards
the end was the need to develop a different metric
for tracking the velocity of the sprints.

Test driven development has played a big part
in helping prevent chaos from entering this
project. It is not hard to image, for a project of this
size, what sort of panic would have engulfed the
team had there not been tests to keep the codebase
stable.

PAS team members have embraced agile
practice. This was mainly due to the selection of
the team members. Developers were hired in
smaller numbers so that each individual could
slowly acclimatize into the team and in turn
become the mentor for the next new member.

Using off-shore was a great idea – if it had
worked - as it could have sped the development on
the project while reducing costs. Off-shoring did
not work out for PAS due to difficulties with
synchronous communication due to different time
zones.

It is important for the business decision makers
to understand that software development is a
unique and challenging process. Agile approaches
bring radical changes to the way software has been
developed. It may seem that pair-programming is
expensive or that having no documentation is a
problem, But when every thing is factored in, the
long term gains are substantial – not only in terms
of dollars and cents but also in building better
relationships between the development and
business fraternities.

9. References

[1] Grewal, H. S – “An Experience Report on Agile
Development Practices in Developing a Large-scale

Software System” (December 2006), A Term paper as
part of Master of Science Program at the University of
Calgary, Canada..

[2] Mann, C – “An Exploratory Longitudinal Case
Study of Agile Methods in a Small Software Company”
(June 2005), Masters Thesis, Department of Computer
Science, The University of Calgary.

[3] DeMarco, T. and T. Lister – Peopleware: Productive
Projects and Teams. Dorset House, second edition,
1999.
http://www.cs.wm.edu/~coppit/csci780-
fall2003/presentations/22-peopleware.pdf

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

