
Agile Methods and User-Centered Design: How These Two Methodologies

Are Being Successfully Integrated In Industry

David Fox

University of Calgary

bdfox@ucalgary.ca

Jonathan Sillito

University of Calgary

sillito@cpsc.ucalgary.ca

Frank Maurer

University of Calgary

maurer@cpsc.ucalgary.ca

Abstract

 A core principle of Agile development is to satisfy

the customer by providing valuable software on an

early and continuous basis. For a software application

to be valuable it should have a user interface that is

usable. Recently there has been some evidence that

suggests using Agile methods alone does not ensure

that an applications UI is usable. As a result, there is

currently interest in combining Agile methods with

user-centered design (UCD) practices. To support

existing empirical evidence that these methodologies

co-exist effectively we have conducted a study with

participants that have previously combined these two

methodologies. Our findings, combined with existing

work show that the existing model used for Agile UCD

integration can be broadened into a more common

model. In this paper we describe three different

approaches taken by our participants to achieve this

integration. We term these approaches the Generalist,

Specialist, and the Hybrid approach.

1. Introduction

 The Agile Manifesto asserts that “Our highest

priority is to satisfy the customer through early and

continuous delivery of valuable software” [1]. For a

software application to be valuable it should have a

usable user interface (UI). However, some evidence

suggests that building software aimed at satisfying the

customer’s wants does not always produce a usable

product [5]. This gives rise to the important research

question of how best to produce usable software in an

Agile context

 Some prior research has addressed the integration of

software engineering practices with human computer

interaction (HCI) practices. More specifically, the

integration of with Agile methods with user-centered

design practices (UCD) [2, 5, 7, 8]. One of the

problems surrounding the integration of these two

methodologies is that they traditionally take different

approaches in terms of how upfront design or

requirements gathering resources are allocated.

 Agile methods strive to deliver small feature sets of

working software into the hands of the customer as

quickly as possible in short iterations. At the beginning

of each iteration an onsite customer representative’s

requests are captured in descriptive stories and written

on index cards. According to Ambler, a user story is a

very high-level definition of a requirement, containing

just enough information so that the developers can

produce a reasonable estimate of the effort to

implement it [12]. Once stories are captured, they are

prioritized in order to ensure that the number of stories

selected can be completed in the time allocated for that

iteration. The stories with higher priority are selected

for implementation in that iteration. The priority is

based on the business value the customer feels is most

important for that iteration. The remaining stories go

into a backlog for implementation in later iterations.

During the iteration the development team splits the

work between the developers and the selected stories

are implemented. On completion, the finished iteration

is demonstrated to the customer for approval. This

process is repeated until the customer determines that

additional feature costs are no longer justified in terms

of business value [2]. In this way, much of the upfront

effort required by many traditional methodologies is

significantly reduced or eliminated [3].

 UCD, on the other hand, champions a considerable

amount of upfront research and analysis prior to

development. This research and analysis is based on

three kinds of design activities. The first involves an

early focus on users and tasks, in order to understand

the users, the tasks they perform, and the environment

in which the tasks are performed. The second kind of

activities involve empirical measurement of product

usage to provide information about how easy is it to

use, how easy is it to learn, and any other usability

issues relating to the use of that product. The final kind

of activity involves, “iterative design that fixes the

problems found by the users in usability testing as part

of the product development life cycle.” [4] These

design activities are initially carried out before any

development is underway. Once development is

underway, the activities described above are reused to

evaluate the product with users with the goal of

improving the product throughout the development life

cycle [4].

 Although these two methodologies have very

different approaches to requirements gathering and the

amount of upfront design advocated, they do have

some similarities. Both methodologies are iterative in

nature. Agile methods build working software for

delivery to the customer in an iterative manner

anywhere from a couple of weeks to a couple of

months [5]. Usability testing refers to observing typical

users performing typical tasks in order to measure

performance of task completion on a UI [6]. In UCD

iterative design is used to correct problems found by

users in usability testing with low fidelity prototypes

[4]. Both methodologies are also human-centric

development approaches. As the name suggests, UCD

is aimed at developing software with the user in mind.

Agile methods involves an onsite customer

representative to create a feedback loop with the

development team. This is aimed at building software

that customers want.

 To contribute to an understanding of how these

practices can be effectively combined, we have

conducted an interview study with members of teams

that have integrated user-centered design practices into

an Agile methods development process. We have

analyzed the different approaches taken by our

participants to integrate these approaches into their

design and development process. We have also

compared our findings with previous work [1, 5, 7, 8]

to describe a general UCD Agile practices integration

model. Our analysis also describes three different

approaches, the Generalist, Specialist, and the Hybrid

approach to better understand the roles the various

team member have. We also confirm the previous

model proposed by Sy is in fact being used by

development teams in industry.

 The rest of this paper is organized as follows. In the

next section we look at recent work that has been done

in our area of research for later comparison with our

findings. Next we discuss the research methodology

used in our study (see Section 3). This is followed by

the results of our study (see Section 4). Finally we

conclude the paper with a brief discussion of those

results (see Section 5).

2. Related Work

Some recent research examines UCD and Agile

methods to determine if and how these two approaches

can coexist in the development process. We briefly

discuss this work and will later compare their results

with our findings.

Patton [5] discusses the motivation for adapting

UCD practices into his agile development process. The

development team was using eXtreme Programming

(XP) practices. The team included expert end-users that

were product managers working for the same company.

They were building software at an aggressive rate with

“deliveries that were on time and the expected scope

intact.” However, they also found that the resulting

product had features that the end-user did not want and

was missing features that the end-user did want. To

correct this problem, Patton describes the ten-step

process that he and his team added to their current

development process to produce an Agile Usage

Centered Design process.

His ten-step process identified participants that were

included in the design process. These included domain

experts, business people, programmers, and test/QA

staff. His process did not include a UCD specialist

(UCDS). Instead, his team was responsible for the UI

design and the UCD practices associated with that

process.

Overall, Patton stated that he and his team were

satisfied with the results of their process. He does not

claim that his process builds better software but that it

did leave his team with valuable tacit knowledge. What

his paper does not cover in any detail is the actual

implementation process after the design has been

completed. In other words, he does not describe how

the design was passed from the design stage to the

implementation stage [5]. We pursue this topic in more

detail in our findings.

 Meszaros and Aston describe in their practitioner’s

report the process they use in adding usability testing

into an agile project [7]. Like Patton’s approach,

Meszaros and Aston did not include a UCDS on their

team. Instead, they had two developers on their team

acting as the UCDS. Their approach included typical

UCD practices such as low fidelity prototyping and

usability testing to facilitate a final UI design. This

process meant that the developers were also the UCDS.

That is, they followed a generalist approach to design

where a developer is assumed to have enough UCD

expertise to take on the UCDS role.

 Meszaros stated that adding UCD practices was of

value to his development process. In fact he claims,

“emergent design doesn’t work well for user

interfaces when using Agile practices alone. Some

design up front seems to provide better guidance to

the development team and provides earlier

opportunity for feedback”.

His paper discusses the implementation of their process

over a short period of time. What his paper does not

discuss is how their process effects development over

the long term [7].

 Ferreira, Nobel, and Biddle investigate four

different projects in relation to Agile methods iterative

development and UI design [8]. Their approach is

qualitative in nature using Grounded Theory, which we

describe in detail in our Method section. Using this

method they derive certain themes that emerge from

their data. These themes include were iteration

planning affects UI design, iterations drive usability

testing, usability testing results in changes to the

development, and finally Agile changes the relationship

between UI designers and software developers.

Their paper also briefly describes the roles of the

team members in the four projects. In projects one,

two, and four, the teams consisted of developers and

UCDS, case three had a developer acting as the UCDS.

In the three cases that employed a UCDS, the UCDS

interacted with the customers to derive the interface

design requirements. In the case where no UCDS was

used, one of the developers, whose main interest was

UI design, interacted with the customer [8].

The paper very briefly discusses the processes that

the different teams used. More detail may have given

more insight into a generalized approach of all four

projects integrating these two processes.

Finally, Sy [9] describes the process of integrating

UCD with agile methods currently being successfully

adopted by Autodesk. In their process, Sy refers to

iterations on design as “cycles”. Cycle zero is used to

acquire initial information as about the project by

conducting a contextual inquiry. Contextual inquiry

refers to a designer taking an ethnographic study

approach to better understand the users of a particular

product. It is important to note that our study addresses

the interaction between the UCD and development

practices and not the business decisions that are made

prior to design. For example, we do not take into

consideration business feasibility studies as part of the

actual design process [9]. Typical activities include

contextual interviews, observation, reconstruction of

previous events or tasks performed, and discussions

with the users [6].

 If the team is refining an existing product, cycle

zero is used for “the alignment of all team members’

understanding” and for developing an overall vision

for that project. If it is an ongoing project, the UI

design is derived by performing UCD testing on the

previously completed implementation cycle along with

the previous performed contextual inquiry. An initial

design is conceived and sent for implementation by the

developers in cycle one.

Fig. 1. Sy’s interaction designer/developer tracks diagram

Once in cycle one, the UCDS designs prototypes

and conducts usability testing to refine design for cycle

two as well as conducting contextual inquiry for cycle

three. Upon the completion of cycle one, the

implemented code is passed from developers to the

UCDS and the UI design is passed to development for

implementation for cycle two. “This pattern of

designing at least one cycle ahead of the developers,

and gathering requirements at least two cycles ahead,

continues until the product is released” allowing

development and UCDS to work in parallel throughout

the projects cycles [9].

 Sy’s article provides a detailed view of the process

that is used at Autodesk. The process is very much in

keeping with some our findings in terms of a general

approach to integrating these two methodologies. We

discuss this further in our Findings section. However,

although the description of the process is detailed it is

the study of how one company is adapting these two

methodologies and is therefore restricted to that

company. Does this mean that the approach she is using

is adaptable for other companies? In our study we

wanted to investigate a general approach of

methodology integration based on multiple companies

to determine if it is successful in general.

 The above work has significant information of how

teams are integrating Agile methods and UCD

practices. In our study we wanted to look at both

detailed implementation approaches as well as over

multiple teams to determine a generalized approach as

well as the different approaches teams are taking.

3. Research Method

This paper reports on a qualitative study using

grounded theory approach [10]. The study involved

members of teams integrating agile methodologies with

UCD practices. We conducted in-depth, semi-

structured interviews (either face to face or by

telephone) with ten participants from Canada, the

United States, and Europe. The participants had varied

backgrounds and played different roles on their teams.

All interviews were performed by the first author of

this paper. Interviews lasted between 36 minutes and

64 minutes. An audio recording of each interview was

made and each recording was transcribed verbatim.

We conducted 10 interviews and we refer to the

participants as P1…P10. Participants P1, P5, P7, P9,

and P10 are UCD specialists, each of whom had formal

UCD training. Participants P3 and P8 had some

informal UCD training. Participant P6 is a business

analyst with some exposure to Agile methods and

informal UCD training. Participant P2 is a chief

innovation officer with both formal UCD training and

agile development experience. Finally, participant P4 is

an information architect with formal UCD training,

technical development skills and agile methods

experience. All of the participants were on different

development teams working for different companies

with the exception of P3 and P6 who worked for the

same company but in different countries and on

different projects. It is important to note that the

majority of our data was collected from UCD

specialists with a smaller amount of data being

collected from agile developers and that data set of 10

is smaller in size from other grounded theory research.

Another aspect of our research that may be a limitation

to the study is that we interviewed one person on each

of the ten teams. Perhaps interviewing one developer

and one UCD specialist per team may have generated a

more complete view of the process.

All of the data we collected was qualitative and to

structure our data collection and analysis we have used

a grounded theory approach [10]. The grounded theory

approach consists of iterative data collection and by

analysis with the goal of producing a theory to explain

a situation of interest. Our analysis involved various

coding activities.

We first performed open coding. This coding

consists of attaching specific code words, developed

during the open coding process, to portions of the data.

The goal of open coding is to identify important

concepts in the data and categorize the data based on

those concepts. We performed open coding on our

interview transcripts using HyperRESEARCH, a

qualitative research-coding tool. Examples of codes we

developed include: user advocate, niche strategy, and

UCD Agile mixed term.

The next stage, axial coding, assembles the

previously attached codes from the open coding stage

into core relationships to each other. This is achieved

through constant analysis and comparison in terms of

the participant’s interviews. These relationships, or

categories, then act as a guide to precipitate gathering

further data for analysis, which then becomes the final

core categories. While performing axial coding we

derived a number of preliminary core categories.

Examples of core categories include: upfront

predevelopment stage, team member communication,

and passing UCD design around.

The final stage in grounded theory is selective

coding. In this stage the core categories are used to

derive a small set of the high-level concepts that form

the big picture, questions, and or themes that emerge

from the data. In this way we derived the overall

concepts or themes that emerged from the core

categories. The findings section discusses these

concepts and themes in terms of how the participants

employed Agile and UCD.

4. Findings

 The analysis of our data produced a number of

interesting insights into the approaches that the

participants took when integrating elements of agile

methods and UCD practices together. It is important to

note that none of the processes described by our

participants are identical. However, the approaches

they used have some commonalities. We used these

commonalities to construct an overall picture that

describes the common aspects of the approaches taken

by the participants.

4.1 Commonalities

 First we discuss the commonalities discovered in the

data was that the participant’s processes had an upfront

stage for UI design that occurred before any software

development began. In this stage, which we called the

Initial Stage, we found two main activities, contextual

inquiry and low fidelity prototyping. One participant

described these two activities as the “discovery stage

followed by a prototyping stage” [P1]. These two

activities are illustrated as Iteration 0 in Fig 2. The

initial stage had “some measure of user research” [P3]

involved. This was carried out by a UCDS or a team

member acting as a UCDS. The UCDS performed

contextual inquiry to better understand who the users

were and their needs in terms of what tasks they needed

to perform.

 The contextual inquiry was followed by low fidelity

prototyping activities that varied slightly depending on

the team. This low fidelity prototyping consisted of

everything from producing roughly hand drawn “sticky

notes on the whiteboard” [P6] “to putting together

some wire frames to help flush out the requirements”

[P4]. The low fidelity prototypes were constructed in

an iterative manner. During each of these iterations

usability testing was performed using real users or team

members acting as users. The purpose of the usability

testing was to identify and correct any usability issues

before the initial UI design was handed off to the

development team.

 As mentioned in the introduction section, one of the

key differences that Agile methods and UCD have is

the allocation of upfront resources for UI design. While

traditionally UCD design would have aimed for a

nearly complete set of features or requirements before

development begins [11], we found in our study that

the Initial Stages were time boxed for short periods of

time. This meant there was less time for the initial

analysis and testing. As a result, this shortened the

upfront UCD design process and, hence, a small set of

features was derived for the first development iteration.

One participant remarked that their Initial Stage lasted

two weeks [P8], while another stated theirs had lasted

only a few days [P3]. However, the data analysis

showed that for most participants the Initial Stage

lasted approximately four weeks. The output from the

Initial Stage was complete an initial UI design was

complete which consisted of low fidelity prototypes

and a list of features or requirements.

 After the initial UI design is completed, it is passed

to the development team initiating the second stage of

development, the Iterative Stage. This portion of the

development process is illustrated as iterations One

through Three in Fig 2. Once the development team has

the initial UI design, a planning meeting is held to

determine which of the features will be implemented in

the first iteration. The remaining features are moved to

the backlog for future iterations.

 The members that attended these planning meetings

varied from team to team. On the teams that were part

of very large international companies, the planning

meetings had larger attendance. Attendees included the

developers, UCDS, graphic designers, information

architects, the customer representatives as well as

different levels of executives and stakeholders. On the

teams that were part of smaller organizations, often

only a part of the core team and the project manager or

customer representative attended the planning meeting.

Participant P9 remarked that on one of her projects the

planning meetings were attended only by the project

manager, a senior developer, and herself.

 Once it is established which features would go into

the initial iteration, the development team produces a

technical design and development begins. While the

development team implements the features for Iteration

1, the UCDS continues with more contextual inquiry,

prototyping and UI testing to be used for the next

iteration. In other words the development team and the

UCDS team work concurrently. The UCDS team

basically prepares for the planning meeting for the next

iteration. Once the UI features have been completed,

the implemented UI design is passed back to the UCDS

for verification and usability testing.

 Verification consisted of determining if the

development team had followed the design rules set out

by the UCDS [P1, P5]. Participant P5 claimed that the

reason for the verification step was “just to make sure

the grid is respected” by the development team.

[P1]. In other words, the rules and guidelines of the UI

design put in place by the UCDS were followed and

not violated by the development team. P5 said that the

verification step was necessary because the “developers

don’t have a UI designer with them [at all times] to

keep them honest”.

 Usability testing, which typically followed

verification, may or may not include user participation.

One participant remarked that when users were not

available for testing the team members did a

collaborative UI inspection in order to determine if the

user’s tasks were possible to accomplish in an effective

manner [P3]. Participants P2, P3, P5, P6, P8, P9, and

P10 all claimed they used actual end-users to verify and

test implemented features.

 If the implemented features are verified as correct

and they pass the usability tests, they are marked as

finished features and await release to the customer. The

time period before finished features were released to

the customer varied from two days [P9] to three or four

weeks [P3].

 On the other hand, if a feature failed verification or

usability-testing, the UCDS redesigned the UI features

and passed them back to the development team for re-

implementation in the same iteration. If an issue was

uncovered that was too large to be fixed in that

iteration “then it would have to go into another

iteration” [P9]. Once the iteration is finished, the UI

design that was developed concurrently by the UCDS

is passed to the development team and the process

begins all over again (as shown in Iterations 2 and 3 in

Fig 2). This process continues iteratively for the

duration of the projects lifecycle.

 The general approach discussed above, discusses

similarities of approaches taken by development teams

and the UCD specialists. These similarities represented

the interaction between the two during integration of

UCD into Agile methods. However, as mentioned

above, we also found differences in participant’s

approaches; three slightly different approaches for

integrating UCD into Agile methods emerged.

Although these approaches were similar, there were

differences that are worth noting. The differences lie in

who executes certain aspects of the process, i.e. who

performs which roles in the process.

Fig. 2. A UCD Agile methods project development life cycle common to the majority of participants. The grey area

(Initial stage) represents the upfront UI design stage that happens once in the development lifecycle of a project, The
area in white represents the Iterative Stage that continues for the remainder of the project lifecycle.

Fig. 2, closely resembles Sy’s diagram. Both show the

initial upfront stage of UI design as well as the iterative

parallel designer and developer timeline. Our study was

inconclusive in terms of when design was passed back

and forth in terms of an exact timeline. In other words,

UCD and developers designs were both passed during

and at the end of iteration, but this was not the same for

every participant. We therefore show a more linear

diagram to represent the general diagram.

4.2 The Specialist Approach

 We call the first approach the Specialist approach. It

consists of three main member groups: the users

customers
1
, the UCDS, and the development team.

Four of the participants, P1, P5, P9 and P10, practiced

a form of the Specialist approach. These four

participants were on teams with a single UCDS and

multiple development team members.

 In the Initial Stage of the Specialist approach, the

contextual inquiry and the low fidelity prototyping

steps are both conducted by the UCDS “interfacing

with the customer” [P5] with an almost total absence of

the development team. During this time the UCDS is

“learning the basic requirements for the customer”

[P1] through contextual inquiry. Once the UCDS has

gathered contextual information from the user, the

initial low fidelity prototyping step begins. This step

involves producing primitive representations of a UI’s

features and testing those low fidelity drawings and/or

wireframes with users to determine features for

implementation. Low fidelity prototyping tools ranged

from pen and paper, sticky notes, white boards and

applications like PowerPoint and Visio. Because the

above activities do not typically involve the developers,

the UCDS initially acts as a “bridge role between the

developers and the customer” [P5]. They relay what

the user’s requests and needs are to the development

team. After iteratively prototyping the UI design, an

initial high level UI design is created and the UCDS

meets with the development team to ensure that the

design is technically possible. If the initial design is

technically possible, it is passed to the development

team for implementation and the initial stage is

complete. P1, P5, and P10 stated that the initial stage

typically lasts four weeks whereas P9 stated this

typically lasted six weeks. P1, P9, and P10 also

remarked that once the Iterative Stage begins, the UCD

effort was shortened to two weeks as opposed to up to

six weeks in the Initial Stage.

 With the development team implements the features

for the iteration, the UCDS then conducts more

contextual inquiry with the user or customer for the

1
 Customers refer to anyone that has a vested interest in the

development of the project. Users refer to people that are

actual end-users of an application.

next iteration. P9 remarked that “sometimes I look

ahead one or even two iterations to conduct contextual

inquiries”. Concurrently, usability testing occurs during

this time to augment, extend and refine the feature list

for the next development iteration. P10 remarked that

this way the UCDS continues to work in parallel with

the development team.

 Once the development team completes their

technical design and implementation, they pass it back

to the UCDS. This varied in terms of when it was

exactly passed. It depended on the team and the project

they were working on. For example P10 worked on two

different projects. On one project the developers were

collocated with him and the exchange of design was

constant and ongoing, sometimes daily. On the other

project that he work on the developers were not in the

same city. In that case the design was passed at the end

of each iteration. The UCDS then takes that

implementation back to the customer or user to perform

usability tests. This testing differs from usability testing

of low-fi prototypes in that those tests were testing for

future features, whereas the current tests evaluate

completely implemented features. If the implemented

feature are free of usability issues and they meet the

user’s approval, they are marked as complete and the

iterative stage starts again with a planning meeting to

determine the next set of features.

 P7 was also a UCDS. However, he did not follow

the above approach. P7 typically worked on waterfall

projects that were military based. He stated that

because the projects he worked on were funded by the

military the “red tape” required him to gather

requirements in a waterfall-like process. He did

however follow the Specialist approach in that he was

the bridge between the developers, users, and customer.

He also was knowledgeable of Agile methods and

expressed the need for an Agile process in order to

improve their development process.

4.3 The Generalist Approach

The Generalist approach uses only two main roles, the

users/customers and the developers acting also as UCD

specialists. It is worth noting that the developers were

not formally trained UCDS. However, they did have

some informal or self-taught UCD expertise. This

means that some of the developers [P8] or all

developers [P3, P6] were responsible for development

as well as some or all of the UI design and used a UCD

approach. Unlike the Specialist approach, this approach

had more that one team member acting as the UCDS

present on the team. The least number of team

members acting as UCD performers we found on a

team was two [P8]. The other teams had multiple

UCDS. The UCD activities did vary depending on the

team. P8 practiced low fidelity prototyping and

prototype testing as well as usability testing after

implementation. However, P8’s contextual inquiry was

limited due to the short initial stage timeline of two

weeks. P3 and P6 practiced contextual inquiry, low

fidelity prototyping and testing as well as usability

testing. Three of the participants, P3, P6, and P8

followed a form of this process.

 When developers acted as UCDS, the Initial Stage

lasted two to four weeks and included contextual

inquiry, prototyping and user testing [P3, P6, P8]. In

average, it was shorter than in the Specialist approach.

The number of developers acting as UCDS varied from

team to team. In the case of P8, not all of his team

participated in UI design and UCD activities. In case of

P3’s and P6’s team, all developers contributed to the

UCD activities. Once the developer has the contextual

information that is needed for the first iteration, low

fidelity prototyping is started in an iterative fashion

either with the customer [P8] or with team members

acting as customers to determine the stories for the

development iteration [P3, P6]. If customers were not

available for usability testing, each member of the team

was expected to participate in testing and heuristic

evaluation of the UI portion they were building [P6].

This was very similar to the verification performed in

the Specialist approach.

 Once the initial low fidelity prototypes are tested the

UI design is complete. A planning meeting is used to

prioritize which features are going in to the next

iteration and the work is split among the developers.

This completed initial design is passed to the

developers to implement the features and the Iteration

Stage begins.

 On completion of an iteration “we will then bring

users back in and we will ask them to go through

typical usability testing model. Where you sit back and

watch them use it“ [P6]. Because the developers take

on the role of the UCDS, if a usability issue is

discovered the developer can deal with it immediately

without passing it off to another team member. This

also means that some developers implement features

and are working in parallel to others who design the UI

[P8].

 The main difference between Generalist and the

Specialist approach is the roles that the developers

need to practice. The data suggested that the working

environment in the Generalist’s approach was much

less formal than that of the environment of the

Specialists. This may have been due to the way the

UCDS was introduced in the Specialist approach.

 For instance, more than one UCDS that practiced

the Specialist approach mentioned a sort of separation

from the development team members. P9 remarked that

the way the UCDS was accepted into a team

environment depended on how they were introduced to

a team. She mentioned that if she was introduced as a

specialist then she had to prove herself to the

development and management team. Other UCD

specialists [P1 and P5] mention that there was

definitely a barrier of acceptance into the team. P5

referred to this barrier as the “us and them”

perspective. Although this poses some very interesting

questions, we leave further research and discussion of

this team membership issue for later work.

4.4 The Generalist Specialist Approach

 P2 and P4 followed a slight deviation to the

Generalist approach. Their team had a group member

which had both formal UCD training and software

development experience. This team member was both a

Specialist and a Generalist. He was a Generalist in

terms of having technical development skills as well as

UCD skills. He also was a UCD specialists capable of

performing this role expertly. The main difference

between the Specialist and the General Specialist roles

was the Specialist Generalist’s team had more than one

UCD specialists, which were managed by the Specialist

Generalist person. In the Specialist approach there was

only one UCD person on the team with limited or no

development skills. Thus for the purposes of this paper

we will call the team member with both formal UCD

training and software development experience a hybrid

team member.

 This approach was very similar to the Specialist and

Generalist approach in that it followed the same

practices mentioned in Initial Stage and the Iterative

Stages. The main difference of this approach was in

group membership roles. Both P2 and P4, at some

points in the development cycle, acted as a liaison

between all the different team members including the

developers, the UCD team, and customers. For

example, P2 stated that the UCD folks on his team

were more or less divorced from what the development

team was developing. This meant that he was the only

bridge between these two groups of team members. In

other words P2 was working with the UCD specialists

to flush out the high level requirements. At almost the

same time, P2 was also working with the development

team at which point he acted as a bridge between the

two groups by relating UI designs to development and

implemented features back to UCD.

 It is important to mention here that both P2 and P4

worked for very large international companies, both

have extensive experience in their fields. The size of

the company is important because of the politics that

need to be mitigated between the numerous customer

groups and stakeholders. P4 remarked that their

company dealt with very large enterprise projects and

that there was going to be politics in projects of that

size. P4 was there to aid in sorting out differences

between different customers and to determine the

features that would be implemented in the next

iteration. For this process facilitation process, the team

was not present and P4 acted as a bridge for delivering

information back to the developers and UCDS. The

main difference that this approach had was that the

hybrid member was not actually acting as the developer

or the UCD specialist directly but mitigated between

the two groups that never directly communicated.

5 Discussion

 Our study set out to investigate how agile methods

are currently being integrated with UCD practices as

well as validate Sy’s previous work. We first started by

examining related work. We found that although these

studies provided valuable insight for our study, there

were some areas that needed to be further investigated.

A broader empirical basis is needed to make more

general conclusions.

 With exception of Ferreira’s work, all the previous

studies centered around one team or company.

However, there was no strong evidence that these

approaches were general enough for use in different

companies or teams. Ferrier’s project studies, on the

other hand, did span 4 projects and teams. However,

the process descriptions were not detailed in terms of

how the UI designs were passed around from group to

group in the development process. Our study examined

both of the above to find commonalities all the teams

shared for integrating agile methods with UCD. All

teams followed similar processes. This confirms the

model originally presented by Sy [9] and suggests that

this integration approach is widely applicable. In fact

three of the participants were employed at

multinational companies that are using this model on

multiple teams. Our participants’ teams, however, did

have some differences in terms of team roles and

responsibilities. We also presented different

approaches regarding who performed the UCD-

oriented activities in a team: the Specialist, the

Generalist, and the Specialist-Generalist approaches.

 Sy’s approach had UCDS members on their team

that gathered some upfront data when a new project

was started much like in the Specialist approach we

presented. Once cycle zero was completed, the

developers and UCDS worked in parallel during the

cycles that followed [9]. This approach closely

matched Specialists approach of this study.

 In Patton’s team, there was no formal UCDS. The

development team was expected to contribute to the UI

design. Therefore, the development team was

responsible for both UI design and development [5].

His approach was very similar our Generalist approach.

 In Ferreira’s case studies, the UI design and

development process aspects were not as detailed as

the other related work, however the roles of the team

members were. Her cases one, two and four,

resembled the Specialist approach with at least one

UCDS. Project three resembled the Generalist

Specialist approach in that the team member acting as

the UCDS was also a developer. There was no clear

indication that the UI designer was formally trained in

UCD practices. She only states that UI design was their

interest. All of the related work discussed above did fit

into one of our approaches. Moreover, all of the

related work shows similarities to the process model

found in our study data. The empirical data gathered by

others and in the study presented here indicates that the

common approach outlined above can be – and is –

used by different companies as well as different teams.

 One more similarity is that all of the empirical work

so far did mention a degree of success when

implementing agile methods together with UCD

practices. We also found that all but two of our

participants suggested that by combining these two

methodologies that there was value added to their

development process.

 Finally, as mentioned in the introduction, a key

difference between these Agile methods and UCD is

the upfront resource allocation for planning and

developing UIs. Our findings show that these

differences were overcome in all the approaches in the

same way. Some upfront effort was invested (the Initial

Stage) by all participants. But this upfront design effort

was rather limited compared to traditional UCD

processes. On average, our participants spent

approximately four weeks on the Initial Stage.

 With this fairly short timeframe, lengthy upfront

research required by traditional UCD practices could

not be performed in much detail. This meant that

smaller sets of UI features were gathered prior to

implementation.

 We also saw that all of the approaches did have at

least one UCDS or a team member acting as a UCDS.

Obviously, expertise on UCD is beneficial when user

centered design activities are performed. The teams of

all our study participants performed some research,

paper prototyping, and usability testing prior to any

feature implementation So it seems that in order for

these agile and UCD methodologies to be integrated

both must compromise their upfront resource

allocation.

6 Future Work

Our study provided insight to what was being done

when integrating Agile and UCD practices and

broadened the empirical basis of research in this area.

Besides presenting three different role structures in our

paper, we reconfirm and replicate results from previous

studies. Our research also left us with some open

research questions that may be worthwhile pursuing at

a later date.

 For instance, the Generalist approach couples the

developer’s development duties with UCD practices.

Does this mean that the Generalist approach is more

efficient because of the elimination of that team

member and a reduced need to document the result of

UCD activities for the development team? In other

words does removing the middleman between the

developer and customer expedite the Agile UCD

process? A drawback of the generalist approach might

be that developers taking the role of UCDS are not

deeply trained in UCD. The question posed is; what do

developers need to know about UCD to be effective in

this role?

 Another open question is are the requirements or

feature gathering elicited from the customer more

effective in terms of user’s wants and needs because

they were done so specifically by a UCDS? Or can a

Generalist without formal UCD training elicit

requirements and features with the same level of

effective results as a UCDS?

 We found that all but two participants felt that

adding UCD to their software development process was

valuable. An interesting question is exactly how the

participants found the addition valuable?

 And finally is the Generalist Specialist more

effective at designing UIs because they can bridge both

the UCD design perspective and the technical

development perspective?

1. “Principles behind the Agile Manifesto”

[Online] 2001 Available:

http://agilemanifesto.org/principles.html

[Accessed: April 2, 2008]

2. F. Maurer, P. McInerney, “UCD in Agile

Process: Dream Team or Odd Couple?” in

Interactions, vol. 12, no. 6, 2005, pp. 19-23.

3. W. Royce “Managing the Development of

Large Software Systems.” in IEEE WESCON

1970, pp. 328-338.

4. C. Barnum, “What is usability and what is

usability testing” in Usability Testing and

Research, Longman, New York, NY USA,

(2002) pp. 7-30.

5. J. Patton, “Hitting the Target: Adding

Interaction Design to Agile Software

Development” in Proceedings of OOPSLA

2002, pp. 1-7.

6. J. Preece, Y. Rogers, H. Sharp, ”User-Centered

Approaches to Interaction design” in Interaction

Design: Beyond Human-Computer Interaction.

John Wiley and Sons NY, 2002, pp. 296-323.

7. G. Meszaros, J. Aston, “Adding Usability to an

Agile Project.” in Proceedings of Agile 2006,

pp. 289-294

8. J. Ferreira, J. Nobel, R. Biddle, “Agile

Development Iterations and UI Design.” in

Proceedings of Agile (2007) pp. 50-58

9. D. Sy, “Adapting Usability Investigations for

Agile User-centered Design”. vol. 2, no.3

Journal of Usability Studies May 2007 pp.

112-130 2007

10. A. Strauss, J. Corbin, Basics of Qualitative

Research: Techniques and Procedures for

Developing Grounded Theory. London,

England: Sage Publications 1998 pp. 12, 101-

143

11. R. Baeeker, J. Grudin W. Buxton, S. Greenberg,

“How To Design Usable Systems” in Human-

Computer Interaction: Toward the Year 2000.

San Francisco CA: Morgan Kaufmann

Publishing, 1995 pp. 93-120

12. S. Ambler “User Stories” [Online] Available:

http://www.agilemodeling.com/artifacts/userSto

ry.htm [Accessed: March 21, 2008]

http://agilemanifesto.org/principles.html
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.agilemodeling.com/artifacts/userStory.htm

