
UNIVERSITY OF CALGARY

FitClipse: a Testing Tool for Supporting Executable Acceptance Test Driven

Development

by

Chengyao Deng

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2007

© Chengyao Deng 2007

 ii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "FitClipse: a Testing Tool for Supporting

Executable Acceptance Test Driven Development" submitted by Chengyao Deng in

partial fulfilment of the requirements of the degree of Master of Science.

Supervisor, Dr. Frank Oliver Maurer, Department of
Computer Science

Dr. Victoria Mitchell, Haskayne School of Business

Dr. Behrouz Homayoun Far, Department of Electrical and
Computer Engineering

Date

 iii

Abstract

Limited data has shown how Executable Acceptance Test Driven Development has been

conducted in the industry environment. Therefore, the question of what kind of tool

support for acceptance testing should be provided is still unknown. We conducted a

survey on Executable Acceptance Test Driven Development. The results show that there

is often a substantial delay between defining an acceptance test and its first successful

pass. Therefore, it becomes important for teams to easily be able to distinguish between

tasks that were never tackled before and tasks that were already completed but whose

tests are failing again. In this thesis I designed and implemented a tool, called FitClipse,

which extends Fit by maintaining a history of acceptance test results to generate reports

that show when an acceptance test is suddenly failing again. The pilot evaluation of

FitClipse demonstrates positive prospects of the tool concept as well as its shortcomings.

 iv

Publications

Some content, ideas and figures from this thesis have appeared previously in the

following peer-reviewed publications:

Chengyao Deng, Patrick Wilson and Frank Maurer: “FitClipse: A Fit-based Eclipse

Plug-in For Executable Acceptance Test Driven Development”, Proceedings

of the 8th International Conference on Agile Processes in Software Engineering

and eXtreme Programming (XP 2007), Como, Italy, Jun. 2007 (Springer)

C. Deng, P. Wilson, F. Maurer: FitClipse: “An Eclipse Plug-in For Execuatble

Acceptance Test Driven Development”, Procedings on Eclipse Technology

eXchange (ETX 2006), Interactive Poster, Oct. 2006

 v

Acknowledgements

I would like to thank my supervisor, Dr. Frank Maurer: you are always giving me support

and guidance whenever needed. It is you who give me the chance to start up my new life

in North America and help me grow up to a mature man.

I would like to thank my family: thank you for bring me to the wonderful world

and trying your best to take good care of me, support me and encourage me. I love you

forever, no matter where I am.

I would like to thank Patrick: thank you for all your help for building the

fundament of the tool and all your precious suggestions on my papers. I am always

lighted up by your smart ideas.

I would like to thank Shelly and David: thank you very much for the final

grammar revision of this thesis. You save me and my thesis from my limited English.

I would like to thank Grigori, Carman, Beth, Ruth, Robert and all the people in

the lab: thank you for always standing beside me and give me a hand when I am weak.

I would like to thank all my friends: thank you for your care for me when I

scratched my face fell in badly ill, broke my ankle and whenever I am alone.

 vi

Dedication

To my family, who are always supporting me, and my beloved wife, Nuo Lu, who

accompanies me through the darkness, sickness and poor.

 vii

Table of Contents

Approval Page ... ii
Abstract .. iii
Publications .. iv
Acknowledgements ..v
Dedication .. vi
Table of Contents .. vii
List of Tables ...x
List of Figures and Illustrations ... xi

CHAPTER ONE: INTRODUCTION ..1
1.1 Testing in Software Engineering ...1
1.2 Agile Software Development and Agile Methods ...2
1.3 Testing in XP ...2
1.4 Thesis Motivation ..4
1.5 Thesis Problems ...6
1.6 Research Goals ..6
1.7 Thesis Structure ...8

CHAPTER TWO: BACKGROUND ...10
2.1 Agile Software Development ...10
2.2 Agile Methods ..12
2.3 Extreme Programming ...12

2.3.1 XP Project Lifecycle ..15
2.4 Software Testing ..17

2.4.1 Software Testing Process ..18
2.4.2 Different Levels of Testing ...18

2.4.2.1 Unit Testing ...19
2.4.2.2 Integration Testing ...19
2.4.2.3 System Testing ...20
2.4.2.4 Acceptance Testing ..20

2.4.3 Comparison of Testing ..25
2.4.3.1 Time of Testing ..25
2.4.3.2 Frequency of Testing ...26

2.5 Test Driven Techniques ...27
2.5.1 Unit Test Driven Development ...27
2.5.2 Executable Acceptance Test Driven Development ...29

2.6 Tools and Frameworks for Acceptance Testing ..32
2.6.1 Open Source Frameworks & Tools ...32

2.6.1.1 Fit ...32
2.6.1.2 FitNesse ...33
2.6.1.3 FitLibrary ...36
2.6.1.4 GreenPepper ...36
2.6.1.5 Exactor ...37

 viii

2.6.1.6 TextTest ...38
2.6.1.7 EasyAccept ..38
2.6.1.8 Selenium ..38
2.6.1.9 WATIR & WATIJ ...39

2.6.2 Eclipse Plug-ins Based on Fit ..40
2.6.2.1 FitRunner ...40
2.6.2.2 conFIT ..40
2.6.2.3 AutAT ..40

2.7 Empirical studies of Fit and FitNesse ..41
2.7.1 Customer Specifying Requirements ..41
2.7.2 Developer Understanding and Implementing Requirements41
2.7.3 Fit Acceptance Test in Industry Environment ...42
2.7.4 Fit Acceptance Test in Academic Environment ..43

2.8 Summary ..43

CHAPTER THREE: SURVEY & THESIS MOTIVATION ..44
3.1 Objective of the Survey ...44
3.2 Survey Design ..44
3.3 Response Rate ..45
3.4 Participant Demographics ..46
3.5 Survey Findings ...48

3.5.1 Number of Acceptance Tests and Project Scale ..48
3.5.2 Frequency of Adding or Changing Acceptance Tests50
3.5.3 Frequency of Running Acceptance Tests ..51
3.5.4 Test Running Pattern ...52
3.5.5 Time Frame of Acceptance Testing ..54

3.6 Motivation of FitClipse ..55
3.6.1 Identifying Two Test Failure States ..56
3.6.2 Test Result History Report ..59

3.7 Summary ..60

CHAPTER FOUR: FITCLIPSE USER SCENARIO ..62
4.1 FitClipse Workflow ...62
4.2 Summary ..66

CHAPTER FIVE: FITCLIPSE REQUIREMENTS AND DESIGN67
5.1 Requirements Analysis ..67
5.2 Overall Structure ..69
5.3 FitClipse Client Side ..71

5.3.1 FitClipse UI ...72
5.3.2 Server Connector ...76
5.3.3 Fit Test Runner ..77
5.3.4 Two Test Failure States ...77

5.4 FitClipse Server Side ...79
5.4.1 FitNesse Request Responder ...79

 ix

5.4.2 Server Side Database ...80
5.5 Comparison with Other Tools..81
5.6 Summary ..83

CHAPTER SIX: PILOT STUDY ..84
6.1 Objectives ..84
6.2 Study Methodology ..85
6.3 Participants’ Related Experience ...86
6.4 Number of Acceptance Tests ...87
6.5 Study Results ...89

6.5.1 Usefulness of FitClipse ..89
6.5.1.1 Usefulness of identifying two different kinds of test failures90
6.5.1.2 Usefulness of keeping test result history ...92

6.5.2 FitClipse’s Ease of Use ...93
6.5.3 Willingness of Using FitClipse ...95

6.6 Interpretation of the Participants’ Feedback ..96
6.7 Validity of the Pilot Study ...98
6.8 Summary ..99

CHAPTER SEVEN: CONCLUSION ...100
7.1 Research Motivation ..100
7.2 Thesis Contributions ..101
7.3 Future Work ...102

REFERENCES ..104

APPENDIX A: ETHICS APPROVAL ..114
A.1. Ethics Approval for the Web Survey ...114
A.2. Ethics Approval for the Pilot Study ...115

APPENDIX B: SURVEY MATERIALS ..116
B.1. Mailing Lists of Agile Community ..116
B.2. Survey Questionnaire ...117

APPENDIX C: PERCEPTIVE STUDY MATERIALS ..119
C.1. Consent Form ...119
C.2. Post Study Questionnaire ...121

APPENDIX D: DATABASE DESIGN ...122

APPENDIX E: MATERIALS AND RAW DATA ...123

 x

List of Tables

Table 2.1: Acceptance Testing Synonyms [Maurer 2006] ... 22

Table 2.2: Test Result Schema of FitNesse .. 35

Table 5.1: Test States in FitClipse .. 78

Table 5.2 FitClipse Responders and Their Functions ... 79

Table 6.1 Frequency of Regression Failures... 90

 xi

List of Figures and Illustrations

Figure 1.1: The research context and scope of the thesis ... 8

Figure 2.1: Life cycle of a project in Extreme Programming [Don Wells 2006] 16

Figure 2.2: Traditional software engineering: late, expensive testing leaves many
defects [Beck 2004] .. 26

Figure 2.3: Agile software engineering: frequent testing reduces costs and defects
[Beck 2004] ... 26

Figure 2.4: The cycle of acceptance testing .. 31

Figure 2.5: Processes of using Fit/FitNesse framework for EATDD 33

Figure 2.6: FitNesse acceptance test sample with Wiki syntax .. 34

Figure 2.7: Sample FitNesse test result for DoFixture ... 36

Figure 3.1: The subjects’ experience of acceptance testing .. 46

Figure 3.2: Tools used by the subjects for EATDD.. 47

Figure 3.3: Number of acceptance tests the subjects have for their current project or
latest project with the project scale ... 49

Figure 3.4: Frequency of adding or changing acceptance tests basing on customer
requirement changes ... 50

Figure 3.5: Frequency of running acceptance tests. .. 51

Figure 3.6: Test running pattern.. 53

Figure 3.7: Average and Maximum EATDD time frame ... 54

Figure 4.1: FitClipse workflow ... 63

Figure 4.2: FitClipse environment for writing acceptance tests and fixture code 64

Figure 4.3: FitClipse environment for viewing the acceptance test results 66

Figure 5.1: FitClipse overall structure of three components... 70

Figure 5.2: FitClipse front-end as an Eclipse plug-in ... 71

Figure 5.3: FitClipse environment showing the Test Hierarchy View and the Wiki
Markup Editor page .. 72

 xii

Figure 5.4: FitClipse environment showing the Test Hierarchy View and the HTML
Preview page ... 73

Figure 5.5: FitClipse environment showing the FIT Test Result View and the Test
Result History Page ... 74

Figure 5.6: FitClipse environment showing the Test Result Multi-page Editor 75

Figure 5.7: FitClipse environment showing the Fixture Generation Wizard.................... 75

Figure 5.8: FitClipse environment showing the Property Page .. 76

Figure 5.9: Comparison of FitClipse with other open source acceptance testing tools 81

Figure 6.1: Related experience of participants for EATDD ... 86

Figure 6.2: No. of acceptance tests created by each participant in the study 88

Figure 6.3: Evaluation of the helpfulness of FitClipse for identifying two acceptance
test failure states .. 91

Figure 6.4: Evaluation of the helpfulness of FitClipse for keeping acceptance test
result history .. 93

Figure 6.5: Evaluation of FitClipse ease of use .. 94

Figure 6.6: Evaluation of FitClipse for likely future usage .. 95

1

Chapter One: Introduction

This thesis presents a novel tool – FitClipse – for supporting Executable Acceptance Test

Driven Development and the pilot study for the usefulness and usability of the tool. I

begin this chapter with an introduction of software testing and Agile Methods. Then, I

present the advantage of using acceptance testing in Agile Methods. I mention the survey

I conducted which reveals the limitation of existing acceptance testing tools. Further, I

present the motivation and the specific goals of my research. Finally, I conclude the

chapter with an overview of this thesis.

1.1 Testing in Software Engineering

Software testing is the process of using input combinations and defined states to reveal

unexpected behavior of software systems [Binder 2000]. Its purpose is to ensure the

correctness, completeness, security and quality of computer software. Software testing

can be divided into several categories:

• Unit testing: To validate that each unit of a system is working well

independently.

• Integration testing: To combine functional units into groups and validate

the transactions between them.

• System testing: To detect the defects in the functionalities on the system

level.

• Acceptance testing: The process of a customer testing the system

functionality to determine whether the system meets the requirements.

2

1.2 Agile Software Development and Agile Methods

Agile Methods are a group of methodologies that specify conceptual framework for

software development. They include a family of different methodologies that share four

core values: individuals and iterations over processes and tools; working software over

comprehensive documentation; customer collaboration over contract negotiation; and

responding to change over following a plan [Agile Manifesto 2007].

Agile software development methods are focused on trying to produce a working

solution and to respond to changes from the customer requirements [Hunt 2006]. Extreme

Programming, which is also called XP, is the most widely (38%) used Agile

Methodology [Pancur 2003]. To address the constraints of the previous software

development processes, XP is a lightweight methodology for teams of any size

developing software in the face of vague or rapidly changing requirements [Beck

1999][Beck 2004].

XP emphasizes five values with which it drives the development process:

Communication, Simplicity, Feedback, Courage, and Respect. By practicing the key

values, XP desires to achieve the goal of creating the most value from the project.

1.3 Testing in XP

XP uses Test Driven Development (TDD). TDD means writing tests before any code is

written down. At first the tests are made to fail. After the implementation is completed,

the tests assert each value by calling the code and eventually to get the tests to pass which

means the implementation is working properly. Two test driven approaches are used in

XP, one is Unit Testing and the other is Acceptance Testing or Story Testing.

3

Unit Test Driven Development (UTDD)1 is originally called Test Driven

Development and first introduced by Kent Beck in [Beck 2003]. In UTDD, unit tests are

created and maintained in a test suite, which includes a group of tests that assert the

functional requirements of the software. Once the tests are created, all the tests in the test

suite are run initially without the actual application code to make sure the tests are failing.

This step is to negatively test the test itself, which makes sure the new feature fails as

expected without the new code being implemented. Then the developers make changes to

the system code to make the tests pass which means the new function is working

properly. At last all the tests in the test suite should run again to make sure the newly

added code does not break other existing functionalities of the system. TDD helps the

development teams build loosely coupled, highly cohesive systems with low defect rates

and low maintenance cost [Beck 2003].

Automated acceptance tests are also used in TDD which is called Executable

Acceptance Test Driven Development (EATDD). It is also known as Story Test-Driven

Development or Customer Test-Driven Development. Acceptance tests for a feature

should be written first by the customer with the help of the development team, before the

application code is implemented [Cohn 2004]. The tests represent the system

requirements and specifications. Then the development team will work on the

implementation with the guidance of the acceptance tests. The implementation can be

seen as completed when all the corresponding acceptance tests are passing. Through an

1 I would like to use UTDD as short for Test Driven Development using unit tests in this thesis to separate
it from EATDD which uses acceptance tests.

4

initial empirical evaluation of TDD, Geras suggested that tool support is really needed

in both academia and industry for the use of customer/acceptance testing [Geras 2004].

Recent evidence suggests that the major reason for project failures is improper

management of user requirements [Davis 2004]. It has been reported in Standish Group

[Chaos Report] that the top three reasons of failed projects are: the lack of user input,

incomplete requirements and specifications, and changing requirements and

specifications. All these reasons had to do with requirement management practices.

EATDD is a possible solution to these problems. From the customer’s

perspective, EATDD provides the customer with an “executable and readable contract

that the programmers have to obey” if they want to declare that the system meets the

given requirements [Tracy 2004]. Observing acceptance tests also gives the customers

more confidence that the correct functionality is being developed for the system. From

the perspective of the programmers, EATDD helps to make sure that they are delivering

what the customers want. In addition, the results help the team to understand if they are

on the right track with the development progress. Further, as EATDD propagates

automated acceptance tests, these tests can play the role of regression tests in later

development to make sure that the newly added functionalities does not break the

existing features.

1.4 Thesis Motivation

A major difference between UTDD and EATDD is the timeframe between the definition

of a test and its first successful pass. Usually, in UTDD the expectation is that all unit

tests pass all the time and that it only takes a few minutes between defining a new test

5

and making it pass [Beck 2003]. As a result, any failed test is seen as a problem that

needs to be resolved immediately. Unit tests cover very fine grained details which make

this expectation reasonable in a TDD context.

Acceptance tests, on the other hand, cover larger pieces of system functionality.

Therefore, we expected that it may take the developers several hours or days, sometimes

even more than one iteration, to make them pass.

If our expectation is true, due to the substantial delay between the definition and

the first successful pass of an acceptance test, a development team can NOT expect that

all acceptance tests pass all the time. A failing acceptance test can actually mean two

things:

• Unimplemented Feature: The development team has not yet finished working on

the story with the failing acceptance test (including the developer has not even

started working on it).

• Regression Failure: The test has passed in the past and is suddenly failing – i.e. a

change to the system has triggered unwanted side effects and the team has lost

some of the existing functionalities.

The first case is simply a part of the normal test-driven development process. It is

expected that a test that has never passed before should fail if no change has been made

to the system code. However, the later case should be raising flags and should be

highlighted in the progress reports to the team. Otherwise the users have to rely on their

recollection of the past test results or reorganizations of the test suites to determine the

meaning of the failing test. For anything but very small projects, this recollection will not

6

be reliable. In my research I have found no tool that is designed for identifying these

two kinds of failures in EATDD.

Therefore, my research is motivated, first of all, to investigate how EATDD is

conducted in the industry and analyze what kind of tool support is needed. Secondly,

based on the findings of support for EATDD in the industry context, a tool should be

developed to provide a novel support for EATDD. Further, since EATDD is a novel

technology for XP and this tool provides a new support to EATDD, it would be

interesting to find out how people think the tool can help in EATDD.

1.5 Thesis Problems

In this thesis I am going to address the following problems:

1. It is unknown how Executable Acceptance Test Driven Development is

conducted in industry, especially the time frame of Acceptance Testing.

2. Based on the finds of Problem 1, novel tool support should be built for doing

EATDD in Agile environment.

3. Once such a tool support is built, an evaluation is needed to determine the

usefulness and usability of the tool in Agile environment.

1.6 Research Goals

In this thesis, I will address the problems mentioned above with the following goals:

1. I will investigate how EATDD is being conducted in industry environment on the

aspect of acceptance testing time frame.

7

2. I will perform analysis on the investigation data from the industry, find out

whether it is helpful to persist the test result information and identify the

necessary support for EATDD.

3. I will design and implement a tool to facilitate EATDD.

4. I will conduct a pilot study to evaluate the effectiveness and usability of the tool.

Figure 1.1 describes the context and scope of this research. Software Engineering

is the outmost context of the research. This research focuses on a sub area of Agile

Methods from software engineering overlapping with Software Testing. Testing tools

support for Agile Methods, which has always been in need of more research and it is a

core issue that can help maintain software quality. My research is focused on

investigating the acceptance testing issues in an Agile environment, the related tool

support and its evaluation.

8

Figure 1.1: The research context and scope of the thesis

1.7 Thesis Structure

The thesis is divided into seven chapters:

In Chapter 2, I introduce Agile Methods and testing techniques that are used in an

Agile environment. Then I discuss related tools used for acceptance testing. This chapter

also summarizes the empirical studies on using Fit and FitNesse for acceptance testing.

In Chapter 3, I present a web survey, whose purpose is to find the current state of

EATDD being conducted in industry and whether there is a need to persist test result

Software Engineering

Agile Methods

Tool Support

Acceptance Test
Tool Support

Executable Acceptance Test
Driven Development Tool
Support for Agile Methods

TDD Tool Support for Agile
Methods

Testing in Agile Methods

Software Testing

Testing

9

information. Further, basing on the findings of the survey, I investigate tool support that

may be helpful to the Agile development team for doing EATDD.

In Chapter 4, I demonstrate the user scenario of using FitClipse for supporting

EATDD in Agile environment.

In Chapter 5, first the acceptance testing tool requirements is outlined. Then the

detailed design and implementation of the testing tool, called FitClipse, is described.

Further, the comparison of FitClipse with other acceptance testing tools is discussed.

In Chapter 6, I describe the results of an initial evaluation of FitClipse. The aim of

this evaluation is to investigate the usefulness and usability of FitClipse.

In Chapter 7, I conclude the research and suggest possible future work in the

research area.

10

Chapter Two: Background

In this chapter, I give an overview of the background information of Agile software

development processes, methods and software testing. Then I introduce the special

testing techniques which are used in Agile environment, including Unit Test Driven

Development and Executable Acceptance Test Driven Development. In addition, I

summarize the existing tools supporting acceptance testing in various ways. Because my

proposed tool uses the Fit/FitNesse framework to write and run acceptance tests, the

related empirical studies of Fit and FitNesse are also summarized at the end of this

chapter.

2.1 Agile Software Development

Agile software development is a conceptual framework for undertaking software

engineering projects. The Agile Manifesto [Agile Manifesto 2007] proposed four values

for Agile software development: individuals and interactions over processes and tools;

working software over comprehensive documentation; customer collaboration over

contract negotiation and responding to change over following a plan.

First, Agile software development emphasizes the value of people and their

communication and interaction over the whole team. Even though software development

processes, methodologies and tools contribute toward the success of a project, the

people’s behavior is always the most critical element in software development. It is

required that an effective agile team will maintain close team relationships and team

working environment arrangements to improve the information sharing and

communication flow among team members.

11

Second, Agile teams take advantage of continuous publishing of fully tested

working software over dependence on heavy documentation. The final goal of software

development is to produce valuable software and never just the documentation, because

documents are used for supporting the process of software development or the software

itself. In Agile environment, new releases with added functionalities are published in

frequent intervals. Although these releases are small, they are fully tested and have gone

through an entire software life cycle. By doing this, the developers have to make the code

simple, straightforward and easy to understand, thus reducing the documentation to an

appropriate level. On the other hand, the customers are also satisfied in the continuous

functional releases, because they can always see the process of the development through

newly added working functionalities.

Third, it is ideal if the Agile team can keep an onsite customer who can

collaborate with the developers rather than working on the details of contract

negotiations. From the Agile team point of view, the onsite customer will clarify the

software requirements, which in result will make the team to be on the right track of the

software development. On the other hand, from the customer point of view, keeping in

close touch with the development team will eventually make sure that the team is

delivering the right business value. A close customer collaboration will definitely reduce

the risks of producing the wrong software.

Fourth, Agile software development allows changes in the software development

and can quickly adapt to the changes. This is not saying the traditional methodologies do

not allow changes. In the traditional methodologies, changes are made late in the project

12

and making late changes are much more expensive than making changes in the early

stages of the software development. The traditional software development process fails

because of the frequent changes and late changes in the product requirement

specification. By conducting small releases and other practices, Agile software

development can reduce the cost of frequent changes and late changes happening during

the development process.

2.2 Agile Methods

Rather than a specific methodology for Software Engineering, Agile Methods are a

family of project planning and software development processes. Agile Methodologies

focus on trying to produce a working solution and at the same time responding to changes

of customer requirements [Hunt 2006]. These methodologies include: Extreme

Programming (also known as XP) [Beck 1999], Scrum [Schwaber, 2001], Crystal Clear

and other Crystal methodologies [Cockburn 2004], Feature Driven Development (also

known as FDD) [Palmer 2002], Dynamic Systems Development Method [Stapleton

1997], Adaptive Software Development [Highsmith 2000] and etc. In the thesis, only

Extreme Programming, which is directly related to this thesis, will be discussed.

2.3 Extreme Programming

Among all kinds of Agile Methods, Extreme Programming, or as it is commonly known

as XP, is the most widely used technique by Agile teams [Cao 2004] [Maurer 2002].

According to Kent Beck, one of the creators of XP, Extreme programming is “about

writing great code that is really good for business” [Beck 2004]. Combining the

13

definition in [Beck 1999] and [Beck 2004], Extreme Programming is a lightweight

methodology for teams of any size developing software in the face of vague or rapidly

changing requirements.

XP is lightweight. In XP, people do not need to do more than they need to create a

value for their customers. It has, although not directly, the implications on the project

portfolio management, financial justification of projects, operations marketing, sales and

other aspects that can be seen as project constraints. XP can work for teams of any size.

Even though the initial purpose of creating XP is for small or medium teams, it has also

been scaled up. Through augmenting and altering the practices, the values and principles

in XP are applicable for any size of teams. XP adapts to vague or rapidly changing

requirements. It can adapt to the rapid changes in the modern business world. However it

can also be used where the requirements stay stable.

XP includes five values for guiding the development process. They are:

• Communication: It is the most important issue in software development. It

is critical for building the spirit of a team and maintaining effective

cooperation.

• Simplicity: Make the system simple enough that it is simple to expand the

scope of the system.

• Feedback: It is an important part of communication. In XP, people strive

to generate feedbacks early and often.

• Courage: People need the courage to speak the truth. It can strengthen the

communication and the trust.

14

• Respect: In a XP environment, each person in the team needs to be

respected.

These values lead to the following key practices:

• Sit together in an informative environment: XP needs people in one team

to communicate effectively. All team members should be located in the

way they can enable easy communication. In addition, integrated

information about the whole project should be provided, so that everybody

in the team can easily understand how the project is going. For instance,

some teams achieve information centralization by putting story cards on a

white board which can be easily accessed by all the team members.

• Pair Programming: The idea is two people working together on the same

computer. One person can review the code at the same time the other

person is coding. Working in pairs enables continuously code reviews and

feedbacks between the two developers.

• Stories: The stories are units of customer understandable functionality

with estimations of the development effort. The stories are created in XP

planning with customers involved in the development team. Estimations

are made early in the stories’ life cycle.

• Short Iterations: Iterations should be relatively short to allow quick and

frequent feedback and changes. Small working software releases are

produced at the end of the iteration.

15

• Continuous Integration: A team programming is a process of divide,

conquer and integrate. In XP, integrating and testing changes are

performed within a couple of hours.

• Test First Programming: Write a test and make it fail before making

changes to the existing code. The automated tests made are not only for

quality assurance, but they also help design and refactor the software

system.

• Make code work for today: Unlike in traditional software engineering,

people in XP do not create detailed design anticipating future needs.

Instead, they just make the software meet today’s requirement. If the

requirement changes later, they are confident that they can adapt the

design. In other words, the XP team invests into the design in proportion

for the established requirements of the current system.

2.3.1 XP Project Lifecycle

Figure 2.1 shows a typical lifecycle of a project in Extreme Programming [Don Wells

2000].

16

Figure 2.1: Life cycle of a project in Extreme Programming [Don Wells 2006]

Architectural Spike: An architectural spike is used for reducing the risk of the

project. During the spike, uncertainty for the system, technology and application domain

are investigated in the form of research and evaluation. The most important spike is on

the overall system architecture. Spike is also performed later in the development process.

Release Planning: Release planning happens in a release planning meeting. This

planning meeting will determine all the stories (requirements) which will be implemented

in this release and put them into a repository called “backlog”. The customers assign

priorities to stories. The technical people roughly estimate the development efforts and

resource cost on each story. The estimates can be refined later. Basing on the estimate,

the development team will figure out the stories and their delivery time in this release,

resulting in a release plan.

Iterations: Iterations provide the development process with the adaptability to

changes. At the beginning of the iteration, changes can be made to the tasks that is

17

planned to be implemented in the iteration. An iteration meeting is held before the

iteration starts in order to determine which stories are going to be included in this

iteration. The users or end customers will pick up the stories with the highest priority in

the backlog. The customers can change the priorities of stories as well.

Acceptance Tests: At the end of each iteration, users or customers run all the

acceptance tests, including tests from the previous iterations and those from the last

iteration, to determine whether the newly added functionalities are acceptable and prevent

new changes from causing side effects to previous working functionalities. If the

customers are satisfied with all the acceptance tests, which means they obtained all the

expected functionalities, the development team can check all the code and tests into a

repository and move on to another iteration or release. On the other hand, if the

customers do not accept the system, the development team will go back to fix all the bugs

or make changes according to the customers’ requirements. This will end up with another

acceptance testing stage.

Release: The most distinct features of XP releases are small and often. Each

release contains implemented system functionalities that provide business values. These

functions should be provided to the customers when they are available. This also enables

quick feedbacks from the customer side to the development side.

2.4 Software Testing

It is commonly known that more than two-thirds of software projects today fail [Chaos

Report]. They are either terminated, exceed time and budget restriction, have reduced

18

functionalities or provide insufficient reliability. The lack of testing is one of the most

important reasons of such failures.

Software testing is the process of using input combinations and selected states to

reveal unexpected behavior of the software systems [Binder 2000]. Its purpose is to

ensure the correctness, completeness, security and quality of computer software.

2.4.1 Software Testing Process

The testing process can vary between different organizations. However there is a typical

cycle of testing:

• Test Planning: determining how to generate and organize the test cases by making

Test Strategy and Test Plans.

• Test Development: developing Test Cases, Test Scenarios and Test Scripts for the

software under test.

• Test Execution: The testers execute the planned test cases against the product

under a certain environment and report any unexpected system behavior to the

development team.

• Test Reporting: Based on the outcome of test execution, the testers generate

reports on their test effort and whether the software under test can be released.

• Retesting: retesting the defects that are supposed to be fixed by the developers.

2.4.2 Different Levels of Testing

According to the different testing levels, software testing can be divided into several

categories.

19

2.4.2.1 Unit Testing

The goal of unit testing is to validate that each unit of a whole system is working well

independently. A unit is the smallest testable part in the system. Unit test tests all the

interfaces of one unit to the others. Therefore, unit tests cover fine grained system details.

Unit testing is typically done by the developers.

Automated unit tests provide support for continuous changes in the source code.

Passing unit tests mean successful implementation of small system functionalities. Later

changes in the system functions should not break the previous working units. Running

unit tests continuously can expose the changes that break other parts of the system.

In addition, unit tests can work as documentation for the developers. Developers

create unit tests based on the interface of a unit. Therefore, the unit tests include all the

information of what the interface of each unit means. Other developers can read the tests

to understand how to use the interface of a unit.

2.4.2.2 Integration Testing

The purpose of integration testing is to combine the functional units into groups and

validate the transactions between the groups of units. Integration testing always comes

after unit testing and before the system testing. There are two ways of integration testing:

the Big Bang approach and the Bottom Up approach.

In Big Bang approach, all or most of the testing units are put together to form the

whole system. Then tests cases are created to run test on the units working in a whole

system. The Big Bang approach is supposed to be an effective way to save time in

20

testing. However if the test cases and results are not organized and recorded properly,

the testing process will be very complicated and cannot achieve the goal of integration

testing.

In Bottom Up approach, system functional units are organized into different levels

to be tested. Test cases are generated from a lower to a higher level. There are also

different methods to organize the functional units into the different levels.

2.4.2.3 System Testing

System testing is conducted on a complete, integrated system to evaluate the system's

compliance with its specified requirements [IEEE 1990]. System testing tries to detect the

defects on the system level, thus it does not require any knowledge of inner design or

logic of the code.

2.4.2.4 Acceptance Testing

Acceptance testing is the process of the customers testing the functionality of a system in

order to determine whether the system meets the requirements. Acceptance tests are

concrete examples of the system features. They help the customers to know whether the

system is doing the right things and decide whether they want to accept the system

[Miller 2001] [Acceptance Test 2006].

Ideally, the acceptance tests are defined by the customers. It is ideal that the

customers can write the acceptance tests themselves, which is not always the fact.

However the acceptance test should at least be understood by the customers. Because in

the end it is the customers who will run the acceptance tests and determine whether the

21

software can be deployed. In practice it is often the developers who will translate the

customer stories into testing code [Erickson 2003]. With some tool support, such as Fit or

FitNesse, customers can write their own acceptance tests. Sometimes they may also need

the testers to organize or refine their tests to maintain a better test suite.

Acceptance tests are designed to test the system functionalities on a system level.

The major purpose of Acceptance testing is not finding bugs (even though bugs can be

found by acceptance tests) of the system but demonstrate the system’s functionalities. In

Extreme Programming, recent literature suggests that the executable acceptance tests

should be created for all stories (which are the system functionalities) and that a story

should not be considered to be completed until all the acceptance tests are passing

successfully [Miller 2001].

There are many synonyms for acceptance testing. Table 2.1 is from [Maurer

2006] which includes the synonyms.

22

Table 2.1: Acceptance Testing Synonyms [Maurer 2006]

Term Introduced/Used by

Functional tests [Beck 1999]

Customer tests [Jeffries 2001]

Customer-inspired tests Beck

Story tests and story-test-driven development [Joshua 2005]

Specification by example [Fowler 2006].

Coaching tests
[Marick 2002]

Examples, Business facing example, example-driven
development

Marick

Conditions of satisfaction [Cohn 2005]

Scenario tests [Kaner 2003]

Keyword-driven test [Kaner 2002]

Soap opera tests [Buwalda 2004]

Formal qualification tests [USDD]

System tests [IEEE 1996] [Erickson 2003]

Using Acceptance Testing offers the following advantages.

First, acceptance tests can improve the communication between the customers and

the development group, thus improving the specification of requirements. According to

[Chaos Report], user Involvement is ranking the first in the ten most important factors of

successful projects. 85% of the defects in developed software originate in the software

requirement [Ralph 2001]. One of the most important reasons is insufficient customer

23

involvement. Acceptance tests build a bridge between the customer and the

development team by providing support of specifying detailed functional requirements.

With the help of acceptance tests, the development team can reduce the risk of

misunderstanding the customers’ expectation and make sure that the system is working as

the customer expected.

Second, a suite of acceptance tests (a set of tests which are organized together and

run together) helps the development team understand the development progress [Erickson

2003]. Normally, it is hard to decide when a task for one requirement can be tagged as

finished. The customer may reject the implemented requirements which the developers

think they have already completed. By using acceptance tests, when all the acceptance

tests that belong to one requirement pass and the customer accepts the functionality, the

developer can tag the requirement as finished. In addition, as the development goes on,

more and more acceptance tests are made pass with the number of functionalities

increases. From the changing number of passing acceptance tests, the development team

can understand how their project is progressing. By analyzing the details of the test suite,

the team can also make changes to their current development strategy. Acceptance tests

help both the customers and the development team to make sure that the project is

progressing in the right direction [Crispin 2001 B].

Third, in the later development the previously passing acceptance tests can play

the role of regression tests on a regular basis [Holmes 2006] [Rogers 2004]. Acceptance

tests represent the system requirements. Once they are passing, it means the development

team has already created the required functions. However, the development team will

24

keep changing the code to implement new functions and perform refactoring to the

existing code, which may cause side effects to other parts of the system. This side effect

may break already-working functions, resulting in regression failures. By maintaining a

suite of acceptance tests and keeping track of passing and failing acceptance tests, the

developers can detect the regression failures on the system level easily. [Kitiyakara 2002]

mentioned their experience of using acceptance tests as regression tests in their project.

Fourth, writing acceptance tests before implementing the system can improve the

accuracy of the development effort estimation. Acceptance tests are defined by the

customers as detailed system requirements. The tests expose all the functions that are

expected to be released. There are no hidden functions or misunderstanding of the

functionalities. Therefore, based on the acceptance tests it is easier for the developers to

accurately estimate the required development time and effort.

At last, acceptance tests can be used as documentation in Agile environment. The

acceptance tests document the correct behavior of the system [Andersson 2003]. By

reading acceptance tests, people can understand what the system is supposed to do and by

running the automated acceptance tests, people can see what the system is really doing.

Common acceptance testing workflow has three components [Mugridge 2005 A]:

• Setup: put the system into a specific condition.

• Change or make transaction: make something happen to the system.

• Check: compare the outcome from the system to the expected result.

25

2.4.3 Comparison of Testing

Testing is conducted differently in Traditional Software Development and Agile Methods

such as Extreme Programming. In this section, the comparison of testing methodology in

both software engineering processes is discussed. Extreme Programming is taken as an

example of Agile Methods.

2.4.3.1 Time of Testing

In the traditional software engineering, testing is performed at the end of the process,

after the code has been implemented and right before the product is delivered. Test at this

time does not ensure quality effectively, because the testers will make mistakes or omit

tests due to the time pressure before releasing the new system.

In Extreme Programming, testing is conducted before the implementation of any

code, which is called Test Driven Development (TDD). By conducting TDD, a well

designed system with fewer defects and low maintenance cost is implemented.

Advantages of TDD will be discussed in section 2.5.

Early testing means a better chance of removing defects early. Removing defect

later is much more expensive and threatening to the project’s success. This effect is

especially obvious in the context of requirement errors. It has been estimated by Boehm

and Papaccio that it costs from 50 to 200 times more to remove requirement errors in the

maintenance time than to correct them in the early project phase [Boehm 1988].

26

2.4.3.2 Frequency of Testing

Traditional software engineering does testing only in one phase at the end of

implementation, while Extreme Programming does testing frequently. Tests are run tens

or hundreds times on a daily basis. Figure 2.2 and Figure 2.3 compare the differences of

testing in both software engineering processes on the frequency basis.

Figure 2.2: Traditional software engineering: late, expensive testing leaves many
defects [Beck 2004]

Figure 2.3: Agile software engineering: frequent testing reduces costs and defects
[Beck 2004]

Defects grow faster and faster with time going on and based on more and more

defects. The cost of fixing bugs depends on the number of defects and the effort to find

and fix the defects. It is harder to locate the origin of a defect and fix it with larger

number of defects in the system. As shown in the above two figures, the traditional

process of the testing is more expensive and leaves more defects than in the Agile

27

process. Frequent testing reduces the number of defects, thus limiting the cost for

fixing them.

2.5 Test Driven Techniques

Test Driven Development (TDD) means writing tests before implementing the

application code. In this section, two kinds of test driven development techniques are

discussed: one using the unit tests and the other using the acceptance tests.

2.5.1 Unit Test Driven Development

Unit Test Driven Development (UTDD) is originally called Test Driven Development

and was introduced by [Beck 2003].

Generally speaking, UTDD means writing unit tests before you write the code. No

application code is being written before it has the associated tests [Jeffries 2003]. A suite

of unit tests are maintained which will guide the development all through the

implementation process. It may take the developers several minutes to create unit tests

and make them pass. Thus, at any time in the development process, all of the tests should

be passing successfully.

UTDD helps the development teams to build loosely coupled, highly cohesive

systems with low defect rates and low maintenance cost [Beck 2003]. There are two

reasons for this effect. First, UTDD helps to reduce the defects. The sooner the defects

are found, the less the cost will be. UTDD maintains a suite of detailed unit tests which is

run hundreds of times a day to make sure that a bug is captured immediately before it

gets propagated. By reading the failing tests, the defect is located easily and correctly.

28

There is overwhelming anecdotal evidence which indicates that UTDD is helpful in

reducing defects. No opposite effect has been found yet. Second, UTDD shortens the

timeframe of feedback on design decision. Unit tests are actually testing the interface of

each method. This interface can easily be changed to the real implementation of

application programming interface (API). Rather than implementing the design and

waiting weeks or months for someone else to feel the pain of improper designed API,

TDD enables the feedbacks in second or minutes from self testing.

The general UTDD cycle is: [Beck 2003]

a. Quickly add a test to the suite: based on the imagination of how the

application would work, invent the interface.

b. Run all the tests: run all the tests to see the newly added test is failing. At

this time red bar2 should be seen.

c. Make the test pass: change the system code to make the newly added test

pass, also run the whole suite of the tests to make sure all tests pass in

order to prevent breaking other parts of the system. If some other tests fail,

find the reason and make them pass again until the green bar3 is shown for

all the tests.

d. Make the system right: now the system is working, but in an improper

way. Refactoring needs to be done by removing duplicates that have been

introduced to the system.

2 Red bar means the test is failing.
3 Green bar means the test is passing.

29

After working on one test, people continue adding another one to make the

progress to the system.

2.5.2 Executable Acceptance Test Driven Development

Executable Acceptance Test Driven Development (EATDD) is another Test Driven

Technique. It uses acceptance tests instead of using unit tests.

The concept of Acceptance Test Driven Development is described in [Beck 2003]

(called Application Test-Driven Development). Before implementation begins, it is the

customers’ responsibility (with the help of the development team) to write acceptance

tests for driving the development process.

Acceptance test should be written first, before the application code is

implemented [Cohn 2004]. Acceptance tests represent the system requirements. It works

as the guideline to tell the developers the targeted system functionalities they strive for.

The proper process is to: first, the customers write the acceptance tests with the help of

the development team; then the developers implement the functional code to make the

acceptance tests pass; and at last the customer runs all the acceptance tests to make sure

all the requirements have been met.

Acceptance tests should be lightweight. Lightweight means the tests should be

easy to modify. The customer requirements may change frequently and Agile Methods

adapt to these frequent requirement changes. Therefore the acceptance tests, which

represent the customer requirements, should also be easy to be modified in order to be in

sync with the customer requirements.

30

Acceptance test must be executable [Crispin 2001 A]. Manual testing does not

ensure quality if done under a schedule pressure before releasing new functionalities.

Manual testing is tedious. When testers are encountered by lots of detailed tests and

under a time constraint, they are prone to make mistakes, cut corners, omit tests and miss

problems [Martin 2005]. In addition manual testing is too time-consuming. It is the

bottleneck before the product delivery [Talby 2005]. This fact prevents manual testing to

be applied in Agile environment which emphasizes continues testing with fast feed back

and small continuous releases.

In XP, the cycle of acceptance testing is shown in Figure 2.4:

a. Customers define acceptance tests: the acceptance tests are written by the

customers with the help of the development team. The acceptance tests are

based on the stories which are the customer requirement specifications in

XP.

b. Developers create fixtures: the developers create fixtures for automating

the acceptance tests.

c. Make the acceptance tests fail: the developers run the whole test suite and

see all newly added acceptance tests fail.

d. Make the acceptance tests pass: Use UTDD to implement the system

functionalities. Make the acceptance tests pass one by one after the

corresponding system functions are working.

e. Refactor: delete the duplicates and make the necessary structure changes

in the system code.

31

f. Run all tests: the customers run all acceptance tests to see whether the

expected functionalities are working. The customers will accept the

system if they are satisfied with the acceptance tests. If they do not accept,

the development team will go over the above steps again.

Figure 2.4: The cycle of acceptance testing

After the customers accept the system release, the whole development team and

the customers enter a new development phase. The customers will create new stories and

a new EATDD process start.

32

2.6 Tools and Frameworks for Acceptance Testing

Tools and Frameworks for Acceptance Testing are introduced in this section. First I

discuss open source tools and frameworks.4 Then I introduce several Eclipse plug-ins that

use Fit/FitNesse framework for writing and running acceptance tests.

2.6.1 Open Source Frameworks & Tools

2.6.1.1 Fit

Fit is a Framework for Integrated Testing and is probably the most popular acceptance

testing tool today. “It is well suited to testing from a business perspective, using tables to

represent tests and automatically reporting the results of those tests.” [Mugridge 2005 B]

Fit is designed for ordinary people to be able to understand or even to write acceptance

tests. Fit tests are in the form of tables with assertions in the table cells. Fixtures, made by

the programmers to execute the business logic tables, map the table contents to call into

the software system. Test results are displayed using three different colors for different

states of the test: green for passing tests; yellow for tests that cannot be executed and red

for the failing tests. The fixture layer is hidden from the customers.

Fit test tables can be created with common business tools such as spreadsheets

and word processors. The tables can also be integrated into other types of documents,

including Microsoft Word, Microsoft Excel, HTML and etc. Various languages can be

used for writing fixtures, including Java, C#, Ruby, C++, Python, Objective C, Perl and

small talk [Cunningham 2007].

4 To my knowledge, no commercial tools are providing substantial novel support for Acceptance Testing.

33

2.6.1.2 FitNesse

FitNesse is a Wiki front-end testing tool which supports team collaboration for creating

and editing acceptance tests [FitNesse 2007]. FitNesse uses the Fit framework to enable

running acceptance tests via a web browser.

FitNesse enables a development team to collaboratively create tests and run the

tests on a Wiki website. Users are able to compose and organize the tests using simple

Wiki syntax without any knowledge of programming and HTML. In addition, FitNesse is

a cross platform standalone Wiki server which does not need any other server to be

running or other configuration, thus it is very easy to set up.

Figure 2.5 shows the framework of FitNesse to be used as an acceptance testing

tool.

Figure 2.5: Processes of using Fit/FitNesse framework for EATDD

34

In this figure, the middle section shows the workflow of the Fit/FitNesse

framework between the different layers; the left side shows the Java code and the right

side shows the Fit table style acceptance tests. The steps of acceptance testing using

Fit/FitNesse include:

� Write acceptance tests: the customers write acceptance tests using a browser

with the help of developers and the testers. The tests are written in a form of

executable tables with Wiki syntax. Figure 2.6 shows a sample Acceptance test

within FitNesse environment. The tests are then saved directly on the FitNesse

server. The upper right part of Figure 2.5 shows how the Fit tests look like. In

the run time, the tests are executed by the FitNesse test runner inside the

FitNesse server.

Figure 2.6: FitNesse acceptance test sample with Wiki syntax

� Write fixture code: After the customers define the acceptance tests, the

developers work on implementing the application code. They will develop the

fixture code for the acceptance test to make the tests pass. The fixture code

35

dispatches the call from the acceptance test runner into a real application

code. It also captures returned values from the application code, modifies the

values and passes them back to the acceptance test runner.

� Run acceptance tests: Acceptance tests are executed through the FitNesse test

runner. The test runner parses the test tables to find the key words and link

them together to construct the class name of the fixture code. With the

constructed class name, the test runner calls the underlining fixture code

developed by the development team. It also passes the values as the parameters

of fixture class call. After the fixture class processes the application with the

given parameters, the test runner captures the returned values from the fixture

code and makes assertions which show as different colors in test table cells.

� View test results: After running the acceptance tests on the FitNesse server, the

results are shown in the form of the original test table with the appropriate

value cells colors that represent the acceptance testing results. The meanings of

the different colors are described in Table 2.2.

Table 2.2: Test Result Schema of FitNesse

Colors Meaning

 The test is passing.

 There are exceptions in the test.

 This test is failing.

Figure 2.7 shows a sample FitNesse test result of a DoFixture test. The test result

is shown in detail which provides enough information for the customer. However, the

36

FitNesse test result can only be viewed after running the test, which makes it

inconvenient when there are lots of tests that need longer time to run. FitNesse does not

persist the test results.

Figure 2.7: Sample FitNesse test result for DoFixture

2.6.1.3 FitLibrary

FitLibrary provides general-purpose fixtures and runners for acceptance tests with Fit and

FitNesse [FitLibrary 2007]. It includes a collection of extensions for the fixtures in Fit for

business processes (workflow), calculations, constraints and lists. Other than the test

styles that Fit provides, it also supports testing grids and images, which makes it

convenient to test expected layouts.

2.6.1.4 GreenPepper

GreenPepper Open is a framework for creating executable specification documents

[GreenPepper 2007]. It is similar to Fit. It ensures that the documentation is easy to read

37

by minimizing the formatting rules and code references. Instead of fixing the tabular

structure of acceptance tests (like Fit), GreenPepper provides multiple structures of test

cases, including tables of rules, sequences of actions and collections of values.

GreenPepper Server is the commercial version of GreenPepper. It supports

multiple client applications by centralizing all coherent data. The GreenPepper server

enables running specifications both locally and remotely. It also maintains a history of

executions5 and it supports several versions of front end application as extensions.

One of the extensions is an Eclipse plug-in which is the most relevant to my work.

The GreenPepper server Eclipse plug-in provides support for Story Test Driven

Development or Acceptance Test Driven Development. Acceptance tests are created and

saved on GreenPepper server which works as a test repository. The Eclipse plug-in is

working as a front end application for running the acceptance tests. The test results are

shown as HTML pages and the test results are reported in the console.

2.6.1.5 Exactor

Exactor is another framework for writing acceptance tests. It uses plain ASCII text scripts

written by the customers as acceptance tests [Exactor 2007]. Exactor interprets the scripts

to trigger the Java class created by the programmers for making calls to the real

application code. The commands are defined one for each line starting at the left hand

side with parameters supplied next, separated by white spaces.

5 I investigated this feature. But I did not see the tool was providing features that are similar to FitClipse’s
novel contribution.

38

2.6.1.6 TextTest

TextTest organizes acceptance tests using plain text files. Instead of making assertions

against application code, TextTest works by comparing the current version of a plain text

logged by programs with a previous standard version of that text [TextTest 2007]. A user

interface is also implemented for generating TextTest scripts using record and replay

approach6 [Andersson 2004].

2.6.1.7 EasyAccept

EasyAccept is a script interpreter and runner that uses text files to create acceptance tests

using the user-created commands that is close to natural language [Sauve 2006].

Comparing to other acceptance testing tools, it has two main advantages. First, it supports

the creation of acceptance tests as sequential commands as well as in tabular format.

Second, EasyAccept makes it easier for the developers to implement the test fixture, for

which it uses a single Façade which may even already exist for the software under

construction.

2.6.1.8 Selenium

Web applications are often tested manually because UI testing is brittle and complex. In

previous years, automated testing of web applications was often conducted with a

simulated browser, such as HttpUnit, JWebUnit, or CanooWebTest. However, it is still a

problem to test heavy client side JavaScript. Selenium is a web application testing tool

6 Record and replay means the support of recording a set of transactions into scripts automatically. This
support enables the transactions to be re-executed later.

39

which runs acceptance tests in a wide range of browsers, such as Internet Explorer,

Firefox and Safari. (A detailed list of supported browsers can be found on [Selenium

2006].) It embeds a test automation engine into the browser with JavaScript and Iframes.

Tests are written in the form of tables which have different commands for talking to the

browser and asserting expected return values.

There are also two additional tools for selenium: Selenium IDE and Selenium

Remote Control. Selenium IDE is an integrated development environment that works as a

Firefox extension. It supports recording events as Selenium tests and playback, editing

test scripts and debugging tests. Selenium Remote Control allows writing automated web

application UI tests in any programming language against any HTTP website [Selenium

Remote Control 2006].

2.6.1.9 WATIR & WATIJ

The Web Application Testing in Ruby (WATIR) and its sibling, the Web Application

Testing in Java (WATIJ), also provide automated acceptance testing against web

applications through real web browsers [WATIR 2007] [WATIJ 2007]. The test scripts

are written in Ruby or Java and communicate with the browser in the same way as people

do, such as filling in some text and clicking a button. Even though their syntax are simple

for making acceptance tests, WATIR/WATIJ test scripts are still similar to programs,

thus requiring prior IT or even programming experience to understand the test cases.

40

2.6.2 Eclipse Plug-ins Based on Fit

There are also Eclipse plug-ins that use Fit or FitNesse for acceptance testing including

FitRunner [FitRunner 2007], conFIT [conFIT 2007] and AutAT [Schwarz 2005].

2.6.2.1 FitRunner

FitRunner is an Eclipse plug-in for Fit. It enables running Fit tests inside Eclipse

environment. FitRunner contributes to Eclipse a new Runner configuration for running

Fit tests. It can run both single Fit test and a folder containing multiple Fit tests.

2.6.2.2 conFIT

conFIT is also an Eclipse plug-in which supports running FitNesse and using a Fit testing

framework inside Eclipse easily. It maintains a local FitNesse Server which can be

controlled from within Eclipse. Eclipse browsers, which are configured to explore a

remote FitNesse server, can be used to create and run acceptance tests.

conFIT is integrated with Eclipse whereby the user can run a wizard to load a

FitNesse project with a sample Java source code and wiki pages. It contains tool bar

buttons to start and stop local servers. The toolbar buttons for opening a remote server

browser and class variables for assessing Fit and FitNesse libraries are also available.

2.6.2.3 AutAT

AutAT enables non-technical users to write and execute automated acceptance tests for

web applications using a user-friendly graphical editor [Schwarz 2005]. In AutAT,

people draw pages and their relationships in the form of “boxes” and “arrows”.

41

Executable acceptance tests are automatically created based on these drawings. The

tests can be executed by an underling test engine. This runner is interchangeable and

currently implemented by Fit plus jWebUnit.

2.7 Empirical studies of Fit and FitNesse

In this section, I summarize empirical studies of Fit and FitNesse to demonstrate that Fit

and FitNesse are easy to use and helpful for acceptance testing.

2.7.1 Customer Specifying Requirements

A study was conducted to find out whether customers can specify requirements with

FitNesse in [Melnik 2006]. The finding is: that an average customer will have difficulties

in learning the Fit framework; however, once the learning curve has been surpassed, the

customers find Fit and FitNesse easy to use and they can specify functional business

requirements from the positive perspective 7in the form of executable acceptance tests

clearly.

2.7.2 Developer Understanding and Implementing Requirements

The suitability of Fit for communicating functional requirements to the developers is

examined in [Melnik 2004]. The result includes: first, Fit tests which describe customer

requirements can be easily understood and implemented by developers with a little

background of the Fit framework; second, the learning curve for reading and

7 In this study, the customers specified dominantly positive test cases. The negative test cases only
accounted for 6% of all the tests.

42

implementing Fit test is not prohibitively steep. The former finding is also supported

by [Read 2005 A] and [Read 2005 B] that students of information technology are able to

read and understand acceptance tests written using Fit framework independent of outside

information sources.

2.7.3 Fit Acceptance Test in Industry Environment

Using Fit as the single source of behavioral requirements for the stories in the industry is

evaluated in [Gandhi 2005]. The major finding is that using Fit documents to define story

details is very helpful in Agile project and it is a successful approach for reducing

ambiguity and avoiding duplications. Fit documents created as a single source of system

behavior specifications are effective testing technique and can be achieved through

effective collaborations. Therefore, [Gandhi 2005] recommends this approach to develop

software in an Agile environment.

According to Geras’s qualitative analysis of acceptance testing tools [Geras

2005], Fit is one of the tools that can optimize the effectiveness of EATDD in software

development process.

Mugridge and Tempero retrofitted their test framework with Fit for acceptance

testing in socket-based servers with multiple clients [Mugridge 2003], They found that

the Fit framework was straightforward to use. With the help of Fit, the customers find it

much easier to write and understand the sequence of communications.

43

2.7.4 Fit Acceptance Test in Academic Environment

Fit framework is also used in academic environment for specifying course requirements.

[Steinberg 2003] and [Melnik 2005] describe their successful experience with the Fit

framework in the introductory to programming course and how the students did

acceptance testing for their courses. The practices they conducted by using the Fit

framework was straightforward to implement regardless of the course context. These

findings indirectly prove that the Fit framework can be used for specifying requirements

and people can understand the specifications of Fit acceptance tests.

2.8 Summary

The background information on acceptance testing is provided in this chapter.

Acceptance testing is a testing technique which has been used in test driven pattern for

Agile software development. The tools and frameworks for acceptance testing, including

Eclipse plug-ins using Fit/FitNesse, are introduced and analyzed. Empirical studies on

Fit/FitNesse are included in order to show the Fit/FitNesse acceptance testing framework

as a useful tool for EATDD. In the next chapter, a survey is presented that investigated

the state of using EATDD in the industry environment. The findings of the survey

directly contribute to the main motivation for providing a novel support for EATDD in

Agile software development.

44

Chapter Three: Survey & Thesis Motivation

In my work, I seek to provide useful support for EATDD which meets the needs of

industry. Therefore I conducted a survey to determine the state of people using EATDD

in industry. In this chapter, first I describe the objective and design of the survey. Then I

summarize the survey participants and the findings. And finally, basing on the survey

findings, I introduce the motivation of FitClipse as a testing tool that provides enhanced

support for EATDD in industry.

3.1 Objective of the Survey

The overall objective of the survey is to find out how Executable Acceptance Test Driven

Development is conducted in industry. Based on the findings of the survey, my aim is to

develop a tool to support EATDD which works in an industry environment.

A special motivation of the survey is to find out the time frame between creating

an acceptance test and making it pass successfully for the first time. The acceptance

testing time frame issue is first proposed in [Beck 2003] that it will take the developers

longer to pass an acceptance test than to pass a unit test. However there is a lack of

industry evidence that supports this idea. In the survey, I tried to gather the time frame

information of acceptance testing to verify that passing one acceptance test will take

substantial longer time than passing a unit test.

3.2 Survey Design

Ethics approval was obtained from the University of Calgary (Appendex A.1) before

conducting the study.

45

The survey was designed to ask specific questions about the participants’

experience on EATDD in real industry projects. A questionnaire was used to this end. As

in Appendix B.2 the survey questionnaire included questions on the subjects’ information

and knowledge of testing techniques, their experience of running acceptance tests and

open ended questions about their expectation of tool support for acceptance testing.

Questionnaires were sent out both in paper and emails format. The paper format

questionnaires were given to the Calgary Agile Method User Group [CAMUG 2007].

Emails containing links to the online questionnaire were sent to mailing lists of Agile

communities all over the world. Finally, the questionnaire reached 16 user groups.

(Please refer to Appendix B.1 for detailed lists of the user groups) The online

questionnaire was designed as a website that could be reached publicly. Responses were

collected from February – April of 2007.

3.3 Response Rate

The questionnaire was provided to 16 Agile user groups all over the world. Responses

were received from 40 subjects. Eleven out of the 40 subjects are excluded because of

incomplete answer or not using EATDD in their process. Therefore, 29 subjects are

eventually analyzed. However, the number of participants reported in following studies

may vary. This is because some participants did not answer all the questions in the

questionnaire. They might skip some of the question which ended up with different

numbers in the summarization. Responses were subjective in nature and analyzed by

myself.

46

3.4 Participant Demographics

All the participants are working in industry (identified from their position) and following

EATDD which ensures that all findings are based on the industry data. Their positions

range widely in industry, which include: Customer, Developer, Tester, Business Analyst,

Software Designer, System Architect, Interaction Designer, End User Representative,

Consultant, Project Manager and Agile Coach.

The source data is based on the experience of the subjects. Therefore it is critical

to understand their experiences and knowledge of acceptance testing. In order to make

the data accurate, subjects whose experience of acceptance testing is less than half a year

are excluded. Figure 3.1 shows their acceptance testing experience:

Subjects' Years of Experience

4 4 4

5

4

6

2

0

1

2

3

4

5

6

7

0.5~1 1 2 3 4 5 5+

Years

N
o.

 o
f S

ub
je

ct
s

No. of Subjects

Figure 3.1: The subjects’ experience of acceptance testing

47

In the above figure, only 14% (4/29) of the subjects have limited experience of

0.5 – 1 year. However, considering the learning curve of acceptance testing, this time

frame is enough for people to thoroughly understand this technique. A total of 72% of the

subjects had more than two years experience on acceptance testing. Therefore we can say

that the set of subjects has satisfactory experience of doing acceptance testing.

The tools used by the participants with the number of users are shown in Figure

3.2:

EATDD Tools Used by Subjects

19 20

12 12

7

3
5

0

5

10

15

20

25

FIT

FitN
es

se

Sele
niu

m

W
ATIR

/J

XUnit

SD F
W

/C
od

e

Oth
er

 T
oo

ls

Tools

N
o.

 o
f S

ub
je

ct
s No. of Subjects

Figure 3.2: Tools used by the subjects for EATDD

48

As shown in the above figure, FitNesse, Fit, Selenium and WATIR/WATIJ are

widely used by the industry8. XUnit tools are also used for acceptance testing besides

their original purpose of unit testing. Some of the subjects also developed their own

frame work and tools to do acceptance testing (shown in the figure as “SD FW/Code”,

which means Self Developed Framework or Code). Besides the tools included in the

above figure, other tools are also used in industry for acceptance testing, including

Canoo, WebTest, JWebTest, Rational Robot, Avignon and Mercury QuickTest

Professional™.

3.5 Survey Findings

In this section, six main findings are shown, including the number of acceptance test and

the project scale, the frequency of adding or changing acceptance tests, the frequency of

running acceptance tests, the test running pattern, the average and maximum time frame

of acceptance testing.

3.5.1 Number of Acceptance Tests and Project Scale

In the questionnaire, the subjects are asked about the number of acceptance tests they

have for the current or latest project and the scale of the project. The number includes all

the acceptance tests created for the whole project. The answer is shown in Figure 3.3:

8 The sum of the number of users exceeds the number of subjects, because people may have used multiple
tools for acceptance testing.

49

No. of Acceptance Tests

2

6

12

3 3

0

2

4

6

8

10

12

14

<50 50-100 100-500 500-1000 >1000

No. of Tests

N
o.

 o
f S

ub
je

ct
s

No. of Subjects

Figure 3.3: Number of acceptance tests the subjects have for their current project or
latest project with the project scale

There are 26 valid answers for this question. Only two of them (8%) have less

than 50 acceptance tests. However, one of the two answers is 30 acceptance tests which

are only the ones automated by the developers. It can be expected that there are also tests

that are run manually. 23% (6/26) reported the number to be 50–100. 46% (12/26) has

tests of 100–500, which is the most of all categories. The numbers of 500 – 1000 and

above 1000 are both 12% (3/26).

Finding 3.1: the number of acceptance tests for a project is commonly (69%,

18/26): from 50 to 500.

50

3.5.2 Frequency of Adding or Changing Acceptance Tests

Subjects reported their frequency of making changes to the pre-defined acceptance tests,

among which 26 are valid. Figure 3.4 shows the results to this question:

Frequency of Changing Acceptance Tests

15

3

1

7

0

2

4

6

8

10

12

14

16

Many times /
day (when new
idea comes)

Once / day Once / week Once / iteration

Frequency

N
o.

 o
f S

ub
je

ct
s No. of Subjects

Figure 3.4: Frequency of adding or changing acceptance tests basing on customer
requirement changes

In this chart, most subjects (58% 15/26) change the acceptance tests very

frequently, several times a day, when they come up with new ideas. This result may come

from the fact that in the implementation phase the developers often need to refactor the

detailed requirement, at which time they will discuss these issues with the customer and

change the predefined acceptance tests or adding new acceptance tests. 12% (3/26) of the

subjects change the tests once a day. 27% (7/26) of the subjects make changes to the

acceptance tests once per iteration. This may be because acceptance tests are made to

guide the development for each iteration. At the beginning of an iteration, the customers

51

join the development team to pick stories for this iteration according to the reviewed

prioritization. At the same time the customers define the acceptance tests for each story.

Finding 3.2: in most cases (58%, 15/26), acceptance tests are modified

frequently for many times a day.

3.5.3 Frequency of Running Acceptance Tests

29 valid answers are collected for the question on the frequency of running acceptance

tests. The detailed results are shown in Figure 3.5.

Frequency of Running Acceptnace Tests

19

6

2
0 0

2

0
2
4
6
8

10
12
14
16
18
20

Multiple
times /

day

Once /
day

Once /
two days

Once /
week

Twice /
week

Once /
iteration

Frequency

N
o.

 o
f S

ub
je

ct
s

No. of Subjects

Figure 3.5: Frequency of running acceptance tests.

In this figure, we can see that most of the subjects (66% 19/29) run acceptance

tests multiple times per day. This result may be because they run acceptance tests as

regression tests to ensure no loss functionality. 21% (6/29) of the subjects run acceptance

52

tests once per day. This may be because of daily integration: they run acceptance tests

before they check in the code everyday to make sure the newly added functionalities are

working compatibly with the previous system. Only 7% (2/29) of the subjects run

acceptance tests every two days and no body is running acceptance tests on a weekly

basis. 7% (2/29) of the subjects run acceptance tests once per iteration. They may only

run all the acceptance tests right after the integration at the end of the iteration.

Finding 3.3: in most cases (65.52%, 19/29), acceptance tests are running often

and multiple times a day.

3.5.4 Test Running Pattern

In the questionnaire, we asked the subjects about their pattern of running acceptance

tests, including only run tests for the current story, always run all existing tests or run in

both patterns from time to time. Figure 3.6 shows the result with 27 valid answers.

53

Acceptance Tests Running Pattern

3

8

16

0

2

4

6

8

10

12

14

16

18

Only tests for
current story

Always all existing
tests

Both pattern

Pattern

N
o.

 o
f S

ub
je

ct
s

No. of Subjects

Figure 3.6: Test running pattern

When running acceptance tests, 11% (3/27) of the subjects only run the

acceptance tests that belong to the current story they are working on and 30% (8/27) of

the subjects always run all the acceptance tests. The majority (59% 16/27) run acceptance

tests in both patterns. One of the subjects said his team “run test related to the story” and

“continuous integration system runs them (acceptance tests) all on each 'check-in'”. This

means the acceptance tests of a single story are run at development time, while all the

tests are run as regression tests after system integration.

Finding 3.4: in most cases (59%, 16/27), acceptance tests for one story are

run for verifying whether the story is finished and acceptance tests for all existing

stories are run for continuous integration.

54

3.5.5 Time Frame of Acceptance Testing

We define the time frame of EATDD to be the time between creating a new acceptance

test and the first time of its successful pass. In the questionnaire, we asked about both the

AVERAGE and the MAXIMUM EATDD time frame. The results are shown in Figure

3.7 for both average and maximum acceptance testing time frame.

Time Frame of Acceptance Testing

0

2

4

8

6

8

00 0 0

3

5

14

5

0

2

4

6

8

10

12

14

16

< 1
hour

< 1/2
day

< 1 day 2-3
days

< 1
week

Most of
an Iter

Several
Iters

Time Frame

N
o.

 o
f

S
ub

je
ct

s Average time frame
Maximum time frame

Figure 3.7: Average and Maximum EATDD time frame

28 valid answers are analyzed for the average time frame. In Figure 3.7, we can

see that a total of 93% (26/28) of the participants reported the average timeframe to be

more than half a day (4 hours) for defining an acceptance test and making it pass and the

number increased to 100% when they reported the maximum time. Most subjects (8, 6

and 8) reported the average time frame to be between 2-3 days and an iteration. None of

55

the subjects has average time frame of several iterations, because it is expected that all

requirements be implemented within one iteration.9

27 valid answers are analyzed for the maximum acceptance testing time frame. In

Figure 3.7, we can observe that 100% the subjects reported the maximum acceptance

testing time frame to be more than one day. Most subjects (52%, 14/27) reported the

maximum time frame to be most of an iteration. Even 19% (5/27) subjects reported the

time frame to be several iterations, including one subject reporting “several months” and

another subject reporting “2-3 iterations”.

Finding 3.5: the average timeframe between defining one acceptance test and

making it pass successfully, following EATDD, is more than half a day (4 hours).

Finding 3.6: the maximum timeframe between defining one acceptance test

and making it pass successfully, following EATDD, may be most of an iteration or

even more than one iteration.

3.6 Motivation of FitClipse

The findings from section 3.5 demonstrate how acceptance tests are being used in

industry. These findings, especially Finding 3.5 and Finding 3.6, directly motivate my

work.

9 In Agile Method, requirements are in the form of stories. Customers pick up the stories for each iteration
basing on the developer’s effort estimation, and the stories’ priority. The developer’s estimation on the
stories indicates that the development team will finished all the stories, which are picked up by the
customers, within the iteration.

56

3.6.1 Identifying Two Test Failure States

A major difference between UTDD using unit tests and EATDD is the timeframe

between the definition of a test and its first successful pass. Usually, in UTDD the

expectation is that all unit tests pass all the time and that it only takes a few minutes

between defining a new test and making it pass [Beck 2003]. Unit tests cover very finely

grained details, which makes this expectation reasonable in a UTDD context. As a result,

any failed test is seen as a problem that needs to be resolved immediately.

Acceptance tests, on the other hand, cover larger pieces of functionality.

Therefore, we expected that it often may take developers several hours or days,

sometimes even more than one iteration, to make them pass.

Finding 3.5 and Finding 3.6 strongly support our expectation. Therefore we can

draw the conclusion that the time frame between the definition of an acceptance test and

its first successful pass is significantly longer than that of a unit test.

Due to the substantial delay between the definition and the first successful pass of

an acceptance test, a development team can NOT expect that all acceptance tests pass all

the time. A failing acceptance test can actually mean two things:

• Unimplemented Feature: The development team has not yet finished working

on the story with the failing acceptance test (including the developer has not even started

working on it).

• Regression Failure: The test has passed in the past and is suddenly failing –

i.e. a change to the system has triggered unwanted side effects and the team has lost some

of the existing functionality.

57

The first case is simply a part of the normal test-driven development process: It

is expected that a test that has never passed before should fail if no change has been made

to the system code.

The later case should be raising flags and needs to be highlighted to the

development team, because the number of tests is relative large, which is proved by

Finding 3.1. It is hard for the developers to remember the test failure states and identify

them. We can easily imagine that people will have difficulty remembering the states for

more than 100 tests. In addition, taking the long time frame of EATDD and other aspects,

such as distributed development and frequent change of acceptance tests (supported by

Finding 3.2), into consideration, it is also difficult for people to manage a small project

with 50 – 100 acceptance tests. If no support for automatically identifying the two kinds

of failures10 is provided, the users have to rely on their recollection of the past test results

or reorganization of the test suites to determine the meaning of a failing test. For anything

but very small projects, this recollection will not be reliable and the reorganization will

be either difficult or time consuming.

FitClipse raises a flag for a test which is failing but was passing in the past. It

identifies this condition by storing the results of previous test executions and is, thus, able

to distinguish these two cases and splits up the “failed” state of Fit into two states:

Unimplemented Feature, which is “still failing state” and Regression Failure “now failing

after passing earlier”.

Separating the additional failed state has the following advantages:

10 Two failures: failing tests without implementation and failing tests which have been passing before.

58

• The distinction enables better understanding of the current state of the

project: At some time of the project, many tests may fail. Some of the test failures mean

the problems have not yet been solved by the developers, while the other failures are

caused by changes of the system.

• The distinction enables better progress reporting: In the progress report,

different flags of failing tests represent unfinished system features or previously

completed features which are broken by changes of the system. This detailed information

can help the project manager make better decisions for later iteration planning.

• This feature helps the developers to accurately identify the regression

failures: With acceptance tests functioning as regression tests, whenever the changes of

the system in one place cause side effects on other parts of the existing system, the flag is

raised - instead of totally relying on the memory of the developers - to inform the team

that they are breaking the system. In this case, steps can be undertaken to fix the broken

functionalities.

• It keeps the developers from being overwhelmed by many failures at the

beginning of an iteration: At this time point, the test failures are a deliberate result of

EATDD. The content of the tests has not been addressed by the developers.

59

3.6.2 Test Result History Report

FitClipse has the functionality of showing the test result history. The motivations of

building such a feature are:

First, keeping the history of the number of passing and failing acceptance tests of

a project can help the development team understand the development progress. From the

statistics, the development team can grasp the speed of their development and where they

are in the development process. For instance, if an iteration runs a suite of acceptance

tests (a suite is a list of tests which are related or communicate with each other), which

represent system functionalities, from the test history we can monitor the number of

passing tests and thus gauge the progress of the iteration. The change in the number of

tests passing can help the development team to keep track of how fast they are

developing (if the number of functional features are increasing), and better estimate how

many features can be undertaken in a single iteration.

Second, changes are often made to acceptance tests. Finding 3.2 illustrates the

fact that most people make changes to acceptance tests many times a day when they

come up with new ideas. It can be understood that acceptance tests which were changed

before might need to be reversed back to a previous version. Of course version control

has been implemented by tools such as FitNesse or in other forms of test repository.

However, only keeping the version information is not sufficient enough. Sometimes the

developers or tests make improper changes and keep adding changes to the tests for a

period of time. After some time when people discover the mistake, provided only a

version number and a date, it is very hard for them to decide which version of the test is

useful. It will be very helpful if the test result information can be kept with the

60

corresponding versions of the test. By viewing the test results, people can easily

identify the test that is performing as expected. FitClipse achieves this goal by keeping

test result record after each test run.

In addition, identifying the regression failure of acceptance tests requires

maintaining the history of the tests to look up whether the tests were passing before.

Further, the frequency of running acceptance tests and the test running pattern enables the

availability of history data. From survey Finding 3.4 we can see that acceptance tests are

running multiple times a day and both tests for single story and all existing tests are run.

Single test run of a story will ensure the history information being available for later

lookup to identify regression failure. Running of all existing tests will make sure the

project progress information is maintained for generating project development reports. In

addition, survey Finding 3.3 shows the acceptance tests are running frequently, which

provides the rich source for test result history data.

3.7 Summary

In this chapter, a survey is summarized in order to find out what kind of support should

be provided for EATDD. According to the findings of the survey, the motivation of

building an acceptance testing tool, FitClipse, is also introduced: there is a lack of support

for the substantial long time frame of EATDD. Tool support for separating regression

failures from unimplemented features, and persisting test result history information needs

to be provided for acceptance testing. In the next chapter, I will present the user scenarios

of using FitClipse, the tool we developed for supporting EATDD in Agile environment,

in order to help the readers get familiar with the tool and its feature.

61

62

Chapter Four: FitClipse User Scenario

Before introducing the design of FitClipse, I would like to present what FitClipse can do

and how it works by describing the user scenarios. In Chapter 2, I have talked about how

FitNesse server alone works as an acceptance testing tool. In this chapter, I will present

user scenarios of using FitClipse with FitNesse server as the backend Wiki repository for

EATDD.

4.1 FitClipse Workflow

In section 2.6.1.2, I introduced workflow of FitNesse when it is used as an acceptance

testing tool. To use FitNesse, the users need to edit and run the acceptance tests inside a

web browser and implement the fixture code in another development environment.

However, FitClipse, instead of using a browser, enables writing and running acceptance

tests inside Eclipse environment while cooperating with other useful Eclipse plug-ins for

development purpose. Figure 4.1 shows the workflow of FitClipse working as an Eclipse

plug-in.

63

Figure 4.1: FitClipse workflow

The following is the user scenario for the customers and the development team to

use FitClipse for EATDD:

� Create and modify Acceptance Tests: acceptance tests are detailed system

specifications. In EATDD, composing acceptance tests happens at the

beginning of each iteration or before the work on a story is started. The

customers first pick up the predefined stories from the project backlog. The

selected stories are the tasks they expect the development team to work on for

the on-going iteration. Then the customers with the development team define

the acceptance tests for each story. These stories specify how the system

should behave and help the whole development team to understand this

information. Acceptance tests are created in the Fit Test Hierarchy View. As

View/Edit Test

Save Test

Run Test

View Test Result
View Test Result History

FitNesse

Server

Database

Inside Eclipse

Server Side

Create Fixture Code

64

shown in Figure 4.2 (upper right), acceptance tests are edited in the Fit Test

Editor in the form of Wiki syntax and can be previewed in Html format in the

preview tab. The acceptance tests created in the editor are directly saved on the

server.

Figure 4.2: FitClipse environment for writing acceptance tests and fixture code

� Create Test Fixtures: the fixture classes are implemented with Java code. In

EATDD, fixtures are created after the application functions are implemented

following UTDD. The fixtures are created by the developers in the ordinary

Eclipse Java environment, which is shown in Figure 4.2 as the upper left area

and lower right area. Based on a given acceptance test, FitClipse uses a wizard

to generate the fixture code stubs automatically.

65

� Implementation: unit test-driven development is utilized in conjunction with

EATDD. Developers follow UTDD to implement the features of the system.

� Running Acceptance Tests and Viewing the Test Results: Acceptance tests are

run frequently all through the implementation of the system. FitClipse provides

two kinds of test failure states and maintains the test result history for the

development team to keep track of their development process. Figure 4.3

shows all test result states and a sample test result history in FitClipse. In the

test result view on the lower left, the test results are summarized in a tree

structure. In the right editor, first the test history chart is provided for a single

test. The red and green bars mean the number of the failing and passing

assertions with yellow meaning exceptions. Down the chart, detailed test result

history information is provided, from which the developers can also view the

result at a particular time.

66

Figure 4.3: FitClipse environment for viewing the acceptance test results

4.2 Summary

In this chapter, I introduced the user scenarios using FitClipse for EATDD. FitClipse

enables the whole cycle of EATDD to be inside Eclipse IDE as well as provides supports

for EATDD. In the next chapter, the tool requirements and detailed design of FitClipse is

demonstrated. The tools aims to 1) provide automatic support for identifying two

different acceptance test failure states and 2) maintains test result history to enable

progress report for running acceptance tests.

67

Chapter Five: FitClipse Requirements and Design

In this chapter, I first analyze the requirements for building the tool which provides

support for acceptance testing. Then I explain the overall structure of FitClipse. In

addition, I present the tool design from different aspects: FitClipse client side and

FitNesse server side.

5.1 Requirements Analysis

As analyzed in Chapter 3, special support should be provided for recording and

displaying the acceptance test results. In addition, other basic functionalities for running

acceptance tests should also be available. As a result, the requirements of the acceptance

testing tool which uses Fit/FitNesse framework should include:

1. Viewing and editing acceptance tests: the acceptance tests are originally saved

on the FitNesse server and organized in certain hierarchy. A tree view should be

provided to view all the acceptance tests in a tree hierarchy and an editor should

be build to view and edit the test and save the content back on the server.

2. Creating and deleting acceptance tests: inside Eclipse users should be able to

cerate and delete acceptance tests. These tasks will be performed inside the tree

viewer.

3. Running acceptance test and test suite: acceptance tests are executed by Fit

test runner inside the tool. Tests should also be executed as a suite if they are

organized into a suite in the tree hierarchy on the server.

68

4. Reporting the test result: test report summery should be shown after each

test run. The information should include the number of passing, failing, exception

and ignored test.

5. Separating regression failure from unimplemented feature: it has been

analyzed in Chapter 3 that it will be helpful to separate regression failure from

unimplemented feature automatically. In the tool, regression failure check will be

performed after each test run and the regression failure will be tagged differently

from the unimplemented feature.

6. Test result history chart: test result history should be persisted in the database.

To show the test result history, a chart showing the test running date and result

details should be provided.

7. Supporting distributed development environment: Nowadays, it is not

uncommon that team members in a development team work at different times

and/or different places while implementing the same project. Therefore a shared

repository is needed for the team to check out or in the acceptance tests and view

the test results.

8. Fit test server configuration: FitNesse server is very convenient for doing

acceptance testing. A configuration page should be provided to configure the

server information such as the server host, the port number and the classpath.

9. Generating Fit fixture code: fixture code needs to be developed for running

Fit acceptance test. However people must be very careful to write working fixture

69

code that exactly matches the Fit tests. So support for automatically generating

fixture code will be helpful to the developers.

10. Integrating with Eclipse environment: In as much as Fit is a useful tool for

running acceptance tests, it lacks convenience when used for development work.

For instance, when a typical developer uses Fit to run acceptance tests, it is

necessary to keep switching between several windows, such as an IDE, a

command line window for running the tests, and a browser to view the test results.

In order to avoid switching between IDEs while coding, the tool should be

integrated with the Eclipse development environment in the form of an Eclipse

plug-in. Additional effort should be made on making the UI of the tool to be

consistent with the Eclipse environment.

The next section presents the design of FitClipse. The design considerations are

based on the ten requirements that have been proposed above.

5.2 Overall Structure

FitClipse [FitClipse 2007] is an Eclipse plug-in supporting the creation, modification and

execution of acceptance tests using the FIT/FitNesse framework. The FitClipse tool

consists of (multiple) FitClipse clients for editing and running acceptance tests, the Wiki

repository for storing acceptance test definitions and the Database for storing the test

execution history (Figure 5.1).

70

Figure 5.1: FitClipse overall structure of three components

As shown in Figure 5.1, FitClipse works as the client side application in the

Client-Server structure. FitClipse clients talk to the FitNesse server, which is used as the

Wiki repository, through HTTP calls to save the acceptance tests as Wiki pages on the

server and save the test result into the database. On the server side, there are several

responders implemented for processing different HTTP calls and deal with these tasks.

Working as a client with a Wiki repository server, FitClipse helps a distributed

development team to share test definitions and test history between the developers.

FitClipse uses a synchronized server to save the acceptance tests and a shared database

for managing acceptance test results, which enables all the team members to synchronize

on the latest changes in the process of EATDD. After the developers run all the

acceptance tests and make sure all the tests are passing, they can safely check in their

code to the code repository.

71

In FitClipse, we use the Fit framework for composing and running acceptance

tests. The major motivation is the empirical studies introduced in section 2.7 which

shows that Fit acceptance testing frame work is easy to use and helpful for conducting

acceptance testing. In addition, Fit framework is widely used in industry. This was also

indicated by the survey in Figure 3.2. There is no doubt that creating a tool using a

widely used framework will enlarge the number of potential users.

5.3 FitClipse Client Side

Figure 5.2 describes the structure of FitClipse client side structure. Each FitClipse client

consists of three main components: FitClipse UI part extended from Eclipse, the Server

Connector for connecting and communicating with the server, and the Fit Test Runner for

running acceptance tests.

Figure 5.2: FitClipse front-end as an Eclipse plug-in

Server
Connector

FitNesse SC
FitNesse

Server
Responder

Eclipse

FitClipse

IDE

Fit Test Runner

Other SC Other

Server
Other Interface

 Connect
Save tests
and results

FitClipse Client Side

72

5.3.1 FitClipse UI

FitClipse user interface is extended from Eclipse working as an Eclipse Plug-in. It

contributes to Eclipse the following components:

• Wiki Multi-page Editor: One page of the editor is a wiki editor for composing

acceptance tests in Fit style tables. (See Figure 5.3 on the right) The contents

are directly saved as wiki files on the server. The other page is for previewing

the acceptance tests in HTML format on the server to make sure they appear

as the user expected after being rendered by the Wiki engine. (See Figure 5.4

on the right)

Figure 5.3: FitClipse environment showing the Test Hierarchy View and the Wiki
Markup Editor page

Wiki Multi-page Editor

FIT Test Hierarchy View

73

• FIT Test Hierarchy View: this view shows all the acceptance tests on the

server for each project in a tree structure. The tree structure is organized

according to the tests organization on the server. Tests may be grouped in a

project under different iterations. (See Figure 5.3 and Figure 5.4 on the upper

left) In this view, we can add, run and delete acceptance tests and generate

fixture codes for the acceptance tests.

Figure 5.4: FitClipse environment showing the Test Hierarchy View and the HTML
Preview page

• FIT Test Result View: this view shows the acceptance test results after each

run. (See Figure 5.5) As we have discussed before, two different test failures

can be identified by different colors. Information about the test result can also

be shown, including the time of running the tests, the number of pass, failure

and exception assertions for both each test and the whole test suite.

Wiki Multi-page Editor

FIT Test Hierarchy View

74

Figure 5.5: FitClipse environment showing the FIT Test Result View and the Test
Result History Page

• Test Result Multi-page Editor: this editor is not for editing tests but for

showing test results. (See Figure 5.5 and Figure 5.6) The first page shows the

test result of the last test run. (See Figure 5.6 on the left) The second page

shows the output of the last test run. (See Figure 5.6 on the right) The third

page shows the running history of the test. (See Figure 5.5 on the left) The

information shown in the third page contains a test result chart and a test result

table. The chart is the history visualization of the number of assertions from

each test run in three different states: pass, fail and exception. Down the chart

there is a table containing the detailed information of each test run. The test

result at a specific time can be viewed from the table.

Test Result History page

FIT Test Result View

75

Figure 5.6: FitClipse environment showing the Test Result Multi-page Editor

• FitClipse Fixture Generation Wizard: this wizard is for generating the Fit test

fixture automatically based on Fit acceptance tests which is written in Wiki

syntax. (See Figure 5.7)

Figure 5.7: FitClipse environment showing the Fixture Generation Wizard

Test Result Output page Test Result page

76

• FitClipse Property Page: in the property page configurations for FitClipse

and connections with FitNesse can be set. (See Figure 5.8)

Figure 5.8: FitClipse environment showing the Property Page

• FitClipse Perspective: FitClipse perspective is for showing the above views

and preparing the development environment in Eclipse.

5.3.2 Server Connector

FitClipse uses a server connector for dealing with requests to the server. Its main

functions include: connecting to the server, getting all the acceptance tests that belong to

one project from the server, saving changes to the tests on the server and persisting the

test results after each test run.

The server connector is an interface defining the transaction protocol between the

clients and the server. With the server connector, users can connect to different Wiki

repository server. The connector hides the implementation details of different type of

77

servers. Currently the connector is implemented for the FitNesse server. The FitNesse

connector talks to the FitNesse server via Http calls.

5.3.3 Fit Test Runner

Fit Test Runner is used to run Fit acceptance tests. This part is derived from the FitNesse

Test Runner with changes to the input method of the test runner.

In FitClipse, when running an acceptance test the test runner grabs the source test

in the form of Html page with the tables which define the acceptance tests. The runner,

then, renders the table cells with different colors based on the test results returned from

the test fixture. It also generates the test result report and passes it to the connector for

saving the result into the database on the server side.

5.3.4 Two Test Failure States

FitClipse splits up the test failure state in Fit or FitNesse into two: Unimplemented

Failure and Regression Failure (as has been defined in Section 3.6.1). Table 5.1 shows

the four test result states in FitClipse, comparing them to the three states of Fit or

FitNesse.

78

Table 5.1: Test States in FitClipse

Test Result States Fit or FitNesse FitClipse

Failure

(the tests fail)
Color Red

 Regression Failure – failure as a result of a

recent change losing previously working

functionality

 Unimplemented Feature – not really a failure as

it might simply mean that the development team

hasn’t started to work on this feature

Passing

(the tests pass)
Color Green

 test page with green bar – no difference to

Fit/FitNesse (color green)

Exception

(the tests cannot be

executed)

Color Yellow

 test page with yellow bar – no difference to

Fit/FitNesse (color yellow)

Based on the test result history saved on the server side database, FitClipse is able

to distinguish two test failure states. The algorithm for distinguishing different failure

states is as follows:

for (each test t){

 t.run();

 PersistTestResult (t.result);

 if (t.isFailing){

 getResultHistory(t);

 If (hasPassedBefore(t)){

 displayRegressionFailure();

 }else

 displayUnimplementedFeature(t);

}}}

79

5.4 FitClipse Server Side

The FitClipse server side design includes the FitNesse request responder for processing

the HTTP requests from the FitClipse clients and the database for storing test result

information.

5.4.1 FitNesse Request Responder

FitClipse are currently using FitNesse as the server for Wiki repository and dealing with

the database transactions. It utilizes the FitNesse server’s responder structure. In order to

process the requests from multiple clients, additional FitNesse Server Responders are

designed for these tasks. Table 5.2 lists the major responders and corresponding

functions.

Table 5.2 FitClipse Responders and Their Functions

Responder Name Function

FitClipse Responder Connect to the clients, return the acceptance

tests of the project.

DoesTestExist Responder Assert whether the test with the given name

exits on the server side.

SaveTestResult Responder Save the test result into the database.

GetFitTestFromDB Responder Return the Fit test result retrieved from the

database

TestResultHistory Responder Return the test result history for single test.

TestResultHistoryGraph Responder Return the test result history chart for single

test.

TestSuiteResultHistory Responder Return the test result history for a test suite.

TestSuiteResultHistoryGraph Responder Return the test result history chart for a test

suite.

80

5.4.2 Server Side Database

After each test or test suite run, the test result information is persisted in the database

maintained on the server side. The information includes:

• Number of passing, failing, exception and ignored tests (as defined by Fit)

• The test result table in html format

• The execution start and end time

Detailed database table design is included in Appendix D:.

81

5.5 Comparison with Other Tools

Figure 5.9 compares FitClipse with other open source acceptance testing tools.

Figure 5.9: Comparison of FitClipse with other open source acceptance testing tools

82

In Figure 5.9, tools are separated into four groups:

1. FitClipse, Fit and FitNesse: this group is colored in pink and yellow. These

tools are the most relevant to my study.

2. Eclipse plug-ins: this group is colored in blue. These tools are implemented

as Eclipse plug-ins that make it easier for the developers to switch between

editing acceptance tests and the application code.

3. Other acceptance testing tools: this group is colored in grey. As shown in

the table, these tools provided limited support for acceptance testing.

4. Web acceptance testing tools: this group is colored in green. These tools are

designed for testing the web applications. One of their differences from the

other acceptance testing tools is they do not need code style fixtures for

running the test scripts. The test scripts are ready to be executed by the test

runner. Therefore it does not make scene to evaluate whether these tools are

integrated with an IDE. In addition, by using the scripts these tools require

prior IT or even programming experience to understand the test cases.

Compared to other tools, FitClipse has all the common functionalities that most of

the other tools have. In addition, FitClipse provides novel support for distinguishing

regression test failures with unimplemented features and showing the test result history.

To my knowledge, no other tools are able to provide these features to support acceptance

testing.

83

5.6 Summary

In this chapter, I first outlined the requirements that a tool should have for supporting

acceptance testing. I summarized ten core requirements that should be achieved by an

acceptance tool which integrates Fit framework. Then I presented the overall design of

FitClipse which uses Client-Server structure. FitClipse framework is composed of

(multiple) Eclipse plug-in front end, a FitNesse Server and a Database. FitClipse enables

developers to create, modify and run acceptance tests inside an integrated development

environment. It provides novel support for EATDD by identifying acceptance test

regression failures and generating acceptance test result history information. In Chapter

6, FitClipse is evaluated in a pilot study for its usefulness and usability.

84

Chapter Six: Pilot Study

An initial pilot study of FitClipse is demonstrated in this chapter. The objective of the

study is to evaluate the usefulness and usability of FitClipse as a tool for supporting

EATDD to see whether there is a chance that this tool is useful or usable.

6.1 Objectives

The objectives of this pilot study are:

1. To evaluate the usefulness of FitClipse functionalities:

a. Identifying two different kinds of failures : Regression Failure and

Unimplemented Feature.

b. Keeping the test result history: the test history chart and the test history

detail table.

2. To evaluate the usability of FitClipse.

3. To evaluate the likely future usage of FitClipse as a way to support EATDD.

In order to achieve our goals, the main research questions are:

Question 1: To what extent do the participants find FitClipse functionality

useful?

Question 2: To what extent do the participants find FitClipse easy to use?

Question 3: How likely are the participants going to use FitClipse in their

project?

85

6.2 Study Methodology

Ethics approval was obtained from the University of Calgary (Appendix A.2) before

conducting the study. The participants completed and returned the informed consent

forms included in (Appendix C.1).

The study was conducted with 7 participants who were taking a senior computer

science course in the University of Calgary. The participants are from 2 development

teams. Three participants are from an undergraduate student team with a total of 5 team

members and the other four participants are from graduate student (Masters) team with a

total of 6 team members. They worked on two different course projects which lasted for 4

months each.

The development teams followed Extreme Programming and used EATDD in

their development process. There were four iterations in the two projects. The first

iteration was used for the participants to learn the techniques that were going to be used

in their projects, such as Acceptance Testing, FitNesse and so forth. EATDD using

FitNesse was introduced (through a 30 minutes tutorial) in the second iteration. EATDD

with FitClipse support was introduced (through a 30 minutes tutorial) in the third

iteration. The participants used FitClipse for EATDD during both the third and fourth

iteration. All through the development process, the researcher was with the team to

provide support and guidance for EATDD and FitClipse. At the end of the study, an

interview and a follow up questionnaire were conducted to gather information.

No customer is involved in this pilot study. In fact, in the real world the customer

should also participate in the process of acceptance testing. It is expected that FitClipse

can provide full support for both the customer and the developers. However, currently

86

FitClipse only provides support for the developers. This is why the pilot study only

involved the role of developers.

In the study, participants are from two course projects with similar scale. Both of

the projects’ size is small, because these are course projects and the participants are only

working part time on the projects. So the size of the projects does not impact on the result

of the study.

6.3 Participants’ Related Experience

The related experience of participants is shown in Figure 6.1.

Experience of Participants

3
2

3

1

3

8

24

3
2

3

1

3
4

8

3
2

1 1

3

8

24

2 2
1 0.5

3
2

8

0

5

10

15

20

25

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7

Participants

N
o.

 o
f M

on
th

Acceptance Test

EATDD

FitNesse

FitClipse

Undergradute Team Gradute Team

Figure 6.1: Related experience of participants for EATDD

The participants are asked about their experience with acceptance tests, EATDD,

FitNesse and FitClipse in number of months at the end of the study. Most participants in

87

both the undergraduate team and graduate team show similar experience from 1 to 3

months. However, in the graduate team two participants have much more experience than

other participants. One of the graduate participants has 8 months experience of

acceptance test and FitNesse. The other participant has 24 months’ acceptance test and

FitNesse experience and 8 months’ EATDD and FitClipse experience. However, I

believe that the experience differences do not have impact on the study results. Because

for the participants who are either in the third year of Undergraduate level computer

science major or in the first year of Master level computer science major, the learning

curve of acceptance testing is quite short. Therefore, when the participants started to use

FitClipse they had an appropriate knowledge to evaluate the usefulness and usability of

our tool.

The numbers in the chart shows that most of the participants (5/7, 71 %) started to

learn acceptance testing and use FitNesse during this study and even more (6/7, 86%)

participants started to practice EATDD and use FitClipse during this study.

6.4 Number of Acceptance Tests

The number of acceptance tests is critical for our study in that it can show how much the

participants are practicing EATDD. The more acceptance tests the participants created or

modified inside the FitClipse environment, the more knowledge they will get from using

it.

By the end of the study the undergraduate team had 5 acceptance tests with 8

assertions. The graduate team created 7 acceptance tests which had 43 assertions. Figure

6.2 shows the number of acceptance tests that each participant has created during the

88

study. The sum of individual’s number of acceptance tests does not match the total

number of the project’s tests because they deleted some tests at the end due to customer

requirement changes and time pressure.

No. of Acceptance Tests Created by Each Participant

10

5 5
7

16

10

3

30

10 10

43

64

20 20

0

10

20

30

40

50

60

70

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7

Participants

N
o.

 o
f T

es
ts

/A
ss

er
tio

ns

Acceptance Tests

Test Assertions

Undergradute Team Gradute Team

Figure 6.2: No. of acceptance tests created by each participant in the study

The number of assertions is also examined in this study because the participants

sometimes created one test that contains several assertions, which made the number of

tests small, but in fact rich in functions. Therefore the number of assertions is also

included in order to avoid the misleading of big tests with small number of tests. The data

was gathered by asking the participants directly in the interview.

In the two projects, the number of acceptance tests is limited. The participants

reported two major reasons. First, the two projects are all mainly user interface based

89

applications. Writing acceptance tests for testing the UI is challenging. There is a lack

of resources for them to learn how to do acceptance testing for UI. Instead, all the tests

are testing the backend business logic. The other reason is the project time scale. Those

projects are course projects and the students were developing part time. Under the time

pressure their major focus was on implementing the functionalities resulting in

insufficient test coverage. Therefore, some of the functionalities lack acceptance tests.

As a result, 71 % (5/7) participants have created more than 20 test assertions for

their projects. The other 2 participants have maintained 10 test assertions. Considering

the fact that the projects are course projects in small scale, the number of acceptance tests

should cover the main functionalities of the projects and should be enough for the

participants to understand and practice EATDD.

6.5 Study Results

The study was conducted to determine the usefulness of FitClipse as a tool support of

EATDD and the usability of the tool. In order to achieve the goal of the study, four major

questions are provided and analyzed.

6.5.1 Usefulness of FitClipse

Question 1: To what extent do the participants find FitClipse functionality useful?

I break down this question into two aspects:

� Identifying two different kinds of failures : Regression Failure and

Unimplemented Feature.

90

� Keeping test result history: the test history chart and the test history detail

table.

6.5.1.1 Usefulness of identifying two different kinds of test failures

The frequency of the participants’ meeting the test failure states will affect the usefulness

of the function of separating the results. The more often the users cause the regression

failure, the more useful it may be to distinguish it from unimplemented failure. For

unimplemented features, it is the definition of TDD that requires the participants to make

the acceptance tests fail when they are first created. Therefore, the participants all have

seen the tests failing as unimplemented features before they implemented the

functionalities. However the participants could only see the regression failure when they

broke the system and the frequency of seeing the regression failure depended on their

individual experience. Table 6.1 shows the frequency of meeting the regression failures

reported by the participants.

Table 6.1 Frequency of Regression Failures

Participant # Frequency
No. 1 More than half time of making changes to the system.11
No. 2 Every time adding new functionalities.
No. 3 Once per day, when did the daily build.
No. 4 Twice a week.
No. 5 1/4 time of making changes to the system.
No. 6 1/4 time of making changes to the system.
No. 7 N/A

11 The participants ran all the acceptance tests after they made changes to the system. Making changes to
the system also includes adding new functionalities to the existing system.

91

All the participants except participant No. 7 have met the regression failures

quite often in the projects. This means if identifying the difference in acceptance test

failure states is useful, the regression failure’s frequent appearance rate will amplify its

usefulness.

Figure 6.3 shows how useful the participants think the function of identifying two

different test result failures is.

Usefulness of FitClipse: Identifying Two Failure St ates

0 0

2

4

0

1

2

3

4

5

Not helpful Average Helpful Very helpful

N
o.

 o
f P

ar
tic

ip
an

ts

Figure 6.3: Evaluation of the helpfulness of FitClipse for identifying two acceptance
test failure states

The data in this figure does not include participant No. 7 because he reported that

he never saw regression failures in his project. The figure shows 67% (4/6) of the

participants think it is very helpful to identify two different failures, while the other two

participants think this function to be helpful. No participant who has used this

92

functionality reported this functionality to be not helpful. One of the participants stated

that

“ Identifying regression failure is helpful to me as it tells me at once when I broke

something. You can just go in to fix it right away rather than comparing two test results.

Further, combined with the test result history it is easier to see what actually got

broken.”

In this section, participants were also asked about how they identified

unimplemented features and regression failures if they were not provided with other

support. All of them reported that they were only using their memory for reciting the tests

that had passed before. One of the participants stated that

“ I use my own memory to memorize which test has passed before instead of taking

notes. It works for projects with small number tests. However I think for bigger number

tests, my memory will not work.”

6.5.1.2 Usefulness of keeping test result history

Figure 6.4 shows the participants’ responses in term of how they think the functionality

of showing test result history is helpful. 71% (5/7) of the participants think this function

to be helpful and the other two of the participants think this function to be very helpful.

No participant reported this functionality to be not helpful. As one of the participants

reported

“The result history chart inside FitClipse helps us to see the progress of our

project. At first we saw all the tests were failing. Later more and more tests are passing

which means more and more functions are completed.”

93

Usefulness of FitClipse: Test Result History

0 0

5

2

0

1

2

3

4

5

6

Not helpful Average Helpful Very helpful

N
o.

 o
f P

ar
tic

ip
an

ts

Figure 6.4: Evaluation of the helpfulness of FitClipse for keeping acceptance test
result history

In the study, one of the participants has changed a test by accident and he could

not remember when he changed it. It means he could not find the right test from the test

repository because he did not know which one was the version of the test that had been

working. However with the help of the researcher he went to the result history table

which showed the test results for each test run. Eventually he found the working version

easily form the result history because from the history it is convenient to see which

assertion is passing and which is failing in each test.

6.5.2 FitClipse’s Ease of Use

Question 2: To what extent do the participants find FitClipse easy to use?

Figure 6.5 shows the participants’ answers according to FitClipse’s ease of use.

94

FitClipse Ease of Use

1

0

4

2

0

1

2

3

4

5

Hard to use Average Easy to use Very easy to use

N
o.

 o
f P

ar
tic

ip
an

ts

Figure 6.5: Evaluation of FitClipse ease of use

The majority (57% 4/7) of participants find FitClipse easier to use than average

tool. Another 2 (29%) of the participants think FitClipse to be very easy to use. One of

the participants reported that

“Compared to other tools (Fit/FitNesse), FitClipse is easy to configure and use

for running acceptance tests. Its function of automatically generating fixture code makes

it much easier to write and run acceptance tests.”

Only one participant rates FitClipse to be hard to use. He commented that

“FitClipse separate acceptance tests from the projects into two different views.

This makes me hard to understand the tests and uncomfortable when running the tests.”

He also suggests that

95

“ In order to improve FitClipse, there should be a way to integrate acceptance

tests into the project view. Also the configuration should be more hidden to the

developers.”

However he also mentioned that

“FitClipse is easy to use in the scene that it avoids the users to switch between

several IDEs, which is annoying when the developers are focusing on solving a

problem.”

6.5.3 Willingness of Using FitClipse

Question 3: How likely are the participants going to use FitClipse in their project?

Figure 6.6 shows the likely usage of FitClipse in the future.

Likely Future Usage of FitClipse

0 0

6

1

0

1

2

3

4

5

6

7

Not likely Somewhat likely Likely Very likely

N
o.

of
 P

ar
itc

ip
an

ts

Figure 6.6: Evaluation of FitClipse for likely future usage

96

All the participants reported the likeness of using FitClipse in the future. One of

them reported very likely to use FitClipse in their future projects. One of the participants

said

“We (the participant with other team members) are planning doing a project in

which I want to try Extreme Programming. I would like to use FitClipse in the project

because it is easy to use and provides useful functionalities.”

Another participant said

“ I am very likely to use FitClipse in the future because it is easy to use and very

helpful to find out problems.”

6.6 Interpretation of the Participants’ Feedback

The pilot study results reported in section 6.5 indicates that FitClipse as a whole is a

useful tool support for EATDD and its usability is considered as easy to use. The positive

responses also indicate the participants’ willingness to use FitClipse in the future for

projects that follow EATDD. However, for the tool to be used in industry, additional

improvements have to be made. The following are the comments from the participants

regarding the improvement for FitClipse.

• Customer perspective: Now FitClipse is a more like an integrated development

tool for the developers to use. However the definition of acceptance tests

requires the customers to participate in writing and running the acceptance

tests. The customers may not be professionals in the IT field thus may not be

familiar with any kind of development environment. Therefore a customer

97

perspective should be provided for the customers to use with the

development details totally hidden from them.

• Mapping of failing assertions to code details: FitClipse identifies two test

failure states for the developer by emphasizing the regression failure with a

special flag. Seeing this flag, the developers can understand which test is

failing and view the test result to see which assertion is failing. However, it

needs the developers to go into the fixture codes to find out which part of

source code is being called and then go into the real application code to locate

the problems. This is time consuming and may reduce the advantage of using

acceptance tests. Therefore, mapping from the failing assertions to

corresponding source code positions should be built in to assist the developers

to locate the mal-functions.

• Providing more helpful test result history reports: FitClipse provides

acceptance test result history chart and table to enable project progress

monitoring. However, this information report is in the state of prototype. More

helpful information on the project level and even statistical analysis, which is

based on the information, should also be available to help manage the software

project.

• Organizing acceptance tests into project packages: Acceptance tests are part of

the projects, which has the function of testing the project functionalities and

asserting the test results. Therefore, like unit tests, the acceptance tests should

98

be integrated and organized into the project packages in a way they can be

edited and run inside the project.

• Hiding detailed configurations from the user: Running acceptance tests needs

some pre-configuration which is always time consuming and confusing to

developers. For instance, using Fit or FitNesse, a small mistake in the classpath

may make all existing acceptance tests throw exceptions even though some of

them should be passing. Therefore, support should be provided for making

configuration automatically for common usage and the configuration should be

hidden from the users.

• Compatibility with Linux/Unix and Mac systems: Currently FitClipse has

compatible issues with systems other than Windows. As FitClipse is an Eclipse

plug-in which is based on Java platform, this should not happen. So future

work should also include making FitClipse work on all platforms.

6.7 Validity of the Pilot Study

The purpose of this pilot study shows whether there is a chance that FitClipse is

useful and usable for supporting EATDD in order to know whether it worth to do another

formal empirical study. There are two major limitations in this study. One limitation is

that the participants are all from the academic area instead of from industry and the study

is conducted in academic environment. The participants have limited experience and time

for development (they were working part-time on the projects). These facts may lead to

differences in the effects when the tool is used in a real industry environment.

99

The other limitation is the scope of the study. There are only 7 participants

providing data which threatens the statistical results for the study. In addition, the

projects only lasted for 4 months which was a relatively short time. This fact may prevent

the participants from producing more acceptance tests and evaluating the long-term

effects of the tool.

6.8 Summary

In this chapter, an initial pilot study of FitClipse is introduced. In the evaluation I seek to

find out the usefulness of FitClipse, its ease of use and the likeness of future usage. To

this end, I conducted experiment with 7 participants from the University of Calgary

senior computer science class. This study lasts for 4 months and the results are positive. It

is shown in the study that FitClipse is a useful tool support for EATDD and it is easy to

use FitClipse in development environment. In addition, the participants all show the

willingness of using FitClipse in the future, which again proves its usefulness and good

usability. Even though this study has certain limitations, the findings of the study are

encouraging to suggest that more research should be taken on this direction to provide

more advanced support for EATDD.

100

Chapter Seven: Conclusion

The conclusion is summarized from the research contributions in the area of acceptance

testing. First I present the research problems which are the motivation of FitClipse. Then,

I describe my research contributions by showing how the research problems are solved.

At last, I suggest aspects of potential future work.

7.1 Research Motivation

In Chapter 1 I presented three research questions on tool support for EATDD in Agile

Methods:

1. It is unknown how Executable Acceptance Test Driven Development is

conducted in industry, especially the time frame of Acceptance Testing. In

Agile Methods, acceptance tests are used for driving the process of development

and help the customers and the development team to communicate in terms of

software requirements. Prior work has been focused on defining acceptance tests

so they can be understood by both customers and the developers. However, there

is limited research on how acceptance test driven development is used in industry.

2. Based on the finds of Problem 1, novel tool support should be built for doing

EATDD in Agile environment. After finding the limitations of existing support

for EATDD process, useful tool for EATDD in Agile environment needs to be

provided.

3. Once such a tool support is built, an evaluation is needed to determine the

usefulness and usability of the tool in Agile environment. After the tool is

built, it is still unknown about the usefulness and usability of the tool.

101

7.2 Thesis Contributions

1. For this thesis, a survey is conducted for gathering information on the state

of EATDD being used in industry and basing on the survey, support for

EATDD is investigated. The result of the survey reveals the current trend and

pattern of using EATDD for Agile development testing in industry. The survey

highlights that in EATDD the time frame between creating an acceptance test and

making it pass successfully for the first time is much longer than the time frame

of unit test in UTDD. This makes it impossible for all the acceptance tests to be

passing all the time in EATDD and as a result the developers will see failing tests.

These failing tests have different meanings: Unimplemented Failure which means

the function of the test has not been worked on and Regression Failure which

means the test of the function was passing before but is failing now. When there

are more tests and with longer time frame, people will have difficulties to

remember the previous test results, thus can not distinguish the two failure states.

Therefore it is necessary to provide support for identifying different acceptance

test failure states in EATDD.

2. Based on the results from the survey, a testing tool, FitClipse, is developed.

FitClipse makes use of Fit/FitNesse and Eclipse plug-in, which makes it possible

to create acceptance tests in the integrated development environment. It provides

support for identifying two test failure states in EATDD and maintains the test

result history information to assist project management. Scenarios of using

FitClipse to support EATDD are provided.

102

3. An exploratory study was conducted with academic participants to

evaluate the viability of FitClipse based on three factors. The first factor

evaluated the usefulness. For evaluating the usefulness of FitClipse, the study is

focused on FitClipse’s functionalities for identifying two test failure states and

maintaining the test result history. The second factor assessed the usability of

FitClipse. The third factor identified the likely future usage of FitClipse as a tool

support for EATDD. The results demonstrated that FitClipse, as a whole, is a

useful tool for acceptance testing. Positive responses also indicated FitClipse to be

easy to use, although some aspects still needed to be improved. In addition, all the

participants indicated a likely use of FitClipse in the future.

7.3 Future Work

The work presented in this thesis is a preliminary step in constructing effective tool for

supporting EATDD in Agile software development environment. There is still a lot of

room in this research area for future work.

FitClipse is a research prototype tool with system instabilities. It will be beneficial

to improve the implementation of the tool in terms of usability in order to better assist

EATDD in the industry environment.

As a tool support for Agile Methodology, it will be helpful to integrate this work

with other practices in Agile. For instance, acceptance tests can be used in conjunction

with story card management to provide more meaningful reports for the customers.

Currently FitClipse works inside Eclipse as a plug-in to enable the developers to

create and run acceptance tests inside the integrated development environment. However,

103

support from the customer perspective is missing. An editor with support for editing

acceptance tests and a view for better showing the test result report, as the project

progress report, will be of great help to the customers.

Lastly, the pilot study has limitations in two aspects: academic based participants

and the scope of the study. Participants from the industry working full time on a longer

time span project will be more helpful to provide natural user feedback for the long-term

effects of the proposed tool.

104

References

[Acceptance Test 2006] Various Authors, http://c2.com/cgi/wiki?AcceptanceTest.

[Agile Manifesto 2007] Agile Manifesto: http://agilemanifesto.org/, last accessed: April

19, 2007.

[Andersson 2003] J. Andersson, G. Bache, and P. Sutton, XP with Acceptance-Test

Driven Development: A Rewrite Project for a Resource optimization System, XP

2003, LNCS 2675, pp. 180–188, 2003.

[Andersson 2004] J. Andersson and G. BacheThe, Video Store Revisited Yet Again:

Adventures in GUI Acceptance Testing, XP 2004, LNCS 3092, p. 1–10, 2004.

[Beck 1999] K. Beck. (1999), Extreme Programming Explained: Embrace Change, E1,

Addison Wesley, 224.

[Beck 2003] K. Beck, Test-Driven Development: By Example, Addison-Wesley, 2003.

[Beck 2004] K. Beck and C. Andres, Extreme Programming Explained: Embrace

Change, Second Edition, Addison Wesley 2004.

[Binder 2000] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and

Tools (chapter 3), Pearson Education, 2000.

[Boehm 1988] B. W. Boehm and P. N. Papaccio, Understanding and Controlling

Software Costs, IEEE Trans. Software Eng., vol. 14, pp. 1462–1477, Oct. 1988.

105

[CAMUG 2007] Calgary Agile Method User Group home page:

http://www.agilenetwork.ca/camug/, 2007.

[Cao 2004] L. Cao, K. Mohan, P. Xu and B. Ramesh, How Extreme does Extreme

Programming Have to be? Adapting XP Practices to Large-scale Projects,

Proceedings of the 37th Hawaii International Conference on System Sciences,

2004

[Chaos Report] Chaos Report, the Standish Group, West Yarmouth, MA, 1995, 1997,

1999, 2001, 2003.

[Cockburn 2004] A. Cockburn, Crystal Clear : A Human-Powered Methodology for

Small Teams, Alistair Cockburn, October 2004, Addison-Wesley Professional,

ISBN 0-201-69947-8.

[Cohn 2004] M. Cohn, User Stories Applied for Agile Software Development, Person

Education, Inc., 2004.

[Cohn 2005] M. Cohn, Do-It-Yourself: A How-to Guide for Fixing a Failing Project,

Better Software, October 2005.

[conFIT 2007] conFIT: A FitNesse for Eclipse Plugin website,

http://www.bandxi.com/fitnesse, 2007.

106

[Crispin 2001 A] L. Crispin and T. House, (2001) Testing in the Fast Lane:

Automating Acceptance Testing in an Extreme Programming Environment, XP

Universe Conference.

[Crispin 2001 B] L. Crispin, T. House, and C. Wade, (2001) The need for speed:

automating acceptance testing in an extreme programming environment, In

Second International Conference on eXtreme Programming and Flexible

Processes in Software Engineering, pages 96–104.

[Cunningham 2007] W. Cunningham, Fit: Framework for Integrated Test,

http://fit.c2.com, 2007.

[Davis 2004] F. D. Davis and V. Venkatesh, Toward Preprototype User Acceptance

Testing of New Information Systems: Implications for Software Project

Management, IEEE Transactions on Engineering Management, Vol. 51, NO. 1,

2004.

[Don Wells 2006] Extreme Programming introduction website:

http://www.extremeprogramming.org/, Don Wells, 2006.

[Erickson 2003] C. Erickson1, R. Palmer, D. Crosby, Make Haste, Not Waste: Automated

System Testing, XP/Agile Universe 2003, LNCS 2753, pp. 120–128, 2003.

[Exactor 2007] Exactor homepage: http://exactor.sourceforge.net/index.html, 2007

107

[FitClipse 2007] FitClipse homepage in EBE website:

http://ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?page=.FitClipse, 2007.

[FitLibrary 2007] FitLibrary project website: http://sourceforge.net/projects/fitlibrary.

[FitNesse 2007] FitNesse FrontPage: http://fitnesse.org/, 2007.

[FitRunner 2007] FitRunner: an Eclipse plug-in for Fit website,

http://fitrunner.sourceforge.net, 2007.

[Fowler 2006]. M. Fowler, “Specification by Example.”

www.martinfowler.com/bliki/SpecificationByExample.html, 16 June 2006.

[Gandhi 2005] P. Gandhi, N. C. Haugen, M. Hill and R. Watt, Creating a Living

Specification Using FIT Document, Proceedings of the Agile Development

Conference (ADC’05).

[Geras 2004] A. Geras, M. Smith, and J. Miller. A Prototype Empirical Evaluation of

Test Driven De-Velopment, 10th International Software Metrics Symposium.

2004. Chicago: IEEE Computer Society.

[Geras 2005] A. Geras, J. Miller, M. Smith, and J. Love, A Survey of Test Notations and

Tools for Customer Testing, XP 2005, LNCS 3556, pp. 109–117, 2005.

[GreenPepper 2007] GreenPepper software website:

http://www.greenpeppersoftware.com/en/products/, 2007.

108

[Highsmith 2000] J.A. Highsmith, Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems, New York: Dorset House, 2000, ISBN

0-932633-40-4.

[Holmes 2006] A. Holmes and M. Kellogg, Automating functional tests using Selenium,

Agile Conference, 2006, 23-28 July 2006 Page(s):6 pp, Digital Object Identifier

10.1109/AGILE.2006.19.

[Hunt 2006] J. Hunt, Agile Software Constructionj, Springer – Verlag London, P19-30,

2006.

[IEEE 1990] Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries,

New York, NY: 1990.

[IEEE 1996] Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries,

IEEE, January 1996.

[Jeffries 2001] R. E. Jeffries, What is Extreme Programming?, XProgramming.com,

www.XProgramming.com/xpmag/whatisXP.htm.

[Jeffries 2003] R.E. Jeffries, Test-Driven Development – a Practical Guide, Pearson

Education, Inc, 2003.

109

[Joshua 2005] J. Joshua, Industrial XP: Making XP Work in Large Organizations,

Cutter Consortium Agile Project Management Executive Report, Vol. 6, No. 2,

February 2005.

[Kaner 2002] C. Kaner, J. Bach, and B. Pettichord, Lessons Learnt in Software Testing,

Wiley, July 2002.

[Kaner 2003] C. Kaner, An Introduction to Scenario Testing, June 2003,

www.kaner.com/pdfs/ScenarioIntroVer4.pdf.

[Kitiyakara 2002] N. Kitiyakara, Acceptance Testing HTML, XP/Agile Universe 2002,

LNCS 2418, pp. 112–121, 2002.

[Marick 2002] B. Marick, Report from XP/Agile Universe 2002 Conference,

www.pettichord.com/XP_Agile_Universe_trip_report.txt, 14 August 2002.

[Martin 2005] R. C. Martin, The test bus imperative: Architectures that support

automated acceptance Testing, IEEE Software, 22(4):65–67, September-October

2005.

[Mase 2007] Mase home page at EBE website of University of Calgary,

http://ebe.cpsc.ucalgary.ca/ebe/Mase, 2007.

[Maurer 2002] F. Maurer. S. Martel, Process support for distributed extreme

programming teams(info), ICSE 2002 Workshop on Global Software

Development, http://www.cis.ohio-state.edu/~nsridhar/ICSE02/GSD/, 2002.

110

[Maurer 2006] F. Maurer, G. Melnik, Driving Software Development with Executable

Acceptance Tests, Executive Report on Agile Project Management, Vol. 7, No.

11, Cutter Consortium, November 2006.

[Melnik 2004] G. Melnik, K. Read, and F. Maurer, Suitability of FIT User Acceptance

Tests for Specifying Functional Requirements: Developer Perspective, XP/Agile

Universe 2004, LNCS 3134, pp. 60–72, 2004.

[Melnik 2005]G. Melnik, F. Maurer, The Practice of Specifying Requirements Using

Executable Acceptance Tests in Computer Science Courses, OPSLA’05, October

16–20, 2005, San Diego, California, USA.

[Melnik 2006] Grigori Melnik, Frank Maurer and Mike Chiasson, Executable Acceptance

Tests for Communicating Business Requirements: Customer Perspective,

Proceedings of AGILE 2006 Conference (AGILE'06).

 [Miller 2001] R. W. Miller and C. T. Collins, Acceptance Testing, Proceedings of the XP

Universe, July 2001.

[Mugridge 2003] R. Mugridge and E. Tempero, Retrofitting an Acceptance Test

Framework for Clarity, Proceedings of the Agile Development Conference

(ADC’03).

[Mugridge 2005 A] R. Mugridge and W. Cunningham, Agile Test Composition, XP 2005,

LNCS 3556, pp. 137–144, 2005.

111

[Mugridge 2005 B] R. Mugridge and W. Cunningham, Fit for Developing Software:

Framework for Integrated Tests, Prentice Hall, 2005.

[Palmer 2002] S.R. Palmer and J.M. Felsing , A Practical Guide to Feature-Driven

Development, Prentice Hall, 2002 (ISBN 0-13-067615-2).

[Pancur 2003] M. Pancur, M. Ciglaric, M. Trampus and T. Vidmar, Towards Empirical

Evaluation of Test-Driven Development in a University Environment, in

EUROCON 2003 IEEE Press.

[Ralph 2001] Y., Ralph. Effective Requirements Practices, Addison - Wesley

Professional, March 2001.

[Read 2005 A] K. Read, G. Melnik, and F. Maurer, Examining Usage Patterns of the FIT

Acceptance Testing Framework, XP 2005, LNCS 3556, pp. 127.136, 2005.

[Read 2005 B] K. Read, G. Melnik, F. Maurer, Student Experiences with Executable

Acceptance Testing, Proceedings of the Agile Development Conference

(ADC’05).

[Rogers 2004] R. O. Rogers, Acceptance Testing vs. Unit Testing: A DeveloSper’s

Perspective, XP/Agile Universe 2004, LNCS 3134, pp. 22–31, 2004.

[Sauve 2006] J. P. Sauve and etc, EasyAccept: A Tool to Easily Create, Run and Drive

Development with Automated Acceptance Tests, AST’06, May 23, 2006.

112

[Schwaber, 2001] K. Schwaber., M. Beedle, Agile “Software Development with

Scrum”, Prentice Hall, 2001.

[Schwarz 2005] Christian Schwarz, Stein Kåre Skytteren, and Trond Marius Øvstetun,

AutAT – An Eclipse Plug-in for Automatic Acceptance Testing of Web

applications, OOPSLA’05, October 16–20, 2005, San Diego, California, USA.

ACM 1-59593-193-7/05/0010. (See also: http://boss.bekk.no/autat/).

[Selenium 2007] Selenium homepage on OpenQA website:

http://www.openqa.org/selenium/, 2006.

[Selenium Remote Control 2006] Selenium Remote Control homepage on OpenQA

website: http://www.openqa.org/selenium-rc/, 2006.

[Stapleton 1997] J. Stapleton, Dynamic System Development Method – the Method in

Practice, Addison Wesley, 1997.

[Steinberg 2003] D. H. Steinberg, Using Instructor Written Acceptance Tests Using the

Fit Framework, XP 2003, LNCS 2675, pp. 378–385, 2003.

[Talby 2005] D. Talby, O. Nakar, N. Shmueli, E. Margolin and A. Keren, A process-

complete automatic acceptance testing framework, Software - Science,

Technology and Engineering, 2005. Proceedings. IEEE International Conference

on 22-23 Feb. 2005 Page(s):129 – 138, Digital Object Identifier

10.1109/SWSTE.2005.2.

113

[TextTest 2007] TextTest: Verifying Application Behaviour with TextTest:

http://texttest.carmen.se/TextTest/index.html, 2007.

[Tracy 2004] Tracy Reppert, Do’t Just Break Software, Make Software, Better Software

Magazine, July/August 2004, available on line:

http://industriallogic.com/papers/storytest.pdf.

[USDD] US Department of Defense, Military Standard Defense System Software

Development, DODSTD- 2167, Section 5.3.3. Formal Qualification Testing

Distribution Statement A, www2.umassd.edu/SWPI/DOD/MIL-STD-

2167A/DOD2167A.html.

[WATIJ 2007] WATIJ: Web Application Testing in Ruby website: http://watij.com/,

2007.

[WATIR 2007] WATIR: Web Application Testing in Ruby website:

http://wtr.rubyforge.org/, 2007.

114

APPENDIX A: ETHICS APPROVAL

A.1. Ethics Approval for the Web Survey

115

A.2. Ethics Approval for the Pilot Study

116

APPENDIX B: SURVEY MATERIALS

B.1. Mailing Lists of Agile Community

1. Atlanta XP User Group - AXPUG

2. Boston AgileBazaar

3. Brazil, XP Brasil

4. Calgary Agile Method User Group - CAMUG

5. Chicago – CHAD

6. Extreme Programming San Diego – XPSD

7. Ireland, Dublin Agile SIG

8. New York – XpNewYorkCity

9. Seattle XP Group

10. Southern California Agile/XP User Group

11. UK, Manchester/Liverpool England – AgileNorth

12. Vancouver - Agile Vancouver

13. Washington DC XP Users Group

14. Yahoo Agile Testing

15. Yahoo Agile Usability

16. Yahoo Extreme Programming

117

B.2. Survey Questionnaire

118

119

APPENDIX C: PERCEPTIVE STUDY MATERIALS

C.1. Consent Form

120

121

C.2. Post Study Questionnaire

122

APPENDIX D: DATABASE DESIGN

1

0, 1…*

123

APPENDIX E: MATERIALS AND RAW DATA

1. Survey materials and questionnaires are in the “SurveyMaterials” folder.

a. Survey charts and raw data are included in the “SurveyData.xls” excel file.

b. Survey questionnaire is included in this folder as

“SurveyQuestionnaire.doc”

2. Pilot study materials and questionnaires are in “PilotAnalysis” folder

a. Presentation slides of the tutorials to the participants are in this folder.

b. Pilot study questionnaire is included in the folder as

“PilotStudyQuestionnaire.doc”.

c. Pilot study charts and the raw data are in this folder as “PilotData.xls”

excel file.

3. FitClipse source code, FitNesse server source code and the sample project source

code containing acceptance tests are in the “FitClipseSrc” folder.

4. FitClipse user manual including the installation guide and other installation

required materials are in the “FitClipseManual” Folder. The information is also

available online at:

 http://ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?page=FitClipse .

