
Process Support and Knowledge Management for Virtual Teams
Doing Agile Software Development

Seth Bowen
Department of Computer Science

University of Calgary
2500 University Drive N.W.

Calgary, Alberta, Canada T2N 1N4
bowen@cpsc.ucalgary.ca

Frank Maurer
Department of Computer Science

University of Calgary
2500 University Drive N.W.

Calgary, Alberta, Canada T2N 1N4
(403) 220-3531

maurer@cpsc.ucalgary.ca

Abstract

Agile practices are arguably improving the productivity of
small, co-located software development teams. In this
paper, we describe an approach that tries to overcome the
constraint of co-location by introducing a process-support
environment (called MILOS) that helps software
development teams to maintain adaptive practices in a
distributed setting. MILOS supports project coordination,
information routing, team communication, pair
programming and experience management.

1. Introduction

Global computer networks allow developers to collaborate
with one another on software projects from remote
locations. Virtual teams have shown to be valuable for the
development of software that is in common use today, for
example the open-source Apache Web Server and Linux
operating system. Distributed teams are not constrained by
location.

However, virtual teams lose the richness of face-to-face
communication, and distribution introduces time delays
[2]. Nevertheless, due to market considerations (e.g. lack
of locally available skilled resources, cost differences) and
the sheer size of projects (e.g. in the telecom industry),
distributing software development tasks to several
locations is often the only option. Hence, the goal of our
research is to provide as much support to the resulting
virtual teams as possible.

Some applications are available to support individual
aspects of distributed software development. Microsoft
Project, for example, supports project planning and
progress tracking for virtual teams. Version management

systems like CVS provide a repository for file sharing.
CASE tools like Rational Rose have some capabilities for
information sharing. However, these tools are not closely
integrated and rather limited in several respects. For
example, there is little support for integrating knowledge
management into the development process, and they do
not support automatic information routing easily. Standard
workflow management systems on the other hand are not
flexible enough to be used in software development.

The current interest in agile practices, such as Scrum [6]
and XP [1], has brought about discussions on the value of
using minimally defined, adaptive processes over highly
defined processes. These agile practices typically involve
using short increments, frequent face-to-face
communication, and iterative development to reduce risk
and provide increased up-front value to the customer.
Development tools are needed that support distributed
agile software development processes.

MILOS (Minimally Invasive Long Term Organizational
Support) aims at offering support for these agile processes
by providing collaboration and coordination technology
for distributed software development. It also supports
project planning and flexible information routing. The
next section outlines the major components of the tool.
Section 3 outlines the support for agile practices. Some
implementation details are covered in section 4, and then
we address conclusions and future work for the system.

2. MILOS Components

MILOS includes integrated components that support the
planning and execution of software development, as well
as knowledge management. The user interface (see Figure
1) allows access to all MILOS components.

Figure 1. The MILOS user interface.

2.1. Workflow Engine

The project workflow is modelled using processes and
variables, which can be thought of as tasks and work
products, respectively. Each task has a required skill set
that can be used when developers are assigned to tasks.
Tasks and variables can also be associated with
information needs objects to provide additional
information for doing the task. For example, a task
“ implement server component using EJBs” could be
linked to information needs models that allow the retrieval
of the EJB (Enterprise Java Bean) specification or an EJB
tutorial. Access to these items will only be provided to
users whose skill levels match the information needs
profile.

During project execution, each user has a to-do list for
managing his or her current tasks. The list is updated when
events that affect a user’s tasks are triggered, such as when
the input to a user’s task is modified, or the schedule of a
task changes.

The workflow structure is highly flexible because
processes can be added or altered at any time.
Furthermore, process models and associated parameters
can be incorporated from the experience base. The
workflow engine is tightly integrated with the experience
base as a means to reuse process models.

2.2. Experience Base

The experience base is the MILOS knowledge
management centre. Processes and process
decompositions can be extracted from working projects to
create process models, and then associated with tasks in
the workflow engine to help in project planning. Process
models are represented hierarchically. Each process can

have one or more methods of execution, which means if
there is more than one method (= process decomposition)
for a process than there are alternative ways to carry out
the process. For example, the testing process could involve
using the following methods: black box, white box, or
both. During project execution, the manager will then
make a decision how to execute the process by selecting a
method or by defining one on the fly.

The information assistant provides context-specific
information to users. For example, information (e.g.,
tutorials) can be retrieved based on a user’s skill set, or the
skill set related to a task. Furthermore, information could
be retrieved that is required for a task but is not part of the
user’s skill set. Little user intervention is required because
relevant information can be pushed by the system,
although the user can also initiate the retrieval of
information (i.e., pulling information).

2.3. Resource Pool

The resource pool contains agent (= team member) and
team profiles. An agent profile includes a user’s contact
information and skill set. A user can query the skill sets of
other users when looking for people with certain skills. As
mentioned previously, the information assistant also
makes use of user skill sets.

3. Agile Practices

MILOS supports agile software development with the use
of some Extreme Programming (XP) practices [4]. During
the planning game, user stories for eliciting the
requirements can be created and then modified during the
development life cycle. A development schedule of
releases, iterations, user stories, and tasks is maintained by
the system. MILOS also supports the coordination and
initiation of pair programming sessions with Microsoft
NetMeeting.

MILOS gathers some metrics about the agile project. The
velocity is the measure of how much work was
accomplished during an increment [5]. The number of
lines of source code, and the number of classes and
methods are fine-grained measurements to help evaluate
the productivity of the team and compare it to the number
of tasks or user stories completed. MILOS includes a
metrics utility that produces size and complexity metrics
for packages, classes, and methods.

4. Implementation Details

MILOS is a collaborative effort between the Software
Process Support Group at the University of Calgary (U of

C) and the Artificial Intelligence Group at the University
of Kaiserslautern (U of KL). Two versions are being
developed separately. Both are written in Java, and so can
be deployable on several platforms, including Windows,
Macintosh, Solaris, and Red Hat Linux [3]. The U of KL
version uses a Java GUI interface and Gemstone as the
object-oriented database.

The U of C version’s interface uses HTML and so can be
accessed using a common Web browser. EJBs are used to
map objects to a relational database.

No licensing fees will be required for deploying MILOS
because it will be tested to run using the following open-
source applications: Apache Tomcat as the Web server,
JBoss as the J2EE server, and MySQL as the relational
database. Of course, other suitable J2EE application
servers can be used in place of the aforementioned
products for deployment.

5. Conclusions and Future Work

MILOS is an open-source application that provides
process support and experience management for agile
software development in a distributed environment. The
application is under continual development. Current work
is being done on the following items: a skill-based
ontology so that searching is more flexible, and changing

the client-server architecture to a peer-to-peer architecture
to allow separate groups to collaborate on one project
without having to sacrifice control of intellectual property.

MILOS is accessible at http://sern.cpsc.ucalgary.ca/~milos

6. References

[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison Wesley, New York, N.Y., 2000.

[2] J.D. Herbsleb, T.A. Finholt, and R.E. Grinter, “An
Empirical Study of Global Software Development: Distance
and Speed”, Proc. 23rd International Conference on
Software Engineering, IEEE Computer Society, 2001.

[3] Java 2 Standard Edition, v 1.4.0 Download, http://
java.sun.com/j2se/1.4/download.html (current May 2002).

[4] F. Maurer and S. Martel, “Process Support for Distributed
Extreme Programming Teams”, http://sern.ucalgary.ca/
~milos/papers/2002/MaurerMartel2002.pdf (current May
2002).

[5] Project Velocity, http://www.extremeprogramming.org/
rules/velocity.html (current May 2002).

[6] K. Schwaber and M. Beedle, Agile Software Development
with Scrum, Prentice-Hall, Upper Saddle River, N.J., 2002.

