UNIVERSITY OF CALGARY

Testing Process for Portal Applications

by

Harpreet Bajwa

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December, 2005

© Harpreet Bajwa 2005

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies for acceptance, a thesis entitled "Testing Process
for Portal Applications" submitted by Harpreet Bajwa in partial fulfilment of the

requirements of the degree of Master of Science.

Supervisor, Dr.Frank Maurer

Department of Computer Science

Dr. Victoria Mitchell
Haskayne School of Business

Dr. Guenther Ruhe

Department of Computer Science

Date

il

Abstract

Application development using portal technology has grown rapidly as a key
enterprise strategy for integration of different business processes, and content
into a single unified front end. Despite the increase in portal application
development, processes and practices such as testing that significantly impact
quality are limited. A case study and a survey of portal developers, that
evaluated state-of-the-art in portal application testing, revealed many open
issues. These issues make comprehensive testing of portal applications difficult.
In addition, these difficulties highlight requirements for unit and integration
testing approaches as well as tool support for testing portal applications. This
thesis proposes approaches that address these issues. The viability of the
developed testing practices and tools is validated through a preliminary study
conducted in the industry. The overall goal of this work is to present a set of

practices to the industry for improving the testing process of portal applications.

il

Publications

Some content, ideas and figures from this thesis have appeared previously in the

following peer-reviewed publications:

Bajwa, H., Xiong, W., and Maurer, F. (2005) Evaluating Current Testing
Processes of Web-Portal Applications, Proceedings of International
Conference of Web Engineering (ICWE 2005) LNCS, Volume 3579, Jul
2005, Pages 603 — 605

Xiong, W., Bajwa, H., and Maurer, F. (2005) WIT: A Framework for In-
container Testing of Web-Portal Applications, Proceedings of
International Conference of Web Engineering (ICWE 2005) LNCS,
Volume 3579, Jul 2005, Pages 87 - 97

v

Acknowledgements

There were times during the course of this work, as exemplified by Paul
Anderson’s quote that, “I have yet to see any problem, however complicated,
which when you looked at it the right way, did not become still more
complicated”. 1 extend the most sincere gratitude during some challenging
times to my supervisor, Dr. Frank Maurer for guiding me in the right direction.
Your suggestions were invaluable for this work to take its present shape. I have

learnt much from you in research, and on more valuable aspects of life.

Carmen Zannier, my colleague I sincerely acknowledge your role and
effort in editing this work. Your insightful remarks changed the face of this
thesis. To Wenliang Xiong: your role as a friend and someone who laid the
technical foundation of this work. Lawrence Liu, I am grateful to you for being
there. You have always made me aware of different perspectives to intellectual
problems. I thank you for the countless conversations when everything appeared
well beyond me. Chris Mann, I thank you for teaching me discipline in research
and fruitful discussions during the course of this work. Grigori Melnik, your
energetic spirit brought laughter in stressful times and your astute questions on
this work were helpful. Jamie Mcllroy, I extend my sincere gratitude for your
willingness and enthusiasm to collaborate on this work. Without your
constructive comments and sharp insight, understanding this complex topic

would not be possible.

I thank my parents for believing, that I was far from home doing
something worthwhile. I am grateful to my dear brothers for supporting in my
educational endeavors and encouraging me at every step. | owe much to my

sister, Kanwal Chohan for her support and love throughout this journey.

To Valar and Bhavya: my roommates for tolerating my strange mood

swings and listening to my crazy research woes. Bhavya, I acknowledge your

valuable input in editing this thesis. Sushma, I thank you for always being there
when I needed you. Sukh Mahil, your sincere friendship and support was

invaluable.

I thank my friends from India Gautami, Vrinda, Deepika and Kaajal for
all the good times and being there, when I needed you all the most. Anand S, I
am grateful to you, for listening to my cryptic talks during this time. Zohra and
Igbal, my friends, you have inspired and supported me through some hard
times. Your friendship provides strength to my life. Shilpa, I thank you for the
confiding talks. Anita, I rejoice that you are a part of my life. Your positive
energy and intelligence has enriched my life in many ways in all these years.
Rohit, your never failing, forgiving friendship and support was comforting

during these last six months.

Janaki: without your role, many pieces of my life would have fallen
apart. I will always cherish our all-nighter philosophical discussions on the
world and our lives. You have inspired me beyond words to always excel in
academic pursuits. Your true friendship and love has added strength to my

being.

Sonia, my sister without your support, I would have never seen the end.
You have always provided me a reason to come home and your undying

cheerfulness was forever welcome.

Finally, I would like to acknowledge the funding support by Sandbox

Systems and the Department of Computer Science.

Above all, I thank AID and its members for adding meaning and

purpose to my life in these two years.

Vi

Dedication

To my mother, for instilling trust in me and teaching me early in life, that true
learning was the key to freedom. I owe much to your unconditional love and

infinite faith in everything, I have ever done.

vil

Table of Contents

ADSIIACE aueeenrieiienneinsnenieensnenseecssensnesssessassssessssssssessssssssnssssesssasssassssasssne iii
Publicationsceeeeneeecinueecineicinennsnenisnicssnecssnnecsssnecsssescssnessssnssssesssssees iv
ACKNOWIEAGEMENLSccoeveunrricissrnnnccsssnnncssssssresssssssssssssssssssssssssssssssssssssnnes v
DediCation ...uccieeeneeisenseensensinnsnensseesssecsnsssansssessssesssnssssssssnssssessssssssassns vii
Table of CONLENLS.....cciueirreeireninenseninensnensnecssensnssssesssescssesssassssssssasnn viii
LiSt Of TaDIES .ucevuueenreininnrintinniennenneennensnensnessnssssesssecsssesssnsssassssasnn xiii
LiSt Of FiUIES «.uucicrvuiicirniinirnninsnncsssnnsssnnsssansssssnesssansssssssssssssssssssnsssssans Xiv
Chapter 1. INtroductionc..ccecerescsercsssercssercssnscssssssssssssssssssssasssssassses 1
1.1 Background...........cocuieriieiiiinieeiiee e 1
1.2 Research Motivation and SCOPEcceereeeriieniiiiiienieeiienieeiee e 2
1.3 Research Problems.........cocooiiiiiiiiiiiiiiiiiiiceecceeceeee 4
1.4 Research Goalsc..ooviiiiiiiiiiiiiieceeeee e 5
1.5 Specific Research QUEStioNS..........c.eevueerieeiiienieiiiesie e 5
1.6 Key Terminolo@yccccueeuieriieiieiieeieesie ettt e 6
1.7 ThesS1S SIIUCLUIEcc.veeiiiiiiieiieeieee et 7
Chapter 2. Portal Application Technology and Testing..........ccccceeuueeee 9
2.1 Portal Server and Portal Components...........cceceeeeeveneenerrieneenneenne. 9
2.1.1 POTtal SETVET ...ttt 10
2.1.2 Portlet and Portlet Containerccceveeverieneenieniieneeeee 11

2.2 Portlet Related Concepts.......c.oecverieeriierieeiienieeieesiee e 15
2.2.1 Comparing Portlets and Servletscccceccevveevievinicneincnnne 16

viil

2.2.2 Portlet and Portal Applications............ccceeveeviieniieniienieenieenen. 17

2.2.3 Portlet APT and Services.......ccccevueerienieeiiieniieieenieecesee e 18
2.2.4 Portlet Development Related Characteristics.........cccccveeeeveennes 18
2.3 Portal Technology Standards............ccceevieeiiieniiiiiiiiieeiieeeeeee, 19
2.4 Portal Application Deploymentcccceeveenieniiienieniiieieeieeee. 20
2.5 Testing TeChNIQUEScccvviieiiieeiie et 21
2.5.1 Test Driven Development............ccceeeveeerieeeiieesiieesieeeieeenns 22
2.5.2 Unit Testing with Mock Objects.........cceevvieerieeniiieniieeeieeens 23
2.5.3 Integration Unit TeStING........ccceeviierieriieriienieeienie e 25
2.5.4 Functional Unit Testingccceevueevieniieniieniieieeieece e 26
2.5.5 Performance, Stress and Security Testingcccceeveveerennenns 27
2.5.6 Web Application - Model, View and Controller Testing 28
2.0 SUITIMATY ...eeiuiiieiiieeiiieeeie et te et et e et e sttt e st e e st eesbteesabeeesaaeeas 30
Chapter 3. Portal Application Testing: Case Studyccceeeeeerveecnnees 32
3.1 ODBJECHIVES .uevieeiiieeiiee ettt ettt ettt e e e e eeeereesneeeesnneeenes 32
3.2 Case Study Methodology OVerviewcccceeeveeevveeenieesciieenineens 33
3.3 Study Context and Participants............cccceeveeevienieenienieeeeeieeee. 33
3.4 Data Collection and ANalysiscceeeueereeriieniienieeieesieeee e 34
3.5 RESUILS .. 34
3.5.1 Testing Practices in the Companyccceeecveeerveeeiieencneeennne. 34
3.5.2 Challenges in Testing Portal Applicationsc...cccceeeevennene 37
3.6 Case Study Limitationcccceeveirieneriiinienienieneceeecseceeeeee e 39
3.7 SUMMATY ..cniiiieiiie ettt et e et eesaeeeeaeessreesseeesnneeenns 39

iX

Chapter 4. Portal Application Testing: Surveyccccceeeeerercseccseeccnnes 40

4.1 Survey Methodology OVETVIEW.......c.ceeecvieeeiieeniieeriee e eiee e 40
4.2 Survey Design and Sample Selection..........ccceeeeveeeriieenieeeciveennnnn. 41
4.3 ReSponse Rate........coocueiiiiiiiiiiiiiieeeiieeeeeeee e 43
4.4 Participant Demographics..........cceeeuverirriiinieniieiieeieeee e 43
4.5 Portal Server Deployment Infrastructure...........ccceeeeveeevveeecnveennnenn. 46
4.0 RESULLS. .ttt 46
4.6.1 UNit TESHING ..eeevviieiiieeeiiieeiee et eeee e ereeesreeeeree e es 47
4.6.2 Functional TeStiNgcccceevieriieiiienieeiieeie e 50
4.6.3 Performance and Load Testing...........cccceevvieviienieenienieeienne, 50
4.6.4 Portal Application Deployment...........cccceeeveevvieeniieencieeennnnn. 51
4.6.5 Challenges in Testing Portal Application...........ccccceeervreennnenn. 52
4.6.6 INterPretation.......cecueeeiieeiie ettt 55
4.6.7 Design and Testability of Portlet applications...........c.ccccueeeee 55
4.6.8 Deployment Process and Environment Complexity................ 55
4.7 Limitations of the Study Methodology..........ccceevveeviieiriienieene. 57
4.8 SUIMIMATY ...eeeuiiieiiiieeeiiee et te et e ettt e et e st e et e st eessateesbaeesabeeesaaeeas 58
Chapter 5. Portal Application Testing Process.......cccceeveeerueecsnccseeecnnes 59
5.1 Requirements for Portlet Testing..........cccoecvveeviiieenieeeiieeeieeeieens 59
5.2 In-Container Testing of Portletsccceevieeviieeniiiiiieeeeees 61
5.2.1 WIT Testing Frameworkc.ccccceevvevieviniininieniinecicnene 62
5.2.2 Usage Scenario of WITcociviiiiniiniiiinieecececece 63
5.3 Portlet Testing using Mock Objectscccceevieeciienienieeniienreenen. 73

5.4 Portal Application Testing Process..........ccoceevierieeneenieenieenieenen. 74

5.4.1 Unit Test Environment Level Tests..........ccccevvieniinicnniennenn. 74
5.4.2 Staging Environment Level Tests.........cccceevvieeecieeecieeeieeee, 76
5.4.3 Production Environment Level Testsc.cccocerveriineniennnene. 78

5.5 SUMMATY .ttt st 78
Chapter 6. Empirical Evaluationceeiceicnneicnsencnsnncssanccssanscssanes 80
6.1 Selection of the Methodology........cccceevvvieriiieiiiieeiiecieeeeeeee s 80
6.2 ODJECTIVES ..vvieeiiieeiiieeiieeeiteeeeeeeteeeeteeesbeeesaseeesaeesssreesnseeesnneeenns 80
6.3 Study Methodology and Participants..........cccccceeveeeenienieenieenneenen. 81
0.4 RESUILS....cviiiiiiiiieee e 82
6.5 INtEIPTELALION.viieiiieeiiieeiieeeee et e e e eeeereeeeeeeeaee e 89
6.6 Anecdotal EVIAence..........ccoceeiiiiiiiiiiiiiiiiiieeeceeceeeeeeen 91
6.7 SUMMATY ...vetiiiiiieeiiee ettt et e stee et e st e e sbeeesbee e e 92
Chapter 7. CONCIUSIONScovueeirueereensuenssnensannssnecsaesssaesssnesssesssnssssssssassnes 93
7.1 Research Problems........cooueiiiiiiiiiiiiiiiiiiceeceeeeeeeen 93
7.2 Thesis ContribULIONSc...eevueeriiriiieiieeieeieeee e 93
7.3 Future Work and Conclusion..........c.cceceveeveriieniencnnicnienecieneene 95

| 2 3) 1 TV R 97
Appendix A. Portal Technologyccccccceeverescercssercssnercsssnscssanssssansoes 103
A.1 Review of Portal Server Framework Services.......c...ccocccevienncns 103
A2 Portlet AP ... 106
Appendix B. Testing Tool Evaluation............eeeieenneensnensecsseeesane 107
Appendix C. Survey Materialsccceeeeesvercsssnrcssercssnescssssscssssssssassons 109

xi

C.1 Survey Introduction FOrm.........ccoooeeviieiiiniiiiiecieeieceeeeee 109

C.2 Survey QUESIONNAITE.......ccccvveeerreerreeerieeeireeeireeeereesreeesneeennns 110
Appendix D. Ethics APProval.........ceeiicnissnnnccsssnnecsssssnsscsssssssees 114
Appendix E. Perceptive Study Materials.........cceceeerueesuercsuenseeecsneesanne 115

E.1 Pilot Study at U of Coooiiiiiiiieeeeeeeee e 115

E.2 Consent FOIMS......coooiiiiiiiiiiiiiiiceiceccceceee e 118

E.3 Post Study QUEeStioNNaIreceeevveeerieeeiiieeieeereeeieeeevee e 120
Appendix F. Co-Author Permission...........cceevercscercssnercssanscssansssancces 122
Appendix G. Materials and Raw Data.........cccccevverivvercnveicssnnccsnncene 124
GlOSSATY ceocuriiinnniissnninssnnicssnnissssnisssnesssnessssnsssssnesssssssssessssssssssssssssssssnss 125

xii

Table 2-1:

Table 3-1:

Table 4-1:

Table 4-2:

Table 6-1:

Table 6-2:

Table 6-3:

Table 6-4:

List of Tables

Key differences between Portlets and Servlets..........cccoeceveviieniennen. 16
Portlet Application CharacteristiCs.eevvurrerveeerieeerieeeiieeereeeees 36
Type of Portal Server Environment Used...........cccceeveieeviieenneeenne. 46
Survey responses indicating the testing techniques needed. 53
Perceived Usefulness of WIT.cocoviiiiniininiiiniineeeeeec 83
Perceived Usability of WIT.cccccoiiiiiiiiiiiiieieeeeeeeeeee 84
Who should write and Execute ICT Tests.ccccoeoerniinicinienicnnnen. 87
Type of Portal Sever Environment for Running ICT Tests.............. 88

xiii

List of Figures

Figure 1-1: Scope of Research -the inner shaded box represents the scope of this

Figure 2-2: Portal Server Components and Architecture (Wege and Chrysler,
2002; Hepper, 2003).....coiiiieeiieeeiieeeite ettt ettt 14

Figure 2-3: Model, View, and Controller Architecture for Portal Applications.19

Figure 2-4 Testing techniques and scope of testing Web application components

adapted from (Massol and Husted, 2003).cccceverieniniinienenienene 22

Figure 2-5: An overview of testing techniques for Model, Controller and View

LAYETS. eveiiiiieeetee ettt ettt ettt et e e e e e et e e et e e entaeeenbaeennnee s 29

Figure 3-1: State-of-the-testing practices at the company according to model,

view and controller Iayers.coocuierieiiieiiriieee e 35

Figure 3-2 Case study- number of methods versus test methods in the portlet

18] o] F (62215 (o) 1 OSSPSR 37

Figure 4-1: Web Application Development Experience of Survey Participants.

.. 43
Figure 4-2: Portal Technology Experience of Survey Participants.................... 44
Figure 4-3: Survey results showing automated versus manual Testing............ 47
Figure 4-4: Survey results showing how unit test cases are executed. 48

Figure 5-1: Shipping Portal Application in View Mode- Account Details Portlet.

Figure 5-2: doView Method - Accounts Portlet Class.ccccooevvevieneeienncnne. 65

X1V

Figure 5-3: doView Test Case - Accounts Portlet Test Class.cccceevveennee. 67

Figure 5-4: actionPerformed Method - Accounts Portlet Class.c..ccceeneene. 69
Figure 5-5: actionPerformed Test Case - Accounts Portlet Test Class............... 70
Figure 5-6: Credential Vault Portal Server Service.ccocceeviiniiinieniiceneene 71
Figure 5-7: Snippet of WIT Test Configuration XML File.cccceniinninn 72
Figure 5-8: Test Execution Results using WIT. ... 73

Figure 5-9: Portal Application Testing Process- testing activities in different

TUN-TIME ENVIFONIMIENTS. ooeeiiiiiiiiiiiieieeeeeee et eeeaees 76

Figure 6-1: Responses showing likely future Usage of in-container testing

approach using WIT. ... 85
Figure 6-2: Responses showing likely Future Usage of Mock Objects. 86

Figure 6-3: WIT as the top Feature of the week on the Portlet Community
WEDSILE. ...t 92

XV

Chapter 1. Introduction

This thesis describes testing of portal applications by outlining the testing process using
novel testing techniques and tools. To this end, existing testing techniques in use were
evaluated by conducting a case study and a survey. This chapter begins with a brief
introduction of portal applications and reasons for their significant growth as an enterprise
technology. Next, I discuss the value of testing and limitations of existing testing practices
building the motivation for this research. Then, I identify the scope of research work in the
area of testing. Finally, research problems and goals of this work are highlighted. I

conclude with an organizational overview of this thesis.
1.1 Background

Portals are Web based applications that provide a single integrated point of access to
personalised information, processes and applications. In addition, they integrate diverse
interaction channels and information at a central point providing an aggregated view to the
user. These applications are developed using Web application technology, for example Java

2 Platform Enterprise Edition (J2EE).

Enterprises are increasingly seeking to aggregate heterogeneous backend
functionality and business processes into a single integrated point of access to information.
As a result, enterprise portals have found their way into the mainstream business world.
Shilakes and Tylman (1998) coined the term enterprise portal. They define “enterprise
portals as applications that provide an amalgamation of software applications that
consolidate, manage, analyze and distribute information within and outside of an
enterprise.” These applications also include business intelligence, content management,

data warehouse and data management functionality which is accessible using a single

gateway. Results of research conducted by financial analysts (Kastel, 2003) show that most
enterprises intend to implement a portal solution within a short period of time, further
augmenting the growing importance of enterprise portals. The significant growth of portal
technology is attributed specifically to solving enterprise level challenges of integrating
business processes and data. Lack of such an integration results in the end user interacting
with multiple, inconsistent user interfaces to get a single task completed. In addition, to
providing a consistent user experience, portals have the ability to integrate different media

sources and render information in different formats for various devices.

1.2 Research Motivation and Scope

A lack of rigor in testing portals may significantly impact quality as enterprise systems
become integrated using portal technology. Consequently, portals may fail to deliver
expected functionality to the end user. Therefore, it becomes essential to establish a testing
process with solid foundations, and identify practices that will promote effective testing of
portal applications. A survey conducted by the Cutter consortium (2000) reported top
problem areas of large scale projects in the Web application domain as failure to meet
business needs (84%), lack of required functionality (53%) and poor quality of deliverables
(52%). One possible reason for this was attributed to inadequate testing of these

applications.

So far, most of the efforts from the portal community are focused on the technical and
technological issues of portals. For example, proposals have been documented in the area
of best practices for designing and developing applications using portal technology (Hepper
and Lamb, 2004). However, as portal technology is used effectively in enterprise
environments the focus will change towards the quality aspect of the portal applications.
There are no recommendations or guidelines for the testing process of portals. No in-depth
studies have been undertaken to evaluate how portals are being tested in the industry. The
thesis work conducted helps to fill this gap. A prerequisite to providing support for better

tested portal applications is an early assessment of the existing testing process, and the

nature of challenges that restrict comprehensive testing in the industry. I analyzed problems
with the testing process for portals reported by our industry partner (Sandbox, 2005). As a
follow-up to this, a survey of testing practices was conducted with experienced portal
developers. The survey focused on testing processes, testing techniques and automated
testing tools used in the industry. Open issues in testing of portal applications were

revealed, which I have investigated and addressed as part of this work.

The scope of this work (Figure 1.1) is confined to the area of testing. Starting at the
outermost box of Figure 1.1, software engineering looks at processes and tools for
developing high quality software applications (Abran et al., 2001). Web Engineering is a
discipline within software engineering that addresses the need for systematic techniques,
tools and guidelines for design, development, test and maintenance of Web based
applications (IEEEMultimedia). A portal application is a specific type of Web application
with special characteristics that make it necessary to develop new methods for an effective
testing process. This work investigates testing techniques and tools to perform portal
application testing in a systematic manner. Specifically, I focus on portal applications based
on the J2EE technology. However, there are other portal technologies such as Microsoft

Sharepoint Portals.

Software Engineering
Web Engineering

Engineering Portal Applications

Requirements
Design

Development & Deployment

Testing Processes
- Testing Techniques

- Testing tools & Applicability

Maintenance

Figure 1-1: Scope of Research - the inner shaded box represents the scope of
this work.

1.3 Research Problems

I will address the following problems in the thesis:

1. It is not known how a portal application is being tested in the industry (state-of-the-

practice) and what difficulties exist that hinder automated testing of portal applications.

2. It is not known what testing tools and techniques exist that are appropriate for testing a
portal application; if there is a need to extend these techniques and develop practices for

portal application testing process.

1.4 Research Goals

In this thesis, I will address the problems mentioned above with the following goals:

1. T will empirically investigate and evaluate the existing process of testing portal
applications to understand the testing practices in use and challenges in testing of portal
applications. I will define and run an explorative in-depth case study and a broad survey

to build this initial knowledge (Problem I).

2. Based on the literature review and results from the study and survey in goal 1, I will
develop a set of testing techniques. Using these techniques, I will describe how portal

application testing process should be accomplished (Problem 2).

3. I will perform empirical evaluation to validate the testing techniques suggested in goal

2 (Problem 2).

1.5 Specific Research Questions

Outlining the testing process for portal applications (goal 2) is broken down further into
following questions for establishing the right sequence of testing activities - testing

processes:
1. How should testing be done (manual or automated)?

2. Who should perform testing?

3. Which components or collection of components need to be tested?
4. What techniques and tools can be used?

5. What is the scope of tests (unit, integration)?

1.6 Key Terminology

The concept of software quality though subjective is defined in terms of three factors
adapted from (Culbertson et al., 2001) few failures in the field (lesser bugs), high reliability
(seldom crashes) and customer satisfaction. The goal of any software testing activity is
verification and validation (V&V). Schulmeyer (2000) defines Verification as the assurance
that the products of a particular phase in the development process are consistent with the

requirements of that phase and the preceding phase.

The term process in the context of this work is used to emphasize that testing is an
orderly sequence of planned activities relying on well defined test strategies. Testing is a
crucial activity in the software development process whose main goal is to reveal bugs
(IEEE, 2002). The overall objective of testing is to improve the quality of the applications

and end user experience.

Testing is an activity that is divided into several levels and phases analogous to the
application development process. Terms related to software testing phases and techniques
explained below are adapted from the Object-oriented (OO) (Binder, 2000) and Web
testing literature (Kaner et al., 2002; Nguyen et al., 2003).

e Unit testing: This testing focuses on each program unit to ensure that the algorithmic
aspects of individual units are correctly implemented. The goal of unit testing is to

identify faults related to logic and implementation in each unit.

e Integration testing: After each unit is tested, the integration testing phase begins to test
that an application built from individual units works correctly as a whole. The goal of
integration testing is to identify whether a unit is adversely affected by the presence of

another unit.

e System testing: After integrating software, system testing is performed to ensure that
elements that are part of the system (for instance hardware and database) are adequately

combined and the functional performance is obtained.

In order to design methods for testing in various phases and levels established above,

testing techniques are developed. They test different aspects of an application and form the

basic mechanism to assess the quality of it.

Functional or Black-box testing: This form of testing treats the system as a "black-
box", without any explicit knowledge of the internal structure and uses only the external
structure that is visible. Black-box test design focuses on testing functional
requirements without any concern for its implementation. This form of testing validates
expected behaviour of the application from a user’s point of view and can be associated
with acceptance testing. Synonyms for black box testing include specification or

behavioural testing.

White-box testing: This form of testing allows the tester to focus specifically on using
internal structural knowledge of the software to guide testing. This technique is

complimentary to black box testing.

Gray-Box testing: This form of testing incorporates elements of both white box and
black box testing since it consists of methods derived from the knowledge of
application and its environment. This technique is integral to Web application testing.
As Web application comprise of numerous components (software and hardware) that
must be tested in the context of system design to evaluate their functionality. (Nguyen,
Johnson et al.,, 2003) define gray-box testing as “using inferred or incomplete

structural or design information to expand or focus black box testing”.

1.7 Thesis Structure

This thesis is divided into seven chapters:

In chapter 2, I present an introduction to portal application technology, its key

components and features that make these applications unique. Next, I discuss existing

research on Web application testing by reviewing existing testing techniques and tools. The

chapter concludes with limitations of the testing techniques with reference to portal

applications.

In chapter 3, I discuss the methodology for the explorative case study conducted at a
company to understand the testing practices (Goal 1). Next, the results of the study are

discussed. The chapter concludes with a brief summary of the study findings.

In chapter 4, I discuss the design of the survey conducted to provide broader insight
into testing practices for portal applications (Goal 1). Next, the results of the survey are
presented which includes the description of the empirical assessment and its findings. The

chapter concludes with limitations of the case study and survey methods used.

In chapter 5, I summarise the challenges in testing. Next, I use this research and
empirical results discussed in chapter 4 to develop a set of testing approaches and

techniques for integrating them into the development process (Goal 2).

In chapter 6, I discuss the perceived benefits of this proposed process through a
qualitative evaluation of the recommended testing approaches developed in chapter 5. This
involves conducting a less formal evaluation of the suggested techniques in industry. Next,
I use the research results to develop a set of practices which can provide enterprises with a

direction in improvement of their own testing processes for portal applications (Goal 3).

In chapter 7, I conclude the thesis by summarising how I achieved each of the
research goals. I also list my research contributions and suggest future work in the area of

portal testing.

Chapter 2. Portal Application Technology
and Testing

This chapter begins with an introduction to portal application technology, its components
and execution environment to provide sufficient background knowledge of portal
architecture and understand the characteristics that differentiate them from conventional
Web applications. Next, a summary of the standards in place for portal technology is
discussed followed by a brief overview of development and deployment processes of portal
applications. Then, existing research on testing techniques for Web application is reviewed.
I conclude with a summary of the testing processes and its limitations with respect to portal

applications building the motivation for this research.
2.1 Portal Server and Portal Components

Support for portal technology evolved from the need to aggregate and render multiple
streams of dynamic content to present it in a unified manner to the end user. As a result
proprietary portal frameworks (Appendix A.l) have emerged providing portal server
components to customers for building portal Websites and its extensions. In the context of
this thesis the term “component” will be used in two ways. First, it is used in a manner
similar to component based systems (Cechich et al., 2003) to describe any piece of software
that provides services through its well defined interfaces with emphasis on the “black box™
nature of components. Second, I extend its use in a way that describes pieces of application
code with available source code that uses services provided by the black box components.

Terms related to portals referenced throughout this chapter are explained in the glossary.

10

2.1.1 Portal Server

The Portal server provides basic infrastructure support for developing and deploying
portals. In other words, it provides an environment for executing and managing portal

applications. Portal Server offers services such as:

e Content Aggregation: A portal server gathers content from different sources for
different users. It is responsible for aggregating content produced by individual portlets

into a single portal page

e Personalisation and Customisation: A portal server is enabled to recognize different
users and offer them content specifically configured to their needs. This service is based

on gathering information about user communities and delivering customized content.

e Single Sign On (SSO): A portal server is an entry to a wide range of back end
applications. It supports an authentication mechanism that does not require user
authentication each time. The end user authenticates once and has unrestricted access to

all the applications.

e Content Management: Portals gather content from different sources by implementing
a syndication service that talks to every attached back-end system via an appropriate
protocol. Built in support is also provided for standardized content formats, such as rich

site summary, news industry text format (NITF) etc.

e Collaboration: These services are provided by a few portal frameworks (for example
WPS) through a set of pre-defined portlets that allow for team-room chat, e-mail,

sharing calendars and many other collaborative technologies.

e Multidevice support: Portals can prepare content for different interaction channels,
such as those for wired and wireless phones, pagers, and faxes, by considering their

characteristic capabilities.

The nature of services provided by a portal server is vendor specific. A review of

different open source and commercial portal server run times is reported in Appendix A.1.

11

The rationale of reviewing the portal frameworks is to describe briefly the range of services
provided. The report highlights various levels of service provided by products. They range
from complete enterprise portal solutions to simple libraries for developing and running
portlets. My work is focused more specifically on testing techniques using J2EE based IBM
Websphere portal technology that provides the framework and runtime environment to

build portal components and its extensions (PortalZone).

2.1.2 Portlet and Portlet Container

J2EE-based portals aggregate multiple applications into a single unified front end by
integrating individual components called portlets. Portlets are described by (Hepper,
2003) as “user facing applications that generate dynamic content from multiple backend
sources”. Thus, portlets are core application building blocks of portals. Portlets are

deployed in a special environment called the portlet container.

12

i Portlet ~ ~
"Fm(:ﬂ : | Egn -ul My ..._.__._.-u-_. _.-':. = Wlﬂllllllr a1l o vahan Wk M Yikas
Calgany 46 Y HU’D!

GAMES

furgne 46,67 F E]

e, G o0

Qkokoks 47 D
ni n imaE I—'— Eaach Man, Bug B, 10t28
gearche | ? search Finy Code or City fidd hasdines from ADC News o Ny Tah
| | i o | T | .|.".|I |1i‘| Ej |
*‘.'WIH%"MjMM 7 A 10 L L e e
" Waathar * Reutars: TEchnology wlt ¥
oae wwore PRl - uslcgio, Somson to test -t nosie <l
' Soanth cancepts, not keywards I=\.'~1 ‘talls husines
g .. .67 F [] + ATE purchases wingless company Wildsead Lid.
ohype mvestor says firm should stay independant
kotods R D whigrtel stock surges onresults, upbest fEracast
| Eml .ur.. ry -3 |) PN Y P T ¥ — e} - }
saarch by Zio Code or City [l Full Covarpne
n . P a a i - I |_
Bl gt
" Bookmarks Hiel il
Bao add
Caveipging JEE LRIk,
Ege AD|
daya Serviat &0 T T T T
T L] ¥ N
" Cabprilar
17 At 2005 [
S Mo Tu Ws Th Tr I

Figure 2-1: Portlets aggregated to form personalised Yahoo public portal page.

Figure 2-1 shows a typical layout of a portal page divided into a number of
independent areas. Each area is referred as a portlet. Each area contains information from a
different source. Each portlet is a separate window that has different states such as normal,
maximized, and minimized. In some cases the portlet acts as a mini Web browser
containing html content obtained from another web server. Figure 2-1, shows a yahoo
portal page with news and weather portlet windows that gather information feeds and
announcements from another server. A portlet is defined as a Java technology based Web
component, managed by a portlet container that processes requests and generates dynamic
content. It is used by portals as pluggable user interface components providing a
presentation layer to information systems. Portlet access can be restricted by assigning

proper permissions based on the user roles they serve.

13

Portlet windows have standard modes (Hepper, 2003) (view, edit, help and custom) that

indicates the current function portlet is performing:

View: In the view mode, a portlet renders content fragments (small pieces of markup
such as HTML, XML), display data, present content and provide core functionality to

users.

Edit: In the edit mode, the portlet provides the content and logic that allows the user to
customize the behaviour of a portlet. This allows users to customise the information

they want to see and how it should be presented to them.

Help: In the help mode a portlet provides help screens that explain its purpose and

expected usage.

Custom: This mode is an optional feature that provides a specific piece of functionality

depending on the purpose of the portal application.

A portlet container is the portlet runtime environment that provides portlet specific

services. Typical responsibilities of a portlet container are to:

Provide portlets with the required runtime environment and manage their life cycle. It is

responsible for portlet instantiation, initialization, request processing and destruction
Provide persistent storage mechanisms for portlet preferences

Receive and execute requests from the portal server (described below) by retrieving

content of the portlets it hosts.

Portlets and their runtime support (portlet container) are commonly featured

technologies in many of the current portal building frameworks such as Apache (Jetspeed),

IBM Websphere portal server (WPS) (WebspherePortal) and Oracle’s Application Server
Portal (Oracle).

14

The portal architecture is depicted in Figure 2-2 to explain components integrated
with the portal server which is built as a servlet Web application. In addition Figure 2-2
explains how a client request is processed by the portal server using the services provided

by the different components.

Portlet
Request | pojet

 Serviet
: Request

Invocation
o Serviet % ET:;.: :::ﬂpe-u-tnse Interface E 2 | Portlet
— :Response |° g |5 Local
5 § |z| |Portlet Application
= g |2
z B Web-Services
Portal Server L

1ayapedisg

I

Portlet Services Inlerface

User Persistence
Info
Sarvice Service

< — i
Figure 2-2: Portal Server Components and Architecture (Wege and Chrysler, 2002; Hepper, 2003)

A client request for a portal page is processed by the portal server through
interactions with several components as shown in Figure 2-2. First, the portal engine
implemented as a servlet application, receives a servlet request. Next, this request is
transformed into a portlet request by the portal engine. Then, the portlet request is sent to
the appropriate portlet via the portlet container, which is invoked from the portal server via
the portlet Invocation interface as shown in Figure 2-2. Next, the request is processed by
retrieving portlets for the specific portal page. The container invokes individual portlets to

retrieve portlet content through the Portlet interface also highlighted in Figure 2-2. Finally,

15

the portal server aggregates multiple portlet responses returning them as a servlet response
to the end user. The final portal page presented to the client represents an aggregate of
several portlet windows which takes into account user preferences and device capabilities.
One of the key responsibilities of the portal server is to receive and execute client requests
for a portal page by retrieving and aggregating content of the portlets hosted by the portlet

container.

2.2 Portlet Related Concepts

This section explains key concepts related to portlets. Identifying differences between
portal applications and conventional Web applications is a prerequisite in answering
whether it is possible to adapt existing testing techniques from the Web application domain
to portals. Many aspects of portlet development are common to Web application
development since the Portlet architecture is an extension of the Java Servlet architecture
(which, in turn, is an extension of a Web server). However, unique aspects of a portal
environment add complexity to the application model such as multiple portlets per page and

portlet URL addressing. This section highlights these differences in detail.

16

2.2.1 Comparing Portlets and Servlets

Servlets and portlets are both Java-based Web components that generate dynamic content

and are managed by specialized containers.

Table 2-1: Key differences between Portlets and Servlets.

Features Portlets Servlets

Commtrunicate with the end user via Comtrunicate via the Web server
FRuntime the portal server and rin in the and run i the context of a servlet
Environment and | context of a portlet contamer. They contaner. These components
C omponent are administered dynamically for cannot be installed and removed at
Administration exatmple they can be nstalled and runtime.

removed while the portal server 13

running.
Content Content generated by portlets are | Servlets provide complete web
eneration mark up fragments that are | pages although a servlet 12 a single

aggregated to form a complete portal | piece of a much larger application.
page by the portal server.

Authentication Portlets operate i the context of a | Servlets are responsible for
Mechanism portal server responsible for | validating user authenticity. User

validating wuser authenticity wia | authentication is a concern
880 Role based access of these | handled by application

resources 15 provided developers.
Request Process "doView" and "doEdit" | Proces: "doGet" and "doPost
Processing requests, recetved from the portal | requests, which map to HTTF get

server. Regquest processing i3 divided | and post requests recetved directly
mto an action phase for processmg | from the Web browser.

user actions and a render phase for
producing the mark-up.

17

URL Binding Portlets are not directly bound to a | Servlets are bound to a single
single URL. Instead the portal page | URL and can be called directly.
points to the page containing multiple
portlets. Therefore, portlets cannot be
called directly.

Each portal page 15 an aggregation of | At any given time only a smgle
several portlets. Multiple portlets can | serviet 15 fulfilling a user’s request
Response exist side by side with one another | which provides a great deal of
Predictability and each one may provide content | predictability. It can guarantee
and functionality different from the | what 12 executed and returned to
other. As a result, portlets maybe | the client Servlet can be sure
affected by the presence of other | that the returned content will
portlets providing lesser response | not be affected by any other
predictahility. servlet.

Together with leveraging the complete functionality of servlets, portlets provide more
specialized functions. Key differences between portlets and servlets are highlighted in
Table 2-1. A portlet is built to support a well focused service rather than complex service
which involves several business processes. This complex service is created by the portal
server by aggregating portlet content. Web applications are perceived as self sufficient
applications providing diverse functionality and a wide variety of contents (HTML pages
hold a wide variety of contents) making them coarse grained. On the other hand, portlets

provide a single piece of functionality making them fine grained.
2.2.2 Portlet and Portal Applications

A portlet application contains a group of related portlets that share a common context, for
example images, property files and classes, and can exchange messages between each
other. On the other hand, portal application comprises of multiple such portlet applications

together with services used by these applications packaged together.

18

2.2.3 Portlet API and Services

The portlet application programming interface (API) provides interfaces (PortletResponse,
PortletRequest, PortletContext etc) a portlet class can utilize. A portlet invocation request is
handled by the service methods depending on the portlet mode requested by the client.
Accordingly, the service methods (doView, doEdit, doHelp, doConfigure) associated with

these modes is implemented as part of a portlet class.

Portlets depend heavily on services provided by the portal server environment. For
example, services such as content access, search and location services. These services are
provided as extensions to the Portlet API by plugging them into the portal server. Portlets
access these services by querying the server for a specific service type and in return, receive

an implementation of the service.
2.2.4 Portlet Development Related Characteristics

The Model-View-Controller (MVC) (in the Web context usually called the MVC model 2)
design pattern (E.Gamma et al., 1995) is commonly used to achieve separation of
responsibilities in a portlet application. This section describes the application of MVC to
portlets (Hepper and Lamb, 2004). In a typical J2EE application, the types of components
used are JSP, servlets, and Enterprise Java Beans (EJB). Figure 2-3, shows how the MVC
architecture is applied while developing simple portal applications. Model in a portal
application encapsulates business logic by retrieving data required to achieve a business

function represented in J2EE by EJB, java beans, java classes.

19

s | @
e Server TS
@ i {Java Ieram EJ8)

{JSP_HTML}

e
-
@ (o hean E20)

(FSPHTML}

@ & {dava Bean E28)

(JSP_HTML}

Figure 2-3: Model, View, and Controller Architecture for Portal Applications.

The portlet class is the controller with many functions. First, it evaluates the validity
of the client request. Next, it determines the requested mode of portlet and accordingly
executes the appropriate model component. Finally, it is responsible for invoking the

correct view component.

The view component is responsible for rendering the presentation resource from the
data returned by the model. The content returned by the view component is aggregated by

the portal server as shown in Figure 2-3 to compose the complete portal page.

2.3 Portal Technology Standards

The emergence of an increasing number of enterprise portals has given rise to different
vendor specific, mutually incompatible portlet APIs for application providers, portal
customers, and portal server vendors. To overcome these problems and to enable

interoperability among portlets and portal servers the Java Community Process (JCP)

20

has provided a standard of how portlets should be developed. This is described by the Java
Specification Request (JSR168, 2003) that defines the API for standardizing the contract
between the portlet and the portlet container. The goal of JSR 168, the Portlet Specification,
is to enable interoperability between portlets and portals. The reference implementation of
the specification is made available by (Pluto). The portlet API addresses areas of content
aggregation, personalization, presentation, security and how the portlets should

communicate with portlet container.

JSR 168 compliant portlets can be consumed as remote portlets using the Web
Services for Remote Portlets (WSRP) protocol. WSRP is another important standardization
initiative intended to simplify the creation of distributed applications by describing the
communication protocol between portlet producer and consumer. The availability of these
standards provides organisations deploying enterprise portals a range of standards-based

portlet containers to choose from (write once and deploy on many platforms).

2.4 Portal Application Deployment

The portal application deployment process binds several portlet applications into the portal
server environment. Each portlet application is packaged together with many portlets,
deployment descriptor files and its resources into a Web Archive Portal Application file
(WAR). This is followed by deploying the WAR target into the portal server run time

environment.

Typical enterprises have three or more completely separate runtime environments for
deploying portlet applications depending on different factors such as the size of the project
and the quality processes in place. These run time environments have distinct purposes and

will be referred in the remainder of the thesis:

Development and Unit Test Environment (UTE): This environment represents the local
development environment used by the portal application developers to write, compile and

unit test their code. The environment is the integrated development environment (IDE) that

21

allows developers to perform portlet application development, portlet testing and

debugging in their local environments.

Test or Staging Environment: is the environment which is a close mirror of the
production portal server environment where production critical tests are carried out. This is
the first environment where the desktop application code is migrated to the runtime portal
server environment. This is done to verify whether the application works before going live.
Integration, functional and acceptance testing of the portal application code is performed in

the staging environment before deploying the application for production use.

Production Environment: is the business production environment that has the full fledged

portal server environment installed where the portlet application is deployed and released.

2.5 Testing Techniques

This section reviews the existing testing techniques for J2EE based applications. The figure
below illustrates J2EE components and the scope of testing techniques represented by the
red bars in the figure. It is important to note, that testing Web applications focuses on
testing each component for example, unit testing business logic encapsulated in session
beans. In addition, the components must be tested after they are integrated for example,

database integration testing.

Integration Unit Testing

—p-
Integration code I I
Presentat Business Data
ion logic logic Persistence
Browser {Servlets, {Session el
JSPs) beans) (EJBs)
Application
\ Server

Logic Unit Testing

Functional Unit Testing

Integration Unit
Testing

-

>

22

»
L

Figure 2-4 Testing techniques and scope of testing Web application components adapted from (Massol

and Husted, 2003).

The limitations of the testing frameworks and tools for the testing techniques described are

summarised in Appendix B.

2.5.1 Test Driven Development

Test driven development (TDD) (Astels, 2003) is a practice of agile methodologies such as

Extreme Programming (XP) (Beck, 2000) that suggests :

e Tests are written first and allowed to fail before the functionality to pass the test is

written. As a result, TDD (also called test driven design) shifts testing to the front of

the software development cycle.

e Tests guide what functionality should be written. This allows developers to implement

functionality just enough to make the tests pass.

23

e No code goes into production without associated tests. As a result, a suite of unit tests
are created that form the basis for regression testing. This assures that adding new

functionality does not break previously existing working code.

TDD is an incremental development approach using unit testing techniques (TDD and
Unit-Testing). It focuses on verifying that units implemented by the developers work
correctly. (JUnit) is the standard unit testing framework that automates unit testing of Java

applications (Appendix B).

Tests are executed frequently (every few minutes) using TDD. The disadvantages of

slow test execution in TDD (Smith and Meszaros, 2001) are two-fold:

1. Increase in development time: development time is increased considerably, if the test
execution time increases. For example, assuming a developer runs the tests every 10
minutes while developing. Accordingly, they will run the tests eighteen times in a 3
hour programming session. A minute increase in test execution times increases
development time by 10% (18 minutes). Therefore it is essential for tests to execute

quickly likely in seconds for a typical test run.

2. Delayed Testing: If test execution is too slow, developers are more likely to defer
testing resulting in delayed feedback. The impact of delay in testing is that identifying
the change that may have caused an error after a series of changes is difficult. As a

result, debugging becomes difficult and more time consuming.

Therefore, the effectiveness of the TDD approach is inversely proportional to the test

execution time.

2.5.2 Unit Testing with Mock Objects

Mock Object testing (MockObjects, ; Mackinnon et al., 2000; Mackinnon et al., 2001) is a
strategy to unit test methods that depend on interactions with other classes or the
infrastructure. In essence, it provides minimal implementations of the services provided by

the run time environment by using a simulated object called a Mock Object (MO). An

24

essential aspect of unit testing (Mackinnon, Freeman et al., 2001) is to test one feature at a
time which is difficult if a unit test depends on a complex system state to be set up before
the test executes. Mock Objects can reduce such problems. MO use simplifies the test

structure and prevents the domain code pollution with testing infrastructure.

MO is a technique that supports TDD (Mackinnon, Freeman et al., 2001). Unit tests
written with MO can be implemented using TDD first by writing the required simulated
objects. This is followed by creating the set-up code using simulated objects for unit testing
the intended functionality. Infrastructure choices can be deferred to a later time and
developers can continue writing the application code without waiting on the choice and

implementation.
Some benefits of using the MO approach are:

e Reduced Test Execution Time: Test execution time is reduced considerably by
providing lightweight simulation of the dependencies. This is because the time taken to
execute unit tests against MO versus a real object is less making it possible for
developers to run tests frequently. This is important especially for TDD because TDD
relies on tests to guide the development of the production code to ensure that code is
working as required. The MO strategy, for instance, can be applied to servlet testing by
using an API for simulating the servlet container provided objects (request, response,
session context) making it possible to test the servlet logic without the overhead of
testing in a real container. (ServletUnit) is a tool that supports a MO-based unit testing

process of the servlet logic (Appendix B).

e Rapid Test Feedback: In order for tests to provide valuable and continuous feedback
to the developers they should be executed frequently and quickly. Nevertheless,
executing large number of unit tests against domain objects for example a real database
may be slow to provide the rapid feedback developers need. The MO approach
promotes faster test execution because unit tests run against simulated less complex

domain objects.

25

As MO is different from the “real” objects that they replace, they do not assure that
the methods under test will run correctly when deployed in the real production
environment. They only allow for a finer grained unit testing of the business logic
independent of the real context in which they run. Functional and integration testing against
the “real” domain objects becomes important to ensure that the application works as
expected. In some cases, domain objects can be hard to create to represent a complex
external domain object and the effort to mock a complex domain object and maintaining its
code is high. As a result, the benefit of creating MO may not be realised. On the contrary,
the MO strategy may increase the test development effort.

2.5.3 Integration Unit Testing

Integration Unit testing is a technique for unit testing application code that relies on
services provided by the run time environment. The application code that uses services
provided by the run time environment henceforth will be referred as server side code. In
order to test server side code, tests must execute in the real environment (production run
time environment). This testing is commonly done as part of the application integration
process after the code is deployed. The essential value of executing such tests is to assure
that when the code is deployed in the real environment, the server side code will work as
expected. Furthermore, this testing is important because no matter how good a test
environment is, the server side code is likely to run differently because of factors such as
other components in the real environment may interact unpredictably with the server side
code. To achieve this assurance, server side code and its interactions with the real

environment should be completely tested.

According to Sheldon Wosnick (2002), in-container testing possibly can provide the
middle ground between code logic unit testing and functional unit testing, assuring the
application will run when deployed. (Cactus) is a framework that implements in-container
testing strategy, for conducting integration unit testing of server side code (servlets, EJBs)

(Appendix B).

26

Although, in-container testing is important it adds increased overhead to the testing
process. One reason is the overhead of starting the run time environment which takes time
depending on the nature and complexity of the environment. Another reason, for increased
overhead is because deploying the tests and executing them against the real environment
increases the test execution time. Consequently, this testing cannot be used as part of fast
compile and regression testing strategy. In addition, TDD’s reliance on quick feedback
from tests cannot be achieved using the integration testing strategy. A contrasting approach,
to in-container testing of server side code is an out-of-container testing strategy. An out-of-
container testing strategy uses MO approach which is useful for logic unit testing in the

development environment.
2.5.4 Functional Unit Testing

The functional unit testing technique is especially relevant in the domain of Web
applications and also known as a black box testing technique. Web applications are
composed of a set of pages that together accomplish one or more functional requirements.
To test functional requirements of Web applications, pages achieving the functionality are
components that need to be tested at the unit level and fall in the scope of a unit test as
proposed by (Lucca et al., 2002). Test cases are designed on the basis of the functional
requirements of Web application. This technique is referred as functional unit testing
(Pipka, 2002; Massol and Husted, 2003) because it overlaps both the area of functional and
unit testing. Figure 2-4 shows the scope of functional unit testing in the context of Web

application testing.

A lot of work is done in the area of modelling Web Applications by representing
entities of Web application as objects and their structures, relationships and dynamic
behaviours (Kung et al., 2000 ; Lucca et al., 2001 ; Lucca, Fasolino et al., 2002 ; Lucca et
al., 2004). These models provide the basic strategy for deriving functional test cases
automatically. Functional unit tests are executed in several ways such as by manual testing

involving human interaction with Web applications through the Web browser verifying the

27

behaviour of the application. Secondly, by using record and playback (R & P) testing
frameworks that record actions of a manual tester and verify expected output of the
application. Tests are automated by replaying the actions and comparing actual output with
the expected output. In addition, the functional unit testing approach is automated for
executing functional tests by frameworks such as (HttpUnit), (HtmlUnit), (jWebUnit) and
(Canoo). The black box testing approach implemented by these frameworks provides a
means for simulating an end user request and then queries the response returned by the
Web server to verify that it is correct. More details on these frameworks are provided in

(Appendix B).

The effort to maintain automated functional tests is high because functionality of
Web applications changes quickly over time. As a result, functional unit tests are easily
broken over time. For example, an automated test input may be a page element that changes
over time and the test output is based on analyzing these elements. Consequently, making a
change to any page component will break the test and requires effort and time to refactor

the associated tests.
2.5.5 Performance, Stress and Security Testing

Performance testing and load testing are used to assess Web application for:
1) Handling expected loads caused by concurrent users
2) Acceptable response time

Performance testing uses load testing techniques for measuring and benchmarking Web
applications under various load levels. This helps in detecting bottlenecks within the Web
application components. Load testing is a part of the performance testing process and is
defined as the process of exercising the system under test by providing large tasks as input
(Loveland et al., 2004). Commonly used lightweight tools that automate Web application
performance and load testing are (JUnitPerf), (JMeter), (Mercury and LoadRunner).

28

Stress testing of Web application is defined (Loveland, Miller et al., 2004) as the
process of subjecting a system to an unreasonable load taking away resources (for example
RAM) needed to process that load. The goal of this testing technique is first to stress the
application enough to find conditions that will break the application. Second, it determines
the failure behaviour of an application without adequate resources in a suitable manner (for
example not corrupting or losing data). Testing techniques used for stress testing of Web
application are a combination of load testing tools together with ways of applying stress to
the application; for example by running processes that consume high resources (CPU,

memory, disk, and network) on the Web and database servers.

Web Security testing (Nguyen, Johnson et al., 2003) determines vulnerabilities and
information leaks caused primarily due to incorrect programming practices, mis-
configuration of Web servers and application specific servers. Web security testing

strategies are:

e Testing access control of Web application to determine whether the single class/classes

of users have correct access privileges to the application
e Testing how secured the Web application is to handle client data (data integrity)

e Determining whether the user identity verification is implemented correctly.
2.5.6 Web Application - Model, View and Controller Testing

This section describes the current state-of-the-testing in Web application development with
respect to MVC model because this model is apt to support testing during all development
stages (Pipka, 2002). In addition, an MVC layered approach for testing provides support for
TDD of Web application code.

29

Yiew “z.‘
E.lsl:ﬁ:;nnal Unit \

Development E = httplinit, record & \%"

Model plai, manual
Performance, Stress & “a.\

/ Security testing \\

- JUnitPerf, Jeter %
/7 Controller 5

Unit testing
= KlockOhjects (Qut of container])

Integration Uinit testing
/ = Zachis {In-contalner unit testing) %

’ M 2sdlel \\
/ Unit testing Business logic code — JUnit, Moz k Chijects

Fa L1

Figure 2-5: An overview of testing techniques for Model, Controller and View layers.

Figure 2-5 summarises testing techniques and commonly used tools to automate testing
using MVC model of development. Accordingly, the test activities are divided into three
scenarios model, controller and view testing based on the order of implementation of these

layers.

Methods implemented in the model layer contain logic to manipulate the application
data. These methods are tested using unit testing techniques ensuring that each unit of
software works correctly independent of other units. Functionality of this layer is verified
by comparing the expected predetermined output with the actual result. JUnit automates
unit testing of the model layer implemented using Java. Moreover, testing can be closely

integrated with the development process. Additionally, it is possible to build test suites

30

incrementally and provide developers with a regression testing strategy. The MO approach

can also be used for unit testing the model layer.

Components of the controller integrate both model and view layer by
communicating with both. Components of this layer run within a container that provides
services such as security, life cycle management of the component code, logging and
persistence. Servlets in J2EE are components that form the controller layer. With respect to
testing this layer, there are two techniques commonly used. The first technique is unit
testing using the MO approach implemented by tools such as (ServletUnit), which allows a
TDD development process. Secondly, integration unit test of servlets is commonly done as

part of the application integration process using (Cactus).

The final testing layer is the view responsible for presenting the application data
through objects created by the controller components to the end user. View layer
components are represented as JSP and HTML pages. As part of testing, the functionality
of these pages must be verified. Additionally, the client-side functionality that runs inside
the browser, for example JavaScript code must be tested. HttpUnit supports client-side
testing. In order to test the view layer, testing techniques simulate client requests and verify
the server response. Functional unit testing approaches explained in (section 2.5.4) apply

for testing this layer.
2.6 Summary

In this chapter, I have briefly summarised portal application technology and its key
components. Portal applications can be viewed as a special type of Web application.
Considerable differences stem from distinct, complex running settings, services provided
by the run time environment and new components called portlets that form the building
blocks of portal applications. These differences motivate the need for novel testing
techniques. Previous research has focused mainly on Web application testing process.

Investigating, existing testing techniques provided insight on, whether it is possible to adapt

31

existing testing techniques from Web application to portal application domain. Portal
application testing process is an area that still needs to be explored although existing
techniques from Web application testing can be adapted and reused. Chapter 3 presents the
results of case study conducted to understand the state-of-the-practice surrounding testing

process for portal applications in the industry.

32

Chapter 3. Portal Application Testing:
Case Study

In this chapter, I discuss the case study conducted to evaluate aspects of testing portal
applications, namely testing techniques, methodologies and automated testing tools used in
the context of a company. First, I outline the overall objectives of the study and the
research questions the study addresses. Next, the context of the study, participants and data
collection strategies used are described. Then, the results of study are discussed. The

chapter concludes with a brief summary of the study findings.

3.1 Objectives

A prerequisite to providing support for better tested applications is an early assessment of
existing testing process. The inspiration for the empirical study conducted came from this
need. The study objective was describing existing testing practices and not hypothesis

testing or validation.
Objectives of the case study are:

1. To explore how portal applications are tested by presenting the main techniques and

methods currently used.

2. To evaluate the testing practices in use and identify challenges in testing portal

applications.
Specific research questions that guided this study are:

1. How do portal developers test different aspects of portal applications (techniques and

tools in use) (objective 1)?

33

2. What is the nature of challenges that hinder comprehensive testing of web portal

applications (objective 2)?
3.2 Case Study Methodology Overview

The research study conducted is classified as interpretive (Walsham, 1995) since it
embodies the philosophy that the knowledge of reality can be gained through social
constructions such as language, shared meanings, documents, tools, and other artefacts.
Interpretive research does not predefine dependent and independent variables, but focuses
on the complexity of human behaviour as the situation emerges (Kaplan, 1994). This was
suitable to explore how portal applications were tested by the developers. Case study
research is defined as an ‘empirical inquiry that investigates a contemporary phenomenon
within its real-life context’ (Yin., 2003). A case study was appropriate because it helped in
exploring contexts to gain a better understanding of how developers tested and engineered
portal artefacts in the company. The units of analysis for the case study were the testing,
development and deployment processes practiced by software development teams for portal

applications.
3.3 Study Context and Participants

The case study was conducted in collaboration with Sandbox Systems to explore how
developers tested and engineered portal applications. The company had a team of five
software developers with three to five years experience working as consultants. A period of
approximately three months (November 2003 to January 2004) was taken to understand the

current testing process and the challenges in building and testing portal applications.

Sandbox developers were developing and maintaining the company’s internal portal
Website as well as “external” enterprise portal applications developed for other companies.
These applications focused especially on developing portlets for enterprise portals. Portlets

were designed, developed and tested using the IBM-provided Websphere portlet toolkit test

34

environment within the integrated development environment called Rational Application
Developer. Applications were deployed for production use in WPS portal server supported
by IBM. Sandbox consultants were integrating functionality provided by existing legacy
applications into the portal framework, using services provided by the portal server
especially single sign on. Typically, this functionality was integrated by developing the
interface methods (Model layer) for the existing code. Portlets were used to invoke these

methods.
3.4 Data Collection and Analysis

The data collection methods included interviews, notes taken and numerous discussions
with the chief architect responsible for developing portlet based e-business tools. This was
permitted by the research agreement between Sandbox Systems and the University of
Calgary. The nature of the interview was unstructured without a formal protocol although a
basic guideline for questioning was devised by me. This allowed the study participants to
steer the interview while describing testing and related issues. These discussions were
recorded, and provided deeper insight into the development and testing practices. Data for
interpretation comes mainly from the transcript analysis (Appendix G) of these discussions,
feedback reported, recorded interviews and notes gathered. Furthermore, to gain
understanding about the nature of tests written, and run by developers an existing portal

application built by the company was inspected.

3.5 Results

3.5.1 Testing Practices in the Company

Testing practices in the company are illustrated in Figure 3-1. Methods in the Model layer
were unit tested using JUnit. In some cases, Mock objects were being used to represent
database dependencies for unit testing. The expected output from the unit tests validated

that the Model layer methods were giving the correct output. In addition, developers

35

reported that TDD was used to develop the Model layer wherever possible. A single
developer implemented the application incrementally because applications were small in
size. The unit tests were executed frequently inside the WSAD integrated development
environment (IDE) to ensure, that adding new functionality has not broken existing code.
On the other hand, portlets were being tested manually by deploying the application in the
portlet toolkit test environment installed in WSAD IDE (Figure 3-1).

Wt
O RARC | bl A Y

I LoHE
R i [V

CAlalsie La07 Sertho i

Cue v oy

CE e Fioml Bal
Fieyes T s il Banuaky
TApdel
Fogtod ¥rrier
Bausinexz Logt Texied (TOD) Perthel Business Legic
Lining Junt: Teated Manually

Figure 3-1: State-of-the-testing practices at the company according to model, view and controller
layers.

Integration and functional testing of the portlets was done manually in the staging
portal server prior to deploying the application in the production portal server. No
automated functional testing techniques were being employed to write or execute the tests.
The reason reported for manual testing of portlets was that no tool support for writing and
executing tests was available. Consequently, portlets were tested for functionality manually
in the production environment by simulating a user role, and making sure the portlet
rendered the appropriate content. The developers also reported that during migration of the
portal application to the production portal server, portlets did not deliver functionality i.e.

they sometimes rendered as empty windows.

36

Performance and Scalability tests for portal applications were not performed at the
company. User acceptance testing was done by setting up test user accounts based on the
business unit that requested the functionality. These test users tested the functionality by
navigating the portlets and links rendered within the portal pages to verify that the

application satisfied all the requirements from user perspective.

A portlet application built by the Sandbox developers was inspected for the number
of unit test case methods versus the number of existing methods. This application provided
employee training information using employee number as input; by retrieving the
information from the Domino Lotus database layer. It was developed using the portlet
struts framework (Struts) and followed the standard layered architecture using MVC.
Application characteristics for this portlet application in terms of the number of classes,
methods, lines of code are presented in Table 3-1. However, it is important to note that the
size of a single portlet application deployed in the portal server is relatively small. Many
such small portlet applications are deployed within a portal server. These applications are

aggregated and presented as the final response portal page to the end user.

Table 3-1: Portlet Application Characteristics.

No of Packages 5

No of Classes 8
No of Methods 39
Lines of Code (LOC) 561

Unit tests in this application first verified successful connection to the database. Next,
these tests verified whether the data could be read and written after checking that the
database connection was established. Figure 3-2 shows the number of methods in each of
the application layers versus the number of test methods. The number of test methods
(Figure 3-2) was counted by me because the application was not large. Test coverage tools
such as (Clover) could not be used due to domain dependencies in the tests on Domino
components. Figure 3-2 shows that 40% of the Model layer methods were tested. The

portlet method (which in this case was a single “execute” method of the struts based portlet

37

class) was not being unit tested because of a lack of automated testing framework that

supported writing and executing portlet test cases.

Unit Test Coverage

12 @ No of Methods
B Test Methods

No of Methods
o

8
6
4
2 .
0 l_h
Model Layer Business Controller -
Facade Action Portlet

Struts Portal Application Layers

Figure 3-2 Case study- number of methods versus test methods in the portlet application.

3.5.2 Challenges in Testing Portal Applications

One of the challenges highlighted by portal developers was a lack of a direct way to
conduct fine grained unit testing of portlets using existing testing frameworks. Although,
setting up an automated unit test for a method that retrieved data was possible, it was
difficult to write an automated test to prove, that the data would be presented by the
portlets. In addition verifying whether the data was correct was difficult. One of the
developers highlighted the need for a portlet testing technique that could provide “a way to
be able to put in hooks into the portlet stream to know whether it is valid and that your
expected output is what you need”. Another, specific issue highlighted was that portlets did
not render data which was referred by the developer as, “empty portlet window” problem.

This reflected problems with the data packaged by the portlets running in the context of the

38

portal server because the portal handled rendering of the data fragment as the view. The

developer reported that,

“Something valid is getting deployed is not known, until you bring down the
environment, redeploy, fill the debug on at the portlet level to understand the reason portlet
fails to render”. --Sandbox developer

Diagnosing and fixing the “empty portlet window” problem was reported as a very tedious
and time consuming because it required skimming through log files and exception handling
provided by the portal server. The developer described the gravity of the problem especially

at the time of integrating the application in the production portal server by stating that,

“In the test environment it (portlets) worked. Deployment of these portlets on the
production box did not work. There was nothing in the logs and we had no means of

knowing what the problem was”. --Sandbox developer

Another challenge highlighted was an absence of an automated framework to
simulate various user roles to test the context of portlet behaviour, and to verify access
permissions assigned to portlets. It was reported that the administrator assigning the
permissions logged in as a user related to each role to verify whether the permissions were

assigned correctly. Switching roles quickly was a challenge.

Developers at the company also reported that they preferred to use TDD for
developing and unit testing portlet code. In the developer’s words “developing portlet code
in a TDD way would be nice”. Furthermore, it was reported that the overhead of testing
changes in the portal server environment was high. One reason was that the portal server
deployment test environment took a long time to initialize. As a result, deploying the
application code was time consuming. Therefore, the development, deployment and test
cycle of portlet applications was longer than acceptable for TDD. In the developer’s
opinion, initializing the portal server environment each time, took approximately ten
minutes of time, which aggregated to a lot of time and loss of productivity when done

multiple times in a single day.

39

“Bringing the server down becomes prohibitive and it is a painful process; costs a
unit of time approximately ten minutes which is a lot of time on the project”. --Sandbox

developer
3.6 Case Study Limitation

The results of the case study provide an understanding of the practices employed by portal
developers at the company for testing portal applications. However, the case study
assessment suffers from some limitations. In retrospect, a case study where one of the
researchers was allowed to spend time in the company would promote deeper insight into
the company testing processes and techniques in use for developing, deploying and testing
portal applications. The case study results reported are based on several interactions with
developers working for the company and notes recorded over this time, and were subjective
opinions of the developers. Reinforcing the results with work place observations would
improve the study. Another, limitation is that there was little quantitative data gathered in
the study. The ability to track test code coverage metrics, developer activity and time logs
to calculate time spent on testing, debugging and deploying portal applications would be
useful. While gathering this data would provide a more objective measure, the collection
process for these metrics would impact the natural flow of developers work and was not

acceptable for the company.

3.7 Summary

In this chapter, I first presented objectives of the case study conducted to explore testing
practices in the company. Next, I detailed the study context and participants and present
results of the study. Results highlighted challenges in automated unit and integration level
testing and present a set of implications for developing testing practices specific to portal
applications. In the next chapter, I will discuss results of the survey conducted with portal

developers and present answers to the specific research questions raised in Section 3.1.

40

Chapter 4. Portal Application Testing:
Survey

In this chapter’, I discuss the design of a survey conducted to provide broader insight into
testing practices for portal applications. The survey was conducted to strengthen the case
study result using an empirical assessment technique called methodological triangulation
(Patton, 2002) which combines multiple methods of qualitative inquiry. The triangulation
technique is based on the premise that each method of study reveals a different aspect of

empirical reality.

In this chapter, I first present demographics of participants and their background.
Next, the results are provided and interpreted by analysing the survey responses. The two
research questions outlined in Chapter 3 are answered in results of the survey. I conclude

this chapter with a discussion of the limitations of the survey methodology.
4.1 Survey Methodology Overview

To extend insights into the portal testing process, a survey was conducted in the context of

interpretive research (Lee, 1997). Fetterman (1989) describes “survey questions, in

! A part of this chapter is published as:

Bajwa, H; Xiong, W. and Maurer, F. (2005) Evaluating Current Testing Processes of Web-Portal
Applications, Proceedings of International Conference of Web Engineering (ICWE 2005) LNCS, Volume

3579, Jul 2005, Pages 603 — 605

41

interpretive research, can lead to survey responses that constitute the material the
researcher uses to help develop a thick description and rich understanding of the life world
of the survey respondent”. The larger research perspective was designed to understand how
portal developers tested and engineered portal applications in different companies using
portal technology. In addition, the survey method of inquiry provided the required breadth
for understanding the testing practices which the contextual case study lacks. Allen Lee
(1997) also reported that “surveys are good for complementing other sources of data like
documents, observations, conversations and also help in providing materials for
interpretation for thick description and for developing theory”. To this end, the survey was
suitable in augmenting the knowledge gathered from the case study discussion and
interviews on the testing process of portal applications. The overall survey objective was to
answer the question how developers in the industry currently test portal applications. An
added motivation for the survey was to validate the perceived need for an automated tool
support as reported by the company study (refer section 3.5.2). I wanted to identify
whether, “other” portal developers experienced challenges in testing and deployment of
similar dimension as the company case study. In short, the survey was an attempt to
validate the scale of problems and make the results of this assessment stronger by

generalizing to a wider portal community.
4.2 Survey Design and Sample Selection

The survey was designed to answer more specific questions using the case study
findings to guide the design of a few survey questions. The questionnaire inquired about
the specific techniques and testing practices in place, challenges in testing and the
deployment process of portal applications. As outlined in (Appendix C.2), the questionnaire
items solicited input on how testing was done and whether the testing employed was
automated or manual. The survey also solicited comments to some open ended questions
where the developers were asked to describe particular challenges in testing portal

applications. In addition, an introductory section was included to gather background of the

42

developers, their companies as well as the nature of portal applications developed because
it impacts the extent of testing needed. The background section also captured information
of the companies with respect to development and testing teams to inquire whether a
separate quality control and testing teams were in place. The survey activities were

designed by closely following guidelines as suggested by (Pfleeger and Kitchenham, 2001
).

I “tested” the initial survey on two known portal developers and based on their
response the questionnaire design was refined. The survey sample selection process used a
non-probabilistic sampling technique called “convenience sampling” (Kitchenham and
Pfleeger, 2002) where the participants were selected because they were easy to access and
had a good chance of representing the population. The participants chosen were from the
pool of portal developers working in the industry by sending e-mail requests on portal
discussion forums for JSR 168 portlets and portal servers and communities of practice such
as portlet yahoo groups and java based (PortletCommunity). Some portal developers
invited to participate in the study were amongst the community leaders in portal

technology.

The survey was administered via e-mail together with a letter providing a brief
overview of the goals of research (Appendix C.1). At the end of the survey, the participants
were asked to indicate their choice for participating in a telephone interview. Responses
collected were received over three months from January 2005 - March 2005. Following
this, I conducted telephone interviews that provided an opportunity to explore answers to
more open ended questions. The nature of questions asked for example, was how a typical
portal application is implemented (design, testing, development and deployment) in the
developer’s organisation. Typically, the questions asked in the telephone interview were
guided by the survey responses to clarify some answers the respondents had provided to the
questionnaire. Prior to conducting the telephone interview, I had conducted an analysis of
each of the responses, and outlined a set of issues to be explored with each respondent. This

outline served as a checklist for the telephone interview.

43

4.3 Response Rate

The questionnaire (Appendix C.2) was e-mailed to 150 portal developers. Responses were
received from a total of 20 developers. Five out of 20 responses were discarded because
they were inadequately completed. Therefore, 15 valid responses are being used to present
the results. Responses received were subjective in nature and were analyzed and interpreted

by me. Telephone interviews were scheduled and conducted with 7 out of 15 respondents.
4.4 Participant Demographics

Data was gathered on participant experience in developing both Web applications as well
as portal applications. It was important to understand the experience in both technologies
because portal technology is an extension of existing Web application technology. As a
result, experience and knowledge of Web application development, test and deployment

process can be applied to portal application domain.

No of Survey Participants
w

1 2 3 4 5 6+

Development Exp in years

Figure 4-1: Web Application Development Experience of Survey Participants.

44

Of the 15 survey respondents, 9 (60%) had between five to six and more years of Web
Application experience (Figure 4-1). Of these 9 respondents (60%), 6 had between three to
four years experience whereas the other 3 had two years experience working with portal
technology (Figure 4-2). Three respondents (20%) had four years of Web application
technology experience and between one to two years of using portal technology. Only 3
respondents (20%) had between one to three years working with Web application

technology and one year of portal technology.

No of Survey Particpants
w

1 2 3 4 5 6+

Development Exp in years

Figure 4-2: Portal Technology Experience of Survey Participants.

Most of these participants in the survey were working for a range of positions in their
companies such as J2EE portal architects, portal application developers, portal server
implementers (responsible for architecting open source and vendor specific portal servers),
and technical assurance managers. One survey respondent had participated in the portlet
JSR standardization effort and another one was a lead in implementing portal server for

Sun and also a java.net community leader.

45

Testing is an activity that closely ties in with the development process. Therefore, it
was important to find out the nature of development process used by participants. Eight
respondents reported using extreme programming (XP) (Beck, 2000) and its modified
versions for portal application development, whereas 5 developers reported using the
rational unified process (Krutchen, 1999) which is an incremental and iterative
development process. Another participant reported that they were using an internal
development process called Global Services development methodology developed by IBM
(UserEngineering) which uses an incremental approach to delivering business solutions.
This process focuses on user centered design, early user involvement and end user testing.

Only a single participant reported that their company had no defined development process.

The type of portal applications developed by the participants is classified into four

categories based on the nature of services provided by portal applications to the end user.

1. Portlets for Integrating Enterprise Applications: Eight participants reported that
they developed enterprise portal applications to integrate access to organisation
specific information, for example documents, real time data feeds, business
processes, collaborative support for their company’s applications. These applications
were developed by providing the portlet front end and accessed by using the single

sign on feature of the portal server.

2. Custom Portlets for Portal Server Vendors: Three survey participants reported that
they implemented portlets to provide custom functionality for the portal server. These
portlets were built-in with the portal server, for example collaboration and e-mail

portlets.

3. Administrative Portlets: Another participant was working on portlet development for
IBM’s internal portal website. The portlets developed were providing administrative
functionality to create, delete portal pages and to set up user constraints on the type of

portal pages created.

46

4. Portlets for Academia: Another participant reported developing portal applications
focused on offering various services to the university community, for example
announcements, web mail, news, bookmarks, classifieds, and class lists. Many of the
portal applications were interfaces to existing Web applications, whereas 2 other
participants reported that they developed portlets for grid enabled portal application.
These portlets allowed high performance resources to be used by a single sign on

access to portal server.
4.5 Portal Server Deployment Infrastructure

The type of portal server used for application development, testing and deployment and the
underlying vendor specific portal technology is important for automated testing. Participant

responses indicated a range of vendor specific portal servers used (Table 4-1).

Table 4-1: Type of Portal Server Environment Used.

Development Production Run time

Environment Environment (portal

(developers implement |applications are deployed No of Survey
& test portlets here) here) Respondents
Websphere Studio IBM Websphere Portal

Developer Environment

(5.1) Portlet Toolkit Server 5.1 7
eXo Platform 1.0 eXo platform 1.0 1
BEA Portal Workshop |BEA Weblogic Portal 2
Gridsphere Gridsphere 2
Uportal Uportal 1
SAP NetWeaver Portal |SAP NetWeaver Portal 1
Portlet Builder with Sun {Sun One Portal Server 1

4.6 Results

Question 1: How do portal developers test different aspects of portal applications

(techniques and tools in use)?

47

The results of the testing techniques reported across the survey are summarised in Figure 4-

3.

4.6.1 Unit Testing

Thirteen respondents (87%) reported that unit testing of portlet service layer methods was
performed using JUnit (Figure 4-3). Portlet service methods are those methods that provide
a specific service to portlets, and are invoked by the portlets. Two respondents (13%)

indicated that no automated unit testing of these methods was conducted.

14 -
@ 12—
€ 10 -
g gl @ Automated
0
e 4 B Manual
° 2
° |
Z 0
2 2 g =
5 Z | 2
n () ol Q
28 i T 0 &
s 2 Q@ c 8 o
83 5 g g5
= o e £+
= = o
=] 5 £
Testing Categories o

Figure 4-3: Survey results showing automated versus manual Testing.

A single respondent described that their company used the mock object unit testing
technique for mocking domain dependencies. On the other hand, the other respondents did
not indicate any information on how unit tests accessing backend dependencies were
written and executed. In addition, it was reported that test cases were written and executed
frequently during development by the developers, and sometimes unit tests were executed

as acceptance tests by business analysts and end users.

48

7
8 6
§ 5
S 4 -
b=
&3
5 5
[e]
Z 1
0 ‘
Automated Manual Automated &
Manual
Manner of Test Execution

Figure 4-4: Survey results showing how unit test cases are executed.

The manner in which Unit tests were executed is classified as either “automated” or
“manual”. An automated test execution is a part of the continuous integration process
where the developers integrate, build and test the system many times a day, every time a
task is finished for continual regression testing (Fowler and Foemmel, 2005). Continual
regression testing means that no existing functionality has regressed as a result of the
changes in the code. Since the continuous integration process executes many times a day, it
is automated using tools such as (CruiseControl). The key benefit of the continuous
integration process is that teams get continuous, early feedback and integration testing is
parallel to development (Fowler and Foemmel, 2005). In contrast, a “manual” process
means that the test execution is not integrated as part of the continuous integration process.
Six respondents out of 13 (46%) (Figure 4-4) reported that they automated the unit test
execution process used tools such as (CruiseControl), (Maven) and (ANT). Three
respondents reported that unit test execution was done using the JUnit test runner (manual)
because the effort and the resulting benefits to set up an automated continuous build
processes was considered feasible only for larger applications and for larger teams. Four

respondents reported that tests were executed both using the JUnit test runner and as part of

49

the continuous build process many times a day. Many respondents thought that
comprehensive unit testing of the backend business was the key to minimizing errors in the

portlet layer of the application.

Thirteen respondents (87%) reported (Figure 4-3) that portlet components were tested
manually (no portlet unit tests were written and run). Only 2 (13%) respondents conducted
automated unit testing of portlets. One of these 2 respondents indicated that the portlet
testing framework used by their company was a part of the portlet container and was based
on adapting (HttpUnit). Another respondent indicated that they used (PortletUnit) that also
extends HttpUnit and the (Pluto) portlet container for unit testing of portlets.

One reason reported for testing portlets in a manual manner was a lack of tools that

support executing portlet unit tests in the portlet container. In one respondent’s opinion,

“There are no tools available for portlet testing in container, so we do not use any
server side testing frameworks. But each portlet is tested through WSAD Portal toolkit for

functionality”. -- Survey Respondent

Another reason indicated for testing portlets manually by one respondent was that, “there is
no easy way to test doView in an automated way because it requires container

parameters”.

A respondent indicated that portal applications in their company were designed so that
methods in the portlet class invoked either methods from the other backend classes or
private methods defined within the portlet class. The methods in the backend classes and
the private methods included the complex logic that required comprehensive testing and the
portlet API methods were limited to invoking them. In other words, very minimal logic was
included in the portlet API methods to merit testing. The methods in the backend classes
and the private methods were tested using standard unit tested techniques because these
methods did not access container provided services. In the respondent’s opinion the portlet
API methods should not require any unit testing and using comprehensive unit testing prior

to calling the portlet methods should be sufficient,

50

“The doView method for all intent and purposes is for running JSP's, you already

have done JUnit testing ahead of calling those particular methods”. -- Survey Respondent
4.6.2 Functional Testing

Three respondents (20%) reported (Figure 4-4) that they performed functional testing of
portlets by automating the process of writing and executing functional tests. These
respondents were using httpUnit adapted to specific portal server technology used in their
respective companies. The remaining 12 respondents (80%) reported that this testing was
done cursorily wherein a developer or an end user tests each functional area of the portal
application by conducting a walk-through of the functional requirements. Two respondents
informed us that they were testing functional requirements indirectly by unit testing using
junit. In their opinion this manner of testing was fulfilling integration functional testing in a
limited way; according to the respondent, “we do functional testing in a limited way, start
to end tests using jUnit”. In one respondent’s opinion, an effective automated functional
testing process was dependent on the complexity of the backend integration process. As a
result, the complexity of integration determined the balance between manual and automated

functional testing, as reported that,

“Depending on the complexity of integration, you should be able to test to an extent but
you may not get all the way through because you are relying on SAP, DB, and Oracle in
the same application to return information from all these environments”. -- Survey

respondent
4.6.3 Performance and Load Testing

Five respondents (33%) reported that performance and load testing of portal applications
was being conducted (Figure 4-4) in their respective companies. HttpUnit which is a
functional testing tool was extended and used in the case of three respondents to simulate

multiple clients for this testing. Two other respondents reported that they were using Load

51

Runner and Mercury interactive tools for load and performance testing. Ten respondents
(70%) had no response for this question. One specific respondent indicated that,
“automated test support would be very useful in performance and load testing of portlets.”
The results also revealed that only those respondents who conducted automated functional
testing techniques also performed load and performance testing using the functional testing

tools already in place.
4.6.4 Portal Application Deployment

In response to the question that inquired whether deployment related errors were common
when the portal application was migrated from the development environment to the
production portal server 11 out of 15 respondents reported errors of different severity
levels. I inquired specifically in the telephone interviews to understand the nature and
severity of errors. Four respondents indicated few and less severe errors. Also in this case,
portal applications were developed and tested using identical production and development
environments. Therefore, as reported few errors were experienced during the application
integration phase because the underlying infrastructure was the same in both development
and production. It follows from this result that having an identical test and staging
environment is important. During the interview, I also explored the process of portal
application deployment. The process described was automated using a build script to
deploy the war files to the production environment. In addition, steps for setting up the
backend infrastructure were automated. The administrator monitored the build and
eliminated components that caused the build script to fail. Moreover, manual testing was

employed to ensure that the portlets were functional.

The scale and severity of the errors at deployment time reflected by many responses
was difficult to categorise in a comprehensive manner. However, the errors are classified
based on survey responses. Typically, the portal applications had errors at deployment time
(when the application is being integrated) or after deployment at run time when the

application is invoked for functional testing.

52

e Deployment time: Six responses suggested that errors during application integration
occurred due to incorrect deployment environment configurations (unresolved external
component and resource references) and application configuration parameters, for

example missing deployment descriptor entries. According to one respondent,

“Errors were infinite in possibility. The team is invariably involved as it is most
often a system configuration issue that causes the problems such as differences in the

Engine settings”. —Survey Respondent

e Run time: Ten respondents reported that errors during application integration occurred
due to missing class files which were needed at run time by the portlets. Consequently,
the portlets failed to deliver functionality and exceptions were recorded in the portlet

logs. According to one respondent,

“Jar conflicts are probably the most severe. Sometimes we will have to shuffle jars
around between the Web application and shared libraries to get things to work. The
jars in question are mostly related to APIs that we use, usually security and we have to
pass security credentials between portlets so this is a necessary thing.” —Survey

Respondent
4.6.5 Challenges in Testing Portal Application

Question2: What is the nature of challenges that hinder comprehensive testing

of web portal applications (goal 2)?

In response to the question that asked the developers to describe the challenges in testing
portal applications most of the responses pointed to the need for a tool that automated unit
testing of portlet methods. The key challenge was inability to test the “portalish” behaviour
of the portlets which represents the portlet code that relies on services provided by the

portal server.

53

The responses are classified on the two most often indicated testing techniques for
unit testing of portlets namely the testing approach using portlet mock objects and portlet

testing using the portal container and portal server context.

Table 4-2: Survey responses indicating the testing techniques needed.

Portlet Unit Testing - |Functional Portlet
Out of Application Testing-
Contaner(n=13) Incontainer tests (n=12)
Yes 7 (54%) 8 (60%)
No 2 (15%) 3 (25%)
Not known |4 (31%) 1 (8%)

The total number of respondents in each category depicted in the Table 4-2 does not
include respondents who earlier indicated that the automated testing process for portlets
and functional testing were already in place. These respondents did not indicate any
response to this question. 8 respondents stated that having an ability to run portlet tests

would be valuable in performing portlet functionality checks.

The other 3 respondents (25%) thought that running tests inside the portal server
production environment was not desirable because production data was likely to change.
Another respondent indicated that automated approaches were not valuable for out of box
component technologies. 7 respondents (54%) asserted that portlet development using an
Out-of-container approach with mock objects would be useful. One reason for mock
portlet approach was the problem in the company environment indicated by the response

that,

“Developer productivity, in our portal environment, even minor changes take a
long time to test due to having to deploy and wait for server cycles, etc. Using a mock
object tool would allow to develop and test a portlet using a much faster compile and run
strategy. By removing the complexity and overhead of repeated deploying, developers can

2%

be much more productive.” ”. --Survey Respondent

An automated tool to support portlet testing was important and reasons indicated by

the respondent was that,

54

“Server side testing is really important because we never get a chance to truly
test our portlet code; just the supporting code that gets used by the portlets is tested”. --

Survey Respondent

One of the reasons reported, for portlet testing tool support stated that an automated
way of testing would likely reduce the time and effort for testing and debugging portlets.
As a result, more time could be focused on design and implementation activities indicated
by the comment that, “the more we can automate testing (especially testing of portlets
which doesn’t seem to exist at the moment) the more time we can save and use for actual
design and implementation, would like to have a way to test portlets using either in-

container or some sort of portlet mock object suite.” -- Survey Respondent

Another reason which supported the need for automating portlet testing reported was
that debugging portlets meant sifting through error data logs to diagnose the reason the
portlet code failed

“Portal technology we use has an utility that gives logs of data that is dumped while
running. This is like skimming log files and usually only contains generic information”. —

Survey Respondent

Another respondent stated that the need for writing non-exhaustive portlet tests was

important in a way that,

“Smoke test that a portlet is going to show up that you will not get a portlet
exception that causes things to not show up at all and return valuable information when

testing success or failure of a response”. — Survey Respondent
The need for a framework was augmented by another response,

“Having a tool that verifies the portlet functionality -- is definitely a worthwhile tool

for developers and deployers”. — Survey Respondent

55

4.6.6 Interpretation

This section provides important factors revealed by the survey responses and results of the
case study. These factors provide potential answers to the question why there are errors at
deployment time and reasons for long application deployment cycles and high manual test

effort for portal applications.
4.6.7 Design and Testability of Portlet applications

The need for performing comprehensive unit testing of the portlet layer is dependent on the
amount of complex business logic in the portlet layer. Therefore, as far as possible in case
of portal applications, the business logic code should not be tightly integrated with the
portlet layer. Another important aspect of portlet design is that all the logic related to the
Model layer should be processed and encapsulated in a separate object (java bean for J2EE
portlets). The portlet must be designed to access this object. Although, this is a good design
practice, many times it is difficult to separate the business logic associated with services
provided by the portal server, for example portlet business logic specific to user
preferences. In some cases, portlet methods contain a lot of logic associated with event
actions on portlet windows such as minimize, maximise, configuring different portlet
modes which must be tested. Therefore, the extent to which the business logic can be

separated from the portlet layer is dependent on the portal application specific functionality.
4.6.8 Deployment Process and Environment Complexity

The errors at deployment time in the portal server are largely dependent on many factors.
First, it depends on the deployment process and practices in place using proper guidelines
for the migration of an application to the production server. Second, the test server used for
deployment may not be stable or configured properly. In the case of survey respondents
that did not report serious errors related to deployment, it was noted that the development,

staging and deployment portal server environments were very closely mirrored. However,

56

the degree of similarity of different environments is very specific to a company, its

available resources and the quality processes in place.

Another, reason for errors reported at deployment time by the study as well as survey
(“empty portlet window” in the production portal server) were more emphasised in certain
product and technology specific portal servers. Severity of errors was related to the
complexity of various portal server environments. More complex environments are those
that provide more comprehensive portal services. Therefore, portlets deployed in these
environments are more prone to errors at deployment time. In other words, complex portal
server environments have higher portlet sensitivity and therefore a greater need for testing

of portlets.

The results also highlighted a need for a lightweight test portal server which was less
complex and supported hot deploy because initializing and bringing down the test
environment was time consuming. Requirements for an evolved deployment portal server
environment were also revealed as a result of the study. I have reported these requirements
because they are an important aspect of improving quality of portal applications and

reducing errors at deployment time.

e The need for a more evolved deployment environment that supports better exception

handling and logging mechanism.

e The need for a lightweight test environment that reduces the test, develop and deploy
cycle on developer machines. However, the decision to use this environment is highly
specific to the company. The lightweight environment will be different from production
deployment environments. Therefore, using this environment makes a trade off between
shorter development cycles versus longer deployment cycles during the application
integration phase. As a result, allocating sufficient time for portal application

integration testing is important.

e The need for improved deployment procedures and best practices is important

because certain types of deployment related errors can only be corrected by following a

57

proper checklist prior to deployment. Another way to achieve this is to use tools and
technologies that support an automated deployment process and track the lifecycle of
portlets. For example, Wiley is a tool that helps in looking at the portlet life cycle in the

container and diagnoses problems with portlet lifecycle.

4.7 Limitations of the Analysis and Study Methodology

The survey with portal developers added a richer context to the state of the testing practices
in the industry and also validated the scale of the problems reported by case study.
However, it may suffer from a few limitations. First, the survey responses were received
from 15 of the total 150 developers which maybe a low response rate. However, it can be
argued that the quality of responses is good because they were received from the population
of experts and leaders in the portal development community as opposed to a student
population. Second, the qualitative style of the survey with portal developers brought out a
variety of subjective responses. As a result, for some replies it was hard to interpret the
meaning of the response expressed by the participant although the telephone interview
resolved this. Third, survey data was analysed and interpreted by me, therefore may suffer
from potential bias of my thinking (tunnelling effect). The nature of the survey and
interview questions probed specifically to validate the case study findings. Therefore, they

may impact how the responses were provided.

Rough Set theory (Pawlak, Z, 1992), a technique for data analysis was used on the
survey data to classify the co-relation between the survey data attributes. This analysis was
conducted using the Rose software. The dependent variable selected for the analysis was
the attribute deployment error. The objective was to justify based on this analysis the need
for a tool that detected deployment errors (in-container testing tool) versus any other
influencing factor. The set of attributes and values considered for this analysis is listed in

appendix [].

58

The result of executing the Rose tool on the survey data file generated 11 rules, using 15
data points in the survey data. The rules generated were found to be non-deterministic i.e.
they could not classify any objects in decision classes. Although, the strength of rough set
analysis holds for small sample size; it was not applicable for the survey data. The survey
was qualitative in nature and subjective context expressed by the survey participants

through phone interviews was used to analyse the co-relation between the attributes.

Overall, the survey of portal developers added a richer perspective to the information
gathered via the company case study in describing the state-of-the-practice in testing portal
applications and highlighting difficulties in testing. Moreover, results of the empirical
assessment were strengthened by combining two methods of qualitative inquiry, case study

and survey (methodological triangulation).
4.8 Summary

In this chapter, I first presented survey design, participant demographics. Next, the results
of the study and its interpretations are provided. The results provide empirical evidence on
the nature of challenges that impact comprehensive testing of portal applications. In
addition, the results highlight requirements on testing approaches in areas where portal
applications cannot be tested. The next chapter uses the study results to formulate

requirements that are appropriate for addressing the difficulties articulated by the results.

59

Chapter 5. Portal Application Testing
Process

Results of the study in Chapter 3 and 4 highlighted difficulties in automating unit and
integration testing of portal applications. In this chapter?, I first list the requirements for the
needed testing techniques and tool support. In addition, the reasons why existing techniques
are inadequate are described. Then, I explain the testing using these techniques through
usage scenarios. This is followed by a discussion of how these testing techniques fit into
the overall testing process of portal applications. This chapter concludes with a summary of

the proposed testing process.
5.1 Requirements for Portlet Testing

Portlets are the key application building blocks of portal pages forming the controller layer
of portal applications, developed using MVC. They rely on services provided by the portlet
container which in turn is tightly integrated with the portal server. The portal server as well
as the portlet container are black boxes from the portlet application developer’s point of

view and are only accessible via the portlet API. Therefore, testing portal applications in an

2 A part of this chapter is published as:
Xiong, W; Bajwa, H. and Maurer, F. (2005) WIT: A Framework for In-container Testing of Web-Portal
Applications, Proceedings of International Conference of Web Engineering (ICWE 2005) LNCS, Volume

3579, Jul 2005, Pages 87 - 97

60

automated way is a challenge. Effective testing approaches should satisfy the following

objectives:

1. Test Portlet API Methods: The portlet API provides access to container services
and user information via specific objects (Appendix A.2). Some examples of these
objects are portletrequest, portletresponse, portletsession objects and other application
specific environment objects. In other words, the API supports interactions between
the container and application code in the form of method calls to these objects. To
process a client request, a portlet request object is assembled by the container using
the data submitted by the browser. This object is then forwarded to the service
methods (doView, doEdit, and doHelp) defined in portlet application code. The
application code executes using the request and any other objects as required. As the
final step, results are assembled by the container as a response object that is sent back
to the client browser. The request and response objects are primarily responsible for
interactions between the container and application code. The application code uses
these objects accessible through the portletAPI as part of the application logic to
process requests. Portlet errors may come from the container interacting incorrectly
with application code or any unpredictable changes caused in the portal server
environment as a result of these interactions. For instance, changed values of
environment objects at runtime may create side effects on pieces of the application
interacting with these objects. Testing methods that use the context provided by
the container-assembled objects requires a technique to access and modify these
objects before the portlet executes and validate their state after the application

code executes.

2. Test Deployment Related Errors: Execution of portal application code is sensitive
to its deployment environment. As a result, developers cannot ensure error free
execution when migrating portal applications between the staging and production
environments. The key reason for errors during application integration stem from

differences between these environments. One difference between the deployment

61

environments may be because the version of a specific library referred by the portlet
code is different in the staging and production environment. Another source of
deployment related error occurs due to incorrectly set environment attributes. These
environment attributes are configured within the container at deployment time by
reading the parameters from the portlet descriptor files. Testing a portlet application
to isolate errors that surface at deployment time requires an approach that

supports executing portlet tests inside the container environment.

3. Security—Role Based Testing of Resource Access: Access to sensitive portlet
resources is controlled by assigning permissions (roles) and granting access to
individual users or user groups. Without automated testing support the administrator
manually verifies whether the permissions on a portlet resource have been correctly
assigned after application deployment. This is time a consuming activity. Therefore,
there is a need for an automated testing framework that will allow setting up
different types of users for role-based unit testing. In addition, when an
unauthorized portlet resource is accessed the tests should fail indicating incorrect

invocation.

5.2 In-Container Testing of Portlets

Testing a portlet application for errors at deployment time and testing portlet API methods
requires an approach where the test code executes in the “real” container environment and
has the ability to access and control portlet container environment specific objects. This
approach is provided by Cactus (Appendix B). Cactus can test servlets, EJBs and JSP
components. However, Cactus at present does not support testing of portlets. Moreover, the
in-container testing (ICT) approach implemented by the Cactus framework is restricted
because components tested using Cactus are instantiated as normal classes in the test code
versus using a “real container” to instantiate and manage the component’s lifecycle. Such
an approach, though useful for testing some aspects of a portlet application, may not be

adequate to detect deployment related errors as well as for testing portlet API methods and

62

its interactions (refer Section5.1 — (1), (3)). This is because portlets depend heavily on
services provided by the portal server environment (Chapter 2, section 2.2.3). Therefore, in
the case of portlets it becomes imperative to test portlet API methods and its interactions
using services provided by the “real container”. Testing frameworks such as httpUnit and
jWebUnit (Appendix B) can be extended to support black box testing of portal application
by querying the portal server externally and verifying the HTML content received by the
client. However, these frameworks suffer from many drawbacks. First, they not provide
detailed control over the portal server environment; as a result constructing a test set up
state is time consuming. Second, validating the response returned by the portal server is
done by parsing the HTML content which is time consuming. Third, which is also the most
important reason is that test methods developed using HttpUnit API submit forms and links
using HTML element identifiers which in case of portlets are encoded and generated
dynamically by vendor provided APIs. As a result, element identifiers change each time an

application is deployed making automated functional unit testing difficult.
5.2.1 WIT Testing Framework

In order to support automated ICT of portlets, a testing tool Web Portlet In-container
Testing Framework (WIT) was developed by (WIT, 2005; Wenliang Xiong et al., Jul
2005). The key idea underlying the ICT approach implemented is to intercept calls to the
portlet API methods made by the portlet container via the portal server. When the method
call is intercepted, it is annotated by inserting suitable instructions (test code) at appropriate
points. Prior to each portlet service method call, test set up code is executed, and then the
“normal” execution of the method is resumed. Thereafter, the state of environment is
validated by verifying the state of objects recorded against the expected state and then

reported as part of test results.

WIT provides an API to write portlet ICT test cases and integrates components that
support test case execution inside the portlet container. It also supports reporting results of

test execution. It uses Aspect] technology (Aspect], 2005) to intercept calls between the

63

portlet API and the container by weaving the portlet source code with the test code at
appropriate points. The testing process is initiated by a testing client that simulates the
invocation of a portlet from a browser and assembles the portlet request. The results of the
test execution get stored in the repository (implemented as an in memory database) making
it possible to report results back to the testing client. As a result of executing test cases in

this manner, the portal server environment can be controlled.
5.2.2 Usage Scenario of WIT

To demonstrate an ICT testing process using WIT, the shipping portlet application is used

as an example (complete source code of the application is available in Appendix E).

This application consists of portlets that together perform the process of tracking shipments
using order details related to customers. Figure 5-1 shows portlets (order details, order
summary, customer details, tracking details and account details) supported in the view
mode included in the shipping portlet application. The test scenarios developed in this

example are specific to issues discussed in section (5.1).

D B e o [eolmaa fehoal [ode Hep

- e, fﬁ | 1 o oot raa L st pae e oy _5,7_60_A47_00 240, sl A o e Dvstah, i £h5_0_2UM1.cei7_0L_2517,pE_D 2Py, fIr_0 26

W - - ||| smwrch wabs - S - | chooss Buttora (N Bocrurka- -] Ml - [+ 5 o
Mestzoes 1T ' B T T

I vt csearenee: [
el i i el e £ 5

Drchar Dukails
Errtar ardar i to diyplap datwiber

| Wt |

Calr. PO PN G TR

Lirclarn dare Gic bl

[L Cushmsspe 11 Lhatus

B aazani oot ® smezers [g
@ Jozooioomnz @ e B comien
B jasaeioaoaed B exeirs @ cowieme
& ozoioonons @ mmerser B on_re

B sasaeioaoaca ® mersy B euesn
Errtar mcth;

| Pt |

L b e Coartad b
irrta cudbarresr bl to dicple s dertsd b

|—

S it

—_

Trwching Onkais
Errtar tragking id b2 diopdey dataior

—

| et |

ok Dt b

A0 Ol O e ek f# 3T, D05 DA De
Ertar ardhar i)

| Wt |

Figure 5-1: Shipping Portal Application in View Mode- Account Details Portlet.

64

The portal server environment used to deploy this application is IBM WebSphere portal

server (WPS). Test cases have been developed for the Accounts portlet that retrieves

account information such as the total value and outstanding balance related to a specific

order.

Scenariol: Test Portlet API Methods

65

The Accounts portlet (Figure 5-2, line7) extends the PortletAdapter class which is an
implementation of the portlet interface; this provides portlet API methods such as init,
login, doView, destroy and logout. As shown in Figure 5-2, line 17 the class has a doView
method (method associated with the portlet in the view mode). This method is invoked

when the portlet is rendered in view mode.

ke
s
s
s

publare rlaxx rEIrml= irplemrns =

paeate ®iatire LaE

publie =3 "EccLonMera” -

publir =30z “mccouncimcEilla™:

publir =30z "ocdar [dEnecy™:

publir =30z Pocdac [d™-

publir =®zaz 2anal L] L] “eccouncimceilBamn”™:

S CEACLERL FAC C3WA09%3 09734 KO3 AT0wnC3C s L3 CLOALF.A3s T
pubtbae vl L shzimex

iry
FYOREL N3 PRS00 WANCAALEE W LAE wRET

SiAET3 FA JFST 33FA 03J3C< <0 S3ACENIAL Lnd FLLOwA< CECF L%
me

I null
SOUNOe sALIALEL aFR3

mrHER-L[HF. j3p’ Accounchecei LEneey. J3p”™
rlxe a2

FeoLac ropoacE-2 200 Ln3 CedS3AC RERRLO0A A0S AAwnr wag Lnd %8¢ LAFD WNO0eY 43 FCLE CELELLE
nNEE-CHF: 33p: Aceouneslims . 3sp”™
rlxe
/WO AFLERT acnac 35707 argd
5 i "mccounc [d 7 " noc found." -
¢ LEc r coa<3-c f09 43 LedTEAL WEARRAOA fOS aaumroaag ona 3ccos obe
A YEA-L[HF: 33ps AccouncheacnL lEceor . Jap™

fEZmcvlacinvokecPorclec: An mccor occuccmd”

Figure 5-2: doView Method - Accounts Portlet Class.

66

The first thing that happens in the doView method is that the user action is determined.
Next, an instance of the account detail bean is created that will contain all the relevant data
related to an order. Then, the account detail bean is set as an attribute in the portlet request

object.

Account Id is retrieved from the request object and sent to the database (in this case
shippingDB stores the account information) to get detailed information of the account. This
information is returned as an account detail object; which in turn is set in the account detail
bean. The account detail bean is passed from the doView method to the JSP (Figurel2, line
44). This is done by the setAttribute method on the PortletRequest object. As the final step,
the JSP establishes a reference to the bean using a portletAPI tag which embeds the
information in the HTML output markup.

In order to test the doView method of the AccountsPortlet class, first the
AccountsPortlet test case class is created that extends WITTestCase as shown in (Figure 5-
3, line 7). For each test <case, a par of methods 1is written
before doView_testGetAccountDetail and after doView testGetAccountDetail. This pair of
methods follows a specific naming convention consisting of three parts. The first part is
either “before” or “after”; the second part is the name of method (doView) being tested;
and third part is any string that makes the test method name more meaningful
(testGetAccountDetail). The method before doView testGetAccountDetail method sets up
the current state of processing by setting the user action and account ID in PortletSession

(Figure 5-2, line 22-24).

67

IAtkage
img o
1
g own
g own

puhlie olaee LT]
ateounEDers Ll
Sarder (47
RLLIRTTI Er
+ Thin mechod aecs up che cess emvieoeeenc hefoee eweouciog che mechod uader ceac, 4
phdie wodid

vhowe

F4chip AcGeihuce will PARe che poeclec imvoke che mocips im do viEw GO QeG GRE monc decEils, This oomcenls che
* pmviEnEmes; GO Eus B AEE0ifin pAec 0f chE doViEsr mechnd--ie chis oAEE BROw BOOG decRilRdy
et LolHaee
450 phow mops decaile sec che cequiced anoouasIh +F
ALl Logadng-

s4ge are papercing che eepulce of eweouciag che doView mechod co make aure che eeaulc in am ewpeoced. *F
pwledie wodd

Vhirowe

null
null
Seccounchers LBean!

4 pAmeE; 1) Y mee mAWiAT AuEE chAac aopouac deceils Heas ghould moc he mull if che aooc ID wAA OODEEEOGLY BEG-ug *
CRecoMnE JECALL pEan LA ot nuLlt

¢+ papees &1 If moopuns decaile heaa im anc aull we oheok wvhecher che aooouac deceils for che hean is aoc aull +F
teceanne decsils 1 per nollt

AT et 3,4: Smkw arw thwt the veloe foor o the cdetmils is redtrwive s scpcterd
Mocmlvela axr celculmcad coccascly”

5D, SO
Foucrcerdirg ERlerca ax anccccaccT i 1=ha

Figure 5-3: doView Test Case - Accounts Portlet Test Class.

In the after doViewtest GetAcctDetail method, results of executing the doView
method (Figure 5-3, line 28) are validated using the standard unit test methods to verify
expected output and to report the success or failure of this test (Figure 5-3, lines 40-52).
This test case validates that Account portlet will render valid content when deployed in the
portal server environment. In addition, exceptions thrown when the Accounts portlet

executes are captured and reported by the ICT tests.

68

Another important aspect is that in the after doViewtest GetAcctDetail method the
environment state can be cleaned up. This is important because ICT tests are likely to be
executed in the staging or production portal server; thus restoring the original state of the
environment after test execution finishes ensures that the environment state is exactly the
same before and after running the tests. This minimizes side effects on subsequent test runs
resulting from unpredictable changes in the environment after executing the tests. For
instance after the test case execution finishes, the database contents must be restored.
Modification to the production build environment should be minor because any
modification may change the environment resulting in adverse side affects on existing

applications.
Scenario 2: Test Deployment Related Errors

The PortletSettings object (Appendix A.2) contains configuration parameters accessed by
the portlet at runtime. This parameter is defined in the portlet descriptor file called
portlet.xml. The portal administrator uses the administrative interface to configure
individual portlets by editing the configuration parameters before deploying the application
into the production environment. For instance, the accounts portlet (Figure 5-4, line 26-30)
accesses the database connection string by reading the configuration parameter from the

portlet descriptor file.

public roid

ssPocclecymccingy objsce provides cthe porclec wich w23 dynenic configuession:
ssconfig holds wnZo velud for mll pocclec usscx

PoctlethpplicationdekEEinge mpplicetionietEing=ankEEing. guchpplicationSecEingni] ;

ssdecebeam conneceion Secing w3 caed fcon che porcelec deployranc desccipeoc Zilm

"erorarailoasaceioabicchog™ -

ssehus dbConneceionSeecing L3 chan ussd =o pecawit =o § beckesnd decmbeiam

srAn meeion ceusss che acece o be modofoed

it
M ALEOWAE ALEROAGHRETAAS - ALELODA ERAADCLT

i

alem i

Figure 5-4: actionPerformed Method - Accounts Portlet Class.

69

The AccountsPortletTest code (Figure 5-5, lines 69-81) checks for the valid database

connection string in the production environment. An incorrect value read by the portlet at

runtime in the production environment will cause the testDBConnectionString method to

fail.

535
H1
=
H1.]
L1
a0
L1
LB
4
L1
L1
L1
a7
40
L1
T
TL
%5
o
73
T8
T
o
1]
gL
B
a

;" Thiz rachod asc3 up che ceac snviconrane. befoce mxecucing che rachod undec cEac. 7

public roid bafors_sceionPaciocrad_caxcflConnaccioniecingfice wonfvane avanc)
'

PorciocPaguase caguase = gvanc.gacPagumscn):

ixsare Lo osnkes sura thet cha ragease o pon oounll

pazacciochyl L (caguaac) :

1
a nra navarcing cha raxeiox of axaescing cha dolfiay rachod o mnka sura cha rasuic L 6¥ axpaenad,
public roid mfzar_wceionPacfocrad_casc0Aconnace iondee wng(Ace ionfuane auane)
'
PorelacPagueas caguass = svanc, gacPaguass():
Seruwng axpacead_dbconnaceonieewnge "adbeidb:c) loeslhoae 0000 decouneDE:

Forclacimccingys smccinge caguasc.gecfocciacimccingyi):
Pocclachpplicecionisce ungy mpplicEc ionimce Lngesmce Lng. gacipplicec vonSecc ingsi)

Seruwng mecuml_dhionnaccioniecinge (IoounglEpplices Loniascing. gazheeribyen ("ditnbnzaconnace tonSer gy :

* onxzart D Hoka sura chet tho deinbiesa suring os xas

pxaaceEguelag
Plonnection Uasd for che Accounta Decsbsas tn chis snviconranes wain®,
sceuml_dhConnace wonfec wng,
axpacead_chlonnace anicong):

Figure 5-5: actionPerformed Test Case - Accounts Portlet Test Class.

70

Another test scenario is where the doView method depends on a service provided by

the portal server. The functionality implemented in the method is using the service

credential vault which enables portlets to access credentials for authentication as shown

(Figure 5-6, line 31). This service class needed is activated by the portal administrator. WIT

can be used to test for missing service classes that cause portlets to provide no

functionality.

71

(1T
[T TTL AT) bt (1T e

Pl bMEEE 2GR R I umEl L

Ll 2bak el Zamal ' TP T

(L T TT A T T 4701 S Ve
Ll 2bak el Zamal Forder I{EnTIT "

[T T TT L T o 41 8T) Byl 4P

Ll 2bak el Zamal A T T Ve

U L O) R T IR DO PRRCR. U 1. DR LN (08 I oo PR, I, L B L

T I T] 118)

ke

T The e lom epesaltled by The mder

fertdal Tamit Avaiblea® poXTletd o eensse ovsfentiale for awbent et o
Jar et el gy el WLy mal e

ChE

Figure 5-6: Credential Vault Portal Server Service.

Scenario3: Security—Role Based Testing of Resource Access

Role-based testing of resource access verifies whether permissions assigned to portlets are
correct. This is explained using the scenario whereby a portal end user David, is accessing
Accounts portlet which ideally he should not have access to. Testing for this scenario is set
up by specifying a user role and password in the test configuration file (Figure 5-7, line 13-
14). WIT allows setting up a series of user roles for accessing different portlet resources in
the test configuration file. This information is used for authenticating David prior to
executing the request for the portlet service method (doView). If the request is successful,
the doView method in AccountsPortlet will be invoked which should not be accessed if
permissions were assigned correctly. Thus, the security test case indicates a failure, when

the doView method is invoked.

72

ATASTINTEE aminE s r1a ThOTpe e i, or 200 M SRy - IR AR T e E 1 PR EL S &5 e o T 10 T T - ond g, T
smormro | lar Sar latFargs s
il-- am sanorgds for sangle porrler -3
cqugfor T TaThnnT 1ne: 30 < ugPor T lethun ine:
il-- am savorgds for g1 porrlers -
+ 19T 1me s 1000 1T 1ne
< Sormra lar Saru letFaras e

sparTiTe eI
s nTenyne: Tt tabut hat Aot JonTa t For Aooount afor t et < resTSuTaryng:
AL 17T 100
cgnnglen Faslorgne [ra o rd orne TLser 10" Jobn s e o
<o g o F e loagne [ra oo 1rd orne T 5 seor o e[T £ s
<aumberin b tps A Toca Thoe t s S0mL Avem Ao ta 1/ ut Aoy ad TR Aaumheris

LS mbeEnT 1T 100

arast[ragnatons:
Tt [Pac T 100 racker AL Thetpe S o Thoet =208 e memeor Ta LA Ty sar ALaggedDnT

ARty rabeTho:
+or 131ra 10 1y s sragne: oo, lbn, wem, port 1=t s peinge2 o, AoomamtaPor t et <o 1gama 10 1y 5 sragne:
w0 1010 Thet ooy ne: gob ey Sor 1 1ry Thet o ns
stert la s e oom, b, v port lets sl e mc2a, AcooamtaPor t et Tt <o w1 5 sramne:
sTasTheThocru e oo ew_tem Gt Aoomat Bt 4 1 < e et hocrugne

+marTCy pakerhod:

drart [radtaTon:
et [racaTons:
drarTinTa:
sfrarTianTas:

Figure 5-7: Snippet of WIT Test Configuration XML File.

Test Case information is specified in an XML based configuration file as part of the test
execution set up. In addition, a properties file that specifies the location of the portal
application and test source code must also be provided. The sample configuration file and

properties file are attached in Appendix E.

Test Cases are executed after writing ICT tests by invoking a custom (ANT)
command that compiles, deploys the test cases and invokes all of the tests. At the end of the
script run, test results are displayed (Figure 5-8) in the script window which shows the
results of executing ICT test methods (Figure 5-3 and Figure 5-5). An Ant based script can

be integrated with the regular automated deployment and build process.

73

é;{ﬁsrégifesaiﬁélju;é24\ulTInuokerClientForEhippingDemoC2H)ant —f build-wps.xnl
Buildfile: build-wps._.xml

WIT:
testCase2fspect:
weaving:

deploy:
[move]l Moving 2 files to C:“\PortalTesting—JuneZ4~ShippingDemoC2ZASHehContent\WEB—INF\classes

start2Test:
[javal Starting to execute Testz.....
[javal Test Resultd{s):
[javal
[javal [WIT] Te Suite Mame: null
[javal [WIT] Test Run ID: 1247977
[javal [WIT] Original Clazs Mame: com.ibm.wps_portlets_shippingc2a.ficcountsPortlet
[javal [WIT] Original Method Hame: actionPerformed
[javal [WIT] Test Class Mame: com.ibm.wps.portlets.shippingc2a.AccountsPortletTest
[javal [U Hethod Name: actionPerformed_testDBConnectionString
[javal [U Result: Connection d for the Accounts Databaze in this environment is
[javal {jdhc:dh2://localhos 8888 AccountDB> but was:{jdhc:dh2://localhost 28080 Acco
[javal Test RBun Statistics——m—————
[javal number of test methods that were Expected to Run: 3
[javal number of test methods Actually Run: 2
[javal number of test methods Succesfully Run: 1
[javal time taken to run the tests in seconds is: 2.8

BUILD SUCCESSFUL
Total time: 7 seconds

Figure 5-8: Test Execution Results using WIT.

5.3 Portlet Testing using Mock Objects

Portlet testing using mock objects is a unit testing strategy for portlets, referred sometimes
as out-of-container testing technique. Mock objects (MO) for portlets need to provide
objects that simulate the portlet container. In other words, mock implementation of the
portletAPI objects such as portletRequest, portletResponse, portletSession must be
provided. These objects create the context in the test set up methods for executing the
portlet test methods. Portlet testing, using mock objects is a contrasting approach to ICT
described above. This is because unit tests using MOs execute in the “simulated” container

versus the “real” container.

(PortletUnit) is a framework built for testing JSR 168 portlets by extending two open
source projects. One is the (ServletUnit) framework and the other is (Pluto), which is the
basic reference implementation of the portletAPI (Appendix B). Pluto is embedded as the
portlet container in the PortletUnit testing framework for executing the portlet code. The

testing framework provides an interface to access the portlet directly. Furthermore, the

74

framework has APIs that allow access to MO objects to initialize the specific request as

well as to validate the current state of processing.

The two key benefits of using MO (described in section 2.5.2, Chapter 2) are reduced
test execution time and rapid test feedback. This allows effective TDD process for portlet
applications because the effectiveness of TDD is inversely proportional to the execution
time of the tests. However, as MOs are different from the “real” objects they replace, they
do not assure that the portlet methods under test will run correctly when deployed in the

real production portal server environment.

5.4 Portal Application Testing Process

Portal applications can be tested by combining unit testing with portletUnit and ICT with
WIT in three different environments. The three different environments are development and
unit test, staging, and production (section 2.4, Chapter 2). Figure 5-9 shows this based on
the type of development and deployment environment. In addition, Figure 5-9 illustrates
which kind of tests should run, where and how each of the described testing techniques fit
into the overall testing process of portal applications. This answers the specific research

questions outlined in Chapter 1, section 1.5.
5.4.1 Unit Test Environment Level Tests

The first testing approach in the testing process (Figure 5-9, 1.1, 1.2 and 1.3) is testing in
the development environment. The model layer business logic is unit tested first in a
comprehensive manner, in this environment using JUnit. This is an important step to ensure
that portlets work correctly because portlets use services provided by the model layer. Next,
the developer implements portlet code and writes unit tests using the portletUnit APL
However, writing unit tests in this manner may be more appropriate for portlets that have
complex business logic for example logic related to user preferences and the invocation of

several model layer methods. In addition, portlets may have complex dependencies on

75

external infrastructure (registry services, content management systems) which must be

mocked accordingly when testing is performed in this environment.

Portlet and the model layer unit tests can be maintained as part of a common test
suite. Thus, model and portlet layer can be tested continuously. The model of development
1s making small changes to code, building it and executing the model and portlet unit tests
each time. This cycle can be repeated several times per day. In addition, this can be done as
part of a fast compile and regression testing strategy using JUnit test runner client. Once
this cycle is complete, the application code is deployed in the portlet toolkit environment
for functional unit testing. However, the number of times deployment happens in this
environment should be minimized. For example it can be deployed once an hour to save
development time because initializing the environment and application deployment is time
consuming. The benefit of conducting testing along these lines is that significant overhead
of testing portlet changes, when portlets are implemented can be reduced. Consequently,

this reduces the overall development, deployment and test cycle of portlets.

76

3.2

s+ Run ICT Tests on selective portlet Apps

- WIT Sugport & Maishessscs schivity

=+ Run Functionalfuser acceptance tests
Fimimnal Disiling - Wil

TEST, MEBE USET TR

Production Portal Server

3.1 Deploy Portiat
application

o
= Run ICT tesl suites for all Porat Apps
- wsing WTT
= Run Functional Tests

- run rveal
= Run load & Performance tests

- using WT

Suites

- Inlagration unil esling
using WIT

Ll sk 1y o

Staging Production Portal Server

2.1 Daploy Portlat
= Apps

)
/:.3- Deploy Portiets in /
toolkit test eaviron |/

- Manual tesiin
1.4 Davelap % ;
I/'-ﬂﬂ“‘-l..lﬂil tesling using
PortiatUnil

1.1 Davelop Wodel Cayer ___/I
,‘—

Local Portlet Developrmant
Environ

- Unit tasting using JUnit

Figure 5-9: Portal Application Testing Process- testing activities in different run-time environments.

5.4.2 Staging Environment Level Tests

The second approach in the testing process (Figure 5-9, 2.1, 2.2, and 2.3) is during
application deployment when the application is migrated to the staging portal server; which
is an environment that mirrors the production portal server. This kind of testing merges into
the integration unit testing process of portal applications. In addition, this type of test
execution may be integrated with automated build and deployment process promoting

continuous integration testing; which is executing integration tests at regular intervals

77

during portal application development. Testing in this environment is based on who
(developer, administrator, tester or end user) executes the tests. First, developers are
responsible for writing ICT test cases using WIT for their individual applications and
executing tests at regular intervals. The number of times ICT tests must run varies and can
be run every hour or once in a day. Because ICT testing is slow, executing tests frequently
is infeasible. Next, ICT test suites must be run, when portlet applications are integrated by
the administrator in the staging environment. This will detect any errors as a result of side
effects in the deployment environment when different portlet applications are integrated.
The suggested integration unit testing process should to a certain extent replace the need for

automated functional unit testing.

After the application is successfully deployed in the staging environment the
functional testing of the portal application (jsp layer) is important to ensure that portal
pages are rendered correctly. This is performed by a walk through of functional
requirements by testers or end users. It is important to note that manual testing can never be
completely removed from the testing process because it may reveal bugs not detected by
the automated tests. However, automated ICT of portlets will reduce manual functional
testing effort because errors related to portal application integration are detected early -

prior to release in the production portal server.

Automating the deployment process may not be necessary for executing unit tests
using PortletUnit because the tests are executed out-of-container. As a result, deploying the
code is not needed. In contrast, ICT requires application code to be redeployed before
performing testing by removing the deployed code from the environment and redeploying
(hot deploy). The time taken for a hot deploy is dependent on the vendor specific
implementation of the portal server. The deployment process may be automated for ICT.
This may be done by using different command-line tools together with (ANT) for
application deployment. Without that, continuous integration testing of portal applications

is not possible.

78

5.4.3 Production Environment Level Tests

The third testing approach, in the testing process (Figure 5-9, 3.1, 3.2) is when the portal
application is migrated to the production portal server. It is recommended that minimum
automated testing be conducted in the production portal server. Any side effect caused as a
result of test case execution may change the production database contents and requires to be
rolled back correctly. Moreover, the modification to the production build environment
should be minor. For instance, adding test suites, automated tool related classes may result
in modifications to the production environment. This may cause adverse effects on existing
portal applications. In order to reduce the possibility of deployment related errors, it is
recommended that staging and production portal server environments and its backend
components are replicated as an exact mirror of each other. As part of portal application
support related activities, a subset of portlet ICT test cases can be run over regular intervals.
In other words, test case execution can be limited to testing certain key portlets. The result
of executing these tests is to check availability of portlets in production and their

performance over a period of time.
5.5 Summary

Portlets are key application components of portals. Therefore, it is important to test them in
a comprehensive manner. Two complimentary testing techniques, the mock object
approach using PortletUnit and in-container testing using WIT are discussed in this chapter.
In-container testing focuses specifically on detecting environment specific portal
application errors when the application is integrated with the deployment environment.
Although the in-container testing approach is important, it is not feasible as a fast unit
testing strategy because of the overhead in initializing the portal server environment which
makes test execution slow. On the other hand, unit testing in the simulated container using
a mock object approach can support fast unit testing. However, it cannot ensure success of

an application at deployment time because the tests execute using the context provided by

79

the simulated container. By outlining the portal application testing process, I have
demonstrated how both these complimentary strategies can be integrated into a portal
application development process. Although the testing techniques are complimentary in
nature, they have trade offs. Therefore, for testing certain types of portal application the
benefit of using one testing technique may outweigh the other. Accordingly, each of
testing techniques must be evaluated before using them. In the next chapter, I will discuss
results of exploratory study conducted to assess the viability of the proposed testing

approaches in the industry.

80

Chapter 6. Empirical Evaluation

The previous chapter described techniques for automated testing of portal applications
together with how these techniques are integrated into the overall testing process. In this
chapter, I first present objectives of the exploratory study conducted to assess the perceived
viability of the suggested testing techniques and their likely future usage in an enterprise.
Next, I detail the study methodology, participants and results. This chapter concludes with

a brief summary.
6.1 Selection of the Methodology

In order to empirically validate the testing process and practices discussed in this thesis, a
longitudinal study investigating aspects of process improvement should be conducted.
However, certain factors limited a longitudinal study during this research. First, our
industrial partner Sandbox Systems was a consultant company and its portal developers
worked as consultants for different companies on offsite portlet application development
projects. Conducting a study in the consultant company requires willingness of the
company to allow use of their environment. However, Sandbox and its consultant company
environments were unavailable for accessing and deploying portal applications.
Consequently, I conducted a short exploratory study as the first step for evaluating the

viability of the testing techniques and perceived usefulness of the tools.
6.2 Objectives

The objectives of the study are:

81

1. To evaluate the perceived usefulness of the proposed portal application testing

techniques.
2. To evaluate the likely future usage and viability of the testing techniques.

3. To provide feedback on how developers anticipate testing techniques to be integrated

into a portal development environment.
The main research questions are:

Question 1: To what extent do the participants perceive the testing techniques as

useful?

Question 2: How likely are the participants to use the testing techniques in their

environment?

Question 3: How do the participants perceive the testing techniques should be

integrated into the development, test and deployment process of portal applications?

The first question evaluates the usefulness of the testing techniques (objective 1). The
second question evaluates whether the approaches will be used (objective 2) and the third
question identifies how these techniques can be incorporated into an existing development,

test and deployment process (objective 3).
6.3 Study Methodology and Participants

Prior to conducting the study ethics approval was obtained from the University of Calgary
(Appendix D). The participants also completed and returned informed consent forms
included in Appendix E.2. A pilot study was first conducted which formed the basis of
refining the study methodology presented. Details of the pilot study are included in
Appendix E.1.

The study was conducted with 15 participants having different levels of experience

(4mths-2yrs) in portal technology. 12 participants were working for a company developing

82

portal applications by integrating backend legacy systems (Domino Lotus Notes, SAP)
using a portlet front end. These participants were involved in a range of activities from
designing portal applications, developing the business interface layer (portlet services
layer), developing portlets and deploying and administering the portal applications in WPS.
The portal server deployment environment used by the company was WPS. Five out of
these 12 participants had previously participated in the pilot study conducted at the
university. Therefore, they had prior knowledge of the testing techniques and had used WIT

to develop simple ICT test cases.

Two participants out of 15 were using portal technology to integrate existing Web
applications for their respective companies. 1 participant had built portlet applications in

the past over a 4 month training period.

The participants were given a presentation (Appendix G) for approximately 35
minutes introducing the goals of ICT and MO techniques for portlets. This was followed by
demonstrating how a test case scenario was written and executed. The presentation was
followed by a discussion that provided feedback on the feasibility of the discussed
approaches. The participants were asked to complete the questionnaire at the end of the

discussion. All 15 participants completed responses for the questionnaire.

6.4 Results

The study was conducted to explore the perceived usefulness of the proposed testing
techniques as well as how these techniques can be integrated into the existing testing
process. The insight to these high level questions can be found by looking at answers to the

specific research questions.

Question 1: To what extent do the participants perceive the testing techniques as

useful?

When asked to rate the perceived usefulness of ICT using WIT (Table 6-1) 67% of the
participants indicated that it would be helpful in detecting deployment related errors. The

&3

nature of deployment errors described by one participant was related to missing and

incorrect versions of class libraries between local development and staging portal server

environments.

Table 6-1: Perceived Usefulness of WIT.

Interaction between | Security Role
Container & based
Perceived Usefulness Portlet Deployment Application Code Resource
Participants (n=15) Related Errors (Portlet API) Access
Not at all to Very Little 2 (13%) 4 (26%) 0 (0%)
Average 3 (20%) 5 (33%) 6 (40%)
Helpful to Very Helpful 10 (67%) 6 (40%) 9 (60%)

In terms of detecting errors as a result of the interaction between container and
application code 40% rated the approach to be helpful whereas 33% rated it as average and
26% reported it as not very useful. One of the reported reasons, for limited usefulness was
that portlets were being developed using frameworks such as JavaServer Faces (JSF).
These frameworks worked as wrappers abstracting the core portlet interface methods, and
the portlet service method (doView, doEdit) source code was unavailable. In the case when
an error in executing the portlet occurred, the developer was confronted with a black box
framework level interaction. WIT in its current state cannot be used to test framework level
methods and their interactions. This provides motivation for WIT to explore testing of

methods and its interactions supported by the portlet development frameworks versus the

current portlet service methods (doView, doEdit etc).

60% of the responses indicated that the approach would be very helpful in testing role
based resource access. One respondent indicated that WIT was helpful because it allowed
setting up a series of user roles so, “you can test the context of what the portlet is about to

do; based on who you are”. -- Developer

84

Although the participants provided positive responses on the usefulness of the ICT
approach; they suggested usability specific improvements of WIT. The results in (Table 6-
2) show the level of perceived difficulty by the participants in writing and running ICT tests
using WIT.

Table 6-2: Perceived Usability of WIT.

Perceived Usability

Participants (n=15) Writing WIT Tests Running WIT Tests
Hard to Very Hard 9 (60%) 10 (66%)
Average 4 (26%) 2 (13%)
Easy to Very Easy 2 (13%) 3(20%)

60% of responses indicated that writing test cases using WIT was difficult. 66%
responded that running ICT test cases was a lot of effort because it required editing
multiple configuration files. The lack of a graphical user interface and a plug-in based IDE
support was one of the frequently mentioned reasons for low usability of WIT. In one
respondent’s opinion the effort spent in configuring ICT test cases may act as a deterrent

and reduce its usefulness because

“Strictly WIT as a developer’s tool is pretty hard to use because it comes with fairly
low level configuration and the need to edit multiple files. There is too much margin for
error. WIT is supposed to help write better code but one may end up spending too much

time configuring WIT”. -- Developer

One suggestion to improve WIT was to integrate the tool with industry tool sets by
making it available as a Web tools compliant eclipse plug-in. Therefore, WIT would
become usable for multitude of portlet containers providing a more generic testing

approach.

85

Question 2: How likely are the participants to use the testing techniques (ICT and

MO) in their environment?

When asked how likely the participants were to use ICT with WIT in the future in their
company environment; 60% of the participants indicated a positive choice of likely to very
likely. The results in Figure 6-1 also indicate the viability of this approach in the industry.

One participant reported in response this questions that,

“ICT approach is sound because container itself is where a lot of the pitfalls lie in
testing web context. Testing ICT you gain some understanding of what the deployment

process will be like. -- Developer

Although the ICT testing approach was viable, the participants indicated that its
likely usage was subject to the availability of a user friendly tool integrated as a plug-in

within an IDE.

14

—_
N

—_
o

o

No of Responses

0 1 1
Very Unlikely Unlikely Quite Likely Likely Very Likely

Figure 6-1: Responses showing likely future Usage of in-container testing approach using WIT.

In response to the likelihood of using MO portlet testing (Figure 6-2) approach in the

future; only 46% indicated a positive choice. In one developer’s opinion a mocked portlet

86

API would be very useful for testing inter-portlet communication by generating mocked
portlet messages and testing the behaviour of the portlet in response to these mocked

messages.

14

—_
N

—_
o
L

No of Responses

oL 1

Very Unlikely Unlikely Quite Likely Likely Very Likely

Figure 6-2: Responses showing likely Future Usage of Mock Objects.

20% of the participants provided a negative response. One of the reasons provided by one
participant was the heavy dependency of portlets on the services provided by the container.
Therefore, in the participant’s opinion, the effort to write and execute tests outside the
container was not likely to be of much benefit. In addition, it was indicated that writing out-
of-container tests was suitable for portlets that implemented functionality that had less
dependency on the portal server provided services. Another reason indicated was that the
usefulness of this approach could only be assessed depending on the extent to which the

portlet API methods were mocked and the functionality of the portlet method under test.

87

Question 3: How do participants perceive testing techniques to be integrated into the

development, test and deployment process of portlet applications?

This question is divided further into sub questions to understand how participants perceive

the integration of the testing techniques into existing testing process.

The first question inquired who is likely to write and run ICT tests. The majority of
the responses (Table 6-3) indicated that ICT tests should be written by portal developers
and the other 33% indicated that both developers and administrators should write the tests.
(54%) Tests should be executed by portal developers as well as portal administrators
depending on the accessibility of the portal server environment. A single respondent
indicated that teams that support and maintain portal applications after they are released
into production can execute ICT at regular intervals to ensure that portlets are available and

work as required.

Table 6-3: Who should write and Execute ICT Tests.

Writing ICT tests Running ICT tests
Participants (n=15) | Participants (n=15)

Portal Developers 10 (66%) 3 (20%)
Portal Administrators 0 (0%) 3 (20%)
Developers & Administrators 5 (33%) 8 (53%)

Portal Support & Maintenance
Teams 0 (0%) 1(7%)

The second question inquired at what stage (when and where) of the development
process writing and running ICT tests is likely to be beneficial. The results (Table 6-4)
include responses that indicate all the three types of environment namely development,
staging and production were feasible for running ICT tests. 78% of the participants

indicated that ICT tests should be executed in the staging portal server environment (refer

88

section 2.4) for testing whether the deployed portlets work correctly. They perceived that
this would help them understand the deployment process and plan production level
deployment properly. One respondent indicated that ICT would delay the development
process; though in their opinion it was important to execute portlet application code
through ICT test scenarios closer to the end of iteration. This was indicated by the

respondent that,

“MO approach is faster but not necessarily as comprehensive. From a
development standpoint, I think it would slow the development process but when you get
closer to end of the sprint and when you are prepared to deploy it is important to start

running code through ICT scenarios. Though ICT is not viable for TDD in my opinion”.
-- Developer

59% perceived that ICT tests could be executed in the production portal server. One
possible use indicated was conducting daily health checks of key portlets. Another response
indicated that ICT was useful for performing preliminary portlet functionality compliance

tests.

Table 6-4: Type of Portal Sever Environment for Running ICT Tests.

Type of Environment for Running

ICT Tests Participants (n=13)
Development 0 (0%)
Staging (Pre-production) 5 (39%)
Production 3 (20%)
Staging & Production 5 (39%)

The third sub question inquired how the MO approach using PortletUnit can be
integrated into the current process. One participant perceived that the MO approach can be

incorporated with JUnit as fine grained portlet testing for development purposes. According

89

to this participant, Out-of-container testing would be conducted on the local developer
environment to validate existing code. After ensuring the portlet code works on the local
environment, the application code can be tested on the staging environment. It was also
added that ICT test cases and the MO test cases should be reusable and easily refactored.

This would save considerable effort in writing test cases for different tools.

Another participant provided suggestions on how portlet MO can be used to test
inter-portlet communication when developing custom portlets that did not leverage the
proprietary portlet messaging frameworks. According to this developer, MO can be enabled
to simulate portlet messages by referencing portlet request and response objects. This
would help in understanding whether the portlets were communicating correctly with one
another and behaving as expected on receiving the simulated messages. In other words, the
outcome of a portlet that depends on receiving messages from another portlet can be
validated. By mocking portlet messages, different scenarios within a workflow can be
tested by setting up the context for testing in an automated way. This is in contrast to
testing these scenarios, by creating and forwarding the messages manually and clicking on
the portlet URLs. This results in testing as a time consuming activity. In the developer’s

opinion,

“Testing this (workflow portlets) out of a mocked container level would be very
fast versus in-container sitting at the screen; clicking and working through the

functionality”. --Developer
6.5 Interpretation

The study and results reported in Section 6.4 provide an indication of the perceived
usefulness of the proposed testing techniques and tools although further research involving
a non-prototype tool is needed. Positive responses indicate the willingness of the industry
to incorporate these techniques into the testing process in the future. However, for these

testing techniques to be practiced by the industry, additional factors must be addressed for

90

example tool design, development process and deployment process used. Participant

comments related to improving the usability of WIT were highlighted.

1.

Listed below are some limitations and improvements for future work on WIT:

Lack of a Generic Portlet Testing Framework: The WIT framework is not a generic
testing framework and was designed towards executing ICT tests specifically in WPS, a
proprietary framework provided by IBM. The major issue in providing a generic
automated portlet testing framework is lack of standards between various portal
framework providers in its current state. A generic testing framework would need to
deal with dissimilarities amongst the portal server run time environments from different
providers. For instance, portlet URL encoding and access is different across portal
frameworks. Another issue is the use of non-standard vendor provided portlet APIs that
poses additional problems for portlet testing. Unless portlet development using the
standard JSR 168 API is imposed, providing a generic testing framework will remain a

challenge.

Source Code Dependency: Portal framework vendors provide custom portlets.
Applications are built using these custom portlets. Consequently, proprietary portal
framework considerations prohibit portlet source code availability. The WIT framework
annotates portlet source code by inserting instructions before and after execution of the
portlet source code. To overcome this challenge WIT should support class (bytecode)

level annotation.

Reducing Test Effort: WIT must evolve into an IDE plugin for the ICT approach to
become an integral part of portlet testing and development process. Such a support
would allow wizards for creating, writing, configuring and executing the ICT test cases

with reduced effort.

Informative Test Execution Results: In order to track more information on the
lifecycle of portlets (for instance, how the portlets are instantiated, state of the portlets

in use), existing tools (WILEY, IBM proprietary) may be integrated with WIT. This

91

integration would allow more in depth information on the state of the environment and
sequence of method calls invoked during portal application execution. Consequently,
the test results can provide more problem-solving information if a portlet test fails. In
other words, when a failure is discovered, information revealed by the test results

should provide insight into the cause of failure.

A key limitation of this analysis is that the participants’ common to both the survey
and post study empirical study conducted is very small (five). Using these five data points
and their values to establish a co-relation between the survey participants and the post study

variables does not provide statistically valid results.

6.6 Anecdotal Evidence

ICT was published on a leading portlet community group (PortletCommunity)
(Figure 6-3) as the top feature of week (21°- 26" March 2005). Members of this forum are
portlet developers and technical experts working on portal related technologies. Positive
feedback was received from this community. This provides anecdotal evidence that the ICT

using WIT for portlet testing is perceived useful for portal application developers.

Pt

B comsmmit v jav st

4 java.net
g —MEMBER —

A LORETE

W Ein Wi
Birkwrt
JEN LS

W i e
1 B8 Rl

Pt p b g e
| Pl Elasenimiin
sk s

Company Spotight

NABD

FEh i ik o o0 Syshiame
I, s g raded in

oo a3 o) i e g el
ol vrecyiing e pamiive
LT T L]
Jodutiare, The compars s
o TR e O P e o i
il upkien=ad apsn
DR Gl bl DG R

0 L L
_'.'l = kgl = § o | @ {13 hitpe foormwnsiy. jasn rtpostisi]

Maailla el

92

‘Welcome to the Portlel Community

WATEE brasatd pdrlata, 5 R 1HE o WASH P e G ng 100 L O 1@ EOAE 0 T AphT paca. Thi1e &
gattaing of deselopers ard lechnicl s erts ki g on Forals-and mbreddesbnolog s Here vou wilnd
sy £t T Gt AT A, D, s, prited it ainn DUCS G s, BRI and FRGS This communiis de
dedicaled o creating & refpsEoncalonen souice and bee SR 16E complankpoeiets thalcan tie used on
are JIEE ported b s ba Db e b e G0 phay el rveatt i Gacsd L 0 b ik, , M Gl s

w bt knor sl pem ared put e s wor wark

W e cry e o) b i el
Al W Mol a 00T ke resa B g SRIE corndned U Socslay Linad @

Amygortast Ansoanomeear

Ay warkmp on EFH RS arWERF snd imisrerad i being feorb e in e Co ey Spolighean Fie
o 8 11 ey 1 0 A abion & sl B o ol Kk by Tiess. "W ka b L3 ToF T B G

Feshpesy

ek 1T Gind

WIT] & Framewoss fas m-Coantaiivel Teihivg of Web-Paits Sppllcataon
Tl e o o s o) i e 06 € b i e Bk o e il apkEedianG

vk T Ot

Streamling ¥ our Fortiet Sevelopment with MYCPortiet Framawork

The Kpded-virs-Cantmdber (MW natam /5 are af fie mast commpadn sed patemis ardesigning
0 T G vt ot o e o vl W TS (], SETREE) cakl W0 Bid Mg Sadrll - D Sad 6w
apnkcetiare, miheseramawarke ga not suppar pareldsetopmant This ad ek provides an oedes of
P S TRE R T O T RS e T T

Usaiil i

Famswait I

Magariar | Lisgn Hald

LTy Laimacti

PR e e B s i
i i e h e Ly iy

i it i

Pt fumml Ser)

LB R Ll
T e i) D R T
1 om0 e sl ey
R TR £ T D
Fariele mnd Benviais W
o i T AR i
o e al ol e dal

el Bacaigl

[T T TR S A |
Prailei B

This ok derribas b
o pivtkl SR nELE
ety pariet| fe rpcle
11 0TI T ot 1 o)

Figure 6-3: WIT as the top Feature of the week on the Portlet Community Website.

6.7 Summary

In this chapter, I reported the results of an exploratory study conducted to assess the

viability of ICT and MO for portlet testing. These results provide empirical evidence that

the proposed testing techniques are feasible in the industry. In particular these results may

form the foundation for further research in testing of portal applications.

93

Chapter 7. Conclusions

I conclude this thesis by summarizing the research contributions in the area of testing portal
applications. First, I reiterate the thesis problems from Chapter 1. Next, I describe my
research contributions, by outlining how I solved each thesis goal from Chapter 1. Then, I

suggest areas of future work in testing of portal applications.

7.1 Research Problems

Following research problems were outlined in the thesis:

1. It is not known how a portal application is being tested in the industry (state-of-the-

practice) and what difficulties exist that hinder automated testing of portal applications.

2. It is not known what testing tools and techniques exist that are appropriate for testing a
portal application; if there is a need to extend these techniques and develop practices for

portal application testing process.

7.2 Thesis Contributions

This thesis makes the following research contributions by solving each of the problems

outlined above:

1. For this thesis a case study and survey were performed to understand state-of-
the-practice in testing portal applications. The results of the case study revealed
problems with integration and unit testing of portal applications. The case study
highlighted that portlets worked correctly in the test environment but errors occurred
when the portlets were deployed and executed in the portal server production

environment. This was reported as a severe problem as no functionality was available

94

to the end user since the portlet did not display any data. Furthermore, developers
spent a lot of time and effort to diagnose and fix portlet application errors. As a result,
the time taken to develop, test and deploy portlet applications increased. The survey
results showed that unit and functional testing of portlets was conducted manually.
Both the case study and the survey highlighted the need for automated testing tool for
testing portlets. These results together identified the requirements that formed the

basis for developing testing techniques specific to portal applications.

Based on the results from the study, survey and literature review, testing
techniques were developed. Two testing techniques, the mock object approach using
PortletUnit and the in-container testing using WIT were described. In-container
testing focuses specifically on detecting environment specific portal application
errors when the application is deployed. Although the in-container testing approach is
important, it is not feasible for TDD which implies frequent test execution during
development. This is because the overhead of initializing the portal server
environment makes the test execution slow. On the other hand, unit testing using the
mock object approach supports TDD because the tests are executed outside of the
container. However, it cannot ensure successful deployment of an application in
production portal server because the tests execute using a simulated container. By
outlining the portal application testing process, I have demonstrated how both these
complimentary strategies can be integrated into a portal application development
process. Although the testing techniques are complimentary in nature, they each have
trade offs. Therefore, for testing a given portal application the benefit of using one
testing technique may outweigh the other. Accordingly, each of the testing techniques

must be evaluated before using them.

An exploratory pilot study was conducted with industry participants to evaluate
the viability of proposed in-container testing with WIT and mock object testing
approach based on three factors. The first factor evaluated the usefulness and the

second factor assessed the likely future usage of the testing techniques. The third

95

factor identified how both testing techniques are likely to be integrated into an
existing development process from the perspective of the industry. The results
indicated that in-container testing with WIT was useful, especially in signifying
errors related to deployment of portal applications as well as for role based testing of
portlets. Also, positive responses were received for the likely future usage of WIT
and the willingness to adopt this testing technique. On the other hand, very few
responses indicated a likely use of the mock object approach because of the heavy
dependency of portlets on the services provided by the container. Therefore, the effort
to write and execute tests using portletUnit would need further assessment. However,
for these testing techniques to be practiced by the industry, additional factors must be
addressed. For example, the tool design, development process and deployment
process used needs to be improved. The prototype tool WIT should be redesigned to
fix the usability issues and further research studies involving a non-prototype tool are

needed.

7.3 Future Work and Conclusion

This work described the process of testing portal applications. Prior to this thesis, there was
a lack of prescribed practices for testing applications developed using portal technology. It
is important that such recommendations be provided to develop quality applications using
portal technology. However, it is not objectively confirmed if the suggested testing
techniques will have tangible and long term benefits in improving the quality of portal
applications. Early empirical results validated the perceived usefulness of testing
techniques provided in this thesis and point to the feasibility of techniques and usefulness
of WIT prototype tool. As the next step, the proposed portal application testing process
should be implemented in the industry and evaluated formally. Such an evaluation should
investigate and measure specific aspects of process improvement. In addition, the cost
benefit analysis of automating certain stages of the portal application testing process must

be conducted.

96

WIT is a proof-of-concept implementation validating the in-container testing
approach of portlets. Although the conceptual approach received a positive response, the
tool should be extended to make it viable for use in the industry. Therefore, much work
should be done before promoting this tool for use in the industry. The key conceptual idea
underlying the in-container testing can be extended to support generic components. Thus,

this thesis has a broader significance in testing of component based systems.

97

References

Abran, A., Bourque, P., Dupuis, R. and Moore, J. W. (2001). Guide to the Software
Engineering Body of Knowledge - SWEBOK, /EEE Press.

ANT, Apache Java Build Tool, http://ant.apache.org/, last accessed, August 14, 2005

AspectJ, Aspect] Eclipse Project, Online: http://eclipse.org/aspectj/, Accessed: July
14,2005, http://java.sun.com/j2¢ee, last accessed,

Astels, D. (2003). Test Driven Development: A practical Guide, Prentice Hall, Upper
Saddle River, NJ.

Beck, K. (2000). Extreme Programming Explained: Embrace Change, Addison Wesley.

Binder, R. V. (2000). Testing Object-Oriented Systems:Models, Patterns and Tools,
Addison Wesley.

Cactus, Cactus Server Side Testing Framework (Apache Jakarta Project),
http://jakarta.apache.org/cactus/, last accessed, August 14, 2005

Canoo, Client Side Testing of Web applications using Canoo, http://webtest.canoo.com/,
last accessed, August 14, 2005

Cechich, A., Piattini, M. and Vallecillo, A. (2003). Assessing Component-Based Systems.
Component Based Software Quality, Springer-Verlag.

Clover, Code Coverage Tool, http://www.cenqua.com/clover/, last accessed, September 14,
2005

CruiseControl, Framework for Continous Build Process,
http://cruisecontrol.sourceforge.net/, last accessed, August 14, 2005

Culbertson, R., Brown, C. and Cobb, G. (2001). Rapid Testing, Prentice Hall PTR.

Cutter-Consortium, Poor Project Management Number-one Problem of out sourced
E-projects, Cutter Research Briefs,
http://www.cutter.com/research/2000/crb001107.html, last accessed, August 14, 2005

98

E.Gamma, R.Helm, Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

Fetterman, D. M. (1989). Ethnography: Step by Step. Applied Research Methods. C. S. P.
Newbury Park. Vol 17: page 51-52.

Fowler, M. and Foemmel, M., Continous Integration,
http://www.martinfowler.com/articles/continuousIntegration.html, last accessed, August
14, 2005

Hepper, S., Understanding the Java Portlet Specification,
http://www.ibm.com/developerworks/websphere/library/techarticles/0312 _hepper/hepper.h
tml, last accessed, August 14, 2005

Hepper, S. and Lamb, M., Best Practices: Developing Portlets using JSR 168,
ftp://ftp.software.ibm.com/software/dw/wes/pdf/0403 hepper-JSR168 BestPractices.pdf,
last accessed, August 14, 2005

Hepper, S. and Lamb, M. (2004). Best Practices: Developing Portlets using JSR 168,
Online: ftp:/ftp.software.ibm.com/software/dw/wes/pdf/0403 _hepper-
JSR168 BestPractices.pdf, Accessed: August 14,2005.

HtmlUnit, Client Side Testing of web applications using HtmlUnit,,
http://htmlunit.sourceforge.net/, last accessed, August 20, 2005

HttpUnit, Client Side Testing Framework for Web applications,
http://httpunit.sourceforge.net/, last accessed, August 14, 2005

IEEE (2002). :IEEE standard glossary of software engineering terminology. Standard
610.12-1990 (R2002), IEEE Computer Society Press.

IEEEMultimedia, http://ieeexplore.ieee.org/xpl/, last accessed, September 14, 2005

J2EE, Java 2 Enterprise Edition (J2EE), Online: http://www.jcp.org./en/jsr/detail?id=168,
Accessed: July 14,2005, http://java.sun.com/j2ee, last accessed,

JCP, Java Community Process, http://jcp.org, last accessed, August 8, 2005

Jetspeed, Enterprise Jetspeed Portal, http://portals.apache.org/jetspeed-2/, last accessed,
August 20, 2005

JMeter, Performance Testing of Web applications using Apache JMeter,
http://jakarta.apache.org/jmeter/, last accessed, August 20, 2005

99

JSF, JavaServer Faces Technology, http://java.sun.com/j2ee/javaserverfaces/, last accessed,
September14, 2005

JSR168, Java Specification Request (JSR) 168 Portlet API Specification Version 1.0,
http://www.jcp.org./en/jst/detail?1d=168, last accessed, July 14, 2005

JUnitPerf, Performance and Scalability testing using JUnitPerf,
http://www.clarkware.com/software/JUnitPerf.html, last accessed, 2005, August 14

jWebUnit, Client Side Testing of Web applications using jWebUnit,
http://jwebunit.sourceforge.net/, last accessed, August 14, 2005

Kaner, C., Bach, J. and Pettichord, B. (2002). Lessons Learned in Software Testing, Jo/hn
Wiley & Sons Inc.

Kaplan, B., and Maxwell, J. A (1994). Qualitative Research Methods for Evaluating
Computer Information Systems, Sage, Thousand Oaks, CA: 45-68.

Kastel, B. (2003). Enterprise Portals For the Business and IT Professional, Competative
Edge International.

Kitchenham, B. and Pfleeger, S. L. (2002). "Principles of survey research: part 5:
populations and samples." SIGSOFT Softw. Eng. Notes 27(0163-5948): 17-20.

Krutchen, P. (1999). The Rational Unified Process, Addison Wesley.
Kung, D. C., Liu, C.-H. and Hsia, P. (2000). An Object-Oriented Web Test Model for

Testing Web Applications 24th International Computer Software and Applications
Conference IEEE Computer Society: 537-542

Lee, A., Resolution: What is the place of Surveys?,
http://www.ucalgary.ca/~newsted/ppt/sld021.htm, last accessed,

Loveland, S., Miller, G., Jr, R. P. and Shannon, M. (2004). Software Testing Techniques,
Charles River Media.

Lucca, G. A. D., Casazza, G., Penta, M. D. and Antoniol, G. (2001). An Approach for
Reverse Engineering of Web-Based Applications Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE'01) IEEE Computer Society: 231

Lucca, G. A. D., Fasolino, A. R. and Tramontana, P. (2004). "Reverse engineering web
applications: the WARE approach " J. Softw. Maint. Evol. 16 (1-2): 71-101

100

Lucca, G. D., Fasolino, A. and Faralli, F. (2002). Testing Web Applications Proceedings of
the International Conference on Software Maintenance (ICSM'02) IEEE Computer Society:
310

Mackinnon, T., Freeman, S. and Craig, P. (2000). Endo-Testing: Unit Testing with Mock
Objects. Extreme Programming and Flexible Processes in Software Engineering
(XP2000).

Mackinnon, T., Freeman, S. and Craig, P. (2001). Endo-testing: unit testing with mock
objects Extreme programming examined Addison-Wesley Longman Publishing Co., Inc.:
287-301

Massol, V. and Husted, T. (2003). JUnit In Action, Prentice Hall, Upper Saddle River, NJ.

Maven, Apache Maven Project, http://maven.apache.org/, last accessed, August 14, 2005

Mercury and LoadRunner, Performance and Load Testing using Mercury LoadRunner,
http://www.mercury.com/us/products/performance-center/loadrunner/, last accessed,
August, 2005

MockODbjects, Testing with Mock Objects, http://c2.com/cgi/wiki?MockObject, last
accessed, August 12, 2005

Nguyen, H. Q., Johnson, B. and Hackett, M. (2003). Testing Application on the Web,
Wiley Publishing Inc.

Oracle, Oracle Portal Server,
http://www.oracle.com/technology/products/ias/portal/pdk.htmlQOracle, last accessed,
August 20, 2005

Patton, M. Q. (2002). Qualitative Research & Evaluation Methods, Sage Publications
California.

Pawlak, Z. (1992). Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers.

Pfleeger, S. L. and Kitchenham, B. A. (2001). "Principles of survey research: part 1:
turning lemons into lemonade " SIGSOFT Softw. Eng. Notes 26 (6): 16-18

Pipka, J. U. (2002). Test- Driven Web Application Development in Java, Daedalos
Consulting GmbH.

101

Pluto, Portlet Container Reference Implementation for Java Portlet Specification,
http://portals.apache.org/pluto/multiproject/pluto/, last accessed, August 14, 2005

PortalZone, DeveloperWorks Websphere Portal Zone,
http://www.ibm.com/developerworks/websphere/zones/portal/, last accessed, August 14,
2005

PortletCommunity, http://community.java.net/portlet/, last accessed, September14, 2005

PortletUnit, Java Unit Testing Framework for testing JSR-168 portlets,
http://sourceforge.net/projects/portletunit/, last accessed, August 14, 2005

Sandbox, Sandbox Systems, Online :: http://sandportal.sandboxsystems.com/wps/portal
Accessed: August, 2005, last accessed,

Schulmeyer, Gordon, G. and Mackenzie, G. R. (2000). Verification and Validation of
Modern Software-Intensive Systems, Upper Saddle River, NJ: Prentice Hall.

ServletUnit, Testing Servlets using ServletUnit, http://servletunit.sourceforge.net/, last
accessed, August 14, 2005

Shilakes, C. and Tylman, J. (1998). Enterprise Information Portals, Industry Overview.
Proceedings of the International Conference on Software Maintenance (ICSM'02), Merrill
Lynch, New York: 310.

Smith, S. and Meszaros, G. (2001). Increasing the Effectiveness of Automated Testing.
XP Universe, Raleigh,NC.

Struts, Portlet Struts Framework, http://publib.boulder.ibm.com/infocenter/wpdoc/, last
accessed, September 1, 2005

TDD and Unit-Testing, TDD and Unit Testing, Online :http://www.testdriven.com
Accessed: August, 2005, last accessed,

UserEngineering, http://www-306.ibm.com/ibm/easy/, last accessed, September 14, 2005

Walsham, G. (1995). "Interpretive Case Studies in IS Research: Nature and Method."
European Journal of Information Systems: 74-81.

WebspherePortal, WebSphere Portal (V5.02) InfoCenter,
http://publib.boulder.ibm.com/pve/wp/502/index.html, last accessed, July 14, 2005

102

Wege, C. and Chrysler, D. (2002). Portal Server Technology June 2002. IEEE Internet
Computing: 73-77.

Wenliang Xiong, Harpreet Bajwa and Maurer, F. (Jul 2005). WIT: A Framework for In-
container Testing of Web-Portal Applications. Web Engineering: 5th International
Conference, ICWE, Sydney, Australia, Springer-Verlag.

WIT, Web Portlet In container testing framework, Online:
http://godzilla.cpsc.ucalgary.ca/ebe/Wiki.jsp?page=Root.Portlettesting, Accessed:
September 15,2005, last accessed,

Wosnick, S., Developing and Unit Testing with Cactus (IBM WebSphere Developer
Technical Journal), http://www-
128.ibm.com/developerworks/websphere/techjournal/0206_wosnick/wosnick.html, last
accessed, August 14, 2005

WSRP, O. (2003). Web Service for Remote Portlets Specification Version 1.0, September
2003. Online: http://www.oasis-open.org/committees/download.php/3343/0asis-200304-
wsrp-specification-1.0.pdf Accessed: July 14,2005.

Yin., R. K. (2003). Case Study Research, Design and Methods, Sage Publications:
Thousand Oaks, California.

103

Appendix A. Portal Technology

A.1 Review of Portal Server Framework Services

Product
Organization Description of the services provided
Name JSR

168

Pluto is the reference implementation for JSR168,
the Java portlet specification. Pluto serves as a portlet
container that implements the Portlet API and offers
Pluto Apache developers a working example platform from which they
can test their portlets. The project comes with a minimal | yeg
portal for testing.

http://portals.apache.org/pluto/

Jetspeed is an Open Source implementation of the
Enterprise Information Portal, using Java and XML.
Jetspeed-2 is in Beta version and is conformant to the Java
Jetspeed 2 Apache Jakarta Portlet Standard. Jetspeed provides support for content | Y8
publication frameworks.

http://portals.apache.org/jetspeed-2/

uPortal is an open source portal under development
by institutions of higher-education with the development
effort shared among several of JA-SIG member
UPortal JA-SIG institutions. Presented as a set of Java classes and
version 2.2 XML/XSL documents, it provides a framework for | yeg
producing a campus portal.

http://www.uportal.org/

The eXo platform software is an Open Source
EXo Platform corporate portal and content management system. The
EXo platform components include a portlet container which is a certified
SARL implementation of JSR168. The enterprise version comes
with its own application server and workflow
management tools. The product comes with a content

104

management system and a services container. Yes

http://www.exoplatform.org/portal/faces/public/exo

GridSphere portal framework provides an open-
source portlet based Web portal. It enables developers to
] quickly develop and package third-party portlet web
GridSphere GridLab Project applications that can be run and administered within the

GridSphere portlet container. v
es
http://www.gridsphere.org/gridsphere/gridsphere

The IBM Portal Toolkit, Version 5.0.2.2/5.0.2.3
provides the capabilities to customize, create, test, debug,
and deploy individual portlets and Web content. IBM also
has a proprietary API within WebSphere Portal. However,
with JSR 168 standards, it is recommended that portlet
developers use the new standardized portlet API. The
Websphere foundation of the platform is IBM WebSphere
Portal & IBM Application Server. For portlet development needs, Portal
Portal Toolkit Toolkit plugs into the IBM WebSphere Studio | Yes
development environment (WSAD).

http://www.ibm.com/developerworks/websphere/zo

nes/portal/

It provides an enterprise portal platform for
production and management of custom fit portals.
Provides portlet wizards for the creation of different

yeb%ogic BEA portlets (JISP/HTML, JSR168, Struts, WSRP)
orta
http://dev2dev.bea.com/products/wlportal81/index.j Yes

sp

A Java portal that works with a number of
application servers, providing additional development
tools and utilities, single sign-on for aggregated
Sun Java applications to the portal, supports the creation and
System portal Sun consumption of Web services-based portlets and
Server 6 incorporates the J2EE platform. Yes

http://www.sun.com/software/products/portal _srvr/

home_portal6.xml

Application Server Portal provides a framework for

Oracl . .
racie integrating content from external sources. A number of

105

AS Portal

Oracle

different components are available, and the Portal
Development Kit (PDK) comes with a Portlet Container
for building and running interoperable Java portlets. An
extension for JDeveloper provides a wizard for the step-
by-step creation of portlets. The PDK enables developers
to build portlets in any web accessible language including
Java/J2EE, Web Services, ASP, PL/SQL, XML

http://www.oracle.com/technology/products/ias/por
tal/pdk.htmlOracle

Yes

Vignette
Portal
Services

V7

Vignette

Vignette comes as an application portal and a
builder for creation, assembly and customisation of
applications. Pre-defined portlets are available with the
portal, including one for integrating .NET Web
applications as portlets. The builder is intended to support
portlet development

http://www.vignette.com/

Yes

106

A.2 Portlet API

This section explains briefly the basic interfaces, methods and core objects of the Portlet

API referenced in the thesis.

Abstract portlet class: is the central abstraction of the Portlet API. All portlets extend this

abstract class by extending one of it subclasses for example PortletAdapter.

PortletRequest: interface represents the user’s request and encapsulates information about
the user and the client. An implementation of the PortletRequest is passed to the delegated

do methods (doView, doEdit etc).

PortletResponse: interface encapsulates the response sent to the Portal Server for

aggregation.

PortletSession: object is used to store information needed between requests. This object is

created when a user logs into the portal.

PortletContext: provides a mechanism for the portlet to access the services of the portlet

container in which it is running.

PortletData: object represents a portlet instance on a user page and contains user specific

data.

PortletSettings: object encapsulates the configuration information of the portlet instance.
In addition this object can be used as storage for attributes to be shared by all portlet

instances.

Service Methods: The portal calls the service methods when the portlet is required to

render its content. These methods are doView, doEdit or doHelp.

Appendix B.

107

Testing Tool Evaluation

Limitation &

Tlesting Technigues Tools Applicahility with Tool Description
respect to Portal
applications
Cannot test methods that JUmit 15 standard umt testing
Unit Testing 1Unit need environment context, | framework for testing java classes
Portlets, servlets & J5Ps
cannot he tested
Extends JUnit hy executing unit tests
Supports testing of servlet [in a simulated servlet contamner;
logic. Cannot ensure Access to serviet request, response
ServletUnit servlets will execute and session objects to set up specific
correctly in the real servlet | request state for testing 15 provided
Unit testing Using cottainer
Mock Ohjects
{out of container) Extends JUnit and evolved from
Supports fine grained ServletUnit and Pluto container.
PortletUnit | testing of JSR 168 Access to portlet request, response
portlets. Cannot ensure and session ohjects is provided to
portlets will execute set up specific request state for
correctly in the real portlet testing
portlet container
Extends JUmnit; supports in contamer
testing of servlets, EIBs, filters Each
Cactuz does not support | test case has 3 methods begin, test
Integration Unit testing | Cactus Portlet testing, and end PBegn method runs in

{in container)

simlated chent ENViromnent,
provides data & creates request and
response ohjects; | second tethod
executes on server by calling server
side code & uses context provided by
begin method. In end method
response 18 werified.

108

Portal Applications can he
tested. Lunitations are

Tonls extend JUnit and provides a
means for simulating a browser &

httpUnit 1) Setting up the initial test | querying web server,
state is time consuming, Externally to verify response.
Zihtml element identifiers
are dynamically
generated usmg portlet
namespace encoding
Functional Unit testing TiPatrsing html for response
validation extremely slow
Frovides a testing approach similar to
hitpUnit. Dafference is mannerin
HtmlUnit which the response 15 returned
document versus response ohject
Java testing framework that combimes
functionality of HttpUnat with JUnit
JWebUnit simplifying the creation of test cases
Frowvides a testing approach sumilar to
httpUnit Test case can he specified as
Canon use cases Test execution suppotted

using ANT for easy mtegration into
ah existing ANT build.

109

Appendix C. Survey Materials

C.1 Survey Introduction Form

December 15", 2004.

Hello Portal Developers,

I am a research student at the e-business Engineering group at the University of Calgary. I
would like to invite members of the Web-portal development community to participate in our
research study designed to:

e Evaluate the current process of developing and testing web-portal applications.

e Understand the testing practices in use and challenges (if any) in testing portal applications.

e Provide us with feedback that will assist in making recommendations and potential
improvements in the development and testing process of web-portal applications.

Participation is voluntary. If any questions disrespect your privacy please feel free to decline
to answer them. To maintain confidentiality findings shall be reported as an aggregate. The data
shall be summarized to draw conclusions and no individual participant can be identified from the
results. No individual names shall be used in academic presentations and publications. The results of
the study will be shared with all the participants.

Your willingness to complete this survey will help immensely in building the body of
knowledge of web-portal application development and testing processes. For more information on
this project visit: http://www.cpsc.ucalgary.ca/~bajwa/research.html

Please return the completed survey to Ms.Harpreet Bajwa by e-mailing at
bajwa@cpsc.ucalgary.ca at the earliest convenience.

110

Thank you in advance for your participation.

Sincerely,

Harpreet Bajwa

C.2 Survey Questionnaire

Part 1: BACKGROUND
1. a) How many years of experience do you have building:
Web Applications years
Web-Portal Applications years
b) Describe all the roles you have worked as part of software development?

c) Specify the role you play at present in web-portal application development

2. What kind of software development process does your organization use at present for

developing web-portal applications (e.g. XP, other agile methods, RUP, RAD etc)

3. In general, describe the nature of web portal applications you build (e.g. educational,

enterprise, news portals etc)?

4. Which Portal framework do you currently use to:

Develop and Test portal applications (i.e. test and development environment)

Deploy Portal application (i.e. production environment)

111

5. Does your organization have:

() QA Team () Software Testing Team

PART 2: PORTAL APPLICATION DEVELOPMENT AND TESTING

1. For each of the following practices, specify what kind of techniques you use for testing

web-portal applications?
(Please answer the associated questions with the choices, you select)
() Unit Testing
a. Which framework is used to write the unit tests?
b. How are the unit tests run i.e. automated test scripts, manual?
c. Who writes the unit tests?
d. Who runs the unit tests?
e. How often are the unit tests run within your team?

() Frequently () Sometimes () almost never

() Functional/ Black box testing

a. Which framework is used to write the functional tests?

b. How are the functional tests run i.e. automated test scripts, manual?
¢. Who writes the functional tests?

d. Who runs the functional tests?

e. When are the functional tests run?

()*Server side testing.

a. Which framework is used to write the server side tests?

112

b. How are the tests run i.e. automated test scripts, manual

¢. Who writes the server side tests?
d. Who runs the server side tests?

e. When are the server side tests run?

() Performance/Scalability testing

a. Which framework is used to write the tests?

b. How are the tests run i.e. automated test scripts, manual
c. Who writes the tests?

d. Who runs the tests?

e. When are the performance/scalability tests run?

() User acceptance testing

Specify other testing techniques used.

2. Have you ever experienced errors that show up when staging the web- portal application

from the development to the production portal server?
() YES
()NO
If you selected yes above,
a) Describe the errors, their severity briefly and how the errors are fixed?

b) Are any tests written for the production portal server environment? Please explain.

3. Describe the challenges in testing web-portal applications and areas where automated test

113

support might be beneficial?

Based on the responses a selected group will be invited for an interview. Please indicate your

preference
() Would like to be invited
() Would NOT like to be invited
Please provide your telephone numbers here
A follow up e-mail shall be sent to confirm an interview date and time.

For any other question or concerns please e-mail me at bajwa@cpsc.ucalgary.ca

*By server side testing we imply testing of methods such as doView, doEdit etc that require
context from the environment they are running in. In case of portlets we are referring to the portlet

container.

114

Appendix D. Ethics Approval

UMNIVERSITY OF

! CALGARY

[=

CERTIFICATION OF INSTTTUTIRNAL ETHICS REVIEW

Thik is bo oertily ihat the Conpoint Fazulies Bessarch Fihics Boand ot the Universaty of
Crilzary bas exsmined the fillowing research proposal and founid the propesed mesasarel
inwalving laman sohjects t be in esccordance with University of Cabgary Guidelines and
the Tri-Coumed] Pricy Striement on “Erkical Canduet o Researeh Diring Feosmsan
Swhiecty”, This fors and pecompanying lewer constitule the Cestification af Isstiutsanal
Eihics Reviews

Fale e qim
Applicantis): Harpreet Bajwa
Wenfiang Xhkang
Dreparirnint Compuier Sciemos
Evpbuatin g, Predacting aad pmproving e Precess of Testing Web Applica tiuis
Project Title: [Parzal) Using Server-Siide Testmp Tosl Ssppart. livest ipmling e Performance
g af Server-Kide Testing Tosl Provided 1o Test Web (Poriah) Applicatioas anid
Assess iis Lsefolness mad Ease of L
Hpoma (11
mpplicahlel):

Restrighimis:
This Cerdiffeation is subjeet to thie Tollewing cendifbens:

I Mgspraval & granted only for the project and parpases described bn the opplication.

2. Any modifbeations o the sothorized peosaoal mues e submined o the Chalr, Comjoin
Fncullses Research Erhics Boand for apgroval.

1, A pengress repant must be subimitsed 12 months Eoan the dese of this Certilicagion, and
shoald provide the expectad completion dae fir the projeci.

i, Wreifien potifEcanon must be 3ent the Biard when e project is comnplete or

pefmminmed. i
[%
I 1 i T L L 200808724
Jamiec Dickin, Ph.DD. LLB, (1T
Chemir

Comjoint Facubties Research Ethizs Board

Disiribubion: ¢ 1} Applicant, {23 Supervesor (if applicabie), (3] Chair, DhepanmentFaculty
Fesearch Ethics Committee, (4) Sponsor, (51 Canjoint Faculties Eescarch Bk Boand
() Research Serviooss,

50 Linkversity Dl MW, Calgary, Albedia, Canasty T2 Thad - e icalgary. ca

115

Appendix E. Perceptive Study Materials

E.1 Pilot Study at U of C

the WIT framework for the doView method. This test will make sure the data generated by the
portlet is available and correct. We have already provided in your workspace 1) PortalProject
called HelloWorld with a single HelloWorld Portlet and 2) The WITInvokerClient that acts a

testClient invoking the tests and gathering the test results.

With Students and followed by Sandbox employees

In-Container Testing Using WIT Framework

Overall Instructions: We will be writing and running a very simple in-container test using

Writing a TestCase for the HelloWorld Portlet
1. Write a test class called HelloWorldPortletTest that extends testCase to test the doView

method of the HelloWorld portlet. Use the example test Class provided on your desktop
as a guide for writing the test.

Note: InvokerWIT folder under the root path: \lib\WITLibs must contain the following jars as
part of the WIT install:

- aspectjrt, aspectjtools, commons-httpclient-3.0-alpha2, jdom, xerces, PortletTester.

These jars have been included in the build path of the portlet project under test.

Running the TestCase for the HelloWorld Portlet

Step 1: Inspect the InvokerWIT folder. You should see the following configuration files

116

which you will modify as follows:

1. build-wps properties: Modify the downloaded build-WIT properties in the places
marked in the file. Alternatively make sure you have the following attributes changed in
the file.

portlet_src_files dir path: the root path of portlet source code.

portlet_tst src_files dir _path: points to the root path of the test code.
bin_path: points to the root path of the portlet binary class files.

AntControllerServiet:

http://localhost:9081/HelloWorld/AntControllerServlet

2. WIT-Config.xml: Modify the WIT-Config.xml by making changes at marked locations
in the file.

3. WIT-Config.xsd

4. build-wps xml

Step2: Change the web.xml file of the portal project under test: Add the servlet

AntControllerServlet with the servlet mapping to the URL pattern.

Step3: Run the build file build-wps.xml: You can run the build file from the command

prompt > ant -f build-wps.xml

Alternatively you can do step wise run by:

run ant -f build-wps.xml testCase2 Aspect
run ant -f build-wps.xml weaving

run ant -f build-wps.xml deploy

run ant-f build-wps.xml start2Test

NS

You should be able to see the testResults!!!!

Note: If you see exceptions showing httpURL connection while running the build it maybe due to

the following:

1) Check to ensure AntControllerServlet URL in the build-wps properties is correct with the correct
contextroot.

117

2)

3)

-contextRoot of the portlet Application can be changed using the .websettings file

under your project.
-change the context Root in corresponding EAR file too.

Check web.xml of the portal application under test to make sure the AntControllerServlet is
added.

Check to make sure the PortletTester.jar is in the build path of the project under test.

Make sure stepl, step2 are followed correctly and values have been changed to point to the correct
locations.

118

E.2 Consent Forms

Research Project Title:

Evaluating, predicting and improving the process of testing web applications (portal) using
the testing tool support.

Investigator(s): Harpreet Bajwa, Wenliang Xiong, Frank Maurer (bajwa, xiong,
maurer)@cpsc.ucalgary.ca

This consent form, a copy of which has been given to you, is only part of the process of
informed consent. It should give you the basic idea of what the research is about and what your
participation will involve. If you would like more detail about something mentioned here, or
information not included here, you should feel free to ask. Please take the time to read this
carefully and to understand any accompanying information.

Description of Research:

The purpose of this research is to identify an improved process for testing web portal
applications by conducting empirical studies and as a result improve the quality of web
applications. The researchers also aim to assess the perceived benefits of the automated testing
approaches developed and determine from its 1) Perceived Ease of use i.e. can it be used with less
effort) 2) Perceived Usefulness i.e. will using the tool result in any advantage which will
determine its future usage.

Procedure:

By checking on “I agree to participate in the study”, you will be a part of the study
consisting of the two phases:

1) As part of the first phase a presentation will be given that describes the testing
approaches together with writing and running testcases using the testing framework. 2) As part of
this phase, the developers will record their perceptions of the presented testing approaches
through a questionnaire provided by us followed by interactive discussions and follow up
interviews. Some interview sessions shall be recorded to facilitate collection of information and
transcribed for analysis with your permission. You will be sent a copy of the transcript and results
to confirm accuracy and clarify any points.

Likelihood of Discomforts:
There is no harm, discomfort, or risk associated with your participation in this research.

Confidentiality:

Participant anonymity will be strictly maintained. No information that discloses your

119

identity will be released or published without your specific consent to disclosure. All the data
collected will be stored in a password-protected computer and only be accessible to the
investigators.

Primary Researcher(s):

Harpreet Bajwa and Wenliang Xiong are M.Sc. students in the Department of Computer
Science at the University of Calgary under the supervision of Dr. Frank Maurer. This study is
conducted as part of their research and will be included in their thesis.

By checking on the “I agree to participate in the study” checkbox, you indicate that
you have understood to your satisfaction the information regarding participation in the research
project and agree to participate as a subject. In no way does this waive your legal rights nor
release the investigators, sponsors, or involved institutions from their legal and professional
responsibilities. You are free to withdraw from the study at any time. Your continued
participation should be as informed as your initial consent, so you should feel free to ask for
clarification or new information throughout your participation. If you have questions concerning
matters related to this research, please contact any of the three investigators of this research.

If you have any questions or issues concerning this project that are not related to the
specifics of the research, you may also contact the Research Services Office at 220-3782 and ask
for Mrs. Patricia Evans.

[11 agree to participate in the research study

Participant’s Signature

Date
Harpreet Bajwa
Investigator and/or Delegate’s Signature

Date
Lawrence Liu
Witness’ Signature

Date

A copy of this consent form will be given to you to keep for your records and reference.

120

E.3 Post Study Questionnaire

1. How likely are you to use WIT in your company environment in the future to improve the
testing process?
() Very Unlikely () Unlikely () Quite likely () likely () Very likely

Please provide us with reasons for your choice

2. Could you highlight any other specific areas where portal application testing can be made
more effective and comprehensive?

3. Which of the following do you perceive is the ICT testing approach using WIT helpful

in:
() Detecting/diagnosing Portlet Deployment Related Errors
() Notatall () Verylittle () Average () Helpful () Very helpful
() Problems arising from the Interaction between the container & Application
Code

Notatall () Very little () Average () Helpful () Very helpful

() Security Role Based Resource Access

() Notatall () Verylittle () Average () Helpful () Very helpful

() Others, please specify

4. In your opinion at what stage of portal application development process is writing and
running ICT tests likely to be beneficial? (i.e. When/Where would such tests be run?)

5. Who is likely to write & run the ICT tests in your company environment?

6. You perceive that Writing ICT tests using WIT is:

121

() Very Hard () Hard () Average () Easy () Very Easy

Please provide us with reasons (if any) for your choice

7. You perceive that Running ICT tests using WIT is:
() Very Hard () Hard () Average () Easy () Very Easy

Please provide us with reasons (if any) for your choice

8. How likely are you to use Portlet Unit testing using Mock Objects (MO) in your
company environment to develop and test Portlets
() Very Unlikely () Unlikely () Quite likely () likely () Very likely

How do you perceive to incorporate MO into the existing testing Process?

Any other comments?

We would like to invite you for an interview. Please indicate your preference
() Would like to be invited
() Would NOT like to be invited

If you are willing to participate in an interview, please provide your telephone numbers
and/or email here:

WIT is an open Source Project and can be downloaded from:
http://godzilla.cpsc.ucalgary.ca/ebe/Wiki.jsp?page=Root. WITUsage

122

Appendix F. Co-Author Permission

UNIVERSITY OF
| CALGARY

(TN LA
Cor T

November 7%, 2005
University of Calgary
2500 University Drive NW
Calgary, Alberta

T2N IN4

I, Frank Maurer give Harpreet Bajwa permission to use co-authored work from our papers
“Evaluating Current Testing Processes of Web-Portal Applications” and “WIT: A
Framework for In-container Testing of Web-Portal Applications,” for Chapters 3, 4 and 5

of her thesis.
Sincerely,
T / Lone__

J/

Frank Maurer

123

e CALGARY
HM’ E

November 7, 2005

University of Calgary
2500 University Drive NW
Calgary, Alberta

T2N 1N4

I, Wenliang Xiong give Harpreet Bajwa permission to use co-authored work from our
papers “Evaluating Current Testing Processes of Web-Portal Applications” and “WIT: A
Framework for In-container Testing of Web-Portal Applications,” for Chapters 3, 4 and 5

of her thesis.

Sincerely,

& /{j ﬂf>lﬂﬁ.4,:;tf ? = ,Kfin?__
A B wt

Wenliang Xiong

124

Appendix G. Materials and Raw Data

Survey materials and Questionnaires are in SurveyMaterials Folder
. Interview transcripts and notes are located in the SurveyTelephonelnterviews Folder

Sandbox discussion notes and transcripts of the discussions are located in the Case

Study Folder

. Charts and Raw data are included in the Survey.xls excel file.

. Presentation slides and materials for portal developers on March 18 (pilot study) and

August are included in the Empirical Analysis folder

. Empirical study Questionnaire is in the Empirical Analysis folder

. Charts and Raw data are included in the Empirical Analysis folder Analysis.xls excel

file.

. Application Source Code and tests referred in Section 5.2.2 is included in

ShippingDemo Folder

. Rough Set analysis files are in the Rough Set analysis folder in files called

surveydata.isf and rules.isf

125

Glossary

Application Server is a term used to describe
a set of components that extend their services
to other components.

Build are versions or redesigns of a project
that is in development. A given project may
undergo numerous revisions before it is
released

Container is the interface between a
component and the low-level platform-specific
functionality that supports the component.

Database Servers act as data repositories for
Web applications. Most web based systems
use relational database servers.

Enterprise JavaBeans (E]B) container manages
the execution of enterprise beans for J2EE
applications.

JVM, Java virtual machine, JVM is a platform-
independent execution environment that

converts Java bytecode into machine language

and executes it.

J2EE is a distributed application-server
environment that provides a set of java
extension APIs to build enterprise

applications.

Java Server Pages (JSP) provides for the

generation of dynamic content for the Web.

Modules are parts, components, units or areas
that comprise a given project. Modules can
also be thought of as units of software code.

Mock - a mock object adds to this the ability
to preload an object with data which can be
played back during a test. Most importantly, it

is also given details of the expected interactions
that other objects will have with it and at the
end of testing verify that these have taken
place.

Portlet Preferences provides portlet
developers a mechanism for persisting
configuration, customization and
personalization settings for individual users.
Portlet preference interface provides methods
for writing, reading and resetting preferences.
They are made available to all PortletRequests.

Enterprise portals (or “corporate desktops”)
give employees access to organization-specific
information and applications.

Enterprise Java Bean (EJB) is a collection
of Java classes and an XML file bundled into a
single unit. EJB runs in an EJB container.
They form the business logic components
deployed in a J2EE environment. Also
associated with the persistence layer.

Regression Testing is a form of testing that
makes sure that a program has not regressed
which means verifying that the functionality
that was working yesterday is still working
today.

Role is a set of permissions. Users are mapped
to roles. The administrator who has the
authority to manage a portal page can grant
access to view, edit, delete, portlet resources.

Servlet implements a request-response
paradigm especially for Web environment and
run in the servlet container

Stub object is the most minimal
implementation of a class providing nothing
more than the implementation of an interface.

Test Plan is a document that defines the
inputs and expected outputs, format of the
output, expected execution time and testing
environment. It also outlines risks, priorities
and schedules for testing.

Test Case is a test that executes a single well
defined test objective (e.g. a specific behaviour
of a feature under a specific condition)

Test Suite is a collection of logically related
test cases

Test Scripts are step by step instructions that
describe how a test case is executed.

Test Types ate categories of tests that are
designed to expose a certain class of errors.

Web or Http Servers store web pages or html
files and their associated components and
make them available to web based clients.

Web-container manages the execution of JSP
and servlet components.

