
Knowledge Base Maintenance and Consistency
Checking in MOLTKE/HyDi

Frank Maurer

Dept. of Computer Science, University of Kaiserslautern
P.O. Box 3049, D-6750 Kaiserslautern, Germany

e-Mall: maurer@inforrnatik.uni-kl.de

A b s t r a c t . This paper deals with special problems of knowledge base
maintenance which have to be solved within the knowledge acquisition process.
We illustrate that aspects of maintenance must be taken into account by the
design model construction because dependencies between pieces of knowledge
can result in inconsistent states of a knowledge base. We describe a Knowledge
Dependency Network which extends ideas from truth maintenance systems to
detect and manage these inconsistencies. The network allows formal definitions
of inconsistency conditions and checks them automatically preserving the
integrity of the knowledge base. As a fundamental part of the acquisition and
maintenance environment the knowledge dependency network supports the
conventional development and editing of a knowledge base.

I Overview

This paper deals with aspects of knowledge acquisition, knowledge base maintenance and
consistency checking. Our experience in expert system projects showed that aspects of
knowledge maintenance must be considered while constructing the design model of the
domain. After defining appropriate knowledge structures, there are often troubles with
inconsistencies in the knowledge base because of dependencies between knowledge
objects. Often only the co-existence of a few objects results in an inconsistent state.

Our general approach to knowledge acquisition and maintenance is described in chapter 2.
We illustrate the approach by following the development of the MOLTKE shell for
technical expert systems. In paragraph 2.1 we introduce the basic representation language
for which an interpreter is presented in 2.2. Then we present our general approach to
knowledge maintenance (2.3). We def'me the knowledge dependency network (2.4) and the
concept of graph consistency (2.5). The network enables the knowledge engineer to
specify conditions of consistency for knowledge bases. It manages the dependencies of
knowledge objects and automatically maintains the consistency of a knowledge base. The
network is an extension and a new application of the ideas of truth maintenance systems
[8, 9]. The resulting maintenance component supports the user while inserting and
deleting objects preserving the consistency of the knowledge base. Paragraph 2.6 gives
some complexity estimations. Chapter 3 of this paper presents an overview on the other
parts of the MOLTKE workbench for technical diagnosis. The workbench is a complex,
fully implemented expert system toolbox which integrates several second generation
expert system techniques. In chapter 4 we discuss results and compare our approach with
related work. Chapter 5 gives an overview on our ongoing work and the state of
realization. An example is given in the appendix.

338

2 Requirements of Knowledge Acquisition and Maintenance
In general the building of experts systems consists of two main parts. First, a model of
the domain has to be constructed. The expert(s) and the knowledge engineer usually work
together in this phase. This model is implemented on a computer by the knowledge
engineer who usually has a background in computer science and artificial intelligence. The
second part includes the filling of the model with the expert's knowledge. Ideally, the
domain expert himself fills the knowledge base because:

~ only he can guarantee for the correctness of the system,
o he is able to test whether the system acts appropriately,
o he often has to maintain the knowledge base (in fact: he is the only person who can

decide whether the represented knowledge has to be changed).

A problem is that experts usually do not have any background knowledge concerning
expert systems. Therefore, the representation formalism must reflect the experts own
terminology. This observation was our reason to develop the design model for technical
diagnosis described in 2.1 and 2.2.

To summarize the above mentioned one can say that if the representation formalism uses
the terminology of the domain, the understanding of the knowledge base and the process
of inference is simplified for the expert. Therefore, maintenance is made easier. At least,
the testing and debugging of the knowledge base may be better supported by the expert
then.

Furthermore, a development tool has to support the editing and maintenance of the
knowledge base, especially if used by a domain expert who is normally not used to work
with computer systems. A knowledge maintenance component has to include facilities
which easily allow to create and test knowledge bases. It has to satisfy the following
requirements:

o incremental input of the knowledge in an user-determined order (this is the natural
way of editing a knowledge base for an expert),

~ managing the changes which follow an insertion or deletion of an object,
~ showing dependencies of the represented pieces of knowledge,
~ showing the effects of changes in the knowledge base (often the overview is lost if

much knowledge is represented),
o checking the syntactic correctness and the semantic consistency (see 2.4) of the

knowledge base.

Watching the knowledge acquisition process we fred several steps which possibly must be
repeated. At first we construct a conceptual and a design model of the domain (cf. also
KADS [6, 21]) which collect all relevant concepts of the domain (within the MOLTKE
project for diagnosis we developed the representation language described below) 1. The
model does not include all facts of the domain. It is only a frame which will be filled in a
later step. But it is immediately refined to the implementation level.

Extending the KADS framework we now ask for dependencies between the relevant
aspects of the domain and for inconsistency conditions (chapter 4 includes a discussion of

1 These steps will be supported by our hypermedia-based knowledge engineering
environment HyperCAKE which is briefly described in chapter 5.

339

the use of a truth maintenance system for managing the dependencies). The next step is to
implement a domain-dependent acquisition interface which is used to fill the knowledge
base. Thereby the consistency of the entered knowledge is automatically preserved by the
knowledge dependency network described below.

We now illustrate the knowledge acquisition process described above by tracing the
development of the MOLTKE shell for technical diagnosis, with a special focus on the
knowledge base maintenance component.

2 .1 Basic Definitions

In the MOLTKE project we developed a design model for technical diagnosis. We believe
that diagnosis can be described as follows:

Diagnosis = Classification + Test Selection.

A knowledge base represents the knowledge about the technical system divided into these
two parts. Now we describe the basic vocabulary:

A symptom class relates a name to a list of possible values, its type, (e.g.Valve -->
{open, closed}) whereas symptom instances reflect the actual state of a part of the
technical device (e.g. Valve 21Y5 --> open). The actual value may be either unknown or
an element of the list of possible values in the corresponding class.

The set of all symptom instances is called a situation. Within the context of predicate
calculus the actual situation is the base for the interpretation of a language of formulas. It
stores the variable bindings (every symptom instance is a variable in the calculus). For
the evaluation of formulas we use a three-valued logic with true,false and unknown.

A test ascertains the value of one or more symptom instances. Usually, a test asks the
user for the value of the symptom instance. The sequence of testing is determined by a
set of ordering rules where the left hand side is a formula and the right part contains the
symptom instance to test (e.g. (if (= Valve 21Y5 open) then relais test)).

To express relations between symptom values shortcut rules are used (e.g. (if (= light
room-1 on) then wires := working)).

Contexts are one of the means for modularization in MOLTKE. A context represents a
rough, intermediate, or final diagnosis. If its precondition is true, the associated failure is
said to be proven and the related correction is executed. Any context contains a set of
ordering rules which locally prescribe the strategy of testing. Additionally, a context
includes a set of shortcut rules. A correction describes what has to be done when a special
fault occurs. For example, a context (without rules) is defined by the following statement:

Context name: LIGHT-BULB
precondition: (SWITCH = CLOSED) & (LIGHT = OUT)
correction: "Change the light-bulb"

The contexts are organized in a context graph. Its arcs have the semantics "is-refinement-
of' (e.g. the context failure-in-electric is a ref'mement of failure-in-car.).

2 .2 The Interpreter

A global interpreter, which is easy to adapt and to maintain because it is organized in
small modules, processes the knowledge base. The interpreter uses an establish-and-refine

340

strategy.

The diagnostic process goes through the context graph by testing symptoms according to
the ordering rules of the actual context and switching to a refinement when its
precondition becomes (the logical value) true. If a leaf of the context graph is reached the
system prints the diagnosis and terminates.

ii!!ii!iiiiiii i li iii! i i!]

ii{i}::iii::i:: n : m :::::i::{{i{ii{

iii!i!!ii n: ~ i ~ n ~ b ~ iiiiiiiiill

~!!iiiiiiii!i,,. ~iiiii~i~i~i~

t iiiiiii !i i;i!i i!iiiiiiiiiiiiiiili!iiiiiii t

Symptom

value I

l l : l

Symptom
class

l l : l

Symptom

1:1

Ordering 0 : n
rule action

Ordering Precondition Shortcut Ty 1 : :

Context

Shortcut
rule action

Fig. 2.1. Dependencies of MOLTKE objects

2.3 Knowledge Maintenance in MOLTKE
After developing the basic representation language and implementing the appropriate

341

parsers for the domain-dependent acquisition interface we asked our engineers for the
dependencies of the defined structures. The answers are shown in figure 2.1.

Extending the acquisition interface which uses the parsers for checking the syntactic
correctness of a knowledge base we built the MOLTKE maintenance component 2 which
checks two further aspects of consistency:

~ node consistency: a piece of knowledge is used in the inference process only if all
referred objects are correctly defined

~ graph consistency: the knowledge base must not contain redundancies and
contradictions

In the following paragraphs we illustrate these concepts of consistency.

2.4 Knowledge Dependency Network

To ensure the integrity of a knowledge base we build up a knowledge dependency network,
which supervises dependencies between knowledge chunks.

For each kind of knowledge objects (e.g. in MOLTKE types, rules, contexts, etc.) a node
class is defined which is used as a pattern for the definition of instances for the knowledge
base. Figure 2.2 shows two examples for node class definitions.

(1) Symptom-Instance-Node
needs: (S ymptom-Class-Node(1:1))
needed-by: 0
is-a-source: 0

(2) Context-Node
needs : 0h'eeondition-Node(1:1)

S hortcut-Rule-Nodes(0:n)
Ordering-Rule-Nodes(0:n)....)

needed-by: 0
is-a-source: O

Fig. 2.2. Node class definitions of the knowledge dependency network for MOLTKE objects

Instances of these classes are used to represent all knowledge objects defined by the user.
But only "correct" objects (e. g. objects which are consistent with the rest) will be
inserted into the knowledge base. E. g., example (1) in figure 2.2 states that a symptom
instance node is only correctly defined if the needed symptom class was inserted into the
knowledge base before.

The instances are the nodes of the knowledge dependency network. For each node exists an
unambigous identifier, usually the name of the corresponding knowledge object. Arcs
represent three different relations: needs, needed-by, and is-a-source. The needs-relation
expresses the necessary preconditions for a correct object. The creator of a node is referred
to by the is-a-source-relation. The needed-by-relation shows where a node is used.

Each node instance stores three fists (needs-, needed-by- and is-a-source-list) which contain

2 Actually, the maintenance component is only implemented for HyDi, the successor of
the MOLTKE system.

342

the anchors of the above described relations 3. These lists are filled by the insertion of new
nodes into the network (see below).

The knowledge dependency network separates the knowledge base from the developer of
the expert system (see figure 2.3). It stores all syntactically correct object definitions. But
objects are only inserted into the knowledge base if their definition is consistent with the
rest of the knowledge base. Only objects in the knowledge base are used in the inference
process. In fact the network supervises the non-monotonic process of Idling a knowledge
base 4. Additionally, an agenda stores objects which are needed but not defined. Entries in
the agenda contain the name of the needed object, its type and the node where it is referred.

i.._] Agenda

II

Knowledge dependency network

consistent

. j
-.., -- I Consistent]

- R~move] knowl~ge|
inconsistent | base]

obj=

Fig. 2.3. Separating the expert from the knowledge base

The approach of knowledge dependency networks may always be used in domain-dependent
models because we also found the defined relations when we talked with our experts in
construction and planning domains. Also, tile algorithms for the creation and deletion of
new knowledge objects are general and not domain specific. They do not use references to
the special kind of objects used in diagnosis.

Defining new Knowledge Objects. If the user wants to create a new object for the
knowledge base the system first checks the syntax of the definition. Then all entries of the
needs-list must be filled with an object corresponding to the type used in the node class
(e.g. a symptom-instance-node needs a symptom-class-node as the corresponding anchor).

If all referred objects are already included in the knowledge base, the new object will also
be put in. Otherwise the user is informed and the needed anchors are put on the agenda of
objects which must be defined in the future. In this case the new object is not put into the
knowledge base (preserving its consistency). This feature allows the user to define new
pieces of knowledge in whatever order he wants and, nevertheless, only consistent

For the relation rel(A,B) we define object B as the anchor of object A and the other
way round.
Inserting or deleting an object may result in an inconsistent state of the knowledge
base. Conclusions drawn from a prior state may then be faulty. In fact, dependencies
of objects may be viewed also as inferences (e.g. from the existence of one object the
system may infere that another object has to exist, too).

343

knowledge bases are used for inference. If all nodes are completely anchored we call the
network node consistent.

A node consistent state may also be reached by a given order of definitions, which means
that an object may only be defined if all needed objects are already existing. The
knowledge dependency network supports the construction of a knowledge base because the
developer is not unnecessarily restricted.

Then the is-a-source-list is filled with the origin of the object. Usually, the source is the
expert who edits the knowledge base. The is-a-source-list is used if an object shall be
deleted. Only the creator of an object may remove it.

At the end of an object's insertion into the knowledge dependency network the system
checks if it is already needed in another node (which means that a reference is included in
the agenda). If so, the needs- and needed-by-lists of the two objects are updated. Possibly,
the other object is now node consistent. Then it will be put into the knowledge base and
its needed-by-list is checked for other nodes which may change into a consistent state.
Figure 2.4 shows the algorithm for inserting a new node into the network 5.

1. Parse the definition of the new object generating a list of all referenced node
instances

1.1. Parsing ok: Mark the new node as consistent
1.2. else: reject the new definition
2. For all needs-relations of the class corresponding to the new node instance do
2.1. Check if the referenced object is still in the network
2.1.1. If true: Create the needs- and needed-by-relations between the two nodes;
2.1.2. If false: Enter the referenced node into the agenda and mark the new node

as inconsistent;
3. If the new node is consistent then it is put into the knowledge base;
4. Store the source(s);
5 For all references to the new node in the agenda do
5.1. Create the needs- and needed-by-relations between the two nodes;
5.2. If the object from the agenda is consistent then put it into the knowledge base

(then all dependent objects must also be checked for consistency and possibly
are entered into knowledge base);

Fig. 2.4. The algorithm for inserting of a new node into the knowledge dependency network

Deleting Knowledge Objects. While the need-list stores the essential preconditions
of an object and is filled by insertion, checking the pattern of the node class, the dependent
objects are included in the needed-by-list which helps the developer to delete objects.

If an object is removed by the user the system checks if it is referred to anywhere. If so,
the user is informed about this fact and may decide if he really wants to delete the object.
As a result of a following deletion the dependent objects are marked as inconsistent and
removed from the knowledge base. Figure 2.5 shows the algorithm for deleting a node.

5 See appendix for a detailed example.

344

1. For all objects stored in the needs-list do
1.2. Remove the needs- and needed-by-relation between the two objects;
2.. If the node was consistent then remove it from the knowledge base;
3 For all objects o stored in the needed-by-list do
3.1. Remove the needs- and needed-by-relation between the two objects;
3.2. Generate an entry in the agenda that the deleted node is referenced;
3.3. "object o is inconsistent"

remove o from the knowledge base (then all dependent objects also must be
marked and removed)

Fig. 2.5. The algorithm for deleting a node from the knowledge dependency network

2 .5 Graph Consistency of a Knowledge Base

A node consistent network includes locally correct nodes, which means that all their
preconditions are fulfilled. Additionally, the integrity of a knowledge base must also be
guaranteed for relations between more than two objects. The system must prevent that the
combination of several objects results in an inconsistent state where the concept
"Inconsistency" may only be defined according to the domain. A MOLTKE knowledge
base for diagnosis must not contain for example

1. types with different names and same values,
2. symptom classes with the same type,
3. shortcut rules with the same precondition and different values for the same symptom

instance on the right hand sides,
4. more than one context with the same precondition.

Based on the knowledge dependency network these conditions may be checked by a
matching of subgraphs. This fits into our perspective of knowledge engineering which is
slrongly influenced by object-oriented analysis and object-oriented design. Therefore, our
approach is a little bit different from more logic-based validation techniques.

Figure 2.6 shows the structure of inconsistent subgraphs corresponding to the above
conditions. Our default assumption is that all graphs which do not contain inconsistency
subgraphs represent consistent states of a knowledge base. A knowledge dependency
network which does not contain inconsistency graphs is called graph consistent.

While developing a design model of the domain we also acquire knowledge about
inconsistencies and define the appropriate inconsistency subgraphs for the network. When
a new node enters the network, the system, after having checked for node consistency,
tests via graph matching if the network stays graph consistent. Otherwise, the user is
informed and has to resolve the inconsistency.

345

.............. ,, ii iiii i iiiii iiii!i !iiii!iiii ili!!i il iili

iiiiiiiiiii' !iiiiiii ii!!lliiiiiiii!ii :;::::,: ,, , :::,:,, , !iiiiiiiiil

1 -Type
inconsistencies

3- Shortcut rule
inconsistencies

2 - Symptom class
inconsistencies

4 - Context
inconsistencies

Fig. 2.6. Inconsistent subgraphs of a knowledge dependency network for MOLTKE KBs

2.6 Complexity Estimations

The time needed for node insertion depends on the number n of entries into the needs-list,
the size of the agenda a and the number of objects o which are dependent from the new
object. Thus, inserting a new node needs at most O(n*a+o*a) = O(a*(n+o)) steps. The
algorithm for deleting a node needs O(n+a) steps.

In our applications these estimations result in small numbers. E. g. in our CNC
machining center domain (cf. [19]) both, n and o, are smaller than 10. Checking graph
consistency appears to be more problematic because it is reduced to graph matching. It is
known that graph matching in general takes an exponential number of steps. In
MOLTKE knowledge bases this effort is in fact drastically reduced because we first take
advantage of having typed nodes. Therefore, not all nodes need to be used as a starting
point for a check. Second, the subgraphs are not very complex.

For the inconsistency graphs described above we have the following upper limits:

346

1. types with different names and same values:
O(/number of types~ */maximal size of types~)

2. symptom classes with the same type:
O(/number of needed-by-relations of the type/), because when inserting a symptom
class the system needs to check only for the referenced type if it is used in another
symptom class

3. shortcut rules with the same precondition and different values for the same symptom
instance on right hand sides
O(/number of needed-by-relations of the precondition/), because when inserting a
shortcut rule the system needs to check only if it is used in another shortcut rule
with a different value for the same symptom instance on right hand side

4. different contexts with the same precondition
O(/number of needed-by-relations of the precondition/), because when inserting a
context the system needs to check only if it is used in another context.

All in all we have a tolerable 6 time complexity for consistency checking of MOLTKE
knowledge bases.

3 The MOLTKE Workbench for Technical Diagnosis

The work reported here is only a small part of the MOLTKE project. Within this project
we developed the above described conceptual model (in the sense of KADS [6, 21]) for
diagnostic expert systems in technical domains. This model was refined to the
implementation level via a design model. Then we added qualitative reasoning and
machine learning techniques to the model. A detailed description of the resulting
MOLTKE workbench is beyond the scope of this paper. Therefore, we only give a brief
overview and refer to already published papers.

In addition to the facilities described in this paper, we use second generation expert system
technology to support the knowledge acquisition [2]. These include a model compiler
which generates the core of a knowledge base out of a deep model of the technical system
[16, 17]. This basic expert system is improved and extended by machine learning
methods. We implemented a case-based reasoning system which supports the diagnostic
process [4, 22]. [3] and [1] describe a system which learns relations between symptom
patterns and the work of [12] covers a system which learns diagnostic strategies b~qed on
neural network methods. The representation of temporal knowledge in the MOLTKE
system is subject of [15].

4 Discussion and Related Work

The MOLTKE workbench was developed in cooperation with the WZL, a mechanical
engineering institute at the technical university of Aachen, following a pragmatic
approach. Because of the integration of several advanced expert system techniques, the
workbench contributes to the state of art in knowledge acquisition (following, e. g., the
requirements of [20]).

In this paper we described the maintenance component which supports the elicitation and
coding of the knowledge by a knowledge dependency network. The network is especially

6 Tolerable means that an interactive development of the knowledge base is possible.

347

helpful if

~ several persons work together to build the knowledge base,
o the knowledge base is filled directly by the domain expert.

The network meets the above stated requirements on a maintenance component. Based on
the network, we are developing an interface which shows the effects of changes in the
knowledge base. The network shows and supervises the dependencies of the pieces of
knowledge and allows the user to define objects in an arbitrary order. Additionally, it
checks the represented knowledge for inconsistencies. Therefore, it supports the
construction of a knowledge base, especially if the builder of the domain model is different
from the one who has to fill it.

Seeking in knowledge acquisition literature we find many contributions which are
concerned with the more or less automatic acquisition of the domain models itself (e.g.
[13, 21]. We agree with the KADS group that a methodology for knowledge acquisition
exists. We extend their approach by emphasizing aspects of maintenance which are very
important if the expert system is supposed to live for a longer period of time.

The MOLTKE workbench can be used at least for every technical system of a similar
complexity as a CNC machining center, which was our first application 7. So we followed
a more generic approach than [14].

Our approach based on the knowledge dependency network is to fill and maintain a given
domain model preserving formally defined consistency conditions. Scanning knowledge
acquisition literature we did not find many papers on knowledge dependency supervising
and consistency checking. Comparing our maintenance component with the approach of
[10] we find two main differences. First, we use dependencies between pieces of
knowledge for consistency checking, they mainly build cross references (which is only the
first step of our approach). Second, they want to integrate different general representation
formalisms (e.g. production rules, semantic nets, frames, etc.) whereas we want to ease
the development of a knowledge base within a domain-dependent representation.

Supervising dependencies and backtracking to consistent states is the subject of truth
maintenance systems (ATMS [8], TMS [9]). Usually, truth maintenance systems are used
within one (dynamic) inference process. We need it for preserving a consistent state of a
(static) knowledge base. Thus, our system would be at least a new application of TMS.

Although we took a lot of inspirations from TMS approaches, we had to extend them.
We have to deal with consistent and inconsistent states of the knowledge base. A currently
inconsistent state may be consistent in the next step and then again become inconsistent
(e.g the user defines an object, removes it and then redef'mes it). This swapping between
consistency and inconsistency is not well handled by truth maintenance systems.
Furthermore, a TMS does not find the inconsistencies. It is externally told that the actual
state is inconsistent and then backs up to a consistent state. We need a system where we
can define what is inconsistent and which then checks this by itself. Therefore, we
developed the knowledge dependency network.

A problem in the discussion of the MOLTKE workbench is that it consists of several
complex components which deal with different topics from the field of expert systems

7 Additionally, we implemented an expert system for fault diagnosis in heterogenous
computer networks.

348

(e.g. deep modelling, qualitative reasoning, representation, acquisition, machine learning,
knowledge maintenance and compilation). The integration of the components is an
advantage over any stand-alone solution (in the sense of: "The whole is more than the
sum of its parts"). But this advantage cannot be presented successfully within one paper
dealing with special aspects of the whole system.

5 State of Realization and Ongoing Work

The MOLTKE base system for diagnosis (i.e. the above described representation
formalism) is fully implemented in Smalltalk-80. Its graphic-oriented acquisition interface
uses different parsers for checking the syntactic correctness of an object definition. The
deep modelling and machine learning facilities are implemented, too.

Based on our experience we are developing a hypermedia-based knowledge engineering
environment (called CAKE or HyperCAKE) which supports the knowledge acquisition
process [11]. The maintenance network will be integrated in this environment to support
multiple experts and multiple knowledge engineers working together to build an expert
system. It will support the process of model construction by allowing a smooth transition
from informal (data level) descriptions via a semi-formal conceptual model to formal
design models.

The HyperCAKE system uses the hypertext abstract machine (HAM) for storing and
retrieving information (following the ideas of [7]). We extend the HAM by facilities for
typing nodes, links and contexts. Additionally, we integrate a rule interpreter into the
hypertext machine.

We finished the implementation of the HAM and the integrated rule interpreter. The
implementation of the maintenance component (which includes the described knowledge
dependency network and consistency checkers) will be finished this summer.

We are re-implementing the MOLTKE shell based on the HyperCAKE system until the
october 1992. The resulting system is called HyDi (Hypermedia-based Diagnostic Expert
System).

6 Acknowledgements

I would like to thank the research group of Prof. Richter for the excellent working
climate. Especially, I want to thank Prof. Richter for a lot of advices on this paper and
Klaus Althoff, Alvaro de la Ossa, Hans Lamberti, Erica Melis, Scarlet NOkel, J0rgen
Paulokat, Reinhard Praeger, Robert Rehbold, Mike Stadler and Holger Wache for
discussing preliminary versions of this paper written in a really ugly English. Last but
not least I would like to say a big "thank you" to Claudia Dell for the time she spent in
maintaining me when I was writing this paper on knowledge base maintenance.

Appendix
In the following we give an example how the editing of a knowledge base is supported by
a knowledge dependency network. First, we define the node classes. For checking graph
consistency the inconsistent subgraphs of figure 2.6 are used. Last, we define a few
objects and show how the knowledge dependency network developes. The description of
the needed parsers is left out.

349

Node class definitions:

Type-Node needs: 0
Symptom-Class-Node needs: (Type-Node (1:1))
Symptom-Instance-Node needs: (Symptom-Class-Node (1:1))

Defining objects for the knowledge base:
Step 1: Symptom-Instance newwith_name: SWlTCH-1 for_class: SWITCH
What happens? A symptom instance node is put in the empty knowledge dependency

network and marked as inconsistent. An entry for the needed symptom
class is put into the agenda.

iil ii!iiiiil iiii iiiiii!!i!iiii, ii!!il ii iill iiiii!il ill i!!iiiiiii iiiilili

Symptom-Instance-Node:
SWITCH- 1

O Consistent nodes @ Inconsistent nodes
Fig. A.1. Step 1 - The resulting knowledge dependency network

Step 2: Symptom-class new_with_name: SWITCH with_Type: SWITCH-TYPE
What happens? A symptom class node is put in the knowledge dependency network

and marked as inconsistent. An entry for the needed type is put into
the agenda. Then the system finds out that the new node is already
referenced in the agenda and the appropriate connections are
established.

v

Symptom-Class-Node: Symptom-Instance-Node:
SWITCH SWITCH-1

Fig. A.2. Step 2 - The resulting knowledge dependency network

350

Step 3: Type newwithname: SWITCH-TYPE values: (open closed)
What happens? A type node is put in the knowledge dependency network and marked

as consistent. Then the system checks the agenda for an entry which
matches the new type. This entry is removed from the agenda and the
(referenced) symptom class node is marked as consistent. From this
results that also the symptom instance node is consistent. All nodes
enter the knowledge base.

~iiiiiiiiiiiii!i!iii!iiiiiiliiiii!iii ii iiiiiii iili iiiiiii!iiiiiiii!!i !i!ii iii iiil ilil iii ii!!ii iiiii]iiii i iiii !iii!i!ii!i!i iiiiiii !iliil ~ iii
!ii!!iiiiiiiiiiiiiiiii~iiiiiiiii!ili iii iiiijiiii!!iiiiiiiiiiiiiiii!iiiii! i i! iii!iiiii!ili i~iiiiii~ii~ !ii~ii!iiiiiiiii~iiiiiiii~!i!!i~i! iiiiiiiiii!~!!iiii i!iii! iiii!iiiiiiiiiiii~iii~ !~ iili iiiiiiiiiiiiiii!iiii!!iiiii ii!ii iiiii!iiiiiiiiiiiiiiill ii iiiiiiiiiiiiil i !iiiiiiiiiiiiiiii iilili iii!iiiiiiiiiiiiiiiiiiiiii~

open

o o
Symptom-Class-Node: Symptom-Instance-Nod(

~ ' closed SWITCH-TYPE SWITCH SWITCH-1

Fig. A.3. Step 3 - The resulting knowledge dependency network

Step 4: Symptom-Class new_with_name: POWERSWITCH with_type: SWITCH-TYPE
What happens? The user tries to define a symptom class node. The system checks the

inconsistency graphs and detects a contradiction to graph 2 of figure
2.6. Thus, the new node is rejected.

C iiiiiiiiii!i ili!i iiiiiii!ili!iii!i!iiiiii - ii iiiii iiiiiiiiii!i!ii!i ii
lsistent subgraph

n-Instance-Node:
?I-1

Fig. A.4. Step 4- The knowledge dependency network and the inconsistent subgraph

351

Step 5: Type new_with_name: POWERSWITCH-TYPE values: (open closed)
What happens? The user tries to define a type node. The system checks the

inconsistency graphs and detects a contradiction to graph 1 of figure
2.6. So, the new node is rejected.

~ubgraph

�9
�9 .: Symptom-Instance-Node:

SWITCH-I

Fig. A.5. Step 5- The knowledge dependency network and the inconsistent subgraph

References

1. Althoff, K.-D.: Eine fallbasierte Lernkomponente als ein integrierter Bestandteil der
MOLTKE-Werkbank far die Diagnose technischer Systeme, Doctoral Dissertatioa
University of Kaiserslautern, 1992 (to appear)

2. Althoff, K.-D., Maurer, F., Rehbold, R.: Multiple Knowledge Acquisition Strategies
in MOLTKE, in: Proc. EKAW 90, 1990

3. Althoff, K. D., Maurer, F., Tmph6ner, R., WeB, S.: The learning component of the
MOLTKE3 workbench for the diagnosis of technical systems (in German: Die
Lernkomponente der MOLTKE3 Werkbank far die Diagnose technischer Systeme),
KI, special edition on Machine Learning, Baden-Baden: FBO-Verlag, No. 1, 1991;
also: SEKI-Report SWP-90-08, University of Kaiserslautem

4. Althoff, K.-D., Maurer, F., WeB, S.: Case-Based Reasoning and Adaptive Learning
in the MOLTKE 3 Workbench for Technical Diagnosis, SEKI Report SR-91-05,
University of Kaiserslautem, 199 I

5. Althoff, K.-D., TraphOner, R.: GenRule: Learning of Shortcut-Oriented Diagnostic
Problem Solving in the MOLTKE3-Workbench, SEKI Report SR-91-04, University
of KaL~rslautem, 1991

6. Breuker, J., Wielinga, B.: M~lel-Driven Knowledge Acquisition: Interpretation

352

Models, Memo 87, Deliverable task A1, Esprit Project 1098; 1987

7. Campbell, B. , Goodman, J. M.: HAM: A General Purpose Hypertext Abstract
Machine, Communications of the ACM, July 1988, Vol. 31, No. 7, 1988

8. de Kleer, J.: An assumption-based TMS, Artificial intelligence, Vol. 28, P. 163-196,
1986

9. Doyle, J.: A truth maintenance system, Artificial intelligence, Vol. 12, P. 231-272,
1979

10. Jansen, B., Compton, P.: The Knowledge Dictionary: Storing Different Knowledge
Representations, in: Proc EKAW 89, 1989

11. Maurer, F.: CAKE: Computer-aided Knowledge Engineering, Proc. of IJCAI-91
Workshop on "Software Engineering for Knowledge Base Systems", 1991; also:
SEKI Report SR-91-09, University of Kaiserslautern

12. Maurer, F . , Ruppel, A., WeB, S.: Learning of diagnostic strategies with neural
networks in the MOLTKE 3.0 expert system toolbox (in German: Lernen von
Diagnosestrategien mit neuronalen Netzen in MOLTKE), SEKI Report SWP-91-02,
University of Kaiserslautem, 1991

13. Morik, K.: Acquiring domain models, in: Knowledge Acquisition Tools for Expert
Systems, Academic Press, 1988

14. Musen, M. A., Fagan, L. M., Combs, D. M., Shortcliff, E. H.: Use of a domain
model to drive an interactive knowledge-editing tool, in: Knowledge Acquisition
Tools for Expert Systems, Academic Press, 1988

15. N6kel, K.: Temporal Matching: Recognizing Dynamic Situations from Discrete
Measurements, in: Proc. IJCAI 1989, 1989

16. Rehbold, R.: Model-Based Knowledge Acquisition from Structure Descriptions in a
Technical Diagnosis Domain, Proc. Avignon 1989, 1989

17. Rehbold, R.: Integration of model-based knowledge into technical diagnostic expert
systems (in German: Integration von modellbasiertem Wissen in technische
Diagnostik-Expertensystem), Doctoral Dissertation, University of Kaiserslautern,
1991

18. Richter, M.M.: Principles of artificial intelligence (in German: Prinzipien der
ktinstlichen Intelligenz), Teubner Verlag, 1989

19. Richter, M. M. (ed.): MOLTKE - Methoden zur Fehlerdiagnose technischer
Systeme, Springer Verlag, (to appear), 1992

20. van Someren, M. W., Zheng, L. L., Post, W.: Cases, Models or Compiled
Knowledge; a Comparative Analysis and Proposed Integration, in: Proc. EKAW 1990

21. Wielinga, B., Schreiber, A Th., Breuker, J.: KADS: A Modelling Approach to
Knowledge Engineering, KADS-II/TI.1/PP/UvA/008/1.0, Esprit Project P 5248
KADS-II, 1991

22. Althoff, K.-D., WeB, S.: Case-Based Knowledge Acquisition, Learning, and Problem
Solving for Diagnostic Real World Tasks, in: Prec. EKAW 91, 1991; also: SEKI
Report SR-91-07, University of Kaiserslautern

