
Coordinating System

Development Processes+

Frank Maurer
University of Kaiserslautern

P.O. Box 3049
67653 Kaiserslautern

e-mail maurer@informatik.uni-kl.de
URL http://wwwagr.informatik.uni-kl.de/~maurer

ABSTRACT

In this paper we describe how explicit models of software or knowledge engineering processes
can be used to guide and control the distributed development of complex systems. The paper
focuses on techniques which automatically infer dependencies between decisions from a process
model and methods which allow to integrate planning and execution steps.

Managing dependencies between decisions is a basis for improving the traceability of develop-
ment processes. Switching between planning and execution of subprocesses is an inherent need in
the development of complex systems.

The paper concludes with a description of the CoMo-Kit system which implements the technolo-
gies mentioned above and which uses WWW technology to coordinate development processes.
An on-line demonstration of the system can be found via the CoMo-Kit homepage:

http://wwwagr.informatik.uni-kl.de/~comokit

1 INTRODUCTION

In the future, the development of large software systems will be a typical task for virtual enter-
prises: People with different educational background (e.g. economics, computer science, arts for
interface design) working on many locations all over the world (including emerging market coun-
tries like India or Eastern Europe) will have to work together to fulfill the business needs.

A deeper look on these applications shows that large scale design processes in virtual enterprises
can be characterized by the following features:

+ This work was sponsored in part by theDeutsche Forschunggemeinschaft as part of the special research
activity Sonderforschungsbereich 501 „Development of large systems with generic methods“

• People work on different locations and at different times on a common task. Therefore, time and
money are spend for planning and coordination of the work process.

• Large-scale development processes are long-term processes. Requirements on the outcome may
and will change during process execution. Change processes are a central reason for running out
of project schedule and budget.

• During the process, a lot of decisions are taken by each participant. These decisions influence
each other and base on each other.

These features lead to certain requirements for process-supporting tools:

• The tool has to support planning, coordination, and execution of the work process.

• Spatial and chronological separation of the tasks necessitates that the tool serves as a kind of
“intelligent memory” of it’s users, in order to allow participants to under-stand the rationales
behind decisions.

• If changes take place, the tool should automatically inform the involved users.

A (relatively) new direction in software engineering research (Armenise et al. 92, Bröckers et al.
95, Huff 89, Verlage et al. 96) deals with approaches to software process modeling. Their goal is
to describe and enact the way how software is produced and, in the long term, to improve the soft-
ware production process. In our CoMo-Kit project, on one side we apply these approaches on the
management and the coordination of large knowledge engineering projects. On the other side, we
improve them by using AI techniques.

The next chapter gives an overview on the architecture of the CoMo-Kit System which imple-
ments our concepts.

These resulted from an abstract view on the questions which must be supported by a work process
coordination tool:

• Who should do what?
This question addresses the problem of project planning and the delegation of tasks to agents. A
framework for project planning is described in chapter 3.

• When can the work on a task start?
Here, we distinguish between conditions which must be fulfilled for planning the work on a task
and for execution of the task itself. Chapter 4 gives further details.

• Who must be informed about changes?
To improve the traceability of decisions is the core of our answer (see chapter 5).

The state of the implementation is described in chapter 6 and illustrated by a set of screenshots of
a (small) knowledge engineering example. The last chapter gives a short summary and describes
our current and future work.

2 COMO-KIT SYSTEM ARCHITECTURE

The CoMo-Kit project of the University of Kaiserslautern focuses on methods and techniques
which support project planing and project coordination for complex, distributed development and/
or design projects. To evaluate our approach we work on two application domains: software engi-

neering, which is the running example here and also in (Dellen, Maurer 96), and urban land-use
planning (Maurer, Pews 96, Maurer, Pews 95).

For a new development project, in a first step aninitial project plan is created. This plan contains
descriptions of the tasks to be done, a definition of the data structures which must be created dur-
ing task execution and a list of the team members involved in the design process.Our approach
allows to interlock planning and enactment. This is a main feature for design processes because
they only can be planned on a detailed level when some steps have already been carried out. This
is one reason why normal workflow systems cannot be used for design tasks: They require that the
task flow is definedbefore the enactment starts.

The current project plan is used by our Workflow Management Server, the CoMo-Kit Scheduler,
to support project enactment. Several clients are implemented to work on subtasks of the process.
E.g. we developed a CAD/GIS client to work on the drawing tasks within the urban land-use plan-
ning process.

Figure 1 shows the system architecture of
CoMo-Kit. It consists of three main parts:

• TheModeler allows to plan a project.

• The Scheduler supports the execution of a
project and manages the information pro-
duced.

• The Information Assistantallows to access
the current state of a project.

In the following we explain the concepts
behind the Modeler and the Scheduler. A
description of the Information Assistant is omitted because it is not within the scope of this paper
on „Project Coordination“.

3 PROJECT PLANNING: THE COMO-KIT MODELER

Project planning means developing a model how the project should be carried out. For large-scale
projects, a detailed plan can not be developed before the execution starts but planning and execu-
tion steps must me interlocked: Starting with an initial plan the first tasks are executed. Based on
the results, the plan is refined and/or extended. Now we will define the ingredients of a project
plan in our approach.

To model cooperative development processes, our Modeler uses four basic notions: Tasks (Pro-
cesses), Methods, Products (Concepts) and Resources. In the following, these terms are defined as
far as is necessary to understand this paper omitting the syntactical details of our project planning
language.

Figure 1 The Architecture of the CoMo-Kit System

Project Planning
(Modeler)

Project Execution
(Scheduler)

Project
Information
(Information
Assistant)

plan
interpretation

plan
changes

3.1 Tasks (Processes)

A task describes a goal to be reached while working on a project. Our intended application
domains deal with the production of information. Information which is relevant for the project is
described in the project plan. Therefore we associate every task with a set of input and output1

parameters2. In the project plan, we are only able to state which type of information is used or
must be produced.

Example:The task „requirements engineering“ uses an object of type „informell problem descrip-
tion“ as input and produces an object of type „requirements document“ as output.

For every input the following flags3 mentioned in table 1are defined.

Outputs of a task may be optional or required.

Additionally, for every task a precondition and a postcondition may be defined. Preconditions are,
for example, used to check if the inputs fulfill a given requirements. Postconditions are, for exam-
ple, used to check if the output of a task has a wanted quality.

Example:For a task „implement program modules“ the precondition may be „all module specifi-
cations completed“ and the postcondition may be „module complexity < LIMIT“.

When tasks are executed, decisions are made which result in assignments of values to the output
parameters.Our approach assumes that there is a causal dependency between the available
inputs and the produced outputs of a task. We work on the principle that during project planning
only inputs are associated to a task which are relevant and necessary for reaching the goal (Inade-
quacies of this assumption and their solutions are discussed in Section 5.4).

3.2 Products (Concepts)

To model products which are created in the course of project execution, an object-centered
approach is used. As usual, we distinguish between classes and instances. Classes define a set of
slots to structure the product. Every slot is associated with its type and cardinality. Types may be
other product classes or basic types (e.g. SYMBOL, STRING, REAL,...). During process enact-
ment we represent product instances as values which are assigned to variables. The type of a vari-
able is specified by a product class. Using other product classes as the type of a slot creates

1. If a parameter is modified in a task, it is modelled as inputand output.
2. Parameters are also called “variables”.
3. The flags are mutually exclusive.

Table 1: Parameter flags

Flag Name Meaning

needed for planning
The input must be available before the plan-
ning of the task starts

needed for execution
The input is not needed for planning but it
must be available before the execution starts.

optional
The input neither needed for planning nor for
execution (but it may be helpful to have).

complex object structures. In the visualization of the product flows, these structures can be shown
on different levels of detail.

3.3 Methods

To solve a task, a method is applied. For every task, there may exist a (predefined) set of alterna-
tive methods4. Further, our approach allows to define new methods when a task is planned or
replanned.

Methods are executed by agents (see below).

We distinguish between atomic and complex (or composed) methods:

• Atomic methods assign values (= instances of product classes) to parameters. Process scripts
describe how a given task is solved for humans.Process programs are specified in a formal lan-
guage so that computers can solve a task automatically without human interaction.

• Complex methods are described by a product flow graph. A product flow graph consists of
nodes which define parameters, (sub)tasks and links which relate parameters to tasks. The direc-
tion of the link determines if the parameter is the input or the output of the task. Every parame-
ter is associated with a product type: During process execution, the parameters may store
instances of this product type.

Subtasks can be further decomposed by methods. Along this line, the decomposition of the over-
all task (e.g. „develop software system“) can be seen as an AND-OR-Tree where tasks are AND-
Nodes and methods are OR-Nodes. The appropriate method for solving a task is selected during
process enactment.

3.4 Resources: Agents & Tools

Resources are used for project planning and task execution.Agents are active entities which use
(passive)tools for their work.

Tasks are handled by agents. We distinguish betweenactors (= human agents) andmachines.

For every task, the project plan defines the properties an agent must have to work on it. Further,
our system stores information about the properties of every agent. For actors, we distinguish three
kinds of properties: qualifications (q), roles (r), and organization (o).

During task execution, our system compares the required properties of a task with the properties
an agent possesses. This allows to compute the set of agents which is able to solve the task.

Example:In a project plan, it is defined that the task „implement user interface“ should be exe-
cuted by an actor which has skills in using the Visualworks Interface Builder (q), is a programmer
(r), and works in department Dep 1.4 (o).

Having sketched our language for project planning, we now will explain how the execution of
plans is supported.

4. For example, reusable plans may be extracted from old project traces and stored in an „experience fac-
tory“ (Basili 93, Basili, Rombach 88)

4 PROJECT EXECUTION: THE COMO-KIT SCHEDULER

Conventional project management tools (e.g. MS Project) allow its users to plan a project and
manually check if it advances as planned. The tool does not check if every planned task is exe-
cuted nor does it provide the information which is necessary for task execution.

Conventional workflow management systems (Georgakopoulos, Hornick 95, Jablonski 95, Ober-
weis 94) require a complete model to be available before the execution starts. Workflow manage-
ment systems are only used for repetitive processes because the effort to develop a model is high.
So, it is not feasible to use them for project planning.

Conventional groupware systems (e.g. Lotus Notes) basically are a means for communication and
allow its users to access relevant information. They have no notion of a project plan and therefore
are not able to support the coordination of projects.

On contrary, our Scheduler

• interprets the planautomatically and therefore is able to check the coherence between plan and
execution5. This coherence between the description of a process and its execution is required by
quality management standards (ISO 9000 ff)

• is able to alternate planning and execution steps and develop a plan incrementally for a specific
project (Dellen, Maurer 95)

• manages the tasks to be done and provides guidance for its users.

In the following, we will briefly illustrate the mode of operation of the Scheduler and its architec-
ture.

4.1 The CoMo-Kit Scheduler

For every project, a new Scheduler Instance is created and initialized with a top level task. During
task initialization, the task is delegated to a set of agents6. Then the Scheduler waits until an agent
logs in and accepts a task. After accepting a task, the agent chooses a method which decomposes
it into several finer-grained tasks. This is a planning step and so the agent is only able to accept the
task after all inputs which are required for planning are available. Then the agents delegates every
subtask to a set of agents. If a task cannot be decomposed, the responsible agent has to produce
the outputs. The Scheduler guarantees that an agent may only accept such a task if all needed
inputs are available.

5. With the limitation that the system has to „believe“ a user who claims he is working on a task.
6. This set is a subset of the agents which are able to work on the task and are defined in the project

model.

In Figure 2 the architecture of the CoMo-Kit
Scheduler is shown.

The server component of the Scheduler is
implemented with the object-oriented data-
base management system GemStone from
Servio Corp. The server

• stores the current project model,

• handles the To-do agendas for every agent,

• stores all data produced during task execu-
tion7, and

• manages dependencies between project
information (see below).

The server component is accessible via a local
area network from Visualworks for Smalltalk-
80 and C/C++-written clients. We developed
clients8 in Visualworks which allow to

• accept tasks to work on

• plan a task

• change plans

• decompose tasks into finer-grained subtasks

• supervise how the work on the subtasks is
advancing

• edit products

For every task, a separate client can be used
for planning. So, it is possible to distribute the
overall planning process to several agents. Clearly, it is also possible to distribute the overall
workflow (i.e. every of its subtask) to several agents.

Using the Visualwave Package from ParcPlace Systems it is possible to „forward“ the client inter-
faces via the world wide web (using Netscape, Mosaic or other Web-Browser as the front end to
the user). So, Visualwave allows to distribute the work within a project via the Internet.

4.2 Developing & Executing Project Plans

Our framework allows to model arbitrary development processes. Anytime the current plan can be
extended by adding new methods or changed9. So, our approach supports incremental project
planning.

7. If the data is produced using an external tool (e.g. Framemaker, CAD Systems etc.) then only a refer-
ence to the file is stored.

8. Screenshots are shown in Section 6.
9. If a project plan is extended or changed the system must check if the user has the appropriate access

rights.

C/C++
Client

Figure 2 Architecture of the Scheduler

Dependency
Management

Data
Management

To-Do Agendas
Object-Oriented
Database GemStone

LAN

Visualwave
with

Visualworks
Client

Visualworks
Client

Internet

Netscape
Browser Mosaic

Browser Netscape
Browser

.......

........

Project
Plan

From the point of view of a project manager, the planning and execution cycle is as follows:

• Define the initial task (or accept it from your boss).

• Describe the goal of the task, its inputs, outputs, and conditions.

• Execute the task or

• Decompose it into several subtasks and define the product flow between them.
• Delegate the subtasks to your team members.
• Supervise the subtasks execution.
• React on exceptions by replanning or by notifying the producer of your input information or your boss.

To summarize the approach: The Scheduler supports the coordination of work processes by giving
project managers means to plan a project and to supervise how the plan is followed.

A problem which remains is how to support large teams in reacting on changed decisions. In the
following, we will show that if causal dependencies between decisions are handled by a com-
puter-based system, change processes can be supported. The rest of this paper focuses on formal-
isms underlying the dependency management. Our approach allows to acquire these causal
dependencies between decisions automatically from a project plan.

5 PROJECT CHANGES: IMPROVING TRACEABILITY

To manage causal dependencies between design decisions is necessary to guarantee the traceabil-
ity of the development process. If a system is able to find out what is influenced by a decision, it is
also able to inform its users if the decision is changed.

The dependency management component is based on ideas from REDUX (Petrie 91, Petrie, Cut-
kosky 94). Extending Petrie’s approach, our system deduces dependencies automatically from a
project plan. The postulated dependencies have to be made explicit and managed with a suited
mechanism (Maurer, Paulokat 94). By automatically deducing dependencies from the project
plan, the work load of users is reduced: They are not forced to enter all causal relations between
decisions manually.

From a project plan our system derives two kind of dependencies:

• Product flow: The output of a task depend on the available inputs.

• Task decomposition: All subtasks of a task which becomes irrelevant have to become irrelevant
too.

Now we will explain the formalisms which are used in our system to manage dependencies.

To solve a task, adecision is made which results in variable assignments or adecomposition of a
task into subtasks (i. e. the selection of a decomposition method).Rationales are arguments for
the validity of a decision or an information. Formally, a rationale is a logical implication between
predicates.

During project execution, former decisions may be found erroneous or suboptimal. Then, they can
be retracted and become invalid.

To formalize these notions, a set of predicates has been defined. At every point in time, a predicate
can bevalid (TRUE) orinvalid (FALSE).

These rationales do not describe the discussion processes which lead to a decision. They are only
a means to handle dependencies between decisions.

Whenever a decision m is made, the related predicatedecision(m) is valid. If a decision must not
be a part of the solution, the related method isrejected. The rejection of a methodmi is described
by a predicaterejected-decision(mi) and means that there is a hard reason against this decision.
The relation between the two predicates is shown in Equation 1.

rejected-decision(mi) ⇒ ¬decision(mi) (1)

For predicates, their rationales may be defined. Now we will explain how these rationales can be
extracted automatically from the project plan.

5.1 Dependencies within the Information Flow

During the enactment of tasks, information is used and produced. The project plan specifies which
information is used/produced and states the type of the information.We assume that the informa-
tion produced causally depends on the information used.This implies that the output information
is in question whenever the inputs become invalid. An example illustrates the underlying formal-
ism.

Figure 3 shows the information flow for a task
T. I, O1 and O2 are formal parameters (vari-
ables) of products. They define the type of a
product and give a name to a product instance
within the process model.T consumes a prod-
uct of typePT1 referenced by variableI. It pro-
duces products namedO1 andO2.

Formally, the dependency between a decision
and the assignment of values to the output
parameters is expressed with equation 2. The validity of predicateassignment(O1=o1j) states that
variableO1 is assigned with valueo1j.

decison(mj) ⇒ assignment(O1=o1j) ∧
assignment(O2=o2j) ∧ ... ∧

assignment(Ov=ovj) (2)

If predicatedecison(mj) becomes invalid, our system also invalidates the assignments of the out-
put variables.

Our goal was to make the validity of the outputs dependent on the inputs. Formally, this is done by
equation 3 together with equation 1.

¬assignment(Ii=i1k) ∨ ... ∨ ¬assignment(In=ink)
⇒ rejected-decision(mj) (3)

For every task, equations 1-3 are created by our system as soon as a decision is made. Outputs of
one tasks are inputs of others. During a design process, long chains of dependencies are created.

Information (Producttype)

Task

Direction of the information flow

Figure 3 Information flow of a task T

I (PT1)

O1(PT2)

O2(PT3)
Task T

These decision chains are the basis to guarantee traceability.The equations state a general scheme
for representing causal dependencies based on information flow.

5.2 Dependencies between a Task and its Subtasks

Coordinating large projects requires that every person involved knows what to do and when to
stop. If tasks are assigned to people and replanning takes place, some tasks become invalid and
the personal working on it has to be informed about that fact. Our approach automates this and
therefore reduces the project coordination effort.

Complex methods decompose tasks into several smaller subtasks. If during project enactment a
decision for methodmi is made, then subtasksT1...Tv become valid and must be solved. Formally,
this dependency is expressed in equation 4. The predicatevalidSubtask(Ti) is valid, as long as task
Ti must be solved within the design process.

decision(mi) ⇒
validSubtask(T1) ∧

validSubtask(T2) ∧ ...
validSubtask(Tv) (4)

5.3 Dependencies based on the object structure

In CoMo-Kit, products are described in an object-centered manner. Therefore, there are depen-
dencies between assignments which result from the object decomposition. E.g. if the assignment
of a complex object to a variable becomes invalid, also all its slots (which are filled by other
assignments) become invalid, too. These dependencies are implicitly contained in the equations
above: Products are incrementally created during tasks enactment (by making a decision for a
method). Every assignment of a value to a slot is part of the decision chain which starts from the
creation of the object (no slots can be assigned if the object was not already created).

5.4 Limitations of the Automatic Deriveability of Causal Dependencies

The dependencies described above are automatically created based on the project plan. In practi-
cal applications, one has to live with incomplete project plans. This inadequacy may have several
causes10:

• A standard plan (e.g. the design process may be described in a quality management manual fol-
lowing ISO 9000ff) does often not match exactly to the actual project or may be to coarse-
grained.

• Large projects often take a longer period of time. In the beginning, these projects can only be
roughly planned. For the first steps, perhaps a detailed plan may be generated. Later steps can
only be planned in detail, when the results of the first are available (e.g. the implementation of a
software system can only be planned in detail when a specification is available).

10. A more detailed look on the limitations and our initial solution is given in (Dellen, Kohler, Maurer 96)

For the first point, one can argue that a “good” standard plan will not show this inadequacy. But
the second point is principle in nature and cannever be solved by pre-planning.

These problems result in the possibility that a causal dependency between two information is not
modeled in the project plan. It is also possible that the model shows an input information which is
not relevant for a task. To overcome these two problems, our system allows its users to add new or
delete unnecessary design rationales during task enactment.

Additional Rationales: Formally, new rationales are entered by changing equation 3. A decision
may depend on:

• justifications based on thevalidity of previous decisions (cf. Eq 5)

• justifications based on thevalidity of existing parameter values (cf. Eq 6)

• justifications based on theinvalidity of previous decisions (cf. Eq 7)

• justifications based on theinvalidity of existing parameter values (cf. Eq 8)

The additional justifications change the condition for the rejection as demonstrated in the follow-
ing formulas (Italic characters in following equations signal the additional justifications):

¬assignment(Ii=i1k) ∨ ... ∨ ¬assignment(In=ink) ∨ ¬decision(mold1) ∨ ... ∨ ¬decision(moldM)
⇒ rejected-decision(mnew) (5)

¬assignment(Ii=i1k) ∨ ... ∨ ¬assignment(In=ink) ∨ ¬assignment(X1=xold1) ∨ ... ∨
¬assignment(XM=xoldM)

⇒ rejected-decision(mnew) (6)

¬assignment(Ii=i1k) ∨ ... ∨ ¬assignment(In=ink) ∨ decision(mold1) ∨ ... ∨ decision(moldM)
⇒ rejected-decision(mnew) (7)

¬assignment(Ii=i1k) ∨ ... ∨ ¬assignment(In=ink) ∨ assignment(X1=xold1) ∨ ... ∨
assignment(XM=xoldM)

⇒ rejected-decision(mnew) (8)

To clarify the formulas: If a decision depends on a condition then, in our approach, its rejection
depends on the negation of the condition.

Not necessary Rationales:Justifications of design decisions, which are automatically derived
from the model, describe dependencies contained in the information flow. If some of those depen-
dencies are irrelevant for a particular decision in the current project, it is necessary to delete them.
As a result of this adaptation our system operates only on significant justifications.

We achieve the adaptation of the logical description by removing the related predicate (e.g.
assignment(In=ink)) of a parameter assignment, that does not influence the decision. This causes
the following change in Equation 3:

¬assignment(Ii=i1k) ∨ ... ∨ ¬assignment(In-1=in-1k) ⇒ rejected-decision(mnew) (9)

Surely, users are not forced to enter this formula directly but are supported by a graphical user
interface.

To handle the dependencies, a truth maintenance system is used (Doyle 79)

Now, we have explained the logical foundation of our work. Based on the dependency manage-
ment techniques, our system is able to automatically inform involved users about changes.

In a local area network, this forward propagation is easily implemented using the mechanisms of
the GemStone-Smalltalk Interface. In the world wide web, the forward pushing of information
from the server to the client is a bit unconventional. Alternatively, the users may manually update
their task agenda by accessing the server from time to time.

6 EXAMPLE AND STATE OF IMPLEMENTATION

The CoMo-Kit Modeler is fully implemented as well as the CoMo-Kit Scheduler for the local
area network. Currently, only plan execution is supported by a WWW-based version of CoMo-Kit
which was developed using the Visualwave package.

In the following, we will illus-
trate the use of CoMo-Kit with
a small example. Figure 4
shows a decomposition of a
knowledge engineering pro-
cess. For the top-level task
„KE_Project“, two methods
are defined: „prototyping-ori-
ented“ (in the actual model
without any subtasks) and
„life-cycle oriented“ (which
decomposes the top-level task
into 8 subtasks „System
design“ - „End user test“). One
of is subtasks, namely „Con-
ceptual modeling“, can be
solved by applying either
method „semi-formal specifi-
cation“ or method „formal
specification“.

Using the CoMo-Kit Modeler,
one is able to describe the
information flow of a method. Figure 5 shows the information flow of two methods. Basically, the
method „life cycle oriented“ tries to adapt the V-Model of software engineering processes to a
knowledge engineering process. The method „semi-formal specification“ refines the task „Con-
ceptual modeling“ into a set of subtasks. A closer look on the task „Conceptual modeling“ in
method „life-cycle oriented“ shows that it gets the input „chunks“ from the ancestor task „Proto-
col analysis“ and produces a „conceptualModel“ as output. Additionally, two concept instances
are inputs to the task: „PSM library“ allows to access a library of problem solving methods while
working on the task. „Ontology library“ allows to access the Ontology server in Stanford Univer-

Figure 4 Task decomposition of a knowledge engineering process

sity (Farquhar et al. 96). In the method „semi formal Specification“, these libraries are linked to
two different tasks, namely „Select PSM“ and „Select Ontology“. Basically, by linking instances
to a task, the user gets an easy access to relevant background information (or knowledge) which
can be used in his work. Here, he is able to access libraries of ontologies and problem solving
method and select those which can be reused in his current project.11

The product model defines a set concepts (Figure 6). Figure 7 shows a set of agents.

11.The problem solving method library currently is only a dummy. If there is a web-based library it can be
easily integrated into this example.

Figure 5 Information flow of the methods "life-cycle oriented" and "semi-formal specification"

All these models can be edited
and changed using the tools of
the Modeler.Further, they can
also be changed during the exe-
cution of the process. This
increases the flexibility of the
workflow engine, the Scheduler.

In the following, we will illus-
trate how the work processes is
executed using a standard World
Wide Web Browser (Netscape).
The first step is to access the
CoMo-Kit Desktop (Figure 8)
which allows to create a new
project by selecting a process
model (here: „KE_Process“)
and clicking on the „New
project“ button. Then the user is
able name the project, to select a
top-level task, and delegate it to
a set of responsible persons12

(Figure 9). As a result a new
CoMo-Kit Scheduler is created
and waits for client requests.

12. Remember, the meaning here is that one of these shall work on the task.

Figure 6 Product model Figure 7 Agents

Figure 8 CoMo-Kit Desktop

Task agenda

Accepted tasks

Suspended Tasks CoMo-Kit Desktop Messages On-Line Help

CoMo-Kit
Homepage

Process
Models

Current
Projects

When a user decides to work for a
project, he has to log in (Figure 10 a,
b). As a result, he gets an agenda
with tasks he may execute
(Figure 10 c).

In Figure 11 the user has accepted
the top-level task „KE_Process“ and
has selected the method „life-cycle
oriented“. Currently, he is delegating
its subtasks to other agents.

In the next figure, a user has
accepted to work on task „select
ontology“ and clicks now on the
„ontology library“ (Figure 12 a).
Then he is connected to the Stanford
ontology server (Figure 12 b). Figure 9 Creating and initialising a new project

Figure 10 Login Process

a b

c

Using the CoMo-Kit desktop, a user is able to reject all decisions (Figure 13 a, b). The Scheduler
then retracts all depending decisions resulting in a consistent state. If, for example, the method
„semi-formal specification“ is retracted, then all its subtasks are invalidated automatically and the
user can choose the alternative method „formal specification“13 for this task. Additional, he may
access a notification window which shows him messages what has happened while he was not on-
line (Figure 13 c).

7 SUMMARY & FUTURE WORK

As usual in software process modeling, the CoMo-Kit approach allows to describe arbitrary soft-
ware development processes. Therefore, the approach can also be applied to support knowledge-
based system development (which is illustrated in the example above). Additionally, our tech-
niques allow to alternate planning and execution of design processes which is an advantage over
other software process modeling approaches.

One main focus of our work is to handle dependencies between design decisions to improve
project traceability and support humans in reacting on changes in a project. In our opinion, the
techniques developed so far are necessary for supporting and coordinating (globally or locally)
distributed workflows.

Based on our theoretical work, we implemented the CoMo-Kit Scheduler which allows to plan,
coordinate and execute design processes. An implementation which allows to distribute the work

13.Writing formal specification seems to be preferred by some European knowledge engineering research-
ers.

Figure 11 Subtask delegation

in a local area network or the WWW is available now. The WWW-based version currently is
restricted in its replanning functionality.

8 ACKNOWLEDGEMENTS

I want to thank Barbara Dellen and Gerd Pews for many stimulating discussions and the immense
work they spent in developing, refining and improving CoMo-Kit. A lot of credits belong to our
students Michael Albin, Michael Donner, Frank Leidermann, Nils Magnus, Thomas Rüger,
Sascha Schmitt, and Max Wolf, who implemented most of the system.

Figure 12 Working on the task
"Ontology selection"

a

b

9 REFERENCES

P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. Software process languages: Survey and
assessment. InProceedings of the Fourth Conference on Software Engineering and Knowledge
Engineering, Capri, Italy, June 1992.

James W. Armitage and Marc I. Kellner. A conceptual schema for process definitions and models.
In Dewayne E. Perry, editor,Proceedings of the Third International Conference on the Software
Process, pages 153–165. IEEE Computer Society Press, October 1994.

Figure 13 Decision retraction and Messages

a

c

b

Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software process model evolution in
the SPADE environment.IEEE Transactions on Software Engineering, 19(12):1128–1144,
December 1993.

Victor R. Basili: The Experience Factory and its Relationship to Other Improvement Paradigms,
in: Ian Sommerville, Manfred Paul (eds.): Proc. of the 4th European Software Engineering Con-
ference, P. 68-83, Lecture Notes in Computer Science Nr. 706, Springer Verlag, 1993.

Victor R. Basili and H. Dieter Rombach. The TAME Project: Towards improvement–oriented
software environments.IEEE Transactions on Software Engineering, SE-14(6):758–773, June
1988.

Israel Z. Ben-Shaul, Gail E. Kaiser, and George T. Heineman. An architecture for multi-user soft-
ware development environments. In H. Weber, editor,Proceedings of the Fifth ACM SIGSOFT/
SIGPLAN Symposium on Software Development Environments, pages 149–158, 1992. Appeared
as ACM SIGSOFT Software Engineering Notes 17(5), December 1992.

Alfred Bröckers, Christopher M. Lott, H. Dieter Rombach, and Martin Verlage. MVP–L language
report version 2. Technical Report 265/95, Department of Computer Science, University of Kai-
sers-lautern, 67653 Kaiserslautern, Germany, 1995.

S. Buckingham Shum and N. Hammond. Argumentation-based design rationale: what use at what
cost?Int. J. Human-Computer Studies, 40:603–652, 1994.

J. Conklin and Begeman, gIBIS: A Tool for Exploratory policy Discussion, InProceedings of
CSCW ‘88 and ACM Transactions on Office Information Systems, October, 1988.

R. Conradi, Christer Fernström, and Alfonso Fuggetta. A conceptual framework for evolving soft-
ware processes.ACM SIGSOFT Software Engineering Notes, 18(4):26–35, October 1993.

B. Dellen, K. Kohler, F. Maurer: Integrating Software Process Models and Design Rationales,
Proceedings Knowledge-based Software Engineering, IEEE Computer Society Press, 1996.

B. Dellen, F. Maurer: Integrating Planning and Execution in Software Development Processes,
Proceedings of the Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WET ICE 96), IEEE Computer Society Press, 1996.

J. Doyle: A Truth Maintenance System, Artificial Intelligence, 12:231-272, 1979.

A. Farquhar, R. Fikes, J. Rice: The Ontolingua Sever: A tool for collaborative ontology construc-
tion, Proceedings KAW 96, 1996 (to appear)

P. H. Feiler and Watts S. Humphrey. Software process development and enactment: Concepts and
definitions. InProceedings of the Second International Conference on the Software Process,
pages 28–40. IEEE Computer Society Press, February 1993.

Ch. Fernström. Process WEAVER: Adding process support to UNIX. InProceedings of the Sec-
ond International Conference on the Software Process, pages 12–26. IEEE Computer Society
Press, February 1993.

P. K. Garg and Mehdi Jazayeri.Process-centered Software Engineering Environments. IEEE
Computer Society Press, 1996.

D. Georgakopoulos. and M. Hornick: An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure, Distributed and Parallel Databases, 3, pages
119-153, Kluwer Academic Publishers, Boston 1995

K. Huff. Plan-Based Intelligent Assistance: An Approach to Support the Software Development
Process. PhD thesis, University of Massachusetts, September 1989.

Institute of Electrical and Electronics Engineers.IEEE Standard for Developing Software Life
Cycle Processes, 1992. IEEE Std. 1074-1991.

St. Jablonski: Workflow-Management-Systeme: Motivation, Modellierung, Architektur: From
Informatik Spektrum 18: pages 13-24, Springer-Verlag 1995

M. Letizia Jaccheri and R. Conradi. Techniques for process model evolution in EPOS.IEEE
Transactions on Software Engineering, 19(12):1145–1156, December 1993.

J. Lonchamp: A structured conceptual and terminological framework for software process engi-
neering. InProceedings of the Second International Conference on the Software Process, pages
41–53. IEEE Computer Society Press, February 1993.

A. Oberweis: Verteilte betriebliche Abläufe und komplexe Objektstrukturen: Integriertes Model-
lierungskonzept für Workflow-Managementsysteme, Habilitation Universität Karlsruhe, 1994

A. Mac-Lean et al.. Questions, Options and Criteria; Elements of Design Space Analysis.Human-
Computer Interaction, 6: 201-250, 1991.

F. Maurer: Computer Support in Project Coordination, Proceedings of the Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE 96), IEEE Computer Soci-
ety Press, 1996.

F. Maurer, G. Pews: Supporting Cooperative Work in Urban Land-Use Planning, Proc. COOP-96,
1996.

F. Maurer, J. Paulokat: Operationalizing Conceptual Models Based on a Model of Dependencies,
in: A. Cohn (Ed.): ECAI 94. 11th European Conference on Artificial Intelligence, 1994, John
Wiley & Sons, Ltd.

F. Maurer, G. Pews: Ein Knowledge-Engineering-Ansatz für kooperatives Design am Beispiel der
Bebauungsplanung, Themenheft Knowledge Engineering, KI 1/95, interdata Verlag, 1995.

C. Petrie: Planning and Replanning with Reason Maintenance, Dissertation, University of Texas,
Austin, 1991.

C. Petrie and M. Cutkosky. Design space navigation as a collaborative aid. In J. Gero and F. Sun-
dweeks, editor,Artificial Intelligence in Design ‘94, Kluwer Academic Publishers, 1994

C. Potts and G. Bruns, Recording the Reasons for Design Decisions, InProceedings of the 10th
International Conference on Software Engineering, pages 418-427, 1988.

Special Issue on Design Rationale,Human-Computer Interaction, 6: 197-419, 1991.

M. Verlage, B. Dellen, F. Maurer, and J. Münch. A synthesis of two process support aproaches. In
Proceedings of the 8th Software Engineering and Knowledge Engineering Conference
(SEKE’96). Knowledge Engineering Institute, June 1996.

