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generated. Such a hypothesis consists of a pair of a set of cases and an associatedsimilarity measure. Questions to be answered are: Which cases will be entered intothe case base, which will be removed from it, and how to realise the similaritymeasure.Since the criteria of Jantke and Lange can be analogously applied to case-basedlearning, it can be viewed as a special instance of inductive learning. A commontheoretical framework is necessary to achieve results on this topic. First steps in thisdirection have been described by Jantke, Richter et al. (1991), Jantke (1992), andGlobig and Wess (1993).Both inductive learning and case-based learning have in common that they derive"global" knowledge from "local" observations (which, of course, are uncertain, re-spectively). However, they use di�erent techniques to achieve this: Inductive learningbases mainly on logical concept descriptions ("logical reasoning"), whereas case-basedreasoners often use analytic descriptions ("geometric reasoning") (cf., e.g., Richter,1992). One consequence from this is that inductive learners mostly start with the"dropping of complete dimensions" in contrast to case-based reasoners which "de-compose complete dimensions into intervals". It depends on the use of a learningresult which particular technique is then the more successful one. Therefore, theInreca approach integrates both learning strategies within a broader architecturefor identi�cation and diagnostic reasoning.Up to now, much work has been done on the integration of di�erent knowledgerepresentation and processing schemes to improve knowledge acquisition. E.g., acomparative analysis as well as a proposed integration of models, cases and compiledknowledge have been given by van Someren, Zheng and Post (1990). The Moltkearchitecture also bases on these three schemes (cf. Altho�, Maurer & Rehbold, 1990;Altho�, Maurer et al., 1992; Altho�, 1992). The Granul system integrates severalexisting knowledge acquisition tools into one coherent system that supports severalstyles of knowledge acquisition (Aben, van Someren & Terpstra, 1992). The Mobalsystem is an interesting example for the integration of manual and automatic knowl-edge acquisition methods (the balanced cooperative modelling issue, cf. Morik, 1991).Van de Velde and Aamodt (1992) have analysed the possible use of machine learn-ing techniques within the Kads approach to expert system development. Risslandand Skalag (1989) introduced the notion of mixed paradigm reasoning for the inte-gration of di�erent reasoning schemes (reasoning from cases, rules, constraints, deepmodels etc.). Examples here are Cabaret (Rissland, Basu et al., 1991), Creek(Aamodt, 1991), Patdex/Moltke (Altho� & Wess, 1991a; Richter & Wess, 1991),Grebe (Branting & Porter, 1991), and Julia (Hinrichs & Kolodner, 1991), amongothers. A �rst suggestion for the integration of case-based reasoning and model-basedknowledge acquisition is given in Janetzko and Strube (1992).7 ConclusionWe have introduced basic parts of the architecture of the Inreca system that usesinduction and case-based reasoning for solving classi�cation tasks. Inreca is beingapplied to real world problems in the areas of technical maintenance as well as thepharmaceutical industry. Results from this applications might change the suggestedarchitecture. 11



are no more su�ciently similar, the increase of the weights belonging to the attributesin C and U , the decrease of the weights belonging to the attributes in E, as well asthe normalisation of the weights. The weights belonging to the attributes in A remaininvariant. Since there is a remaining degree of freedom in the underlying equationformula, we choose the following: high weights belonging to the attributes in E arehighly decreased, low weights only to a low degree. In addition, low weights belongingto the attributes in C and U are highly increased, high weights only to a low degree.Here, the goal is to "support" attributes which had only a small responsibility forthe misclassi�cation, and vice versa.5.2 Domain KnowledgeThe overall similarity assessment process can be improved by the use domain knowl-edge. Default values can be used to increase the number of known attribute values.Causal and heuristic determination rules can be used to derive new attribute valuesfrom known ones. Since such knowledge increases the available information, similar-ity is estimated on a broader basis. For the automatic generation (of a part) of thatknowledge and its detailed use cf. Altho� (1992), Rehbold (1991), Altho� and Wess(1991a), and Wess (1991).6 DiscussionThe overall scenario we assumed is comparable to Gentner and Forbus' Mac/Facmodel5 (Gentner & Forbus, 1991; cf. �gure 5). We used a �xed-order processingtechnique as the basic case retrieval mechanism which can be compared to the Macphase. The described extensions (chapter 5) then correspond to the Fac phase.
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Figure 5: Mac/Fac ModelCharacteristics of inductive learning have been summarised in, e.g., Jantke and Lange(1989). From this abstract point of view, case-based learning could be describedas follows: From a given sequence of cases, learning hypotheses are incrementally5Many Are Called but Few Are Chosen 10



� Attributes are selected as discriminating attributes only if the percentage ofoccurring unknown values is not too high. Otherwise, they are not used forindexing at all.� Every node within the k-d tree "remembers" which diagnoses are includedwithin the cases belonging to the respective node's subtree.� While searching the k-d tree the tests Bob and Bwb are applied using thediagnosis-dependent similarity measures of all diagnoses which occur in therespective node's subtree.If only a few attributes can be used for indexing (because of many unknown values),it might happen that the leaf nodes contain more than (bucket size) b cases. Forsuch cases we have, of course, linear retrieval costs. Within the buckets, the casesare sorted by their included diagnoses. Thus, the Bwb test can be performed moree�ciently.In real applications, we are not always interested in the most similar case(s), onlyif such case(s) are su�ciently similar. This leads us to the de�nition of diagnosis-dependent thresholds �(Di), which must be exceeded by the global similaritymeasuresim in order to terminate the overall classi�cation with a certain diagnosis Di asoutput: sim(Ci; Cq) > �(D(i)) if Ci su�ciently similar to Cq.5.1 Automatic Adaptation of the Similarity MeasureExperiments in our laboratory with given case bases of correctly classi�ed cases CBcor(iteratively selecting, and temporarily removing, one case for the use as query case)showed that the similarity measure often did not classify correctly, though only onecase has been removed from the case base. But, this can be improved applying anadaptive learning process. The goal is to learn new weights, i.e. new entries of therelevance matrix R. This process has an initial and a learning phase, the training setis the case base CBcor.Initial phase: the initial weights wji are determined according to the observed fre-quencies in the base.Learning phase: the query cases Cq are taken from the case base CBcor, i.e. everycase of CBcor will be a query case once. Such a query case is then temporarilyremoved from case base. The system determines the most similar case Csim.Since the query cases are selected from CBcor, it is possible to compare therespective diagnoses of Cq and Csim. If D(sim) = D(q), then nothing will bechanged. For D(sim) 6= D(q) we distinguish two possibilities:� Csim contains less known attribute values than Cq, i.e. the known valuesof Csim are a subset of the known values of Cq. Here, the diagnosis D(sim)was obviously only correct by accident and Csim is eliminated from thecase base.� In all other situations Csim remains in the case base but the weights areupdated.The numerical form of the learning rule is not of interest here (cf. Wess, 1991). Theleading principles are the achievement of sim(Csim; Cq) = �(D(sim)), i.e. Csim and Cq9



nXj=1wji := nXj=1wj(Di) := 1For every value range Rj, we introduce the distinguished value of unknown. Duringthe generation of the k-d tree it has the meaning of don't care, during retrieval thatof a missing value.We also introduce global, i.e. diagnosis-independent, weights for special groups ofattributes. Such groups are de�ned using the distinguished values of unknown(1) : : :unknown(k) as well as the additional information whether an attribute value is apathologic4 one, or not. Let Ci 2 CB;Ci := (ci1; ci2; : : : ; cik), be some case of thecase base and Cq a query case, Cq := (cq1; cq2; : : : ; cqk), where Ci includes the diagnosisD(i) and Cq's diagnosis is not known (per de�nition). We distinguish the followingsets of attributes:� E := fj j �j(cij; cqj) > 
jg Equivalent attribute values� C := fj j �j(cij; cqj) � 
jg Conicting attribute values� U := fj j cqj = unknown(j)g Unknown attribute values� A := fj j cij = unknown(j) ^ cqj is pathologic g Additional attribute valuesNote, that the decision whether two values are equivalent or conicting, i.e. belongto E or C, is made by use of the respective local similarity measure �j as well as arange-dependent threshold 
j 2 [0; 1]. Based on the above de�ned attribute sets, weintroduce the following improved global similarity measure sim:sim(Ci; Cq) = �E(�E + �C + �U + A) �; �; �;  > 0where E;C;U; and A denote the following expressions:E := Xj2Ewj(Di) � �j(cij; cqj))C := Xj2C wj(Di) � (1 � �j(cij; cqj)))U := Xj2U wj(Di))A := jAjPractical experience led us to the use of � = 1; � = 2;  = 1, and � = 1=2.Since we have introduced the distinguished values unknown(1) : : :unknown(k) as well asdiagnosis-dependent similarity measures, we have to extend the k-d tree mechanism:4Pathologic (or abnormal) attribute values within a query case are very important and must beexplained by a similar case in the case base. Thus, they are weighted maximally (=1)8



attribute) which correspond to the respective subspace. These geometric bounds areused to compute a similarity interval whose upper bound then answers the question toexplore, or not. The closest point Cmin within the actual nodes subspace is computedas the projection onto the actual nodes geometric bounds. Cmin is on the actual nodesbounding box on the edge facing the query case Cq. If there is no overlapping in anyof the k dimensions between the nodes bounding box and the k-dimensional ballround Cq then Cmin is a corner of the bounding box. If Cq is within the boundingbox then Cq = Cmin (cf. also �gure 3).Before the recursive search procedure terminates the Ball-Within-Bounds testis applied. It is True if the k-dimensional ball round Cq is completely within thebounding box of the actual tree node. If this is the case, no overlapping with otherbounding boxes is possible any more. Thus, the search is �nished. Two cases C(i)1and C(i)2 per dimension i 2 f1; : : : ; kg are generated (building an interval accordingto the geometric bounds of the actual tree node's bounding box) to test whether them most similar cases are all within that bounding box.5 ExtensionsThe associative search mechanism, as described above, is used for the basic memo-risation and retrieval task in our case-based reasoner. But, there exist a lot of realdiagnostic problems which cannot be handled satisfactorily up to now (cf. Altho� &Wess, 1991a; Manago, Altho� et al., 1993; Wess, 1993). Our approach is to introduceextensions for the global similarity measure, the k-d tree representation and search,as well as the overall similarity assessment process (e.g., use of domain knowledge).Within this paper, we want to focus on the integration of an adaptive learning mech-anism to automatically improve the global similarity measure. It is the second kind ofimprovement of our case-based reasoner using induction. Another reason is that thislearning strategy is already built on top of other important extensions which then canbe introduced implicitly by this procedure. The used learning strategy is similar tocompetitive learning (cf. Rumelhart & Zipser, 1985) and has been described in Wess(1993) and Richter (1992). Here, we concentrate on the combination of this learningstrategy with the above described basic memorisation and retrieval mechanism.We now stepwise introduce all necessary extensions. First, we improve the globalsimilarity measure using global and local weights. The latter are de�ned by use ofa relevance matrix R which includes a special weight for every attribute/diagnosispair. A local weight wji denotes the relative importance (relevance) of an attributeAj for the diagnosis Di. Such weights e�ect the ball tests Bob and Bwb because(only) here the global similarity measure sim is used. The consequence for the k-ballround the query case Cq is that there is a tendency to exact matching on importantdimensions, and that there is an increasing degree of exibility for less importantdimensions. The relevance matrix is de�ned as follows:R = 0BBBBBB@ D1 D2 : : : DmA1 w11 w12 : : : w1mA2 w21 w22 : : : w2m... ... ... . . . ...An wn1 wn2 : : : :wnm 1CCCCCCA7



quartile similarity iqr is the lowest: d := fi j iqr(i) � iqr(j)g: This easily correspondsto the use of inter quartile distances where that attribute is selected of which therespective quartiles have the maximal distance.Since every inner node should partition the case set into two equally-sized subsets,for every discriminating attribute d the respective median p for the value range Rdis computed: p := medianfaj j (a1; : : : ; ak) 2 CB; j = dg. Then optimal k-d treesfor the partitions CB� and CB> are generated: CB� := f(a1; : : : ; ak) 2 CB j ad �pg; CB> := f(a1; : : : ; ak) 2 CB j ad > pg:
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IVFigure 4: An Exemplary Two Dimensional Search Space and the Corresponding k-dTree4.2 Searching a k-d TreeFor �nding the m most similar cases for a given working case (or query case)3, weapply recursive tree search. Thus, as input we need the query case Cq, the numberm of most similar cases, the k-d tree represented by its root node, and the globalsimilarity measure sim : [0; 1]k ! [0; 1], andsim(Ch; Ci)! F (�1(ch1; ci1); �2(ch2; ci2); : : : ; �k(chk; cik)) Ch; Ci 2 CBOne simple example for the (monotonic) function F is:sim(Ch; Ci) := F (�1(ch1; ci1); : : : ; �k(chk; cik)) := 1k kXj=1 �j(chj ; cij)During search a priority queue is continuously updated which includes the m mostsimilar cases. If the recursive search procedure examines a leaf node, the similarityof all included cases is computed and, if necessary, the priority queue is updated. Ifthe examined node is an inner node, then the search procedure is recursively calledfor that son node which should include the query case. If this call terminates, itis tested whether it is also necessary to examine the other son node by using theBounds-Overlap-Ball test. It is True if the cases of the actual tree node haveto be explored.The inner nodes are correct generalisations of the all the cases they represent in thatsense that they include the geometric (upper and lower) bounds (for every indexing3For a query case the value of the distinguished attribute diagnosis is unknown6



A1
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Figure 3: Bounds-Test for Nearest Neighbour SearchThe average case e�ort (measured by the number of comparisons; cf. Jacquemain,1988) for generating a k-d tree is O[k � n � log2n], for the worst case O[k � n2]. Theaverage costs for retrieving the most similar case are O[log2n], if the tree is optimallyorganised. For the worst case, the retrieval costs are O[n]. The retrieval mechanismis correct in that sense that it always �nds the m most similar cases. The costs for thereorganisation of the k-d tree (making the tree an optimal one again) are O[l � log2l],where l is the number of leaf nodes belonging to the non-balanced subtree, i.e. thecosts to rebuild the whole tree are O[n � log2n].4 k-d TreesWe describe the basic procedures for generating and searching a k-d tree. Here,we already include some modi�cations, e.g. changing distance to similarity measures.This is necessary because we need the notion of similarity for the case-based reasoningcomponent. The similarity measure is split into local measures for each value rangeand a global measure that is composed from the local ones. We need the localmeasures during the construction of the k-d tree for selecting the next discriminatingattribute. The global measure is used for searching the tree. Starting from this basicretrieval mechanism, we introduce several extensions that are necessary in the contextof diagnostic reasoning.4.1 Building a k-d Tree: Basic AlgorithmFor generating an optimal k-d tree, we need as input the case base CB := fCi j Ci :=(ci1; ci2; : : : ; cik); i 2 f1; : : : ; ng; cij 2 Rj := R(Aj)g, the indexing attributes A1 : : :Ak,the value ranges R1 : : : Rk, the local similaritymeasures �1 : : : �k; �i : Ri�Ri ! [0; 1],and the bucket size b which de�nes how many cases are at most allowed to be includedin one leaf node. Every case includes a distinguished attribute (called diagnosis)which is, of course, not used for indexing.If jCBj � b then only one leaf node is generated and the construction process termi-nates. Otherwise, an inner node is generated. For every attribute Ai; i 2 f1; : : : ; kg,the quartiles q(i)1 and q(i)3 of its in CB occurring values are computed. The interquartile similarity is de�ned as iqr(i) := �i(q(i)1 ; q(i)3 ). As a discriminating attribute d,which is attached to the generated inner node, we select that one of which the inter5



suggest another kind of integration of induction and case-based reasoning by buildinga case-based reasoner that uses inductive techniques to improve its performance. Theimprovement will be in two di�erent ways:� reducing the average case complexity of the case retrieval step� correcting misclassi�cations of the similarity measureThe main focus will be on the �rst kind of improvement (chapters 3-4), the secondkind will be one major aspect discussed in chapter 5. We hope that the introductionof the �xed-order processing view helps to make transparent that using an e�cientinformation retrieval technique, namely multidimensional retrieval structures for as-sociative search, for case retrieval is a step towards the integration of induction andcase-based reasoning. We will describe the basic retrieval algorithms in the next twochapters. To overcome certain restrictions of these algorithms, especially to keep theadvantages of the case-based reasoning approach, we will introduce certain extensionsfor these algoritms. These extensions also allow the above mentioned second kindof inductive improvement, namely the heuristic adaptation of the (global) similaritymeasure to avoid misclassi�cations.3 Multidimensional Retrieval StructuresWe developed a retrieval mechanism that is based on a k-d tree, a multi-dimensionalbinary search tree (Wess, 1993b; Bentley, 1975; Friedman, Bentley & Finkel, 1977).This mechanism is built on top of an object-oriented data base ( �Ochsner & Wess,1992). This leads us, e.g., to the following correspondences: case = entity/object,case base = data base, problem = query, similarity-based case retrieval = best-matchsearch. Within the k-d tree an incremental best-match search is used to �nd the mmost similar cases (nearest neighbours) within a set of n cases with k speci�ed index-ing attributes. The search is guided by application-dependent similarity measuresbased on user-de�ned value ranges. The used similarity measures are constructedaccording to Tverskys contrast model (Tversky, 1977), but the user is free to de�neother ones. He is only restricted to use ordered value ranges as well as monotonic andsymmetric similarity functions, which is not a problem for many real applications.The k-d tree uses the inhomogeneity of the search space for density-based structur-ing. The balanced retrieval structure results in a small number of accesses to externalmedia.Every node within the k-d tree represents a subset of the cases of the case base, theroot node represents the whole case base. Every inner node partitions the representedcase set into two disjoint subsets. The next discriminating attribute within the treeis selected based on the inter quartile distance of the attributes' value ranges (cf.Koopmans, 1987). Splitting in the median of the discriminating attribute makes thek-d tree an optimal one (the tree is optimal if all leaf nodes are at adjoining levels).Search in the k-d tree is done via recursive tree search and the use of two testprocedures: Ball-within-bounds (Bwb) and Bounds-overlap-ball (Bob) (cf.�gure 3). These procedures check whether it would be reasonable to explore certainareas of the search space in more detail, or not. Such tests can be carried out withoutretrieving the respective cases. The geometric bounds of the considered subspacesare used to compute a "similarity interval" whose upper bound then "answers" thequestion to explore, or not. 4



its derived concept descriptions. Therefore, the generation of concept descriptions(normally) has to be carried out again. For the case-based reasoning system, theconsideration of new cases (normally) is no problem, because they only have to beincluded into the case base. But, the underlying similarity measure is, of course, notguaranteed to classify all new cases correctly. Thus, we may have to improve themeasure based on the extended case base.
Consultation
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Data Compilation
with Induction

Data Interpretation
with CBRFigure 2: Combining Interpretation and CompilationHaving the above described commonalty in mind, we can use the above statedcompilation-interpretation contrast to come up with an (abstract) idea for integra-tion. This view is summarised in �gure 2. Case-based reasoning is used as a exibleinteractive mechanism to directly interpret the presented cases. If the number ofcases strongly increases such that the time needed for consultation becomes too high,induction can be used as a compilation-like procedure which allows to reason with ab-stract knowledge being derived from the presented cases. If new cases are presented,case-based reasoning can be used again etc. Thus, we arrive at an interlocking ofboth reasoning schemes (cf. Altho�, Bergmann et al., 1993).For the development of one single homogeneous architecture based on inductive andcase-based reasoning technology that goes beyond this interlocking of the respectivereasoning schemes, we generalise our view on induction. Through-out the followingchapters, we consider induction as a technique which constructs abstractions fromdata for e�cient processing. We denote the underlying construction mechanism by�xed-order processing, where the discovered structure within the given data corre-sponds to the "�xed order". With respect to the derived abstract structure, theprocedure is static, i.e. inexible in some sense. For instance, a Tdidt-like (top-down induction of decision trees; Quinlan, 1986) procedure derives a decision treefrom the given cases. If certain assumptions are ful�lled2 (no unknown or missingattribute values, no noise, no exceptions), such a decision tree enables an e�cient con-sultation. Case-based reasoning does not apply such a kind of �xed-order processing.Therefore, its e�ciency normally is worse, but it is more exible in its reaction ondata which do not meet the above mentioned requirements.For instance, Altho�, Bergmann et al. (1993) describe the cooperation of a Tdidt-like inductive system and a case-based reasoner. The decision tree is used to prepro-cess the entered attribute values in a way that the number of interesting cases canbe reduced. Thus, it works like a �xed indexing structure for the case retrieval wherethe induction and the case-based reasoning module are on the same level. We now2At least to a high degree 3



We present the Inreca integrated learning system1 which goes �rst steps into thisdirection. It includes inductive and case-based reasoning techniques. Currently, it istested on two applications, name ly fault diagnosis of machine tools as well as theidenti�cation of marine sponges (cf. Manago, Altho� et al., 1993). While a morecooperative kind of integration of induction and case-based reasoning is described inAltho�, Bergmann et al. (1993), within this paper we focus on a deep integration ofthese technologies.First, we motivate our approach on a more intuitive basis. Chapter 2 results in amore or less concrete guideline for integrating inductive and case-based reasoningbased on mechanisms known from the �eld of information retrieval. We introducemultidimensional retrieval structures for associative search, especially k-d trees anddescribe the basic algorithms for tree construction and search. These basic datastructures and algorithms are then extended to meet all the requirements of realcomplex diagnostic problems. Finally, we discuss our approach from several scienti�cpoints of view.2 Inductive and Case-Based ReasoningCase-based reasoning is a technology that allows to �nd analogies between a currentworking case and past experiences (reference cases). It makes direct use of pastexperiences to solve a new problem by recognising its similarity with a speci�c knownproblem and by, at least partially, applying the known solution to reach a solutionfor the actual new problem (cf., e.g., Kolodner, 1980; Schank, 1982; Altho� & Wess,1991a+b).Induction is a technology that automatically extracts knowledge from training ex-amples (reference cases). It derives general knowledge from the cases: From anextensional description of concepts (i.e. the examples), it derives an intensional de-scription of these concepts in the form of a decision tree, a set of most general rules(most general version of the concepts), or a characteristic description of the exam-ples (most speci�c version of the concepts) (cf., e.g., Michalski, 1983; Quinlan, 1986;Manago & Kodrato�, 1987; 1990). This general knowledge is then used to solve newproblems.
ApplicationCase P

IterationFigure 1: Inductive and Case-Based Processing of CasesInduction and case-based reasoning both are processes that prepare cases for a certainapplication (cf. �gure 1). If new cases occur, the inductive system has to update1This description does not necessarily reect the o�cial opinion of the whole Inreca consortium.Ongoing applications might change this. 2



Induction and Case-Based Reasoning forClassi�cation TasksK.-D. Altho�1, M. Manago2, R. Bergmann1, F. Maurer1, S. Wess1, E. Auriol2, N.Conruyt2, R. Traph�oner3, M. Br�auer3, S. Dittrich31University of Kaiserslautern, D-67653 Kaiserslautern, Germany2AcknoSoft, 58a rue du Dessous des Berges, F-75013 Paris, France3tecInno GmbH, Sauerwiesen 2, D-67661 Kaiserslautern, GermanySummary: We present two techniques for reasoning from cases to solve classi�cationtasks: Induction and case-based reasoning. We contrast the two technologies (that areoften confused) and show how they complement each other. Based on this, we describehow they are integrated in one single platform for reasoning from cases: The Inrecasystem.1 IntroductionInduction and case-based reasoning are two technologies for the development ofexperience-based expert systems that have received considerable attention duringthe past decade. They provide methodologies for knowledge acquisition, validationof the knowledge base, and expert systemmaintenance. However, a confusion is oftenmade between induction and case-based reasoning by tool vendors or even by aca-demic researchers: Several systems presented with the label "case-based reasoning"are simply inductive tools and, on the other hand, some incremental versions of induc-tion tools work in a case-based reasoning fashion. We distinguish between case-basedreasoning and induction by considering that the �rst technique makes direct use ofpast experiences (cases) at the problem solving stage (diagnosis) while the secondone only uses an abstraction of the cases. In other words: induction compiles pastexperiences into general heuristics which are then used to solve problems. Case-basedreasoning directly interprets past experiences (cf. also Manago, Altho� et al., 1993;Wess, 1993a; Altho�, 1992).Many systems are often at the frontier of the two approaches. For example, Id5 (cf.Utgo�, 1988) refers back to the cases in order to incrementally modify the decisiontree. The question is, however, if such a system is purely an inductive system sinceit remembers past cases. We prefer to clearly distinguish the two kinds of systemsin order to perform a cost and merit analysis which gives clues on how to integratethe two technologies such that they can indeed bene�t from each other. Note thatthe fundamental distinction that we make between the two kinds of systems is not somuch in the underlying technology. For example, information theory as in ID3 (cf.Quinlan, 1983) might be used to implement a case-based reasoning system.The key distinction lies in how the technology is used. We believe that the integrationof induction and case-based reasoning is one key issue for improving the developmentof diagnostic expert systems and will expand the set of applications that can betackled. While both technologies in their own right are able to solve special instancesof diagnostic problems, the combination of these approaches may result in more than"the sum of the respective single approaches". Up to now, no satisfying systems areavailable that base on a really deep integration of the underlying technologies.1


