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Abstract. In this paper we describe a framework for defining and operation-
alizing conceptual models of distributed knowledge-based systems which
extends published approaches by the notion of „agents“ and multiple task
decompositions. The main part deals with techniques underlying our distrib-
uted interpreter. We show how a client-server-architecture can be imple-
mented which allows prototyping distributed knowledge-based systems.
Further we describe our mechanism which manages task interactions and
supports dependency-directed backtracking efficiently.

1 INTRODUCTION AND OVERVIEW

Model-based development of knowledge-based systems is the state
of the art in knowledge engineering. A well-known approach in
Europe is KADS [14] which allows to model knowledge-based sys-
tems on a very high level of abstraction. For this methodology, sev-
eral formal and/or operational languages were developed [5]. These
do not support the distribution of tasks among several agents. Our
goal is the development of a framework which supports the descrip-
tion and prototypical operationalization of distributed knowledge-
based applications. The framework was developed with the follow-
ing requirements in mind:

• Modelling of distributed knowledge-based systems
A description of the cooperation between several agents must be
part of the conceptual model. Therefore, the framework supports
the notion of „agents“ which in our opinion is essential for mod-
elling distributed knowledge-based systems.

• Integration of human users in problem solving process
In practical development projects often it is not possible to for-
malize every inference step so that it can done by computers:
Some inferences should be drawn by human users who can use
all their cognitive skills. Only the results must be given to the
knowledge-based system to be used in the ongoing problem solv-
ing process.

• Selection of task decomposition at run-time
Our framework is developed especially for modelling design
tasks. Design problems normally can be solved in different ways.
Only the current problem defines which is the appropriate way.
Therefore, the model must allow several task decompositions
and the appropriate model must be selected at run-time.1

• Dependency-directed backtracking must be supported
For design tasks several task decompositions are useful. The
appropriate decomposition is selected at runtime. Normally, the

selection is based on additional assumptions which may lead to
inconsistencies in the inference process. Dependency-directed
backtracking, which improves the efficiency of the needed back-
tracking process, is not supported by currently implemented
interpreters for conceptual models.

In chapter 2 we give a short overview on our terminology for model-
ling distributed knowledge-based systems. The interpreter for the
models is described in chapter 3. This chapter is the core of the
paper. In the last chapter, we summarize and discuss our approach.

2 MODELLING OF DISTRIBUTED
KNOWLEDGE-BASED SYSTEMS

To describe distributed knowledge-based systems our methodology2

uses four basic notions:3 task, method, concept and agent. In the
remainder of this chapter we will roughly describe them. A detailed
description is given in [6]. In this paper, we focus on operationaliza-
tion aspects.

Tasks and Methods: A task is specified by: What should be
reached (the goal), what is used (the input) and what should be the
result (the output). We distinguish between atomic and complex
(composed) tasks: Atomic tasks4 are solved by an agent by applying
an atomic method. For complex tasks a set of complex methods can
be defined, which can be used alternatively for solving the problem.
Every complex method is described as a dataflow diagram, which
consists of variables and (sub-)tasks. For every variable its type is
defined, i.e. the concept class which should be instantiated at run-
time is associated to the variable. Every subtask can be further
decomposed by methods. In this sense, the decomposition of the
overall task is described as an AND-OR-Tree, where tasks are the
OR-Nodes and methods are the AND-Nodes. The decomposition
which is useful for the problem at hand is selected at runtime, e.g.
when the model is executed.

1 As stated by one of the reviewers, selecting task decompositions at run-
time exemplifies what is intended by the strategy layer of the KADS
methodology.

2 Our methodology is supported by a computer aided knowledge engineer-
ing tool (CoMo-Kit) which is not described in this paper.

3 The notions are used similar to KADS and the Components-of-Expertise-
Approach [10]. Therefore, we do not describe the syntactical details of
our language for conceptual modelling.

4 Atomic tasks are our analogue to inference steps in KADS. The differ-
ence is that a atomic task can be decomposed when the knowledge engi-
neering process is continued. In our approach there is no predefined finest
granularity for inference steps.
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Complex tasks are solved by performing an associated method.
The solution of a complex task is supervised by an agent which is
responsible that every subtask is done.

Concepts: To model data structures we follow an object-centered
approach. We distinguish concept classes and concept instances.
Classes specify the structure of instances by defining a set of
attributes (slots). Every attribute is associated with a type which can
be a concept class or a basic type (Symbol, String, Real, etc.).5

Agents: Tasks are solved by agents. In the conceptual model for
every task a set of agents is defined. Every agent of this set has the
ability to handle the task. We distinguish two kinds of agents:
humans and computers. Depending on the kind of agents which are
associated to it, a task must be described in natural language or in a
operational language.

With the defined framework an abstract specification of a distrib-
uted knowledge-based system - a conceptual model - may be
described. The next question is how to operationalize this specifica-
tion, i.e. how to implement an interpreter for these specifications.

3 OPERATIONALIZATION OF CONCEPTUAL
MODELS

In the first section, we describe the architecture of our interpreter. In
section 3.2 we discuss how our interpreter manages the task agenda.
The last section deals with our mechanisms which manages depen-
dencies between tasks and supports backtracking efficiently.

3.1 Architecture of the Interpreter

For the operationalization of conceptual models we use techniques
known from AI planning. Our interpreter contains a dependency
management mechanism which supports dependency directed back-
tracking.

5 Based on class specifications we automatically generate graphical user
interfaces (GUIs) for editing instances. The user interfaces can be further
refined by an graphical user interface builder.

Figure  1: Architecture of the interpreter
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To solve tasks, methods are applied. Complex methods decom-
pose tasks into subtasks and define variables. Primitive or atomic
methods assert values to variables.

The interpreter has a Client-Server-Architecture. The server is a
scheduler which stores pending tasks and (valid) variable bindings.
For managing task interactions it uses an extended TMS (cf. section
3.3). Tasks are performed by clients: A client accesses a task, selects
an appropriate method, applies it, and transfers the results6 back to
the server. The communication between server and client extends
the protocol defined in [6].

Figure 1 explains the mode of operation of the interpreter: There
exists a conceptual model of task A with 3 methods. Task A is
started. User-1 selects method-1 to decompose task A and reports
this to the scheduler. Because of this, tasks A-1-1 and A-1-2 enter
the tasks-to-be-performed-agenda. After that, user-2 accepts task A-
1-1 and computer-1 solves task A-1-2. The result is shown in Figure
1. In the next section we describe the task management in more
detail.

3.2 Task Management

In this section we describe the mode of operation of the interpreter
with the state transition diagram for tasks (cf. figure 2). It shows
possible states of one task or subtask during problem solving. for
every state the scheduler maintains a list which contains all tasks
currently belonging to this state.

The state transitions of tasks are managed by the scheduler. Tasks
are started by committing them to the scheduler (1). As a result they
are initialized.

After the initialization of a task the scheduler needs to know
which agents shall work on the task. This information is passed to
the scheduler when the task is delegated to the responsible agents
(2). The delegation depends on the current situation: some agents
may be ill or on vacation.

When all inputs are available the task changes its state to „wait-
ing“ and waits to be performed (3). The inputs become available
when all tasks which are in front of the waiting task in the dataflow
diagram are finished and produced their output.

To accept a task the client logs in, asks the scheduler wether there
are waiting tasks, and (finally) accepts the task (4). Then the task is
marked as „in progress“.

The client solves the task: A method is applied. If the application
is successful the task is reduced (5). If it fails and there are other

6 Results are subtasks or variable bindings.

invalid

Figure  2: State transitions of tasks
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methods available, the task re-enters the state „waiting“ (6). If the
method fails and there are no alternative methods available, the task
is blocked (7).

In step (5), (6) or (7), dependency structures for efficient back-
tracking are created (cf. section 3.3).

Up to now, all state transitions were performed because of deci-
sions which are local for a task. The other transitions visible in fig-
ure 2 (with dashed lines) take place after global decisions (Meta
Decisions). For example, a task becomes invalid only if it the sched-
uler globally decides that the problem may be solved without solv-
ing the task. This happens when an alternative decomposition for a
task is selected during backtracking. Then subtasks which were
introduced by the first method become invalid.

The need for backtracking can be explained with the Blocked-
State as an example: A task is blocked if there is no method applica-
ble which can be used to reduce the task. But the task reduction is
necessary to solve the overall problem. This means that the problem
solving process is in an inconsistent state. The inconsistency can
only be solved by backtracking which takes the global state of the
inference process into consideration: Some previously made deci-
sions must be retracted and an alternative method must be selected
for the corresponding task. The computation of a consistent state
after the retraction of some decisions is supported by the depen-
dency management mechanisms described in the next section.

3.3 Dependencies between Tasks

Solving a complex task results in numerous subtasks and applied
methods. If a task can be reduced by alternative methods, it defines a
decision point in the space of all solutions where one alternative
must be chosen. Often, when a decision has to be made, complete
information whether an alternative belongs to a consistent solution
or about its impact on a solution’s quality is unavailable such that a
problem solver must search, testing more or less systematically
alternative choices until a consistent and satisfying solution has been
found. This process can be made more efficient by search heuristics
or by user interactions preferring the most promising alternative,
but, inconsistent choices can not always be excluded such that a
problem solver must be able to backtrack. A simple method to solve
inconsistencies is chronological backtracking that, however, is
extremely inefficient and tedious for a user.

3.3.1 REDUX - An architecture for decision revision

This poor behavior can often be improved by dependency-directed
backtracking, but it needs a model of interactions between decisions.
To support dependency-directed backtracking in our architecture,
we extended REDUX [7], [8] that provides a general model of plan-
ning and design, emphasizing decision revisions and propagating
their effects. The contract of REDUX is representing the search
space for a problem solver and to provide it with current information
about the state of tasks, methods, and decisions.7 In this framework
a task can beunreduced, reduced or blocked. It is unreduced until a
method of its conflict set that explicitly or implicitly represents the
set of all applicable methods, has been selected. The basic operation
provided by REDUX for a problem solver is choosing an unreduced

7 In the REDUX ontology the termsgoal andoperator are used that are
replaced bytask andmethod in this paper, respectively.

task and to reduce it by selecting a method with the consequence
that the former unreduced task becomes reduced. For every selec-
tion, REDUX creates a decision that stores contingencies and ration-
ales for its optimality. A contingency is an unexpected future event
whose appearance immediately invalidates the selection with the
consequence that the task becomes unreduced, again. The loss of
validity of the rationales for a choice's optimality is less rigid. It
does not automatically invalidate the decision, but creates anopti-
mality loss meta task.8 This task forces the problem solver to make a
(meta) decision whether to improve the solution by changing the
selected alternative or to go on with a suboptimal selection.

During problem solving, the growing set of valid decisions
becomes inconsistent if selected methods result in constraint viola-
tions such that backtracking becomes necessary. Then, at least one
decision must be retracted. The conditions that make a retraction
necessary are represented by a rejection rationale whose validity
retracts the decision and the method selected by it. Discriminating
between the necessity of a retraction and the retraction itself allows
a decision being retracted in situations different from that described
by rejection retionals. If all methods of a conflict set have a valid
rejection rationale, then the task is blocked because it can not be
reduced. Then, the problem solver has to make a meta decision for
solving such atask block. This can be done by retracting the method
in whose dataflow diagram the blocked task is contained as a sub-
task or by retracting a method that caused the rejection of, at least,
one element of the conflict set. These strategies are described more
exhaustive in [8].

3.3.2 Dataflow dependencies

In the basic version of REDUX, complex methods only model the
decomposition of tasks into subtasks without any orderings or data-
flow dependencies. For this reason we extended the definition of a
complex task by variables and dataflow relations between variables
and subtasks. The variables of a method definition can be declared
as input, output, or local. Input and output variables represent the
interface of a method and are comparable to formal parameters of
conventional programming languages. When applying a method,
they are substituted by the variables of the input and output relations
of the task being reduced, whereas for every local variable a unique
instance is generated. In the dataflow defined by a method, input
variables can only be used in the input relations of its subtasks, local
and output variables can be used in input and output relations, and
every output variable must be used in, at least, one output relation.
In figure 3 the relations between tasks resulting from the application
of complex method m1 to task t and the resulting mapping of the
method's input and output variables on the variables in the task's
input and output relation are shown.

Primitive methods represent formal or informal9 procedures for
assigning values to variables and must not create new subtasks.
While reducing a task by a primitive method, its procedure is exe-
cuted resulting in assignments to the variables of the reduced task’s
output relations. Assignments are used to represent data computed
by method execution. In figure 4, the execution of atomic method
m11 must result in assignments to variables l1 and l2. For its compu-

8 The notion of „meta tasks“ comes from planning and should not be con-
fused with the notion of „tasks“ in knowledge engineering.

9 Informal procedures represent a textual description of actions intended to
be executed by a human.
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tations it can use data represented by the current assignments of the
variables i'1 and i'2. Because of earlier backtracking some variables
have more than one assignment, but at most one of them is valid that
is called the current assignment. It is important to note that an
assignment will never be deleted. But, it can become invalid because
of the retraction of the method that created it. However, as soon as
this method becomes valid again, its assignments become valid, too,
such that the reevaluation of its procedure is not necessary.

If the same data are computed by different methods, they are rep-
resented by the same assignment. These methods are called the sup-
porters of the assignment that becomes valid as soon as one of its
supporters is valid. Representing identical data with the same
assignment, minimizes the number of performing procedures. E.g.,
if atomic method m41 of the conflict set of tasks t4 in figure 3 uses as
input the assignment a22, it becomes valid as soon as method m12 or
m13 is chosen because both are supporting the used assignment. So,
the assignments resulting from applying method m41 must be com-
puted only once although there are at least two different situations in
which it can be applied. Unique representation of computed data and
storing assignments that have become invalid, as described above, is
especially important if the computation is expansive or done by a
human because solving the same task twice is not acceptable.

Figure  3: Complex method application: m1 is applied to t and reduced to the
dataflow at the bottom
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Figure  4: Primitive method application
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3.3.3 TMS-based dependency management

Based on these extended dependencies between tasks as well as
between tasks and variables, we can model the states of the diagram
in figure 2. An unreduced task is not executable as long as the vari-
ables in its input relation are unassigned. The variables in the output
relation of an unreduced, but executable task become assigned, if an
atomic method has been applied to it. After retracting a decision, all
variables being assigned only by the method selected by this deci-
sion, again become unassigned. If a variable of a task's input relation
becomes unassigned, the method reducing it will be retracted. So, a
local change can ripple through large parts of a dataflow and the task
hierarchy resulting in a lot of tasks changing their state resulting in a
new consistent set of valid tasks, decisions, variables, and assign-
ments.

In REDUX a TMS [3] is used to represent and efficiently propa-
gate dependencies and to support dependency-directed backtracking
if inconsistencies manifest. For every choice a TMS structure is gen-
erated, build up from TMS nodes and justifications, as shown in fig-
ure 5. Depending on such a network a choice is valid if the decision
node is labeled IN. A node is labeled IN if it has a valid justification.
Justifications are valid if all nodes in the inlist are labeled IN and all
nodes in the outlist are labeled OUT. The elements of an inlist are
represented by solid lines and those of the outlist by dashed lines. A
node is labeled OUT if it does not have any valid justification.
Labeling is automatically done by the TMS. The networks of all
choices are connected by their valid task and valid subtask nodes
and build up an overall dependency structure representing the search
space and the dependencies between decisions.

The extended TMS structure supporting the dataflow between
tasks is shown in figure 6. Thedecision andrejected decision nodes
are part of the standard decision dependencies of figure 5 that are
only partially shown is this figure. Applying a complex method
additionally creates anunassigned and anassigned node for every
variable of its definition and anexecutable node for every subtask.
Because of their justifications, unassigned nodes are initially labeled
IN and the assigned nodes are labeled OUT. The executable node for
a task becomes IN as soon as the unassigned nodes for the variables
in the task's input relation are labeled OUT. This signals the problem

Figure  5: Standard decision dependencies (from [8])
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solver that an unreduced task is executable. If it executes an atomic
method, the decision node of the generated standard decision depen-
dencies supports the assignment nodes of the computed data. For
every assignment node a new justification for the according assigned
node is generated, such that the assigned node is labeled IN, if there
is an assignment with an IN label. However, if an assignment node
for a datum already exists, then only a new justification for this node
is created.

Based on the indirection using the unassigned node in the outlist
of the justification for the executable node instead of using the
assigned node in its inlist, the executability of a subtask depends on
the validity of the decision that selects the method in whose dataflow
the subtask is contained. This is necessary because all retracted deci-
sions and their effects are stored for later reuse. But problem solving
is focused on currently valid tasks by only selection task that are
executable.

4 SUMMARY AND DISCUSSION

In this paper we described a framework for modelling distributed
knowledge-based systems. Extensions of current work are the notion
of agents and multiple methods for task decomposition. Further, we
explained how an interpreter for this extended conceptual model
works. Especially, we discussed how dependencies between tasks
are managed so that backtracking is efficiently supported.

The interpreter is build based on a client-server-architecture and
supports distributed problem solving. Tasks may be executed by
human or computer agents, i.e.methods may be applied not only by
computers. Using our approach one is not forced to formalize every
inference step before the overall task may be solved by a system
prototype.

Our approach deals with the four problems mentioned in chapter
1 and is an extension of several approaches for the operationaliza-
tion of conceptual models.

Modelling of distributed knowledge-based systems is supported
by a fully implemented knowledge engineering tool (CoMo-Kit).
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Figure  6: Exemplary dataflow dependencies
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Currently, we extend our interpreter which is a part of this tool by
the dependency management mechanisms described in section 3.3.
Further, we started a project which uses the techniques described in
this paper for a complex real-world domain (Zoning).
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