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Abstract 

In conventional approaches to support planning of soft- 
ware development processes, the project plan has to be 
completely speciJed ahead of the process enactment. 
These approaches ignore two main characteristics of soft- 
ware development processes: Firstly, many planning deci- 
sions can only be made on base of knowledge resulting 
from the development process itsev Therefore the project 
planner must be able to extend and adapt the plan during 
enactment on basis of the current project data. Secondly, 
plan changes have to be taken into account. Considering 
these observations, the planner can be supported effec- 
tively, only vplanning and enactment steps are altemated. 

In this contribution we identify the main requirements 
on a "dynamic" planning of software development pro- 
cesses and present methods and techniques which meet 
them. 

1 Introduction 

Software development processes are in general charac- 
terized by a high complexity and a large number of people 
involved. These characteristics lead to some problems. To 
handle the complexity, the project has to be decomposed 
into partially interdependent processes. The processes 
have to be distributed among the employees involved in 
the project. Coordination of the activities of the employees 
is entailed with high effort. The complex causal dependen- 
cies between processes have to be considered when 
project changes occur. 

A way out of these problems is an accompanying plan- 
ning of the development process. Identifying processes, 

formulating their goals, assigning resources to them, and 
the definition of causal dependencies between processes 
and data results in a better understanding of the project. As 
a result, project coordination effort is reduced and project 
costs can be better estimated. 

The idea of a computer based project support is to 
reduce the work load of the project members by book- 
keeping the project enactment, and guiding the involved 
people. Some systems for planning and enactment support 
of software processes have been developed [lo]. The 
weakness of these approaches is, that alternating of plan- 
ning and enactment steps is not sufficiently supported. 
Unfortunately greater flexibility of project planning and 
enactment is essential for the following reasons: 

A detailed planning needs knowledge resulting from 
the development process itself. Therefore the plan has 
to be completed during enactment using the project 
specific knowledge. In Software Engineering pro- 
cesses, for example, the planning of the design can only 
start after the requirements are extracted from the prob- 
lem description of the customer. Therefore, the devel- 
opment environment has to allow the extension of the 
initial plan by a detailed planning during enactment. 

0 Changing conditions or planning errors force to replan 
parts of the project no matter how far the enactment is 
advanced. For example, most plans built up are not 
error free. Missing data and inappropriate solution 
alternatives available during enactment point to plan- 
ning errors. It must be possible to correct them if the 
plan is already in enaction. 
Our research group is developing methods and tech- 

niques for computer based support of distributed planning 
and enactment of design processes [16, 17, 181. One goal 
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of our research activities and the focus of this contribution 
is to alternate project planning and enactment. 

The contribution is organized as follows: First we 
present concepts and techniques to describe project plans. 
After that we deal with the question how to interpret and 
enact these plans. In chapter 3 we summarize how our fun- 
damental concepts fit the requirements on an alternated 
planning and enactment of software development pro- 
cesses. 

2 Planning and enactment of software 
development ]processes 

In our approach project plans are represented by 
explicit process and product models which can be created 
within a Modeler. The plans are enacted by a workflow 
engine, called Scheduler. The Scheduler interprets the 
models and manages the process information, necessary to 
give useful planning and execution support. An inherent 
feature of our approach is the management of causal 
dependencies, which are necessary to support project 
changes, project coordination, and tracing of processes. 
The dependencies are automatically extracted from the 
process models and managed by the Scheduler. In this 
contribution we only give a brief overview over the depen- 
dency management mechanism as far as necessary to 
understand our concepts to alternate planning and enact- 
ment. 

The next two sections shortly describe the basic lan- 
guage concepts the Modeler provides to generate project 
plans and give a survey of the functionality of the Sched- 
uler. We clarify what kind of information is managed and 
how it is done. 

2.1 Modeling software processes 

For modeling project plans we provide a set of lan- 
guage concepts. The project plan essentially corresponds 
to the Model of Expertise, and the Agent Model of Com- 
monKADS [3, 111, known from Knowledge Engineering, 
extended by our needs. 

The basic language concepts are processes, methods, 
products and resources. A short description of them is 
given now, for details see [ 151. 

Processes (Tasks). A process defines a goal to be 
reached. Every process uses a set of input products and 
produces a set of output products. A product may be any 
kind of data. In the plan, the products are referenced by 
typed formal parameters. Furthermore a set of methods 
and a list of skills, an agent who wants to work on the task 
must fulfill, is assigned to every process. 

Methods. Every method describes a way how to solve a 
process. We distinguish between atomic and complex 

methods. A complex method decomposes a process into 
one or more subprocesses and specifies the product flow 
between them. The direction of the product flow is speci- 
fied by the uselproduce relations of the subprocesses: to 
define a product flow dependency between two processes, 
an output product of one process is related to an input 
product of the other one. 
Atomic methods represent the creation of products. 

Products (Concepts). To represent products we use an 
object oriented approach. We distinguish between product 
classes and product instances. Product classes define the 
type of formal parameters. Formal parameters are con- 
tainer for the product instances, produced during the 
enactment. The product instances are the data itself. Prod- 
uct instances are created during execution by applying 
atomic methods. The type of a product instance is given 
by the product class it belongs to. 

Resources (Agents). We distinguish between two types 
of agents: machines and human agents. Every agent is 
characterized by a set of skills. During enactment, every 
process is delegated to a set of potential agents but at last 
solved by exactly one. 

2.2 Enacting software processes 

The process models are carried out with support of the 
Scheduler. The Scheduler is a bookkeeping unit, that 
stores and manages relevant project information. The 
agents can access the information they need. Changes in 
the project state are actively propagated to them. Besides 
the Scheduler filters the propagated messages: only rele- 
vant information reaches the users, and only affected 
agents are informed. At a close look the Scheduler 

manages the current state of processes, methods and 
products, 
manages decisions concerning the method selection or 
rejection, 
stores all products produced during process enactment, 
manages causal dependencies between processes, 
methods and products, 
notifies affected team members about plan changes, 
manages "to do" agendas for the team members, 
discovers and solves inconsistencies in the enactment 
process. 
Starting the execution the Scheduler step by step auto- 

matically deduces the required process information (such 
as processes, methods, and resource assignments) and 
causal dependencies from the process model, and manages 
them. The deduced structures are the basis of a dynamic 
planning and allow to coordinate the activities of the 
agents. 

The management of causal dependencies which 
describe how changes influence the current project is 
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essential to an integrated planning and enactment support. 
To propagate the consequences of changes (to the affected 
agents), the dependencies have to be managed with a 
suited mechanism [ 191. 

The next section gives insight in the kind of causal 
dependencies handled by our system and focuses on for- 
malisms underlying the dependency management. In this 
contribution we focus on those parts of our approach, 
which are necessary to allow the integration of planning 
and enactment. 

2.3 Deducing and managing causal dependen- 
cies 

To achieve traceability and to support change pro- 
cesses, the explicit representation and management of 
causal dependencies is a prerequisite. In our approach 
dependencies between decisions, processes, assignments, 
and delegations [8, 171 are represented. 

An assignment assigns a concrete product (or product 
instance) to a formal parameter. 

If a method is applied, a decision is made. To solve a 
process, the agent decides for one of the applicable meth- 
ods. A team member decides for example to make an 
object oriented design that results in the decomposition of 
the process Object Oriented Design in subprocesses 
Define Class Hierarchy, Define Messages, and Define 
Inheritance Relations. 

The decision for an atomic method results in the instan- 
tiation of a set of product classes and their assignment to 
related parameters. 

There is a I:] relation between a decision and a 
method. If a method contributes to the actual project plan, 
the referencing decision is valid. If decisions are mistaken 
or unsuited they can be rejected. The rejection of a deci- 
sion for a method m, is described by a term rejected deci- 
sion(mi) and means that there is a reason against this deci- 
sion. A decision and its rejection are semantically 
interdependent: if there are rationales against the decision 
it is rejected (for details see [8, 71). Specifying this seman- 
tic allows us 

to determine, if a method contributes to the actual 
project plan, 
to handle conditions for the validityhnvalidity of a deci- 
sion, and 

0 to state rationales for and against the validity of pro- 
cesses and products. 
Altogether, we define the following semantic for the 

validity of a decision: A decision is valid if all rationales 
pro a decision are valid, and no rationale for its rejection is 
valid. If you are interested in the different types of ration- 
ales which can be formulated in our approach, see [7]. 

Processes, decisions, rejection of decisions and assign- 
ments are causal interdependent. The underlying semantic 
of the project plans allows us to explicit deduce and man- 
age causal dependencies between them. 

We distinguish between four kind of dependencies: 
Dependencies between decisions and product assign- 

ments. As described, the decision for an atomic method 
assigns products to formal parameters. If the decision for 
an atomic method is rejected for any reason, the related 
products are invalidated. The corresponding formal 
parameter becomes unassigned again. This behavior is 
used to manage product flow dependencies (see below). 

Dependencies between processes & subprocesses. 
Complex methods decompose processes into a set of sub- 
processes. If an agent decides to apply a complex method, 
the set of subprocesses related to the method becomes part 
of the execution process and has to be solved. If this deci- 
sion is rejected later, the subprocesses become invalid. 
Decisions, which have been taken within the subprocesses, 
must be rejected, too. Those agents who are working on 
invalidated processes are automatically informed. 

Dependencies deduced from the product $ow. Deci- 
sions are made within the context of the actual inputs of a 
process. Therefore the decision for a method is bound to 
the current assignments of the input parameters. In general 
the input products have been produced by applying atomic 
methods within a preceding processes in the development 
process. As described, product instances can be removed 
from the repository by retracting the corresponding deci- 
sion. As a result, those decisions, which base on the con- 
text of the now invalid products have to be retracted, too. 
This behavior can spread through a chain of decisions with 
partly global effects on the development process. Affected 
agents are informed of such changes. With the project 
knowledge provided by the Scheduler, they can react on 
the changes appropriately. 

Delegation dependencies. During execution, every pro- 
cess is delegated to a set of agents. This set specifies those 
agents, which are allowed to work on the process. A pro- 
cess has been delegated to an agent, if three conditions 
hold: The agent is qualified, the project manager has 
selected him, and he is available. The first condition is 
automatically checked by the Scheduler. It compares the 
slulls required to work on the process with the abilities of 
the agent. The second conditions holds, if the project plan- 
ner has assigned the process to an agent. The last condition 
holds, if the agent for example is not on vacation. This 
condition can be checked automatically, if the Scheduler 
has access to vacation tables or something similar. 
Because of changing conditions, e.g. changed process 
descriptions in the model or in case of illness, a delegation 
may become invalid. By managing delegation dependen- 
cies, the project manager can be informed of such 
changes. 
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The described dependencies can be formulated as logi- 
cal implications (see [8, 71). By the explicit representation 
of the dependencies, the scheduler is able to provide the 
agents with the actual process data for decision, and plan- 
ning support [8, 191, siich as 

products produced within preceding enactment steps, 
knowledge about (rejected) alternatives and their 
rationales, 
knowledge about current delegations and changed dele- 
gations, and 
knowledge about the current state of processes. 

Alternating planning and execution 

Managing causal dependencies is essential to alternate 
planning and enactment. On one hand, effects of changes 
can be propagated to dependent processes and decisions. 
Affected project members are notified. On the other hand, 
relevant project information is provided to the project 
members (i.e. planners, developers) at the right place and 
the right time. Therefore, concrete project knowledge can 
be used to plan further project steps. 

Our approach allows to alternate planning and enact- 
ment steps in three ways. Firstly, the process model can be 
refined, and modified during enactment. Secondly, the ini- 
tial project plan is specialized during enactment by apply- 
ing methods and delegating processes. Thirdly, the plan 
can be adapted to the current situation by changing (i.e. 
making and rejecting) decisions. 

3.1 Making and clhanging decisions 

There are two characteristics of the Modeler, that 
increase the flexibility of planning: 
(1) methods can be defined, but do not have to be applied at 

the same moment. 
(2) processes need not be delegated to concrete agents. 

Only required skills are assigned to processes. 
By delaying the selection of methods and the delega- 

tion, concrete project knowledge can be used for decision 
support. As a result, decisions are dependent on the cur- 
rent situation. If the context of a decision changes, the 
decision can be rejected by the agent, and replaced by 
another decision. Our approach allows an agent to 

make decisions. Working on a process, the agent can 
choose one of the applicable methods specified in the 
model. Methods rejected in the actual context are not 
available to the agents. As already mentioned, the 
responsible agent decides during execution for one of 
the alternatives. Ani agent is, for example, responsible 
for testing a developed program. Input for the process is 
the developed program. The model provides two testing 
alternatives, equivalence class based testing and code 

reading. Because the program is well written, the agent 
decides for code reading. The actual input supports him 
to find a situation related solution. 
reject decisions. During enactment an agent has the 
possibility to reject valid decisions. Because of the 
established product flow dependencies and process 
dependencies such a replanning step can have conse- 
quences for the work of other agents. Dependent deci- 
sions, subprocesses and products become invalid. If, for 
example, a developer designs a software component, 
and a part of the component requirements is removed, 
the component has to be redesigned. Because the 
Scheduler manages product flow dependencies, the 
affected agents are informed and can react on the 
changes. 
delegate processes. As described in section 2.3, the 
project manager can assign agents to processes. He can 
only select those agents, who are qualified and avail- 
able. The manager returns the result of the delegation to 
the Scheduler, which adds the delegated process to the 
"to do" agendas of the selected agents. 
reject delegations. Rejecting a delegation may be nec- 
essary if time and personnel conditions change (for 
example an employee leaves the enterprise during 
project enactment). For this, one can reject the delega- 
tion of an agent to a process. 

3.2 Refining and modifying project plans 

In some situation it is insufficient to solve a problem by 
selecting or changing given methods, but the underlying 
model has to be refined or modified. In our approach, the 
process model can be refined, and modified any time in the 
enactment: new methods can be added to a process, not yet 
completely specified methods can be modeled on a fine 
granularity, the product flow of a method can be modified, 
and modeling errors can be corrected. The Scheduler rein- 
terprets the model modifications and makes them available 
to the current project. An agent, working on a process, has 
the following possibilities to change the model: . 

. 
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Adding a new solution alternative. During enactment, 
increasing process knowledge may result in new solu- 
tion approaches. The agent easily can establish new 
methods and add them to the model. He has to define 
the product flow for the method and assign the method 
to an appropriate process. Because the Scheduler bases 
on interpretative techniques, the new method is imme- 
diately available to the current project. 
ReJning the model. Many methods can be planned only 
on basis of project knowledge. Those methods stay 
unspecified in the initial model. The architectural 
design of a software product, for example, cannot be 
planned before the requirements document has been 



produced. If the required products are produced by pre- 
ceding activities the scheduler recognizes it and by process 4.2.3 Analyse Functions. 
informs the responsible agents. The project planner 
extends the plan by adding new processes and parame- 
ters, specifying the product flow between them, and 
refining the subprocesses within the method definition 
using the available product data. The changes are auto- 
matically interpreted and included into the Scheduler. 
Correcting faulty models. Many modeling errors are 
noticed not before the plan is already in execution. 
Nevertheless the errors have to be corrected to guaran- 
tee a correct execution. For example, the product flow 
between the processes architectural design and imple- 
mentation may have the wrong direction: the process 
architectural design consumes wrongly the already 
implemented program. To guarantee a correct enact- 
ment, the project planner is forced to correct the prod- 

document Functional Description of the System, produced 

uct flow within the model. 
Changing agent bindings. Skills of agents may change, 
as well as skills that are necessary to work on a process. 
In both cases, the project manager can adapt the corre- 
sponding parts of the model. 

4 Example 

The example is taken from the Software Engineering 
domain and gives an impression how CoMo-Kit supports 
the method selection and model extension. 

Figure 1 shows a small part of a model "IEEE Standard 
for Developing Software Life Cycle Processes" [5]  devel- 
oped by IEEE and modeled and extended within the SFB 
5011. 

-1 Process + has-subprocess link 

0 Method - -b has-methodlink 

Fig. 1 : Part of the /E€€ process and method hierarchy 

The abstract process System Allocation Process is 
solved by method IEEE Standard 4.2, which decomposes 
the System Allocation Process into the subprocesses 4.2.5 
Decompose System Requirements, 4.2.3 Analyse Func- 
tions and 4.2.4 Develop System Architecture. The product 
flow defined on this method is shown in figure 2. One can 
see, that task 4.2.4 Develop System Architecture uses the 

1. Sonderforschungsbereich 501 ,,Development of large systems with 
generic methods" 

inpotlootpot link -1 Task 

c> Formal Parameter 

Fig. 2: Product flow dependencies for method /€E€ 
Standard 4.2 

During enactment the current assignment of this input 
can be used to decide for one of the three available meth- 
ods to solve process 4.2.4 Develop System Architecture, 
namely description language: OMT, description lan- 
guage: SDL, textual (see figure 1) or to specify a new 
method. The window that displays this information to the 
human agent is shown in figure 3. The left side of the win- 

Fig. 3: View on the method selection window of an 
agent 

dow displays the applicable alternatives to solve task 4.2.4 
Develop System Architecture. It provides some buttons 
which allow to define a new or to change an existing 
method. Furthermore the agent can apply a method by 
pushing the button "select". On the right side of the win- 
dow, the input parameters and their actual assignments are 
displayed. In the example, the input Functional Descrip- 
tion of the System is a FrameMaker document with name 
"functional-description.doc" that can be opened by push- 
ing button "open". 
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In figure 1 one can see, that method textual defines no 
subprocesses yet. The planner delayed the specification of 
this method to the execution. With the concrete input doc- 
ument “functional-description.doc“, the method can be 
completed now. In the situation shown in figure 3, the 
agent might complete the modeling of method textual on 
basis of the input product “functional-description.doc“. 
The agent has to define subprocesses and the product flow 
between them, considering the inputs and outputs of the 
superprocess 4.2.4 Develop System Architecture (see fig- 
ure 2). A possible decomposition of the method is shown 
in figure 4. 

Fig. 4: Refined method textual 

The product flow of method textual is shown in figure 
5.  After the agent accepted the changes on the model by 
pushing button “accept changes“ (figure 3), they are tied 
into the dependency management mechanism of the 
Scheduler. From now on, the selection of method textual 
leads to the decomposition of process 4.2.4 Develop Sys- 
tem Architecture into subprocesses Analyse Functional 
Description and Identify System Components with respect 
to the specified product flow. 

Fig. 5: Product flow of method textual 

5 Related work 

In software engineering research several approaches 
which support modeling and the enactment of software 
engineering processes exist. Two of them, Marvel [ 131 and 

GRAPPLE [12], integrate AI techniques similar to our 
CoMo-Kit approach. 

Marvel follows a rule-based approach to express 
assumptions for the enactment of process steps. The 
approach supports forward-chaining of rules as well as 
backward reasoning. The latter tests which actions must be 
undertaken to fulfil the precondition of the current action. 
Marvel does not support justifications for choosing a 
method nor is it possible to express causal dependencies 
between products and decisions. 

GRAPPLE is based on an explicit model of planning. 
Using an operator-based language supports the representa- 
tion of preconditions of actions. GRAPPLE plans in a 
goal-oriented manner. It contains a plan recognition com- 
ponent which interprets user actions and integrates them 
into the actual plan. In GRAPPLE, it is assumed that, for 
planning and plan recognition, knowledge is needed which 
is not included in operator definitions. This knowledge is 
given as a set of assumptions and handled by a Reason 
Maintenance System. Contrary to our approach, this 
knowledge is mainly used to constrain the set of applicable 
operators. Causal Dependencies between products are not 
explicitly represented in GRAPPLE. GRAPPLE does not 
allow for alternating planning and enactment. 

The language MVP-L [4] supports the modeling and 
enactment of software processes. The MVP-System does 
not handle causal dependencies and therefore change 
propagation is not supported. Currently, we integrate 
CoMo-Kit with the MVP approach [22] .  

The SPADE environment is a system for developing 
analyzing, and enacting process models described in 
SLANG [ 2 ] .  Activities are modules with well-defined 
interfaces and a Petri net specification as a body. Activity 
types may be changed during enaction but they do not 
affect existing instances. When the type of an active pro- 
cess is modified, SPADE prompts the user to provide a 
transformation function. The user must decide when to 
start process evolution. The system does not provide any 
support to decide which parts need to be changed. 

The database-oriented EPOS Process Modeling System 
distinguishes between classes (templates), instances 
thereof, and information about the creation, change, and 
conversion of classes and instances on a meta-level [14]. 
Feedback about correctness and performance of the 
enacted process model triggers changes of classes and 
instances which are under version control. Classes and 
instances may be changed in the case of inactive pro- 
cesses. The user is responsible for establishing consistency 
between classes and instances. No dependencies between 
process fragments are managed so it is not possible to 
determine what processes accessed a faulty product and 
might be enacted another time. Detection of deviations 
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and recognition of a change’s impact are completely left to  
the user. 

Redoing [21] is an operation in the Hierarchical and 
Functional Software Process (HFSP) approach that allows 
cancellation of erroneous activities and doing that part of 
the process again. Software development processes are 
understood as functions organized in a hierarchy (called an 
enaction tree). Redoing means cutting a subtree out of the 
enaction tree and replacing it with another tree which is 
newly enacted. The decision to redo is specified in  the pro- 
cess models. The process models must be  completely 
defined before interpretation. The decisions for redoing 
are predefined, which means that criteria to detect devia- 
tions from the plan must be specified within the models. 

6 Conclusion & current work 

Within the CoMo-Kit system we have developed meth- 
ods and techniques which integrate planning and enact- 
ment of software processes. The initial plans can be  
specialized, refined and adapted during process execution. 

We are evaluating our research results in  urban land 
planning [ 181 and Software Engineering domains within 
the Sonderforschungsbereich 501, “Development of large 
systems with generic methods“ project B2, “Knowledge 
based planning and control of software development pro- 
cesses. 

The CoMo-Kit Modeler is fully implemented as well as 
the CoMo-Kit Scheduler for the local area network. We 
just connected CoMo-Kit to the world wide web to  sup- 
port globally distributed software development processes. 

An open problem is how to react on model modifica- 
tions that affect parts of the plan that are already executed. 
Solving this problem is  the current goal of our work. 
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