
Integrating Planning and Execution in Software Development Processes*

Barbara Dellen & Frank Maurer
AG Expert Systems, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

e-Mail: { dellen, maurer } @ informatik.uni-k1,de

Abstract

In conventional approaches to support planning of soft-
ware development processes, the project plan has to be
completely speciJed ahead of the process enactment.
These approaches ignore two main characteristics of soft-
ware development processes: Firstly, many planning deci-
sions can only be made on base of knowledge resulting
from the development process itsev Therefore the project
planner must be able to extend and adapt the plan during
enactment on basis of the current project data. Secondly,
plan changes have to be taken into account. Considering
these observations, the planner can be supported effec-
tively, only vplanning and enactment steps are altemated.

In this contribution we identify the main requirements
on a "dynamic" planning of software development pro-
cesses and present methods and techniques which meet
them.

1 Introduction

Software development processes are in general charac-
terized by a high complexity and a large number of people
involved. These characteristics lead to some problems. To
handle the complexity, the project has to be decomposed
into partially interdependent processes. The processes
have to be distributed among the employees involved in
the project. Coordination of the activities of the employees
is entailed with high effort. The complex causal dependen-
cies between processes have to be considered when
project changes occur.

A way out of these problems is an accompanying plan-
ning of the development process. Identifying processes,

formulating their goals, assigning resources to them, and
the definition of causal dependencies between processes
and data results in a better understanding of the project. As
a result, project coordination effort is reduced and project
costs can be better estimated.

The idea of a computer based project support is to
reduce the work load of the project members by book-
keeping the project enactment, and guiding the involved
people. Some systems for planning and enactment support
of software processes have been developed [lo]. The
weakness of these approaches is, that alternating of plan-
ning and enactment steps is not sufficiently supported.
Unfortunately greater flexibility of project planning and
enactment is essential for the following reasons:

A detailed planning needs knowledge resulting from
the development process itself. Therefore the plan has
to be completed during enactment using the project
specific knowledge. In Software Engineering pro-
cesses, for example, the planning of the design can only
start after the requirements are extracted from the prob-
lem description of the customer. Therefore, the devel-
opment environment has to allow the extension of the
initial plan by a detailed planning during enactment.

0 Changing conditions or planning errors force to replan
parts of the project no matter how far the enactment is
advanced. For example, most plans built up are not
error free. Missing data and inappropriate solution
alternatives available during enactment point to plan-
ning errors. It must be possible to correct them if the
plan is already in enaction.
Our research group is developing methods and tech-

niques for computer based support of distributed planning
and enactment of design processes [16, 17, 181. One goal

*This work is supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich SO1

1080-1383/96 $5.00 0 1996 IEEE
Proceedings of WET ICE '96

170

of our research activities and the focus of this contribution
is to alternate project planning and enactment.

The contribution is organized as follows: First we
present concepts and techniques to describe project plans.
After that we deal with the question how to interpret and
enact these plans. In chapter 3 we summarize how our fun-
damental concepts fit the requirements on an alternated
planning and enactment of software development pro-
cesses.

2 Planning and enactment of software
development]processes

In our approach project plans are represented by
explicit process and product models which can be created
within a Modeler. The plans are enacted by a workflow
engine, called Scheduler. The Scheduler interprets the
models and manages the process information, necessary to
give useful planning and execution support. An inherent
feature of our approach is the management of causal
dependencies, which are necessary to support project
changes, project coordination, and tracing of processes.
The dependencies are automatically extracted from the
process models and managed by the Scheduler. In this
contribution we only give a brief overview over the depen-
dency management mechanism as far as necessary to
understand our concepts to alternate planning and enact-
ment.

The next two sections shortly describe the basic lan-
guage concepts the Modeler provides to generate project
plans and give a survey of the functionality of the Sched-
uler. We clarify what kind of information is managed and
how it is done.

2.1 Modeling software processes

For modeling project plans we provide a set of lan-
guage concepts. The project plan essentially corresponds
to the Model of Expertise, and the Agent Model of Com-
monKADS [3, 111, known from Knowledge Engineering,
extended by our needs.

The basic language concepts are processes, methods,
products and resources. A short description of them is
given now, for details see [151.

Processes (Tasks). A process defines a goal to be
reached. Every process uses a set of input products and
produces a set of output products. A product may be any
kind of data. In the plan, the products are referenced by
typed formal parameters. Furthermore a set of methods
and a list of skills, an agent who wants to work on the task
must fulfill, is assigned to every process.

Methods. Every method describes a way how to solve a
process. We distinguish between atomic and complex

methods. A complex method decomposes a process into
one or more subprocesses and specifies the product flow
between them. The direction of the product flow is speci-
fied by the uselproduce relations of the subprocesses: to
define a product flow dependency between two processes,
an output product of one process is related to an input
product of the other one.
Atomic methods represent the creation of products.

Products (Concepts). To represent products we use an
object oriented approach. We distinguish between product
classes and product instances. Product classes define the
type of formal parameters. Formal parameters are con-
tainer for the product instances, produced during the
enactment. The product instances are the data itself. Prod-
uct instances are created during execution by applying
atomic methods. The type of a product instance is given
by the product class it belongs to.

Resources (Agents). We distinguish between two types
of agents: machines and human agents. Every agent is
characterized by a set of skills. During enactment, every
process is delegated to a set of potential agents but at last
solved by exactly one.

2.2 Enacting software processes

The process models are carried out with support of the
Scheduler. The Scheduler is a bookkeeping unit, that
stores and manages relevant project information. The
agents can access the information they need. Changes in
the project state are actively propagated to them. Besides
the Scheduler filters the propagated messages: only rele-
vant information reaches the users, and only affected
agents are informed. At a close look the Scheduler

manages the current state of processes, methods and
products,
manages decisions concerning the method selection or
rejection,
stores all products produced during process enactment,
manages causal dependencies between processes,
methods and products,
notifies affected team members about plan changes,
manages "to do" agendas for the team members,
discovers and solves inconsistencies in the enactment
process.
Starting the execution the Scheduler step by step auto-

matically deduces the required process information (such
as processes, methods, and resource assignments) and
causal dependencies from the process model, and manages
them. The deduced structures are the basis of a dynamic
planning and allow to coordinate the activities of the
agents.

The management of causal dependencies which
describe how changes influence the current project is

171

essential to an integrated planning and enactment support.
To propagate the consequences of changes (to the affected
agents), the dependencies have to be managed with a
suited mechanism [191.

The next section gives insight in the kind of causal
dependencies handled by our system and focuses on for-
malisms underlying the dependency management. In this
contribution we focus on those parts of our approach,
which are necessary to allow the integration of planning
and enactment.

2.3 Deducing and managing causal dependen-
cies

To achieve traceability and to support change pro-
cesses, the explicit representation and management of
causal dependencies is a prerequisite. In our approach
dependencies between decisions, processes, assignments,
and delegations [8, 171 are represented.

An assignment assigns a concrete product (or product
instance) to a formal parameter.

If a method is applied, a decision is made. To solve a
process, the agent decides for one of the applicable meth-
ods. A team member decides for example to make an
object oriented design that results in the decomposition of
the process Object Oriented Design in subprocesses
Define Class Hierarchy, Define Messages, and Define
Inheritance Relations.

The decision for an atomic method results in the instan-
tiation of a set of product classes and their assignment to
related parameters.

There is a I:] relation between a decision and a
method. If a method contributes to the actual project plan,
the referencing decision is valid. If decisions are mistaken
or unsuited they can be rejected. The rejection of a deci-
sion for a method m, is described by a term rejected deci-
sion(mi) and means that there is a reason against this deci-
sion. A decision and its rejection are semantically
interdependent: if there are rationales against the decision
it is rejected (for details see [8, 71). Specifying this seman-
tic allows us

to determine, if a method contributes to the actual
project plan,
to handle conditions for the validityhnvalidity of a deci-
sion, and

0 to state rationales for and against the validity of pro-
cesses and products.
Altogether, we define the following semantic for the

validity of a decision: A decision is valid if all rationales
pro a decision are valid, and no rationale for its rejection is
valid. If you are interested in the different types of ration-
ales which can be formulated in our approach, see [7].

Processes, decisions, rejection of decisions and assign-
ments are causal interdependent. The underlying semantic
of the project plans allows us to explicit deduce and man-
age causal dependencies between them.

We distinguish between four kind of dependencies:
Dependencies between decisions and product assign-

ments. As described, the decision for an atomic method
assigns products to formal parameters. If the decision for
an atomic method is rejected for any reason, the related
products are invalidated. The corresponding formal
parameter becomes unassigned again. This behavior is
used to manage product flow dependencies (see below).

Dependencies between processes & subprocesses.
Complex methods decompose processes into a set of sub-
processes. If an agent decides to apply a complex method,
the set of subprocesses related to the method becomes part
of the execution process and has to be solved. If this deci-
sion is rejected later, the subprocesses become invalid.
Decisions, which have been taken within the subprocesses,
must be rejected, too. Those agents who are working on
invalidated processes are automatically informed.

Dependencies deduced from the product $ow. Deci-
sions are made within the context of the actual inputs of a
process. Therefore the decision for a method is bound to
the current assignments of the input parameters. In general
the input products have been produced by applying atomic
methods within a preceding processes in the development
process. As described, product instances can be removed
from the repository by retracting the corresponding deci-
sion. As a result, those decisions, which base on the con-
text of the now invalid products have to be retracted, too.
This behavior can spread through a chain of decisions with
partly global effects on the development process. Affected
agents are informed of such changes. With the project
knowledge provided by the Scheduler, they can react on
the changes appropriately.

Delegation dependencies. During execution, every pro-
cess is delegated to a set of agents. This set specifies those
agents, which are allowed to work on the process. A pro-
cess has been delegated to an agent, if three conditions
hold: The agent is qualified, the project manager has
selected him, and he is available. The first condition is
automatically checked by the Scheduler. It compares the
slulls required to work on the process with the abilities of
the agent. The second conditions holds, if the project plan-
ner has assigned the process to an agent. The last condition
holds, if the agent for example is not on vacation. This
condition can be checked automatically, if the Scheduler
has access to vacation tables or something similar.
Because of changing conditions, e.g. changed process
descriptions in the model or in case of illness, a delegation
may become invalid. By managing delegation dependen-
cies, the project manager can be informed of such
changes.

172

The described dependencies can be formulated as logi-
cal implications (see [8, 71). By the explicit representation
of the dependencies, the scheduler is able to provide the
agents with the actual process data for decision, and plan-
ning support [8, 191, siich as

products produced within preceding enactment steps,
knowledge about (rejected) alternatives and their
rationales,
knowledge about current delegations and changed dele-
gations, and
knowledge about the current state of processes.

Alternating planning and execution

Managing causal dependencies is essential to alternate
planning and enactment. On one hand, effects of changes
can be propagated to dependent processes and decisions.
Affected project members are notified. On the other hand,
relevant project information is provided to the project
members (i.e. planners, developers) at the right place and
the right time. Therefore, concrete project knowledge can
be used to plan further project steps.

Our approach allows to alternate planning and enact-
ment steps in three ways. Firstly, the process model can be
refined, and modified during enactment. Secondly, the ini-
tial project plan is specialized during enactment by apply-
ing methods and delegating processes. Thirdly, the plan
can be adapted to the current situation by changing (i.e.
making and rejecting) decisions.

3.1 Making and clhanging decisions

There are two characteristics of the Modeler, that
increase the flexibility of planning:
(1) methods can be defined, but do not have to be applied at

the same moment.
(2) processes need not be delegated to concrete agents.

Only required skills are assigned to processes.
By delaying the selection of methods and the delega-

tion, concrete project knowledge can be used for decision
support. As a result, decisions are dependent on the cur-
rent situation. If the context of a decision changes, the
decision can be rejected by the agent, and replaced by
another decision. Our approach allows an agent to

make decisions. Working on a process, the agent can
choose one of the applicable methods specified in the
model. Methods rejected in the actual context are not
available to the agents. As already mentioned, the
responsible agent decides during execution for one of
the alternatives. Ani agent is, for example, responsible
for testing a developed program. Input for the process is
the developed program. The model provides two testing
alternatives, equivalence class based testing and code

reading. Because the program is well written, the agent
decides for code reading. The actual input supports him
to find a situation related solution.
reject decisions. During enactment an agent has the
possibility to reject valid decisions. Because of the
established product flow dependencies and process
dependencies such a replanning step can have conse-
quences for the work of other agents. Dependent deci-
sions, subprocesses and products become invalid. If, for
example, a developer designs a software component,
and a part of the component requirements is removed,
the component has to be redesigned. Because the
Scheduler manages product flow dependencies, the
affected agents are informed and can react on the
changes.
delegate processes. As described in section 2.3, the
project manager can assign agents to processes. He can
only select those agents, who are qualified and avail-
able. The manager returns the result of the delegation to
the Scheduler, which adds the delegated process to the
"to do" agendas of the selected agents.
reject delegations. Rejecting a delegation may be nec-
essary if time and personnel conditions change (for
example an employee leaves the enterprise during
project enactment). For this, one can reject the delega-
tion of an agent to a process.

3.2 Refining and modifying project plans

In some situation it is insufficient to solve a problem by
selecting or changing given methods, but the underlying
model has to be refined or modified. In our approach, the
process model can be refined, and modified any time in the
enactment: new methods can be added to a process, not yet
completely specified methods can be modeled on a fine
granularity, the product flow of a method can be modified,
and modeling errors can be corrected. The Scheduler rein-
terprets the model modifications and makes them available
to the current project. An agent, working on a process, has
the following possibilities to change the model: .

.

173

Adding a new solution alternative. During enactment,
increasing process knowledge may result in new solu-
tion approaches. The agent easily can establish new
methods and add them to the model. He has to define
the product flow for the method and assign the method
to an appropriate process. Because the Scheduler bases
on interpretative techniques, the new method is imme-
diately available to the current project.
ReJning the model. Many methods can be planned only
on basis of project knowledge. Those methods stay
unspecified in the initial model. The architectural
design of a software product, for example, cannot be
planned before the requirements document has been

produced. If the required products are produced by pre-
ceding activities the scheduler recognizes it and by process 4.2.3 Analyse Functions.
informs the responsible agents. The project planner
extends the plan by adding new processes and parame-
ters, specifying the product flow between them, and
refining the subprocesses within the method definition
using the available product data. The changes are auto-
matically interpreted and included into the Scheduler.
Correcting faulty models. Many modeling errors are
noticed not before the plan is already in execution.
Nevertheless the errors have to be corrected to guaran-
tee a correct execution. For example, the product flow
between the processes architectural design and imple-
mentation may have the wrong direction: the process
architectural design consumes wrongly the already
implemented program. To guarantee a correct enact-
ment, the project planner is forced to correct the prod-

document Functional Description of the System, produced

uct flow within the model.
Changing agent bindings. Skills of agents may change,
as well as skills that are necessary to work on a process.
In both cases, the project manager can adapt the corre-
sponding parts of the model.

4 Example

The example is taken from the Software Engineering
domain and gives an impression how CoMo-Kit supports
the method selection and model extension.

Figure 1 shows a small part of a model "IEEE Standard
for Developing Software Life Cycle Processes" [5] devel-
oped by IEEE and modeled and extended within the SFB
5011.

-1 Process + has-subprocess link

0 Method - -b has-methodlink

Fig. 1 : Part of the /E€€ process and method hierarchy

The abstract process System Allocation Process is
solved by method IEEE Standard 4.2, which decomposes
the System Allocation Process into the subprocesses 4.2.5
Decompose System Requirements, 4.2.3 Analyse Func-
tions and 4.2.4 Develop System Architecture. The product
flow defined on this method is shown in figure 2. One can
see, that task 4.2.4 Develop System Architecture uses the

1. Sonderforschungsbereich 501 ,,Development of large systems with
generic methods"

inpotlootpot link -1 Task

c> Formal Parameter

Fig. 2: Product flow dependencies for method /€E€
Standard 4.2

During enactment the current assignment of this input
can be used to decide for one of the three available meth-
ods to solve process 4.2.4 Develop System Architecture,
namely description language: OMT, description lan-
guage: SDL, textual (see figure 1) or to specify a new
method. The window that displays this information to the
human agent is shown in figure 3. The left side of the win-

Fig. 3: View on the method selection window of an
agent

dow displays the applicable alternatives to solve task 4.2.4
Develop System Architecture. It provides some buttons
which allow to define a new or to change an existing
method. Furthermore the agent can apply a method by
pushing the button "select". On the right side of the win-
dow, the input parameters and their actual assignments are
displayed. In the example, the input Functional Descrip-
tion of the System is a FrameMaker document with name
"functional-description.doc" that can be opened by push-
ing button "open".

174

In figure 1 one can see, that method textual defines no
subprocesses yet. The planner delayed the specification of
this method to the execution. With the concrete input doc-
ument “functional-description.doc“, the method can be
completed now. In the situation shown in figure 3, the
agent might complete the modeling of method textual on
basis of the input product “functional-description.doc“.
The agent has to define subprocesses and the product flow
between them, considering the inputs and outputs of the
superprocess 4.2.4 Develop System Architecture (see fig-
ure 2). A possible decomposition of the method is shown
in figure 4.

Fig. 4: Refined method textual

The product flow of method textual is shown in figure
5. After the agent accepted the changes on the model by
pushing button “accept changes“ (figure 3), they are tied
into the dependency management mechanism of the
Scheduler. From now on, the selection of method textual
leads to the decomposition of process 4.2.4 Develop Sys-
tem Architecture into subprocesses Analyse Functional
Description and Identify System Components with respect
to the specified product flow.

Fig. 5: Product flow of method textual

5 Related work

In software engineering research several approaches
which support modeling and the enactment of software
engineering processes exist. Two of them, Marvel [131 and

GRAPPLE [12], integrate AI techniques similar to our
CoMo-Kit approach.

Marvel follows a rule-based approach to express
assumptions for the enactment of process steps. The
approach supports forward-chaining of rules as well as
backward reasoning. The latter tests which actions must be
undertaken to fulfil the precondition of the current action.
Marvel does not support justifications for choosing a
method nor is it possible to express causal dependencies
between products and decisions.

GRAPPLE is based on an explicit model of planning.
Using an operator-based language supports the representa-
tion of preconditions of actions. GRAPPLE plans in a
goal-oriented manner. It contains a plan recognition com-
ponent which interprets user actions and integrates them
into the actual plan. In GRAPPLE, it is assumed that, for
planning and plan recognition, knowledge is needed which
is not included in operator definitions. This knowledge is
given as a set of assumptions and handled by a Reason
Maintenance System. Contrary to our approach, this
knowledge is mainly used to constrain the set of applicable
operators. Causal Dependencies between products are not
explicitly represented in GRAPPLE. GRAPPLE does not
allow for alternating planning and enactment.

The language MVP-L [4] supports the modeling and
enactment of software processes. The MVP-System does
not handle causal dependencies and therefore change
propagation is not supported. Currently, we integrate
CoMo-Kit with the MVP approach [22] .

The SPADE environment is a system for developing
analyzing, and enacting process models described in
SLANG [2] . Activities are modules with well-defined
interfaces and a Petri net specification as a body. Activity
types may be changed during enaction but they do not
affect existing instances. When the type of an active pro-
cess is modified, SPADE prompts the user to provide a
transformation function. The user must decide when to
start process evolution. The system does not provide any
support to decide which parts need to be changed.

The database-oriented EPOS Process Modeling System
distinguishes between classes (templates), instances
thereof, and information about the creation, change, and
conversion of classes and instances on a meta-level [14].
Feedback about correctness and performance of the
enacted process model triggers changes of classes and
instances which are under version control. Classes and
instances may be changed in the case of inactive pro-
cesses. The user is responsible for establishing consistency
between classes and instances. No dependencies between
process fragments are managed so it is not possible to
determine what processes accessed a faulty product and
might be enacted another time. Detection of deviations

175

and recognition of a change’s impact are completely left to
the user.

Redoing [21] is an operation in the Hierarchical and
Functional Software Process (HFSP) approach that allows
cancellation of erroneous activities and doing that part of
the process again. Software development processes are
understood as functions organized in a hierarchy (called an
enaction tree). Redoing means cutting a subtree out of the
enaction tree and replacing it with another tree which is
newly enacted. The decision to redo is specified in the pro-
cess models. The process models must be completely
defined before interpretation. The decisions for redoing
are predefined, which means that criteria to detect devia-
tions from the plan must be specified within the models.

6 Conclusion & current work

Within the CoMo-Kit system we have developed meth-
ods and techniques which integrate planning and enact-
ment of software processes. The initial plans can be
specialized, refined and adapted during process execution.

We are evaluating our research results in urban land
planning [181 and Software Engineering domains within
the Sonderforschungsbereich 501, “Development of large
systems with generic methods“ project B2, “Knowledge
based planning and control of software development pro-
cesses.

The CoMo-Kit Modeler is fully implemented as well as
the CoMo-Kit Scheduler for the local area network. We
just connected CoMo-Kit to the world wide web to sup-
port globally distributed software development processes.

An open problem is how to react on model modifica-
tions that affect parts of the plan that are already executed.
Solving this problem is the current goal of our work.

References
J. Angele, D. Fensel, D. Landes, S. Neubert, R. Studer:
Model-based and Incremental Knowledge Engineering:
The MIKE Approach. In Knowledge Oriented Software
Design, J. Cuena, ed. IFIP Transactions A-27, Elsevier,
Amsterdam, 1993, 139-168.
Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi.
Software process model evolution in the SPADE environ-
ment. IEEE Transactions on Software Engineering,
19(12):1128-1144, December 1993.
J. Breuker, W. van de Velde (eds.): CommonKADS Library
for Expertise Modelling, IOS Press, 1994.
A. Brockers, C. M. Lott, H. D. Rombach, and M. Verlage.
MVP-L language report version 2. Technical Report 2 6 3
95, Department of Computer Science, University of Kai-
serslautem, 67653 Kaiserslautem, Germany, 1995.
IEEE Standard for Developing Software Life Cycle Pro-

cesses (IEEE Std 1074-1991). Institute of Electrical and
Electronics Engineers, Inc. ,New YorWUSA, 1992.

B. Curtis, M. I. Kellner, and J. Over. Process modeling.
Communications of the ACM, 35(9):75-90, September
1992.
B. Dellen, K. Kohler, E Maurer: Integrating Software Pro-
cess Models and Design Rationales. Will be published on
Proceedings of KBSE 96.
B. Dellen, F. Maurer, J. Paulokat: Verwaltung von Abhiin-
gigkeiten in kooperativen, wissensbasierten Arbeits-
ablaufen. In Proceedings of the 3. deutschen
Expertensystemtagung, pages 72-89, 1995
Doyle, J.: A Truth Maintenance System, ArtiJicial Intelli-
gence, 12:231-272, 1979.

[lo] A. Fuggetta: A Classification of CASE Technology. Com-
puter, Vol. 26, No 12, December 1993

[l 11 R. de Hoog, W. Menezes, C. Toussaint, B. J. Wielinga, R.
M. Taylor, C. Bright, W. van de Velde: The Common-
KADS model set, ESPRIT Project P 5248 KADS-II/Ml/
DM.. lb/UvA/O18/5.0, University of Amsterdam, Lloyd’s
Register, Touche Ross Management Consultants & Free
University of Brussels.

[121 Karen Erikson Huff Plan-Based Intelligent Assistance: An
Approach to Support the Development Process. PhD thesis,
University of Massachusetts, September 1989

[13] G.E. Kaiser P.H. Feiler, S.S. Popovich: Intelligent Assi-
stance for Software Development and Maintenance, IEEE
Software, May 1988.

[14] M. Letizia Jaccheri and Reidar Conradi. Techniques for
process model evolution in EPOS. IEEE Transactions on
Software Engineering, 19(12):1145-1156, December 1993.

[151 Maurer, F.: Project Coordination in Design Processes,
WET ICE 96, Workshop “Project Coordination“,

[161 Maurer, E: Hypermedia-Based Knowledge Engineering for
Distributed Knowledge-Based Systems (in german), PhD
Universitat Kaiserslautern, 1993, auch: DISK1 48, infix-
Verlag, ISBN 3-929037-48-3.

[171 Maurer, E, Paulokat, J.: Operationalizing Conceptual
Models Based on a Model of Dependencies, in: A. Cohn
(Ed.): ECAI 94. 1 lth European Conference on Artificial
Intelligence, 1994, John Wiley & Sons, Ltd.

[181 Maurer, E , Pews, G.: Ein Knowledge-Engineering-Ansatz
fur kooperatives Design am Beispiel der Bebauungspla-
nung, Themenheft Knowledge Engineering, KI 1/95, inter-
data Verlag, 1995.

[191 Petrie, Ch.: Planning and Replanning with Reason Mainte-
nance, PhD, University of Texas, Austin, 1991.

[20] F. Maurer: Modeling the Knowledge Engineering Process,
2nd Knowledge Engineering Forum 96.

1211 Masato Suzuki, Atsushi Iwai, and Takuya Katayama. A
formal model of re-execution in software process. In
Leon J. Osterweil, editor, Proceedings of the 2nd Intema-
tional Conference on the Software Process, pages 84-99.
IEEE, IEEE CS Press, February 1993.

[22] M. Verlage, B. Dellen, F. Maurer, J. Munch: A Synthesis of
two Process Support Approaches, Proceedings of SEKE-
96.

176

