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Figure 1: Analysis of reservoir engineering data through interaction with 3D data visualization of reservoir models [25].

ABSTRACT

The design practices of current techniques for interacting with
3D data visualizations offered by state-of-the-art immersive head-
mounted displays (HMD) are constrained by technological limita-
tions and designer bias. We argue that understanding user-preferred
interaction techniques with 3D data visualizations can lead to im-
proved usability by helping system designers or architects formulate
a set of interactions that are most intuitive and natural to the users.

Index Terms: User-centered design—Data Visualiza-
tion—Interaction Techniques; Immersive analytics—Interaction;
Visualization—3D—Interaction; Extended reality; Virtual reality;
Augmented reality; Mixed reality; Head-mounted Display;

1 INTRODUCTION

With the advancement of extended reality (XR) technology such
as virtual, augmented, and mixed reality, immersive tools are be-
coming more technologically powerful and fit for being widely
used. Through innovations over time, the reach of XR platforms
has gone way beyond just being an entertainment tool. XR applica-
tions are being used in sectors such as immersive analytics [25, 42],
training simulation for surgeons [2, 7], pilots [9] or nuclear power
plant operators [6], consumer product design [5], product marketing
through virtual showrooms and exhibitions [10], behavioral research
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by replicating real-world conditions [11], data visualization [1, 22]
and remote collaboration [8].

3D data visualizations are one of the popular and useful paradigms
offered by immersive technology as it provides a more realistic
overview and detailed experience of data through a comprehensive
spectrum of input and output modalities. It is becoming common
practice to view, navigate, manipulate and analyze the visualized
data in an immersive 3D real or virtual spatial context using XR
HMDs like Hololens 2, and Varjo XR 3. Consequently, a growing
number of applications are inspiring more focus on research of the
interaction space concerning 3D data visualizations in immersive
environments. The current state-of-the-art interaction devices mainly
include controllers, controller gestures, haptic devices, wearable
haptics, tangible interfaces, and human body gestures.

The more immersive the environment is, the more the users,
instinctively, will seek natural ways to interact with that environment.
The necessity of being able to interact naturally in a human-computer
setup gave birth to the paradigm of natural interactions such as
gestures, gaze, expressions, movements, and speech, which assert
that people should be able to interact with technology similar to
how they would interact with the real world in everyday life [61].
The broad range of input modalities available in the immersive
domain gives rise to a myriad of possible interactions for different
use cases. In a sense, immersive technology offers more in the
interaction domain than does our real world because virtual objects
don’t have to follow the laws of our physical reality. Due to their
profound scope in immersive reality, interaction techniques that
are natural to the users and conducive to the best user experience
are determinants of the usefulness and success of XR platforms.
That is why we should focus on analyzing user preferences first
before implementing system interactions. Usually, designers or



architects of the system define interaction vocabulary based on the
interactions supported by the system’s technology. This is where lies
the design deficit [67] because of not including the user in the design
process and restraining the design of interaction techniques within
the boundaries of technological affordances [35]. Eliciting user
preferences in the design phase is found to be necessary to develop
more intuitive, easily learnable, and memorable system interaction
methods [26, 30, 56]. Despite its necessity, there are very few papers
published in the last decade that involves elicitation of interaction
techniques in XR environments [58].

2 RELATED WORK

In 2005, Wobbrock et al. [66] introduced the concept of maximum
guessability when they ran an elicitation study on maximizing and
evaluating the guessability of symbolic input. Then in 2009, Wob-
brock et al. [67] ran a comparative study between the user-defined
and author-defined gesture sets and demonstrated the limitations of
the latter gesture set through elicitation of surface gestures. Their
study reported that around 40% of designer-defined gestures could
not make it to the gesture set defined by users.

Researchers have widely adopted the elicitation study approach
for designing interaction techniques, especially gestures. They have
gained promising gesture-design outcome from elicitation study
done for systems including tabletops [56, 67], mobile platforms [32,
51,53,69], keyboards [18], tangible interfaces [23,60], smartwatches
[14], virtual reality [15,38,47,68], and augmented reality [16,50,65].

The authors [44] found the benefit of generating multi-modal
synonyms using a multi-modal elicitation study, which supports ac-
cessing the same functionality with different interaction modalities
under different circumstances. They adopted a multi-user study de-
sign which surfaced relevant concerns such as accidentally striking
a companion seated nearby while performing gestures or conversa-
tion getting combined with commands. Eventually, they proposed
future work on comparison between single and multi-user elicitation
methodologies to understand the trade-offs between the two. In ad-
dition to combining different modalities, using whole body gestures
extends interaction possibilities [27, 28, 34, 36]. Foot gestures are
reported as particularly beneficial in busy-hand or arm-fatigue situa-
tions [12, 16, 31]. Authors in [16] elicited hand and foot gestures for
augmented reality maps. In this study, the participants could replace
their suggested gestures at any point during the process of elicitation
which meets one of the limitations of not letting users redesign their
gestures in Wobbrock’s work on surface gestures [67]. The study
participants suggested numerous other inspirational hand and foot
gestures, which could not be implemented due to the performance
concern of the system.

Tang et al. [59], performed an elicitation study of game input in
a public space to help inform better design decisions beyond the
capability of today’s sensors. The results show that users preferred
in-air gestures instead of any touch and handheld interaction. The
authors also found that users preferred less noticeable gestures out of
concern for social acceptance. Considering the social awkwardness
of large gestures [52], Chan et al. [26] introduced single-hand micro
gestures (SHMG) to perform gestures naturally in public contexts.

T Pham et al. in [49], explored how the scale of 3D holograms
impacts user preference for gestures used in AR environments. The
authors concluded that designers should consider the scale of 3D
objects in AR space while defining gesture sets instead of using gen-
eralized forms irrespective of their scales. Bhowmick et al. [20, 21]
elicited gestures for small object selection in dense or occluded vir-
tual environments in HMD. A work published by Moran-Ledesma et
al. [43] explored user-defined gestures using physical props in virtual
reality. Ganapathi et al. [34] studied the elicitation of body gestures
for virtual locomotion in HMD interfaces in a sitting position. In-
vestigating user-preferred interactivity in different body positions is
important because not only does it benefit people in general but also

findings of this research can be extended to the interaction space of
different elderly or physically disabled user groups exploring the
virtual environments.

Bahnmüller et al. [17] explained how the participants completed
a training phase to familiarize themselves with the interaction tech-
niques they were going to use to execute continuous manipulations
of virtual objects. User-defined interaction methods include high
guessability [66], which consequently improves learnability [17] that
can potentially reduce training time and subsequent user discomfort.

Despite having many contributions to the design process of differ-
ent interactive systems, it is reported that the number of elicitation
studies is significantly lower compared to assessment and compar-
ison studies [58]. Elicitation studies have shown potential in the
interaction space of different devices and there is a multitude of
factors that impact the interaction patterns. Hence, it is high time
we put our research focus on interaction techniques in the XR envi-
ronment to navigate through or manipulate 3D visualizations under
different circumstances.

3 ELICITING NATURAL INTERACTION TECHNIQUES

In an elicitation study, researchers acquire data by incorporating
users in the design process, which is inspired by the concept of
participatory design [55]. A Study of elicitation is defined as the
study or experiment (see Fig. 2) where users are asked to define their
techniques to interact with the system instead of the system defining
those techniques for them.

Figure 2: An example setup of the user-defined elicitation experiment
[37]

3.1 Factors Impacting Elicitation
Actions or tasks such as selection, translation, and scaling are called
referents. During the study of elicitation, users are asked to propose
their preferred interaction techniques corresponding to each referent.
Usually, an experimenter, acting as the wizard of oz [29], responds
to the user-defined interaction on behalf of the system showing the
post-interaction state to the user. User-generated interaction tech-
niques can be impacted by legacy bias [66], which is defined as
users being biased by prior experience with conventional interfaces
such as WIMP (windows, icons, menus, and pointers). Although
many claim these biases to be preventing users from being open and
creative in the process of elicitation and limiting them within the
implicit technological barrier of previous systems [45], there are
also positive implications to these biases as their knowledge of past
systems can be transferred to new ones reducing the effort in learn-
ing new techniques [39]. To reduce these biases from the elicited
data, different measures have been proposed in [45] such as produc-
tion that involves multiple interaction proposals for each referent,
priming that concerns informing about technology before the study,



and partners where users participate in groups during the process
of elicitation. Along with user-defined symbols, researchers collect
think-aloud data and prepare a post-questionnaire phase where users
are asked about the motivation behind their suggestions per referent,
conceptual complexity, satisfaction with their generated symbols,
comfort with the elicited techniques, and many other aspects that
would help the researchers get important insights into users’ mental
models.

3.2 Evaluating Elicited Data
Wobbrock et al. [66] introduced agreement score, a formula for
finding the most popular gesture for a given referent. Quantitative
evaluation of elicited data is usually done by comparing the agree-
ment scores. Suppose, for any referent, a total of 10 gestures are
elicited. Then researchers manually sort these gestures into different
classes following their similarity criteria. The class with the high-
est agreement score is included in the final user-defined set. The
process of manual categorization by the researchers brings subjec-
tivity into the magnitude of the consensus as the similarity criteria
chosen by the researchers are subjective and vary from one study to
another [28,44,53,57]. To resolve this, an objective approach called
dissimilarity measure is introduced [63] where this subjective phase
of elicitation is replaced by the calculation of dissimilarity values.

The use of agreement score is limited to studies where each partici-
pant suggests exactly one interaction per referent. Since the adoption
of production feature to reduce legacy bias lets users propose mul-
tiple interaction synonyms for each referent, the use of agreement
scores is no longer applicable here since different proposed tech-
niques can have the same agreement score [44]. Morris et al. [44]
introduced metrics like max-consensus and consensus-distinct ratio
to evaluate production-based elicitation studies. The max-consensus
metric represents the percentage of participants proposing the most
popular combination of modalities and referents. In consensus-
distinct ratios, participants report how many distinct interactions
they suggest for a given referent or referent/modality combination
that met a given consensus threshold. These two metrics are sup-
posed to provide both the peak and spread of the agreement.

Evaluation techniques like closed elicitation and reverse elici-
tation extend and strengthen the evaluation process of elicitation
studies. The concept of framed guessability [24] by Cafaro et al.
introduced us to methods like open and closed elicitation. Open
elicitation is the regular elicitation process where users come up
with interactions for different referents. Closed elicitation is a pro-
cess where users choose symbols from the pre-defined set instead
of creatively formulating their own. Closed elicitation is found to
help converge to a better agreement among participants due to their
limited options to choose from [64]. That is why it is suggested
that a closed elicitation study should follow an open one to help
limit the size of consensus set [64]. On the other hand, reverse
elicitation is an end-user identification study that helps evaluate
the guessability of elicited data by reversing the process of elicita-
tion [13]. In this reverse elicitation process, participants are shown
an interaction symbol and asked to suggest a referent invoked by
it. Besides, some qualitative evaluation metrics help us understand
different aspects of user experience with a user-defined set such as
goodness of fit [67], memorability [46], ease of execution [67], and
ease of conception [41].

4 INTERACTION WITH IMMERSIVE 3D DATA VISUALIZATION

Popular 3D visualizations used in immersive environments are volu-
metric (see Fig. 3(d)), charts, graphs, plots, 3D field visualizations,
geographic, Kohonen, flow (see Fig. 3(a)) and network maps (see
Fig. 3(b)). Immersive technology offers added perspective to view
and manipulate data with higher dimensions in a 3D environment
by enabling six degrees of freedom for users [62]. Smartphones and
tablets can be used for XR experience, however, the spatial feature of

Figure 3: a)An example of scaling a map with bi-manual controller
gestures [48]. b) A user interacts with an immersive 3D network visu-
alization using a head-mounted display and controllers [40]. c) A tangi-
ble globe for manipulating virtual globe visualization [54]. d) Surgeons
practice via simulation in HapticVR developed by FundamentalVR [33].
e) Immersive collaboration with Tableau data visualization [4].

3D data visualizations through HMDs provides users with the ability
to overcome boundaries of the physical world around them and be
in environments of any scale or context. Users can also place them-
selves inside visualizations if needed to get a more detailed view of
the data units. The purpose of 3D visualizations of both spatial and
abstract data is to make the process of analysis more effective for the
analysts and help them make reliable decisions faster. A big part of
this process includes interacting with data. Each 3D data visualiza-
tion involves a set of tasks that are specific to that visualization and
some tasks that are common across different visualizations. Taking
earlier classification systems under consideration, authors in [19]
organized the axis of the 3D visualization task taxonomy into three
high-level task groups, first: volumetric view and object manipu-
lation, second: define, place and manipulate visualization widgets,
and third: select and annotate 3D data. Each system of visualization
is unique in terms of its scheme of task interactions. This inspires
more research in visualization-specific interaction spaces.

Authors in [19] also summarize both 3D manipulations and
visualization-specific interaction techniques into four paradigms
namely tactile, tangible, mid-air gestural, and hybrid interaction.
Each of these paradigms has its pros and cons under different cir-
cumstances. Essentially, designers of immersive 3D data visualiza-
tion applications need to understand the trade-offs between these
paradigms and form an interaction space most suitable for the po-



tential users of that system. Because of the sense of realism posed
by XR environments, which matches the 3D perspective of the real
world, designers are inclined to deliver natural interactions to the
XR platform users. XR offers more opportunities for interactions as
it opens up opportunities for various input modalities such as con-
trollers/ tangible devices, body gestures, speech, and eye movement
that are eligible to be used in combination with each other. There-
fore, the designers need to consider what kind of interaction methods
could minimize the potential fatigue brought upon the users due to
possible increased exposure to interactivity [47]. The learnability
of the interaction vocabulary impacts the training time required
by the analysts to get familiarized with the system of interactions.
The memorability and ease of execution of interaction techniques
influence the efficiency of the analysis process.

HMD controllers are a widely used mode of interaction in an
immersive environment. A controller can be used both as a pointing
device for direct manipulation (see Fig. 3(b)) or as a sensor to capture
the user’s gestural input (see Fig. 3(a)). A tangible user interface
(TUI) can share the shape of the data, acting not only as the physical
representation of data but also as a device to interact with the data
(see Fig. 3(c)). TUI can also have more of an abstract physical form
providing passive haptic feedback instead of having a visual context
similar to data (see Fig. 3(d)). Due to recent breakthroughs in hand
and eye tracking functionality [3], gestures (see Fig. 3 (a),(e)) have
become a prominent interaction modality. The use of mix-modal
interactions e.g. gesture with speech has become a way of conveying
more complex and abstract commands by overcoming the limitations
of individual modality [44]. The preferred interaction techniques in
XR platforms can vary in terms of the type of data to interact with,
tasks associated with the visualized data, position of the data relative
to the user, scale of the environment, single vs collaborative systems,
dense vs sparse visualizations, body position of users, demography,
culture and physical or mental ability of users, social acceptance
of the physical world around the user. Keeping these factors in
mind, designers of interaction techniques must focus on providing
the best possible experience for their users through forming effective
and natural sets of interaction methods. Elicitation studies can help
them build such an interaction vocabulary by identifying what users
consider natural.

5 CONCLUSION

In this study, we put forward our arguments on the importance of elic-
itation in the design phase of forming user interaction methods for
3D data visualization interaction space in an immersive environment
using HMDs. Through interaction with 3D data visualizations using
HMD, data experts can immerse themselves in an extended world
of information. This provides the analysts more degrees of freedom
in terms of interaction that enforces better analytic experience and
formulation of results through more meaningful and engaging obser-
vation of data. Therefore, it is time we brought our focus to finding
the most efficient way of designing interactions for data experts.
Elicitation studies have been much promising in this regard as it
aims to extract the naturalness from the user. There is significant
research scope for elicitation studies of interaction with 3D data
visualizations considering the multidimensional factors influencing
interactions such as scale, position of 3D data visualizations, user
groups, type of tasks, social awareness, and the demographic and
cultural viewpoint of the users. Therefore, we should emphasize
utilizing the potential of elicitation studies to reduce the uncertainty
that the interaction methods posit by including users in the design
process and thus acquiring useful insights and guidelines for devel-
oping the final set of interaction vocabulary for any system.
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