
SpyREST: Automated RESTful API Documentation
using an HTTP Proxy Server

S M Sohan, Craig Anslow, and Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Alberta T2N 1N4

Email: {smsohan, craig.anslow, frank.maurer}@ucalgary.ca

Abstract—RESTful API documentation is expensive to pro-
duce and maintain due to the lack of reusable tools and automated
solutions. Most RESTful APIs are documented manually and the
API developers are responsible for keeping the documentation up
to date as the API evolves making the process both costly and
error-prone. In this paper we introduce a novel technique using
an HTTP proxy server that can be used to automatically generate
RESTful API documentation and demonstrate SpyREST, an ex-
ample implementation of the proposed technique. SpyREST uses
a proxy to intercept example API calls and intelligently produces
API documentation for RESTful Web APIs by processing the
request and response data. Using the proposed HTTP proxy
server based technique, RESTful API developers can significantly
reduce the cost of producing and maintaining API documentation
by replacing a large manual process with an automated process.

Keywords—RESTful API, Web API, Documentation, Automa-
tion, Example based documentation

I. INTRODUCTION

RESTful APIs, introduced by Fielding, are used as a
primary interconnection mechanism among modern day web
based systems [1]. For example, the website of a restaurant
can use the RESTful API from Twitter to show the latest
tweets mentioning the restaurant so that prospective customers
can read the experience shared by others. To allow others to
use their APIs, Twitter and other RESTful API developers
publish documentation describing different features of their
RESTful API. The documentation of such RESTful APIs are
often produced and maintained using a manual process that is
expensive and error-prone.

API documentation for library APIs, such as Java Standard
Edition, commonly leverage reusable tools such as JavaDoc.
The documentation produced by such tools include description
of objects and methods, with custom texts primarily sourced
via comments in the source code. On the other hand, RESTful
API documentation includes additional information such as
HTTP headers, request parameters, request and response data
in serialized formats (e.g. JSON, XML). Using comments for
these additional information requires significant manual effort.
There is a lack of reusable tools to automate the documentation
process. This makes the task of producing RESTful API
documentation a costly and error-prone one. API developers
also need to publish and often maintain the documentation for
multiple versions as the RESTful API evolves. This requires
further manual effort.

To produce RESTful API documentation, the manual pro-
cess used can be described as a six-step process as follows: 1)
craft an example call to an API endpoint with required headers,
URL parameters and request body, 2) make the call, 3) capture
the response headers and data, 4) strip any confidential data
from the captured information, 5) add custom descriptions to
the captured data and 6) publish the API documentation. This
six-step process is essentially repeated for all API endpoints
that are documented. With SpyREST, we have implemented
an innovative solution to largely automate the aforementioned
manual process of RESTful API documentation so that all but
steps 1 and 5 are automated. Steps 1 and 5 are left to a manual
process to allow for a pragmatic solution. Our solution relies
on an HTTP proxy server to intercept example API calls to
automatically capture all HTTP traffic. The collected data is
then synthesized to present the documentation for RESTful
APIs. SpyREST can generate documentation for all RESTful
APIs irrespective of the technology used to implement the API
since it leverages an HTTP proxy server.

The key contributions of our research are as follows: we
discuss a list of requirements for tool development by analyz-
ing related work to automate the RESTful API documentation
process and present a new technique based on an HTTP proxy
server to meet the requirements. We demonstrate an example
implementation of the proposed technique that generates auto-
mated yet customizable, version-aware, collaboration enabled
and reusable API documentation software as a service platform
that can be used to generate and maintain documentation for
any RESTful API. We present a case study of using SpyREST
to compare the advantages of our proposed technique over
existing solutions for RESTful API documentation.

The remainder of this paper is organized as follows: in the
next section we discuss related work on API documentation.
The requirements and implementation details of SpyREST is
provided next. Then, we present a case study to demonstrate
SpyREST in action. Finally, we discuss the implications and
limitations of our work in the discussion section.

II. RELATED WORK

A. General API Documentation

Several papers have studied the documentation of APIs to
recommend best practices that are also applicable to RESTful
API documentation. Robillard et al. found that developers
faced severe obstacles learning new APIs due to inappropriate
documentation and other learning resources [2], [3]. Robillard



recommended the following for API documentation: include
good examples, be complete, support many complex usage sce-
narios, be conveniently organized, and include relevant design
elements. Kuhn et al. discussed the importance of examples in
API documentation [4]. Hoffman et al. recommended making
the API example scenarios to be executable test cases so that
a user can execute an API [5].

Nasehi et al. performed a case study based on StackOver-
flow discussions to find out what makes good code examples
[6]. They recommended API developers to include examples in
the API documentation and the use of wiki-like collaborative
tools with online API documentation. Parnin et al. found
that using social media gives API documentation readers a
chance to engage with authors of the APIs [7]. Chen et
al. recommended integrating crowdsourced frequently asked
questions into API documents so that users can easily find rel-
evant discussions when questions arise [8]. Subramanian et al.
presented an automated approach to link API documentation
of different Java and JavaScript libraries with code examples
that are shared on StackOverflow [9].

Stepalina identified several advantages of software as a
service (SaaS) based solutions for API documentation systems
such as, cost effective yet powerful, platform agnostic and
high accessibility, improved document quality, content re-
use, automated tools, and organization of robust and scalable
documentation process [10]. Several tools exist that help
automatic generation of API documentation for local APIs
such as JavaDoc1, RDoc2, Jadeite [11]. While these tools have
been proven to work for local library APIs, they have limited
applicability for documenting RESTful APIs because HTTP
specific information are not natively supported by these tools.

B. RESTful API Documentation

Several related work proposed specifications for RESTful
APIs. Maleshkova et al. found that a lack of a standard format
to document Web APIs and manual documentation causes
confusions about how to use the APIs for different use cases
[12]. Espinha et al. observed that most RESTful APIs are
documented manually by API developers making the docu-
mentation a less reliable one [13]. Danielsen et al. presented
a vocabulary for documenting RESTful Web APIs called Web
Interface Language (WIfL) [14]. Verborgh et at. presented
RESTdesc, a Resource oriented and Hyper-link based spec-
ification for describing RESTful APIs [15]. Mangler et al.
presented RDDL, an XML based specification for describing
RESTful APIs [16]. Kopecky et al. presented hRESTS, a
machine readable micro-format to describe RESTful APIs that
use an alternate representation compared to WIfL [17]. Ning
et al. presented OmniVoke, a RESTful API based invocation
engine that provides an abstraction layer for RESTful API calls
to multiple APIs that follow different conventions [18]. Manual
configuration is required to generate these aforementioned
specifications for RESTful APIs. Myers et al. recommended
providing a consistent look-and-feel with explanation for the
starting points and an overall map comprising of both text and
diagrams, providing a browsing experience with breadcrumb

1http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-
135444.html

2http://rdoc.sourceforge.net/

trail following a hierarchy, an effective search interface, pro-
viding example code and a way to exercise the examples online
without writing code [19].

In addition to the research community, there are several
custom RESTful API specification formats that are observed
in the industry such as, Swagger3, RAML4, and Blueprint5.
In addition to producing RESTful API documentation, there
are SaaS based tools providers that can be used to publish the
documentation and auto generate API client code for RESTful
APIs that are described using one of these formats. To use
these tools to generate HTML based RESTful API documenta-
tion, API developers need to manually construct the intermedi-
ate documentation format such as Swagger, Blueprint, RAML,
etc. since there is no automated tool to produce this.

III. SPYREST

A. Requirements

The following list of requirements for SpyREST, R1-7, in
priority order, is derived from analyzing the aforementioned
related work and current API documentation practices as
observed in the industry:

R1 - Automated RESTful API documentation: RESTful
APIs are either documented manually or using custom tools
to partially automate the process. The primary requirement
for SpyREST is to find a cost-effective approach to automate
RESTful API documentation.

R2 - Example based: As discussed in the related work
section, several authors have emphasized including example
scenarios with API documentation can help users understand
how to use an API [2], [4]–[6]. SpyREST generated API
documentation needs to include example scenarios.

R3 - Executable documentation: In addition to including
examples, SpyREST also needs to allow users to execute the
example scenarios so that they can try the API features without
having to write code [5], [19].

R4 - Version awareness: SpyREST needs to allow API
developers to publish documentation for multiple versions of
a Web API as it evolves. The following comment from an API
client developer of Stripe, an online payment processing com-
pany, shows the importance of a version-aware documentation
tool6 :

“Does the full API documentation only reflect the
current version of the API? Is there a way to access the
API docs for outdated versions? ...That would be very
helpful. When you are trying to upgrade from one version
to another it’s impossible to know the implementation
differences...”

R5 - Customizable: It is important to customize the
overview information about how to use an API to reduce API
learning obstacles and describe complicated business rules [2].
SpyREST needs to allow API developers to add customized
content to auto generated RESTful API documentation.

3https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
4http://raml.org/spec.html
5https://github.com/apiaryio/api-blueprint
6https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/

version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ



R6 - Reusable: SpyREST needs to work as a reusable
platform so that multiple REST API documentations can be
generated and published on a single platform to get the
advantages of a SaaS platform [10].

R7 - Collaborative: SpyREST needs to allow people to
collaborate on the API documentation so that questions and
answers about APIs can coexist with the API documentation
to to overcome the knowledge fragmentation [8].

B. Design

From our research, we identified an HTTP proxy server
based solution as a novel approach for generating RESTful
API documentation meeting requirements R1-7. Our approach
works as follows: API developers make example API calls
using a proxy −→ the proxy records and processes HTTP
traffic −→ a Web App generates RESTful API documentation.
SpyREST, an example implementation of this approach7, is
composed of three main components as follows:

The Spy: The Spy component in SpyREST is an HTTP
proxy server. The Spy is named so because it records the HTTP
traffic for example API calls that are made using it as a proxy
server. For example, when using Spy as an HTTP proxy to
make the following HTTP request:

Method GET
URL https://api.github.com/repositories?since=100
Headers accept: application/vnd.github.v3+json

that produces the following response:

Headers status: 200 OK
content-type: application/json; charset=utf-8
...

Body 1 [
2 {
3 ” i d ” : 1 ,
4 ”name ” : ” g r i t ” ,
5 ” f u l l n a m e ” : ”mojombo / g r i t ” ,
6 . . .
7 }
8 ]

Spy automatically saves the raw request and response data with
HTTP headers. Additionally, the Spy synthesizes the data and
saves the following meta data about this example API call:

version v3
resource repositories

action GET /repositories
query since: 100

strippedResponseBody a subset of the response body
description blank

digest base64 hash value of the version, resource,
url and description

requiresAuth false
apiToken blank, used when a SpyREST API token is

provided
userId blank, used when a user is found for given

apiToken

As shown in this example, the version “v3” is automat-
ically detected by parsing the accept request header. Next,
the resource field is also auto detected as “repositories” by
parsing the request URL. The action “GET /repositories”

7https://github.com/smsohan/demo paper/raw/master/SpyREST tool
demo.pdf

is automatically detected by combining the request HTTP
method with request path. The strippedResponseBody field
automatically saves a shorter version of the actual response
where large response body is truncated to a smaller one to
reduce noise from the generated documentation. These meta
fields allow SpyREST to structure the example API calls for a
given API host in a hierarchical model as follows: an APIHost
(e.g. GitHub.com) has many APIVersions (e.g. v3), each
APIVersion has many APIResources (e.g. repositories), each
APIResource has many APIActions (e.g. GET /repositories),
and each APIAction has many APIExamples.

The Database: The database component saves the data that
is captured by the Spy and the Web App. The Spy saves the
recorded data about the API examples and the auto-computed
meta data in the database. The Web App saves data about
SpyREST users and custom modifications on auto-generated
API documentation on the same database.

The Web App: The Web App component further processes
and presents auto generated documentation that is captured
by Spy in the database. The Web App also allows the API
developers to edit or add custom content to the auto generated
documentation. The source code for both the Spy and Web
App components are released as open source projects.

C. Features

Now that we have explained the design and implementation
of SpyREST, we discuss how SpyREST meets the aforemen-
tioned requirements R1-7.

R1 - Automated RESTful API documentation: The
work flow for automated RESTful API documentation can be
explained by the following steps: 1) API developer uses the
Spy HTTP proxy to run example API calls, 2) The Spy records
example API calls, 3) The Spy extracts meta information about
the API call, 4) The Web App displays the auto generated
documentation, 5) API developers can optionally customize
the auto generated documentation.

Fig 1 shows screen shots (shortened) from SpyREST auto
generated documentation that is solely based on an example
API call to URL https://api.github.com/search/repositories?q=
tetris+language:assembly&sort=stars&order=desc with a cus-
tom header “x-spy-rest-description” to provide the short de-
scription for the example.

The auto generated API documentation features two sec-
tions, a summary section as shown in Fig. 1a and an examples
section as shown in Fig. 1b. The summary section includes
breadcrumbs to show hierarchy of the API objects related to
each API action to help API client developers easily navigate
the API documentation. This section also includes three tables
that display the structure of query parameters, and request and
response payloads. In addition to the structure, automated type
detection is used to show the data type and example values
for each field in these tables. The examples section on the
API documentation shows all the recorded API examples for
a given API action. For each example, it shows a description,
the request URL, query parameters, and request and response
headers and bodies. Spy filters out the “authorization” request
header before saving the examples in the database and the
documentation rendered by the Web App displays this header
with a placeholder text as “FILTERED”.



(a) API documentation summary section (b) API documentation examples section

Fig. 1: SpyREST Screen shots showing auto generated API documentation

R2 - Example based: SpyREST generated RESTful API
documentation includes both the structure of the API objects
and concrete examples for different use cases. The API exam-
ples are annotated with user provided descriptions through a
custom HTTP request header “x-spy-rest-description” that is
otherwise hard to automatically infer. To record the examples
in SpyREST, any REST API client can be used as long as it
supports an HTTP proxy to call the API.

R3 - Executable documentation: SpyREST keeps a copy
of the API request information including URL, headers and
request body. As a result, SpyREST can also recreate the
example API calls that can be executed by users of the gen-
erated API documentation. SpyREST automatically generates
executable test cases that can be run using cURL8.

R4 - Version awareness: SpyREST allows API developers
to publish the documentation for multiple versions of their
RESTful APIs. To organize API documentation and examples
under multiple versions, SpyREST has an automatic version
detection algorithm that parses the “accept” request header
or the URL. The auto version detection algorithm can be
suppressed by specifying the version in the custom “x-spy-
rest-version” header when running example API calls through
the Spy.

8http://curl.haxx.se/

R5 - Customizable: SpyREST allows API developers to
modify and add custom free-form contents to the auto gener-
ated summary section of the documentation using Markdown9

syntax. Custom content can be used to provide overview infor-
mation and explain complicated business rules about the APIs
that are not derivable from simply synthesizing the examples.
We consider this as a pragmatic solution to augment manual
effort with the largely automated solution to the RESTful API
documentation effort. The custom edits are persisted in the
database and are not overridden when the API examples are
replayed unless the user decides to revert back to automated
summaries.

R6 - Reusable: SpyREST relies on an HTTP proxy to auto
generate RESTful API documentation. To feed SpyREST with
data, any REST API client can be used as long as it supports
using a proxy server. This technology agnostic feature allows
SpyREST to be a reusable RESTful API documentation tool.
SpyREST is offered as a SaaS tool at http://spyrest.com that
can be used to auto-generate and publish documentation of
multiple RESTful APIs. For APIs where a SaaS solution is
not acceptable, SpyREST can also be installed and used as
a self-hosted solution. Because SpyREST is an open-source
application, users can modify the source to support any unique

9http://en.wikipedia.org/wiki/Markdown



requirements that are not supported by SpyREST.

R7 - Collaborative: SpyREST allows the API developers
to comment and discuss API related questions with API
client developers right next to the documentation so that
crowdsourced documentations can coexist with the officially
published API documentation. Each API documentation page
on SpyREST features its own discussion thread to help users
easily locate relevant information.

IV. SPYREST CASE STUDY

In this section we discuss a case study of using SpyREST
to auto generate documentation for 25 API actions randomly
sampled from three RESTful API providers. These 25 API
APIs are documented using 272 lines of code10. These three
API providers are: GitHub.com, KISSMetrics.com (Online
analytics tool), and LiquidPlanner.com (Online project man-
agement tool).

A. SpyREST Documentation vs. Official Documentation

We found SpyREST generated documentation for 5 of the
25 API actions from the case study included fields that are
found from actual API responses but not included in their
official documentation. For example, the SpyREST generated
documentation for Github GET /notifications
API action included 34 additional fields, such as:
forks_url, keys_url, collaborators_url,
and 29 more that were not mentioned in the official
API documentation even though actually returned as
API response. Similarly, the official documentation for
GitHub.com GET /search/code API action did not
include the releases_url API response field. Official
documentation of KISSMetrics.com GET core/accounts
and GET core/accounts/:account_id API
actions did not mention the data field that is found
in the actual response as documented by SpyREST.
The official documentation for GET /api/account
action on LiquidPlanner.com did not mention the
fields workspaces, last_workspace_id, and
disabled_workspaces_count that were included in
the SpyREST documentation. These examples show the
error-prone nature of a manual process that requires API
developers to ensure the documentation is updated to reflect
any change in the API. We consider the proxy based solution
to solve this problem since the API documentation can be
updated by replaying the example API calls.

The official documentation of these three API providers
did not include integrated collaboration features. We found
172 unanswered questions out of 662 questions with the tag
github-api on StackOverflow.com. We found 123 ques-
tions about LiquidPlanner API on their developer forum that
are not linked to officially generated documentation published
as a PDF file. On StackOverflow.com, we found 4 unanswered
questions out of 9 questions on KISSMetrics API. SpyREST
provides the collaboration features with auto generated API
documentation so that API developers and users can discuss
and locate related discussions when browsing RESTful API
documentation on a single web interface. SpyREST includes
executable API examples, support for multiple versions and

10https://github.com/smsohan/spyrest examples

presents the auto generated documentation for different REST-
ful APIs using a consistent look and feel that are not provided
by these studied APIs.

V. DISCUSSION

RESTful API documentation is expensive, error-prone, and
often incomplete because of the manual effort involved in the
process. Our core contribution is a novel approach where an
HTTP proxy server is used to largely automate the process for
RESTful API documentation. There is a lack of tool support
for automatically generating documentation of RESTful APIs.
We presented SpyREST as an example implementation of
the HTTP proxy server based solution to fill this need. The
requirements for SpyREST are derived from analyzing the
existing literature and industry practices as well as our own
professional experiences developing RESTful APIs and their
documentation. In the literature, several papers provided lists
of recommendations for API documentation based on studying
the existing tools and techniques and feedback collected from
API developers. We found a lack of available tool support
to generate RESTful API documentation following those rec-
ommendations and designed SpyREST to provide a solution.
As a result, SpyREST features automated documentation with
executable examples, customizable contents, collaboration,
version awareness and reusability to provide a ready to use
tool support for RESTful API documentation following the
recommendations.

The novel approach of using an HTTP proxy sever offers
some unique benefits over existing tools from academia and
industry. For example, tools that rely on user provided com-
ments on source code and code inspection, such as JavaDoc,
require the user to write formatted comments that are often
applicable to a single programming language. The comments
are not executable, and manual effort is required to ensure
the comments and the API that it describes are kept in sync.
SpyREST generated documentation can reflect the latest infor-
mation since the documentation is generated after executing
the example API calls. The verbose nature of RESTful API
documentation makes it difficult to write and maintain the
documentation as comments in source code. Using an HTTP
proxy server, SpyREST offers a language agnostic solution so
that RESTful APIs written in any programming language can
be documented using a single tool.

Another key feature of SpyREST is the shared platform
for publishing RESTful API documentation. A similar shared
platform is provided by several other tools such as Swagger,
Blueprint. We identify the key advantage of SpyREST over
these tools to be the fact that SpyREST relies on example API
calls instead of relying on a custom API specification that are
required by these tools. The suggested API specifications can
be used to define the structure of API objects but do not capture
examples of API usage. The work flow for using these API
specification formats can be described as follows: (1) execute
example API calls −→ (2) manually generate API specification
−→ (3) automatically generate API documentation. SpyREST
does not rely on any custom API specification, so the associ-
ated manual effort can be largely avoided resulting in a smaller
work flow as follows: (1) execute example API calls −→ (2)
automatically generate API documentation. We consider this
process to be a cost effective approach for APIs with several



endpoints or APIs that evolve. Unlike other available SaaS only
solutions such as Swagger, and Blueprint, SpyREST can be
used both as a SaaS and a self-hosted platform. The self-hosted
mode can be used for documenting internal RESTful APIs
that cannot be released on the internet or modifying the open-
sourced code of SpyREST to fit unique API specific needs.
We have demonstrated using SpyREST with automated test
code. Using the test code helps automatically testing different
use-case scenarios of the API actions in addition to generating
the API documentation.

While SpyREST offers an automated solution for docu-
menting RESTful APIs, API developers can customize the auto
generated content. Several researchers have identified the need
for rich content comprising of text and diagrams to explain
complex business rules about APIs. To achieve this goal,
we consider augmenting auto generated documentation with
user contributed documentation, when necessary, to provide a
pragmatic solution. To summarize, from our example imple-
mentation of SpyREST and the case-study, we have shown the
advantages of the proposed HTTP proxy server based solution
over the existing techniques for RESTful API documentation.

A. Threats to Validity

Internal Threats. Our proposed technique uses an HTTP
proxy server that can only intercept and record the data when
it is either in clear text or trusted to be decrypted by SpyREST.
Because SpyREST can be used as a shared platform, any
secrets used in the example API calls get decrypted in memory,
even though not saved by SpyREST. To overcome these threat,
we recommend API developers to use disposable secrets so that
the secrets used to run an API call are valid for a single API
call. For use cases where this is unacceptable, the self-hosted
mode can be used as an alternative. SpyREST currently only
supports JSON based APIs for their widespread use among
popular RESTful APIs such as Twitter, Facebook, Google
Maps.

External Threats. We used SpyREST to auto generate
documentation for APIs randomly sampled from three REST-
ful API providers as a proof of concept and found the proxy
server based solution met the requirements R1-7. Further
evaluation is needed involving a larger set of RESTful APIs to
evaluate the effectiveness of the proposed technique of using
an HTTP proxy server for RESTful API documentation.

VI. CONCLUSION

In this paper, we have presented a novel technique of using
an HTTP proxy server to automate the RESTful API doc-
umentation process that otherwise requires a largely manual
process. The proxy server based solution supports integrated
features such as automated RESTful API documentation with
executable example API calls, support for multiple versions,
customization and collaboration that are offered both as a
SaaS and self-hosted platforms. These features have been
recommended by existing research on the documentation of
APIs. Overall, we conclude that a proxy server based approach
shows a pragmatic solution to the RESTful API documentation
problem. In the future, we will perform a qualitative user study
involving RESTful API developers to evaluate the effectiveness
about the aforementioned HTTP proxy based RESTful API
documentation approach.

REFERENCES

[1] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[2] M. Robillard, “What makes APIs hard to learn? the answers of
developers,” Software, IEEE, vol. PP, no. 99, pp. 1–1, 2011.

[3] M. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[4] A. Kuhn and R. DeLine, “On designing better tools for learning
APIs,” in Search-Driven Development - Users, Infrastructure, Tools and
Evaluation (SUITE), 2012 ICSE Workshop on, 2012, pp. 27–30.

[5] D. Hoffman and P. Strooper, “API documentation with executable
examples,” Journal of Systems and Software, vol. 66, no. 2, pp. 143
– 156, 2003.

[6] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
IEEE International Conference on Software Maintenance, 2012, pp.
25–34.

[7] C. Parnin and C. Treude, “Measuring API documentation on the web,”
in Proceedings of the International Workshop on Web 2.0 for Software
Engineering, ser. Web2SE ’11. ACM, 2011, pp. 25–30.

[8] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced
faqs into api documentation,” in Companion Proceedings of the Inter-
national Conference on Software Engineering, ser. ICSE Companion
2014. ACM, 2014, pp. 456–459.

[9] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documen-
tation,” in Proceedings of the International Conference on Software
Engineering, ser. ICSE 2014. ACM, 2014, pp. 643–652.

[10] E. Stepalina, “SaaS support in software documentation systems,” in
Software Engineering Conference (CEE-SECR), 2010 6th Central and
Eastern European, 2010, pp. 192–197.

[11] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: Improving API docu-
mentation using usage information,” in CHI ’09 Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’09. ACM, 2009,
pp. 4429–4434.

[12] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web
APIs on the world wide web,” in Proc. of European Conference on
Web Services (ECOWS). IEEE, 2010, pp. 107–114.

[13] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains:
Stories from client developers and their code,” in Proc. of Conference
on Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE). IEEE, 2014, pp. 84–93.

[14] P. Danielsen and A. Jeffrey, “Validation and interactivity of web API
documentation,” in International Conference on Web Services. IEEE,
2013, pp. 523–530.

[15] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés,
and R. Van de Walle, “Functional descriptions as the bridge between
hypermedia APIs and the semantic web,” in Proceedings of the Third
International Workshop on RESTful Design, ser. WS-REST ’12. ACM,
2012, pp. 33–40.

[16] J. Mangler, P. Beran, and E. Schikuta, “On the origin of services using
riddl for description, evolution and composition of restful services,” in
Cluster, Cloud and Grid Computing (CCGrid), IEEE/ACM International
Conference on, 2010, pp. 505–508.

[17] J. Kopecky, K. Gomadam, and T. Vitvar, “hrests: An html microformat
for describing restful web services,” in Proc. of International Confer-
ence on Web Intelligence and Intelligent Agent Technology (WI-IAT),
vol. 1. IEEE, 2008, pp. 619–625.

[18] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue,
“Omnivoke: A framework for automating the invocation of web apis,”
in IEEE International Conference on Semantic Computing, 2011, pp.
39–46.

[19] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret,
J. Karstens, A. Efeoglu, and D. K. Busse, “Studying the documentation
of an api for enterprise service-oriented architecture,” J. Organ. End
User Comput., vol. 22, no. 1, pp. 23–51, 2010.


