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Abstract 

The objective of this thesis was to design and explore the implementation of an indoor 

positioning and tracking technique that was low in cost, relying on Bluetooth Low Energy (BLE) 

sensors, and to integrate it into the Society of Devices Toolkit (SoD-Toolkit) developed at the 

Agile Surface Engineering lab at the University of Calgary. The resulting system maintains a 

database of all tracked and untracked users, and uses the signal strengths of pre-positioned BLE 

beacons to estimate the user's location in an indoor environment.  

Through an evaluation of the proposed technique, we observed an accuracy of approximately 

0.86 meters when a user's average distance to each Bluetooth beacon was less than 1.5 meters. 

The technique was, also, successful in achieving an 80% tracking accuracy across disjoint 

tracked spaces when the user density in the space is kept below 0.17 users per square meter, 

suggesting it could prove to be a practical alternative and/or complement to existing indoor 

positioning systems. 
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Epigraph 

The most profound technologies are those that disappear. They weave themselves into the 

fabric of everyday life until they are indistinguishable from it. 

Mark Weiser 
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CHAPTER 1: INTRODUCTION 

As computers become more miniaturized, more affordable, and more powerful, it has become 

possible to equip our everyday environments with a wide range of interactive and inter-

connected smart objects that can bridge the gap between the physical world and the information 

world. Microcomputers have now become embedded in everyday objects such as light switches, 

locks, toasters, coffee machines, fridges, microwaves, and motor vehicles. This growing trend 

towards creating intelligent, connected environments is known as ubiquitous computing, which 

was first introduced by Mark Weiser in the late 1980s. Weiser states in his influential paper on 

the subject that “The most profound technologies are those that disappear. They weave 

themselves into the fabric of everyday life until they are indistinguishable from it.” (Weiser, 

1991). 

The last few years have seen a growing interest in building novel ubiquitous systems and 

applications that can provide interactive and context-aware experiences. These systems allow for 

content and interaction to flow across and span a wide range of devices, harnessing the unique 

affordances (e.g. size, mobility) supported by each device. An important factor for providing 

such interactive experiences is enabling such systems to become spatially-aware and, thus, 

utilizing the rich spectrum of spatial information (i.e. location, orientation, direction, proximity, 

etc.) in order to support cross-device interactions, such as flicking (Dachselt & Buchholz, 2009), 

or picking and dropping (Rekimoto, 1997). 

Ubiquitous computing environments in which the primary source of context is the user's or the 

device's spatiality is often referred to as location-aware computing (Hazas, Scott, & Krumm, 

Location-Aware Computing Comes of Age, 2004), with the most universal example of location-
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aware computing nowadays being satellite navigation. In satellite navigation, a detailed 

navigational map of the road links is used together with a Global Navigation Satellite System 

(GNSS) to obtain the location information and provide turn-by-turn navigation for a pedestrian 

or a motor-vehicle (Gleason & Gebre-Egziabher, 2009). 

While the Global Navigation Satellite Systems have been very effective in creating interactive, 

spatially-aware applications for outdoor environments, they do fall short when it comes to indoor 

environments due to signal attenuation as signals propagate through buildings. Although a 

number of indoor positioning techniques have been researched and developed, each of these 

techniques does come with its shortcomings and imposed restrictions. For instance, systems that 

rely on low-end depth cameras or WiFi beacons are relatively inexpensive and easier to deploy. 

They do, however, provide lower precision tracking compared to their more expensive, highly-

accurate, high-maintenance Vicon1 and ultrasound based counterparts.  

Furthermore, the majority of existing indoor tracking techniques do not support tracking across 

disjoint tracked spaces (Figure 1), demanding users to remain within the range of the tracking 

sensors at all times. This results in further instrumentation and/or calibration overhead when 

attempting to identify users as they become invisible to the system while transiting across 

multiple spaces. 

This work aims to propose and analyze a low cost indoor positioning and tracking technique 

relying on Bluetooth Low Energy sensors, and to integrate it into the Society of Devices Toolkit 

(SoD-Toolkit) (Seyed, Azazi, Chan, Wang, & Maurer, 2015). The proposed technique can be 

                                                 

1 Vicon - www.vicon.com 

http://www.vicon.com/
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used as a standalone indoor localization solution, and can be integrated with existing indoor 

localization systems to provide a cost effective solution for extending the range of such systems 

across disjoint tracked spaces. 

This chapter provides an introduction for this thesis. Section 1.1 provides a brief overview into 

indoor positioning, while Section 1.2 discusses disjoint environments. The motivation behind 

this thesis is then discussed in 1.3 and serves as the basis for the research questions in Section 

1.4. Section 1.5 discusses the goals of this thesis. The contributions of this thesis are then 

Kinect Field of View 

Microsoft Kinect 

Physical Barrier 

Figure 1 - An example of a disjoint tracked environment consisting of two Microsoft Kinect 

sensors covering non-overlapping fields of view (two rooms), and separated by a physical barrier 

(wall). As users transit in the untracked area between the two sensors, they become invisible to the 

system and lose their tracked status. 
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detailed in Section 1.6, which is followed by an overview of the structure of this thesis in Section 

1.7. 

1.1 Indoor Positioning  

Indoor positioning and navigation technologies provide the ability to locate and track users as 

well as objects within an indoor environment in real-time (Curran, et al., 2011). Many indoor 

positioning systems have been developed over the last few years, relying on a wide variety of 

technologies such as ultrasound (Addlesee, et al., 2001) (Hazas & Ward, A Novel Broadband 

Ultrasonic Location System, 2002) (Priyantha, Chakraborty, & Balakrishnan, 2000), infra-red 

(Want, Hopper, Falcão, & Gibbons, 1992), and radio (Gezici, et al., 2005) (Bahl & 

Padmanabhan, 2000) (which utilize the measured distance to nearby pre-positioned beacons), 

magnetic fingerprinting (Haverinen & Kemppainen, 2009), as well as dead-reckoning (Hu & 

Evans, 2004). Nonetheless, the research area of indoor positioning and tracking has not matured 

enough yet for a de facto solution to emerge despite extensive research. This is largely due to the 

constraints imposed by the unique requirements for different scenarios and use cases. Section 1.3 

of this thesis discusses the major challenges encountered in the field of indoor positioning.   

1.2 Disjoint Environments 

We define a disjoint indoor setting as an environment that is comprised of two or more non-

overlapping tracked spaces, across which a user cannot travel without becoming invisible to the 

positioning system in use. Disjoint environments span a wide range of settings and sizes and can 

be categorized as follows:  
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1.2.1 Sparse vs. Adjoining Environments  

Sparse disjoint environments cover large areas and are usually separated by physical constraints 

and barriers, such as thick walls, and hallways. Examples of such sparse environments include 

tracking users across different stores within a shopping mall, tracking users across separate 

floors, or non-adjacent rooms within a building.  

Adjoining environments, on the other hand, tend to cover more compact areas, usually covering 

non-overlapping regions of a continuous, visible space. An example of such an environment is 

shown in Figure 2. The figure shows Chokshi et al.'s multi-surface emergency operations center 

Figure 2 - Multi-surface Emergency Operations Center. The space in red is tracked by 

the Microsoft Kinects, while the rest of the space remains outside the tracked area of the 

system. 
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(Chokshi, Seyed, Marinho Rodrigues, & Maurer, 2014), where two Microsoft Kinects2 are used 

to track the areas immediately adjacent to the large display and the digital tabletop, which 

constitute the crucial areas of the environment, however leaving large parts of the environment 

untracked.   

1.2.2 Congested vs. Scarce Environments 

Another factor that plays a role in the classification of disjoint environments is related to the 

density of users and devices in relation to the total area of the environment.  

This factor, in contrast with the previous one, is however transitory as users flow constantly into 

and out of the environment. Figure 3.1 illustrates an example of a congested disjoint environment 

                                                 

2 Microsoft Kinect - https://developer.microsoft.com/en-us/windows/kinect  

https://developer.microsoft.com/en-us/windows/kinect
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(a large crowded room during a presentation), while Figure 3.2 presents an example of a scarce 

disjoint environment using the same meeting room at different time of the day.  

Figure 3 - An example of congested vs. scarce environment: 1) illustrates a user dense 

environment during a presentation in a large room. The red ellipses represent the tracked 

area of the environment, while 2) shows the same space but in a more scarce state at a 

different time of the day. 
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1.3 Motivation 

Choosing the right technique and sensors for tracking an indoor environment is vital. It, 

however, is not an easy task because of the variety of factors that need to be considered, leading 

to the following challenges and providing the motivation for this thesis. 

1.3.1 Accuracy vs. Cost 

Factors such as the targeted application, the level of accuracy and precision, the complexity of 

system deployment and calibration, scalability, and overall system cost cannot all be met in one 

single solution. For instance, instrumenting the environment with high precision tracking sensors 

such as the Vicon camera or ultrasonic sensors can provide sub-millimeter tracking accuracy, but 

do require an intensive amount of deployment and calibration efforts, and come with a cost-

prohibitive price tag for most use cases.  

Similarly, the cost and the system complexity could be traded off through the usage of lower 

precision tracking technologies that may fall short of achieving the target accuracy required for 

the use case in hand. 

1.3.2 Zombie Rising 

A key challenge that motivates the work presented is related to the scalability of the indoor 

positioning system. In most usage scenarios, the tracking hardware and sensors are deployed and 

calibrated to provide user tracking within a continuous indoor environment which requires users 

to remain within the range of the tracking sensors. However, ensuring that every inch of the 

environment is within the range of the sensors is not always reasonably achievable because of 
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physical constraints such as walls, furniture, and narrow hallways, as well as the cost associated 

with heavily instrumenting non-crucial areas of the environment. 

While a few of the existing systems can be configured to track multiple disjoint indoor 

environments, identifying users as they transit across these environments becomes problematic. 

This is mainly due to the tracked user (user 1) becoming untracked as they leave the range of the 

sensors, and being registered as a new tracked user (user 2) as they re-enter the tracked range, 

which leaves user 1 in a registered but untracked state, or a Zombie state. Figure 4 illustrates an 

example of a Zombie rising scenario. Ensuring that Zombie users are re-mapped (re-paired) to 

their respective tracked users requires repeated calibration which results in extra overhead for the 

system engineers and the end users alike. 

1.4 Research Questions 

This thesis investigates the development of an indoor positioning technique based on Bluetooth 

Low Energy beacons. In doing so it aims to answer the following questions: 

Figure 4 - An example of a Zombie rising scenario: 1) A user (user ID# 1) starts within the 

tracked area, 2) As the user leaves the tracked area, they become untracked, losing their 

identification with the system, and 3) The user moves back to the tracked area of the 

environment, but gets recognized as a new user and is assigned a new identity (user ID# 2). 



 

10 

1. What is the current state of research in indoor positioning and navigation, particularly within 

the context of ubiquitous computing environments? The aim here is to understand the existing 

research space and learn about the various indoor positioning and navigation techniques, as well 

as the trade-offs associated with current approaches.  

2. How accurately can the relative movement of a user be measured using the signals of the 

Bluetooth Low Energy beacons? The aim here is to determine the extent and the precision to 

which it is possible to track the relative movement of users and their devices in an indoor 

environment using Bluetooth Low Energy beacons.  

3. How accurately can the proposed technique identify and re-pair users as they transit across 

disjoint environments? This question differs from the one above because it deals specifically 

with the tracking and identification of users as they leave one tracked environment, travelling 

through a previously untracked area, and entering another tracked environment.  

4. What is the infrastructure required to track users and their devices sufficiently in an indoor 

environment using Bluetooth Low Energy beacons? The aim here is to determine the amount 

(and cost) of the infrastructure that is required to be installed to provide an adequately accurate 

tracking in an indoor environment.   

1.5 Research Goals 

The thesis has two primary research goals. The first goals is to develop and evaluate the accuracy 

of an indoor positioning and tracking technique based on Bluetooth Low Energy beacons. 

Chapters 3 and 4 discuss the design, implementation, and evaluation of the technique that 

addresses this goal.  
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The second goal of this thesis is to answer the previous research question. That is, we aim to 

determine the amount of instrumentation and infrastructure necessary to provide a sufficient 

tracking accuracy in indoor environments when using the proposed technique. 

1.6 Thesis Contribution  

The contributions of the work discussed in this thesis for the field of indoor positioning and 

navigation are as follows: 

1. A literature review of previous work in the area of indoor positioning and navigation. This 

review provides an overview of existing indoor positioning technologies and systems, alongside 

the affordances and limitations of these technologies.  

2. The second major contribution provided in this thesis is the proposed indoor positioning 

technique. The proposed technique, based on Bluetooth Low Energy beacons, meets all the 

design considerations documented in Chapter 3 as it is low cost, provides a streamlined process 

for instrumenting the environment with beacons, can be used both as a standalone technique or 

as a complementary module when integrated with other indoor positioning system, and supports 

tracking users and their devices across disjoint environments.   

3. In addition, two experiments were conducted to providing evidence that the proposed indoor 

positioning technique is a practical alternative and complement to existing indoor positioning 

systems in sufficiently sparse disjoint environments. 
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1.7 Thesis Structure 

This introductory chapter presents a background of the research for this thesis. It, also, discusses 

the motivation, research questions, research goals, and the contributions of the thesis. The 

remaining chapters for this thesis are organized as follows: 

 Chapter Two: Related Work 

The next chapter provides an overview of research related to indoor positioning and tracking 

technologies, which includes current approaches and existing indoor positioning systems, 

alongside the advantages and limitations of these approaches and technologies. 

 Chapter Three: Modelling of the Positioning Technique 

This chapter details the design and the implementation of the indoor positioning techniques 

proposed in the thesis. The chapter discusses the design considerations of the technique, its 

integration with the Society of Devices Toolkit, alongside the algorithms and procedures used to 

implement it.  

 Chapter Four: Evaluation 

This chapter describes two experiments that investigated the accuracy of the proposed technique 

for tracking users and their devices across and within indoor ubiquitous environments. The 

chapter starts by detailing the design, procedures, and results of each experiment, and presents 

the implications of the results on standalone and integrated implementations, associated 

limitations, and provides suggested usage settings and scenarios. 

 Chapter Five: Conclusion & Future Work 

This chapter wraps up the work on the thesis and provides direction for future work in this area. 
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CHAPTER 2: RELATED WORK 

The research space of indoor tracking and localization has been well defined in the past few 

years, with a significant amount of research conducted from the system engineering perspective 

and the human computer interaction perspective. Generally, indoor positioning techniques can be 

categorized, based on the sensor technologies used, into two categories: infrastructure-based, and 

infrastructure-free techniques. They can, also, be categorized based on the underlying 

environment model that indoor positioning techniques use to provide a spatial context into two 

categories: relative positioning techniques, and absolute positioning techniques.  

The first section of this chapter outlines the sensor technologies that have been used to develop 

infrastructure-based positioning systems. Sensor technologies used for creating infrastructure-

free positioning systems are, then, described in Section 2.2. Finally, sections 2.3 and 2.4 of this 

chapter describe and contrast relative and absolute positioning techniques, providing examples of 

systems that utilize the two approaches.   

2.1 Infrastructure-based Positioning 

Infrastructure-based techniques rely heavily on instrumenting the environment using customized 

hardware and sensors such as RF transmitters, ultrasound speakers, LED lights, and magnetic 

resonators to track users or marked objects within the environment. This section outlines the 

major technologies used in infrastructure-based indoor positioning, with examples from the 

literature of systems that utilize these technologies. 
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2.1.1 Ultrasound 

Ultrasonic indoor positioning systems use Time-of-Flight (TOF) of ultrasonic signals to compute 

the distance between tracked users of devices and pre-positioned transmitter nodes, and estimate 

their positions in three dimensions, with accuracies down to a few centimeters. 

An example of such a system is the Active Bat system (Addlesee, et al., 2001), which uses an 

infrastructure of small fixed narrowband beacons positioned on the ceiling of the tracked 

environment (known as bats), as shown in Figure 5.2. Tracked devices, known as active bats 

(shown in Figure 5.1), are carried by users and are positioned in the environment by multi-

trilatering the times-of-flight of the ultrasonic signals to nearby bat beacons. The position 

measurements computed by the Active Bat system reported accuracies to within 3 centimeters 

(Addlesee, et al., 2001). 

Although the system achieves a high tracking accuracy, a drawback of the Active Bat system is 

that its accuracy could be greatly affected by ultrasonic noise produced by typical everyday 

Figure 5 - Active Bat System: 1) Active Bat, 2) Ceiling mounted bat. 
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objects (such as chiming keys) in home and office environments. Additionally, instrumenting an 

environment with bat sensors requires positioning the bats one at a time in order to avoid signal 

collisions. A more recent example of ultrasonic indoor positioning systems is the DOLPHIN 

system (Fukuju, Minami, Morikawa, & Aoyama, 2003). The system uses two broadband 

ultrasonic transducers, one for transmitting and one for receiving. This allows for multiple 

beacons to be positioned simultaneously regardless of surrounding ultrasonic noise, and thus 

overcoming the limitations of the Active Bat system. 

2.1.2 Infrared (IR) 

Infrared based indoor positioning systems use infra-red light to provide room-level location 

information. That is, such systems narrow-down the location of the tracked user or device to a 

single room or area. Infrared-based system detect the location of a tracked user or a device by 

transmitting infrared signals from previously positioned sensors. When these signals are received 

by a device, the system reports the room locality in which the device is most likely located. 

Additionally, as infrared signals do not pass through and are reflected by physical barriers, such 

as walls, these systems do not require the establishment of a line-of-sight between the transmitter 

and receiver sensors. 

A popular example of an infrared-based indoor positioning system is the Active Badge system 

(Want, Hopper, Falcão, & Gibbons, 1992), which was intended to aid telephone receptionists at 

the Olivetti research laboratory in routing incoming telephone calls to their intended recipients 

anywhere in the building. The Active Badge system used a network of infrared sensors that were 

mounted in the offices and common areas to detect employee-assigned badges (Figure 6). Each 

badge emitted a distinct infra-red code identifying the employee carrying the badge. The system 
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reported the likelihood of locating an employee at a location as a percentage. A likelihood that is 

less than 100% indicated that the person is not stationery. If an employee could not be reached 

by the system for 5 minutes, the system reports the last time and location at which they were last 

sighted. 

Although infrared-based positioning systems cannot be used to provide accurate localization of 

users an devices in indoor environments, infrared sensors are small, power efficient and can be 

made very cheaply, thus making them ideal for providing room-level location information. 

2.1.3 Vision 

Vision-based positioning systems rely the use of multiple camera views to track users and 

devices within an indoor environment. Proximity Toolkit, by Marquardt et al (Marquardt, Diaz-

Marino, Boring, & Greenberg, 2011) is an example of a proxemic interaction framework that 

relies on a vision-based indoor positioning system. It provides accurate positioning of users and 

Figure 6 - Active Badge System: Active Badge. 
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devices within the environment by instrumenting the room with the Vicon Motion Capture 

system and instrumenting users with physical tracking markers (Figure 7). This allows users and 

devices to interact with each other using spatial information and proxemic relationships. 

Marquardt et al (Marquardt, Diaz-Marino, Boring, & Greenberg, 2011)  defined proxemics 

relationships as the “distance and orientation towards others”. According to Marquardt et al, 

Proximity Toolkit has “sub-millimeter tracking accuracy.” (Marquardt, Diaz-Marino, Boring, & 

Greenberg, 2011). 

A drawback of Proximity Toolkit, however, is its use of the Vicon Motion Capture system which 

requires physical markers, and thus limiting its practicality in real-life settings. The Vicon 

system is also very expensive and is time consuming to instrument a room with. While the 

toolkit is capable of using a single Microsoft Kinect sensor, there is a loss in the tracking 

accuracy in addition to the occlusion problems that arise when users are blocking the field of 

Figure 7 - Vicon Motion Capture Suit & Markers (Vicon 

Motion Systems Ltd., 2016). 
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view of the Kinect sensor. The tracking area is limited to a small room with furniture, and it is 

infeasible to scale to a larger room because of the high cost of the Vicon cameras. Proximity 

Toolkit also requires an initial calibration of the various sensors in the room before using it for 

tracking purposes. 

The EasyLiving system, by Krumm, is another example of a vision-based system that tracks 

users within an environment using two stereo cameras (Krumm, et al., 2000). The system is 

capable of tracking users with an accuracy within 10 centimetres without requiring users to wear 

visual markers. It maintains the identity of the users based on colour histograms that are captured 

as users move throughout the tracked environment. These identities are, however, not consistent 

as they do not always reflect the accurate identity of the user. As a result, a user who has left the 

field of view of the cameras might be assigned a new identity when re-entering the tracked 

environment, which relates closely to the Zombie rising issue discussed in section 1.3.2.    

The Society of Devices (SoD) Toolkit, developed by Seyed et al (Seyed, Azazi, Chan, Wang, & 

Maurer, 2015), achieves marker-free tracking through the use of multiple Microsoft Kinect 

sensors to track users within an indoor  environment (Figure 8). By using multiple overlapping 

Kinects, SoD improves the tracking accuracy of users and devices in the environment by 

mitigating the occlusion problem, and increasing the area of the tracked environment (Seyed, 
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Azazi, Chan, Wang, & Maurer, 2015). SoD, however, suffers scalability issues although it uses 

consumer accessible Kinect sensors, and is still infeasible to scale to a large-sized room. This is 

because each Kinect optimally tracks “a range of 1.2 to 3.5 meters” (Satyavolu, Bruder , 

Willemsen, & Steinicke, 2012) and, therefore, a large number of Kinects would be required to 

track a room of a size that exceeds a few meters. Calibration, which is the procedure of 

establishing a standardized unit baseline to map the sensor readings to, would, also, be required 

for each Kinect sensor, increasing the amount of time needed to setup a room. 

2.1.5 Summary  

Currently, the choice of sensors in infrastructure-based indoor positioning depends on the 

requirements of the system being designed, and the level of accuracy it aims to achieve. For 

Figure 8 - SoD Toolkit Setup. 



 

20 

instance, infrared based Active Badge Location System (Want, Hopper, Falcão, & Gibbons, 

1992) is relatively inexpensive and is easy to deploy. The system, however, achieves a lower 

precession than the higher-end indoor tracking systems that rely on far more sophisticated 

technologies. For example, systems such as the ultrasound based Active Bat System (Addlesee, 

et al., 2001) and Cricket Location-Support System (Priyantha, Chakraborty, & Balakrishnan, 

2000), as well as the Vicon based Proximity Toolkit (Marquardt, Diaz-Marino, Boring, & 

Greenberg, 2011) can achieve very high precision, but are more expensive and do require 

extensive instrumentation efforts. 

A notable drawback of infrastructure-based techniques, however, is that such approaches 

requires continuous instrumentation and calibration of the environment and the applications that 

use it, and therefore making such approaches difficult to scale to larger areas. Another drawback 

that is more specific to vision based tracking techniques is that prior research has shown that 

users do feel unfamiliar and uncomfortable with intrusive tracking technologies (Seyed, Costa 

Sousa, Maurer, & Tang, 2013). 

2.2 Infrastructure-free Positioning 

Alternatively, infrastructure-free implementations do not require instrumenting the environment 

with custom hardware and sensors to track users and objects, but rather rely on either leveraging 

the already existing infrastructure in the environment, or on instrumenting the users and their 

devices instead.  

Most of these techniques combine the signals from existing infrastructure with device-embedded 

sensors such as accelerometer, gyroscope, and compass (which have become a standard in off-
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the-shelf mobile devices) to achieve better tracking precision in a process known as sensor 

fusion. The motivation behind sensor fusion is to combine the outputs of different sensors and 

technologies utilizing the unique capabilities of individual sensor technologies, while mitigating 

their individual weaknesses. 

This section outlines the major approaches and technologies used in infrastructure-free indoor 

positioning, with examples from the literature of systems that utilize these technologies. 

2.2.1 Leveraging Existing Infrastructure   

Due to the large number of Wi-Fi access points that are already installed in all sorts of indoor 

environments, indoor positioning systems that rely on the received signal strength indication 

(RSSI) measurements of Wi-Fi signals have gained a growing popularity in the past few years. 

Such systems use the received signal strengths on the user's device in order to estimate the 

distance between the user and multiple base Wi-Fi stations in the environment. 

Examples of such systems include RADAR (Bahl & Padmanabhan, 2000), which uses multiple  

Wi-Fi base stations positioned specifically to provide overlapping coverage of the indoor 

environment. RADAR uses the observed signal strengths and a radio map of the environment to 

estimate the user's position, achieving an accuracy within 9 meters 95% of the time. A similar 

approach, by Wan et al. (Wang, Lenz, Szabo, Bamberger, & Hanebeck, 2007), was able to obtain 

an accuracy of 6.44 meters using a similar algorithm.  

Both of the systems mentioned above are deterministic in the sense that they produce the single 

best estimation of the user or the device within the environment. Another approach is to compute 

the probability distribution of the user's position rather than estimating a single coordinate. The 
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Horus (Youssef & Agrawala, 2005) and Mawi (Zhang, Luo, & Wu, 2014) systems use such an 

approach, with the Horus system reporting an accuracy of 1.4 meters in 95% of the samples 

collected, and Mawi reporting to have outperformed the Horus system.  

Another example of an indoor positioning technique that leverages existing infrastructure, but is 

not Wi-Fi based, is the Acoustic Background Spectrum technique (Tarzia, Dinda, Dick, & 

Memik, 2011) which uses sound signals to create a fingerprint database of the environment. The 

technique estimates the user's location by measuring the present fingerprint and contrasting it to 

the fingerprint database, selecting the one that most resembles the current fingerprint. The 

technique, however, reported an overall success rate of only %69. 

2.2.2 Instrumenting for Users and their Devices  

Instrumenting the user and the device is an alternative technique for tracking indoor 

environments. It relies on equipping the users and their devices with specialized sensors - such as 

inertial measurement units containing accelerometers, gyroscopes, compass, and other sensors, in 

order to provide means of tracking and navigation within the environment. 

According to Savage (Savage, 1998), Inertial Measurement Units (IMU) are devices which are 

“typically composed of an orthogonal three-axis set of inertial angular rate sensors and 

accelerometers.” Savage provides an optimized algorithm for indoor inertial navigation using an 

accelerometer. However, an issue with inertial navigation systems is that error tends to build up 

over time because each new sensor reading is added onto the previous readings. An error in a 

previous sensor reading affects all subsequent calculations and, thus, produces erroneous results. 
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Kim et al (Kim, Cho, Kim, Kim, & Kee, 2011) introduces an approach to solving the problem of 

user tracking using a low-cost pedestrian navigation system that overcomes the signal blockage 

problems that arise in urban environments when using standalone Global Positioning Systems 

(GPS). The Pedestrian Dead Reckoning (PDR) algorithm with step length correction integrates 

GPS navigation with the accelerometer signal pattern to compensate for the GPS signal blockage 

error. The algorithm models the step length as a linrar combination of constants and step 

frequency, and corrects for accumulated error by using the user's GPS position. 

Project Tango3 - a project by Google, is another example of this approach. Project Tango is a 

mobile device equipped with customized sensors and software that track the motion of the device 

in 3D space. This custom design allows the device to compute over a quarter million 

measurements every second, providing real-time position and orientation information of the 

device. It uses computer vision, in combination with other smartphone sensors, to create a 3D 

model of a room, tracking the location of the device within that room. InstantLoc (Jain, 

Manweiler, & Roy Choudhury, 2015) is an example of a system that uses Google's project Tango 

to scan and store a depth-map relative to the user's initial position, and uses the produced map to 

identify the location of users in environments of arbitrary sizes. 

2.3 Absolute Positioning Techniques  

Absolute indoor positioning techniques rely on constructing a map model of the environment to 

constrain the interpretation of the motion of the users and their devices. In the simplest sense, 

mapping an environment creates a spatial graph of an indoor space, such as a floor plan, that 

                                                 

3 Project Tango - http://www.google.com/atap/projecttango/  

http://www.google.com/atap/projecttango/
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features a variety of constraints such as walls and entrances that limits the allowable interpreted 

movement of the user within the environment. For example, a user cannot transit between two 

separated spaces through walls, and can only reach an area through its entrance. More complex 

map types provide additional sensor-specific features, such as the coordinates of pre-positioned 

signal transmitters and receivers and radio fingerprints.  

Combining the positional information obtained by the tracking sensors with the constraints 

provided by the map model of the environment, the system then attempts to estimate the most 

likely trajectory (i.e. the trajectory that violates none or the fewest constraints) of the users as 

they move throughout the environment. An example of such a system is MapCraft (Xiao, Wen, 

Markham, & Trigoni, 2014), which uses a map matching technique based on the application of 

conditional random fields. MapCraft uses dead-reckoned trajectories alongside a floor plan of the 

tracked environment to compute user's position with an average accuracy of 1.14 meters (Xiao, 

Wen, Markham, & Trigoni, 2014).   

2.4 Relative Positioning Techniques  

Alternatively, relative positioning techniques, which are also known as dead reckoning systems, 

do not require constructing a map model of the environment prior to using the system, but rather 

track the positions of users and their devices relative to their initial state (i.e. location, 

orientation, direction, etc.), relying solely on user and device instrumented tracking sensors. 

Existing implementations of relative positioning systems can be categorized into two major 

groups: step detection based implementations, and inertial navigation based implementations.  
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Step detection based systems use an accelerometer that could be mounted on the user's body 

(foot (Cho & Park, 2006), or waist (Alvarez, Gonzalez, Lopez, & Alvarez, 2006)) or on the 

user's wear (helmet (Beauregard, 2006), or backpack (Groves, et al., 2007)) to estimate a user's 

position. Step detection based algorithms are composed of three phases: 1) Step detection phase, 

during which the body-mounted sensors sense that the user has moved, 2) Step length estimation 

phase, during which the system estimates the length of the movement performed by the user, and 

3) Step heading estimation phase, during which the system estimates the heading (orientation) of 

the user, and updates the position of the tracked user.  

Inertial navigation based systems require the use of a full inertial measurement unit (consisting 

normally of 3 orthogonal accelerometers and 3 gyroscopes aligned with the accelerometers). To 

avoid the rapid accumulation of drift of the tracked position in such implementations, which is 

due to the propagation of measurement errors through the integration calculations, the inertial 

measurement unit must be mounted on the user's foot, and thus correcting the system state every 

time the foot is grounded (Foxlin, 2005) (Godha, Lachapelle, & Cannon, 2006).  

Although both techniques use body-mounted sensors, step detection based systems can leverage 

a variety of sensors that could be mounted in different positions of the user's body, while systems 

that are based on inertial navigation can only be effective if foot-mounted sensors were used. 

Nonetheless, inertial navigation based systems can correctly recognize and handle sidesteps and 

vertical displacement (i.e. when climbing the stairs), and thus proving to be more accurate than 

their step detection based counterparts. 
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2.5 Conclusion 

In this chapter, a set of the major techniques and approaches for implementing indoor positioning 

systems were discussed. Some of these techniques achieve high accuracies, but require extensive 

instrumentation efforts, and provide limited support for the consistent identification of users as 

they transit into and out of the environment. In this thesis, I propose an indoor positioning and 

tracking technique based on Bluetooth Low Energy beacons, and I then evaluate the proposed 

technique in the form of two experiments examining the accuracy of the technique in tracking 

users within and across indoor environments.    
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CHAPTER 3: MODELLING OF THE POSTIONING TECHNIQUE 

As shown, there is a significant amount of work in the indoor positioning and navigation space, 

however, existing implementations still do suffer from various limitations. To attempt to address 

these limitations, we designed an indoor positioning technique based on Bluetooth Low Energy 

sensors. Mainly, we developed and evaluated an indoor navigation technique that addresses the 

problem of identifying and re-pairing zombie uesers to the respective tracked users as they transit 

across disjoint ubiquitous environments. 

The first section of this chapter outlines the design considerations of the proposed positioning 

technique. Bluetooth Low Energy technology is then described in section 3.2, followed by the 

positioning algorithms used that were used in section 3.3. Finally, section 3.4 of this chapter 

describes the architecture of the positioning technique, outlining its various components, and the 

technical decisions that led to its design. 

3.1 Design Considerations  

While reviewing the literature, we iterated over three main considerations in the design of our 

proposed technique, which are: providing a cost-extensible model, a simple instrumentation and 

deployment process, and a versatile model that could be used as standalone or as part of an 

integrated system. Each of these considerations is described in more details in the next three 

sections.  

3.1.1 Cost-extensible Model 

The first consideration is related to supporting a wide range of cost-accuracy permutations based 

on the requirements of the system, and thus creating a cost-wise flexible system. This means 
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accommodating the different settings required for different applications (i.e. low-cost low-

precession vs higher-cost higher-precession), while providing painless means for switching 

between these settings as necessary. 

3.1.2 Simple Instrumentation and Deployment 

The second consideration is related to reducing the amount of effort required to set-up and 

instrument the environment. This means designing a streamlined sensor calibration process, 

allowing for an easy and quick deployment of new sensors as required. 

3.1.3 Versatile Standalone and Integrated Model 

The last consideration aims to create a system model that can be used as a standalone system, or 

integrated with existing indoor-positioning implementations. This consideration is of importance 

as it adds to the overall flexibility of the system. The ability to integrate with existing 

implementations provides means for addressing the issue of tracking and identifying users and 

their devices across disjoint tracked environments.  

3.2 Bluetooth Low Energy 

The proposed positioning technique uses Bluetooth Low Energy (BLE), also known as Bluetooth 

Smart, beacons as the means for tracking users and their devices within an environment. 

Bluetooth Low Energy is a relatively new (BLE was introduced in June 2010 (Townsend, Cufí, 

Akiba, & Davidso, 2014)) low-power RF-based technology that was developed for close-range 

communication (Gomez, Oller, & Paradells, 2012). It was introduced by the Bluetooth Special 

Interest Group as part of the version 4.0 of the Bluetooth Core specification.  
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Bluetooth Low Energy has seen an increased popularity in the past few years as a durable and 

reliable communication mechanism for Internet of Things (IoT) implementations (Siekkinen, 

Hiienkari, Nurminen, & Nieminen, 2012), and has emerged as a feasible indoor positioning 

technology due to the recent surge in the number of BLE-enabled devices. It, however, is worth 

noting that Bluetooth, in its classic standard, which has been around for a number of years is not 

directly compatible with Bluetooth Low Energy since the applications and the upper protocol 

layers are different amongst the two technologies. Table 1 contrasts the compatibility of different 

versions of Bluetooth devices with the Bluetooth classic version and the BLE version. 

Device Classic Bluetooth 

Support 

Bluetooth Low Energy 

Support 

Pre-4.0 Bluetooth Yes No 

4.x Single-Mode (Bluetooth Smart) No Yes 

4.x Dual-Mode (Bluetooth Smart 

Ready) 

Yes Yes 

Table 1 - Compatibility of versions of Bluetooth devices with classic Bluetooth and 

Bluetooth Low Energy. 

According to its specification, BLE has a modulation rate of 1Mbps, however this limit is 

significantly lowered in practice due to a variety of factors, such as protocol overhead, 

bidirectional traffic, CPU and radio limitations, as well as artificial software restrictions. BLE 

focuses on short-range communication, with its transmission power configurable over a range 

between -30 and 4dBm. Increasing the transmission power, however, reduces the durability of 

the BLE device's battery cell. Additionally, although it is possible to configure a BLE device to 
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reliably transmit beyond 30 meters, a practical operating range is probably within the range of 2 

to 5 meters (Townsend, Cufí, Akiba, & Davidso, 2014).  

In this work, we used the consumer-grade Estimote4 Bluetooth Low Energy beacons as our 

choice of BLE beacons, which will be discussed in further detail in section 3.4.4.2. 

3.3 Indoor Positioning Algorithms 

In this thesis, the location of users and their devices will be estimated on the basis of nearby 

Bluetooth Low Energy beacons and their received signal strength. The system employs the 

concepts of Free Space Path Loss and Trilateration to estimate the user's location based on the 

distance from BLE-enabled devices to at least three pre-positioned BLE beacons in combination 

with the calibrated positions of the BLE beacons.  

3.3.1 Free Space Path Loss 

Before we could estimate a user’s device location using the Bluetooth beacons, the distance from 

the device to each of these beacon must be computed. To achieve this, we use the Free Space 

Path Loss (Saunders & Aragón-Zavala, 2007) relationship between the signal strength and the 

distance to the Bluetooth beacon through free space, as shown in Equation 1 below. 

𝐥𝐨𝐠𝟏𝟎(𝒅) =
𝒑𝒕 − 𝒑𝒓 + 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎

𝝀
𝟒𝝅

𝟏𝟎𝒏
    (1) 

Where:  

 𝒅 is the distance between the device and the Bluetooth beacon (in meters) 

                                                 

4 Estimote - http://www.estimote.com  

http://www.estimote.com/
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 𝒑𝒕 is the broadcasting power of the Bluetooth beacon (in 𝒅𝑩𝒎) 

 𝒑𝒓 is the power level of the received signal (in 𝒅𝑩𝒎)  

 𝒏 is the path loss constant (2 in free space) 

 𝝀 is the wavelength, which is given by equation 2 below 

𝝀 =
𝒄

𝒇
    (2) 

Where  

 𝒄 is the speed of light (in meters per second) 

 𝒇 is the frequency of signal (in hertz) 

Figure 9 - Beacon Trilateration: 1) Optimal case where the three circles intersect in 

exactly one point, 2) Usual case where the three circles intersect in more than one 

point. 
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3.3.2 Trilateration  

To compute the estimated location using the Bluetooth beacons, the device scans for nearby BLE 

beacons. When three or more beacons are visible, the user’s device reports the closest three 

Bluetooth beacons alongside the signal strength of each of these beacons. These updates are sent 

to the SoD locator service once per second, which is the minimum scanning interval on iOS. The 

decision to use iOS as the client platform is discussed in detail in section 3.4.4.1.  

Using the distances computed from the Free Space Path Loss equation to each Bluetooth beacon, 

one could represent each of these beacons as a circle centered at its registered location, with a 

radius equal to its distance to the device, as shown in Figure 9.   

As shown in Figure 9.1, the three circles optimally intersect in one point, which can be computed 

by formulating the equations of the three circles. Nonetheless, due to measurement and 

approximation errors, it is often the case that the three circles do not intersect in one single point, 

as presented in Figure 9.2. 

A trilateration algorithm that minimizes the distance to all three beacons was implemented. 

Given the computed distances to each of the beacons 𝒅𝟏,𝒅𝟐, and 𝒅𝟑, and the registered locations 

of these beacons (𝒙𝟏,𝒚𝟏), (𝒙𝟐,𝒚𝟐), and (𝒙𝟑,𝒚𝟑), the estimated location of the device (𝒙, 𝒚) is 

computed by solving the three resulting non-linear equations (equations 2, 3, and 4 below) 

simultaneously to eliminate one of the coordinates, and thus, finding the approximated 

intersection point. 

𝑥2 + 𝑦2 − 2𝑥𝑥1 − 2𝑦𝑦1 = 𝑑1
2 − 𝑥1

2 − 𝑦1
2 (2) 

𝑥2 + 𝑦2 − 2𝑥𝑥2 − 2𝑦𝑦2 = 𝑑2
2 − 𝑥2

2 − 𝑦2
2 (3) 

𝑥2 + 𝑦2 − 2𝑥𝑥3 − 2𝑦𝑦3 = 𝑑3
2 − 𝑥3

2 − 𝑦3
2 (4) 
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3.4 Architecture 

Since the proposed positioning technique was to be integrated into the Society of Devices (SoD) 

Toolkit (Seyed, Azazi, Chan, Wang, & Maurer, 2015), which was developed at the Agile Surface 

Engineering lab at the University of Calgary, this section gives a brief overview of Society of 

Devices Toolkit, and the modifications that were introduced to integrate the proposed BLE-based 

positioning technique into the toolkit. 

3.4.1 Society of Devices (SoD) Toolkit 

To simplify the implementation process as well as to satisfy the third design consideration, we 

leveraged the Society of Devices (SoD) Framework (Seyed, Azazi, Chan, Wang, & Maurer, 

2015), which provides convenient means for tracking users’ spatial attributes using multiple 

Microsoft Kinect5 cameras. 

The SoD Toolkit was designed to aid developers and interaction designers in the development of 

ubiquitous environments by abstracting the collection of spatial information from a wide range 

of sensors into a plug-and-play architecture. 

The software architecture of the SoD Toolkit consists of four main components: the SoD Locator 

service, the SoD Kinect client, the SoD Visualizer, and the client libraries, each of which will be 

discussed in more detail in this section. 

                                                 

5 Microsoft Kinect - https://developer.microsoft.com/en-us/windows/kinect  

https://developer.microsoft.com/en-us/windows/kinect


 

34 

3.4.1.1 SoD Locator Service 

The SoD Locator service is the central component of the SoD Toolkit. It maintains spatial 

information about tracked devices and entities in the environment (such as position, orientation, 

direction, proximity, etc.), which can be queried for or filtered by using the client libraries.  

The locator service is designed to obtain raw positional data from the connected devices and the 

distributed sensor clients over the local area network, and transform that data into a coherent 

model of the environment. It utilizes an event-driven approach, in which clients can subscribe to 

events advertised by the locator service. Examples of such events include subscribing to events 

as users and devices enter the environment, leave the environment, or get within an certain 

proximity of a range.  
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3.4.1.2 SoD Kinect Client  

The SoD Kinect Client uses a single Microsoft Kinect (version 1 or 2) sensor to collect positional 

data (skeletal) of the users in the environment. Collected data is sent over the network using TCP 

connections at a rate of 30 skeleton frames per second to the locator service. The Kinect Client 

also allows the SoD Toolkit to incorporate an arbitrary number of Kinect sensors by running 

multiple instances of the Kinect client component, each connected to a Kinect sensor covering a 

range from 1.2 to 3.5 meters per sensor. The locator service collects tracking data from the 

distributed sensors over the local area network, and uses the received data to generate an 

interpretation of the entities in the room space. 

Figure 10 - SoD Vizualizer: 1) The tracked environment, 2) Movable user, device and 

sensor components, and 3) List of devices, users, and sensors currently in the system. 
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3.4.1.3 SoD Visualizer  

The SoD Visualizer assists developers and researchers to picture and understand the locator 

service interpretation of the spatial information of devices and users being tracked in the 

environment. It also provides easy means for creating simulated ubiquitous environments, which 

can be useful for testing various settings without having to instrument the environment or the 

users with tracking sensors.  

As shown in Figure 10.1, the SoD Visualizer presents a 2D visualization of the environment, 

which is updated in real-time and shows: 

 The approximate area of the environment as a 2D grid, with drag-able Kinect, user and 

device components allowing developers and researchers to dynamically remap the 

environment in real-time (Figure 10.2) 

 The location and field of view of Kinect clients that are currently tracking the 

environment depicted on the 2D grid 

 A list of device clients that are currently connected to the system (Figure 10.3),  

 A list of tracking sensors that are registered with the locator service (Figure 10.3), and 

 A list of tracked users within the environment, detailing their location, orientation, and 

device assignment (Figure 10.3) 

3.4.1.4 SoD Client Libraries  

SoD provides developers and researchers with native client libraries in Objective-C, JavaScript, 

and C# to aid developers in integrating a wide range of devices running on different platforms 

into ubiquitous environments. The client libraries utilize the device-embedded sensors (such 
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accelerometers and gyroscopes) by capturing spatial information such as orientation and 

direction, and sending this data to the locator service over frequent intervals.  

The SoD client libraries, also, provide a simple REST based interface for developers to perform 

spatial queries (such as devices in range, devices in view, devices within certain proximity, etc.). 

This allows inexperienced developers to send and receive data across different platforms without 

having to handle the low-level specifics of message serialization, encoding and deserialization. 

3.4.2 Calibration Component 

The registration of the beacon locations could be done in a number of ways: 1) Dragging a visual 

control resembling a BLE beacon on the SoD visualizer to the approximate location of the 

Figure 11 - User attempting to register the location of a Bluetooth beacon with the SoD 

locator service. 
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beacon, which is the simpler but less accurate approach or 2) Entering the coordinates of each of 

the beacons manually in the system (SoD locator service), which provides a more accurate 

estimation of the position of the users and their devices, but is more tiresome to set up.  

For the purposes of this thesis, a calibration component was introduced into the SoD toolkit in 

order to position the BLE beacons in the environment, and register the location of each beacon 

with the SoD locator service using Kinect sensors. The calibration component relies on placing 

the BLE beacons within the field of view of a Kinect sensor to provide an accurate position for 

the BLE beacon, as well as to allow for using the Kinect-based user location as a basis to 

compare the beacon-based location to, as will be discussed in chapter 4. 

To register the location of a beacon with the SoD locator service, a user holding an iOS device, 

running a custom application that was built to find the nearest BLE beacon, must stand next to 

the beacon, and within the field of view of the Microsoft Kinect, as shown in Figure 11. The 

Kinect was connected to a Microsoft Surface Pro III, running an instance of the SoD Kinect 

Client application. The application uses the connected Microsoft Kinect to scan for any users in 

its field of view, and reports any users it finds to the SoD locator service. These updates are sent 

from the Kinect Client to the SoD locator at a rate of 30 frames per second. 

Once the user becomes visible to the Microsoft Kinect, the user is assigned a numeric Person ID, 

which is displayed on the Microsoft Surface Pro III connected to the Kinect. The user is, then, 

prompted to enter the Person ID on the custom iOS application and press calibrate. Once the user 

has pressed calibrate, the Person ID along with the data of the closest Bluetooth beacon are sent 
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to the SoD locator service, which registers the received beacon with the location of the person 

with the provided Person ID. 

 3.4.3 Zombie Identification Component 

The second component that was introduced into the SoD toolkit handles the identification and re-

pairing of Zombie users to a tracked state. To achieve this, the SoD locator service maintains a 

database of the real-time Kinect-based and BLE beacon-based locations of all users and devices 

currently using the system (tracked users), while constantly checking for changes in the number 

of tracked users (Figure 12.1). 

Upon recognizing that a user has left the field of view of the SoD Kinects, the system notifies the 

user's device that it is no longer tracked by the Microsoft Kinects. The SoD locator service, then, 

invalidates the user's Kinect-based location, relying solely on the BLE-based location, and 

changes the user's state to a Zombie state (Figure 12.2).  

Figure 12 - Zombie Identification: 1) Locator service maintains a Kinect-based and a BLE-

based location for each user. 2) Relying on BLE-based location as users transit to a Zombie 

state. 3) User is repaired to the closest new user observed by the Kinect. 
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As the user transits back to the field of view of the SoD Kinects, the system scans its database for 

the BLE-based location closest to the new user's Kinect-based location, using an empirical 

threshold of 40 centimeters. If a match is found, the new user is re-paired to the Zombie user that 

reported the closest BLE-based location. The system, finally, re-validates the Kinect-based 

locations for that user, and changes the user's state to a tracked state (Figure 12.3). If a match 

was not found, however, the user is treated as new user. 

3.4.3.1 User Counting 

To assist with the issue of re-pairing Zombie users, the system supports the use of an external 

user-counter sensor. Such a sensor could be mounted at the entrance of the tracked environment 

to update the system as users join and/or leave the space. This reduces the guess work the system 

needs to do when a user leaves the field of view of the SoD Kinects but stays within the tracked 

environment. In such a case, as the user re-joins the field of view of the SoD Kinects, the need 

for searching the system’s database for the user with the closest BLE-based location is 

eliminated since there is only one re-pairing option. 

To simplify the implementation of the system, while allowing for the external user-counter 

sensor mechanism to be evaluated, we implemented a simulated user-counter sensor component. 

The simulated user-counter is accessible through the SoD Visualizer and can be turned off or on, 

specifying the number of users within the environment at any given time. 
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3.4.4 Technical Decisions  

This section outlines the technical design decisions and choices that were made with respect to 

the choice of development platform for the client side, as well as the choice of Bluetooth Low 

Energy beacon.  

3.4.4.1 Client Platform 

For the purposes of this thesis, Apple's iOS was chosen as the platform on which the client side 

of the proposed indoor positioning technique was implemented.  

At first, Google's Android alongside Apple's iOS were both considered since they have both 

dominated an aggregated 95% share of the entire smartphone market throughout the past two 

years, as shown in Table 2. However, to narrow the two choices down to one, another aspect had 

to be evaluated, which is BLE support on the Android and iOS platforms.  

Period Android iOS Windows 

Phone 

BlackBerry 

OS 

Others 

2015Q2 82.8% 13.9% 2.6% 0.3% 0.4% 

2014Q2 84.8% 11.6% 2.5% 0.5% 0.7% 

2013Q2 79.8% 12.9% 3.4% 2.8% 1.2% 

2012Q2 69.3% 16.6% 3.1% 4.9% 6.1% 

Table 2 - Worldwide Smartphone OS Market Share (IDC, 2015). 

Apple's support for Bluetooth Low Energy gained popularity when iBeacon was introduced as 

part of the iOS 7 launch. In essence, iBeacon is a proprietary protocol that leverages the 

Bluetooth Low Energy standard to estimate a device's location on the basis of its proximity to 

beacons. Along with the protocol, Apple provided developers with managed SDKs allowing 
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users to turn any iOS device into an iBeacon transmitter and receiver, amongst other features that 

made it an ideal choice for the development of BLE based systems.  

Following to the successful introduction of Apple's iBeacon, a number of libraries were 

developed to support iBeacon on Android (as well as on other platforms). However, Apple has 

recently introduced their iBeacon License Program, which required developers and vendors to 

remove any references or connection between Android devices and iBeacon protocols from their 

libraries and products. This resulted in many of the previously available Android iBeacon 

libraries being discontinued, and thus making it less desirable and more difficult for developers 

to program Android devices to work with iBeacon. 

As a result, and to simplify the implementation process, Apple's iOS was chosen as the platform 

on which the client side of the proposed indoor positioning technique was implemented. 

Figure 13 - Estimote Beacon. 
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3.4.4.2 BLE Hardware  

In this work, we used the consumer-grade Estimote Bluetooth Low Energy beacons as our choice 

of BLE beacons (Figure 13). Estimote was decided on as the BLE hardware through a review of 

a number of commercially available BLE beacons. The reviewed beacons were inspected with 

certain criteria in mind, including cost, power type, range, configurability, and broadcast rate. 

Table 3 summarizes the results of the review.  

The main advantages of Estimote over the reviewed alternatives were its higher range (70 meters 

in contrast with a maximum of 50 meters in all other alternatives), and frequent broadcast rate 

(200 ms in contrast with 250 ms for the closest alternative), and thus making it the best choice 

amongst the surveyed BLE beacons. 

 

Manufacturer StickNFind Estimote RedBearLabs KST GeLo 

Device Enterprise 

Beacon 

Estimote 

Beacon 

Beacon B1 Particle Beacon 

Retail cost each $25.00 US $33.00 US  $30.00 US  $60.00 

US 

$35.00 US 

iBeacon protocol 

supported 

Yes Yes yes Yes no 

Power type Battery battery battery battery battery 

Reported operating life 3 years 2 years 1 year 6 months 2 years 

Radio range 50 meters 70 meters 50 meters 50 meters 10 meters 
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Battery capacity 240 mAh 640 mAh ~1000 mAh 240 mAh ~1000 

mAh 

Configurable radio 

output power 

yes No yes No unknown 

Configurable (RSSI) yes Yes yes No unknown 

Default beacon 

broadcast rate 

1000 ms 200 ms 250 ms unknown unknown 

Configurable 

advertising interval 

yes No yes No No 

Table 3 - A review of commercially available BLE Beacons. 
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3.5 Conclusion  

The proposed positioning technique in this chapter utilizes Bluetooth Low Energy (BLE) for 

positioning and tracking users and devices within and across adjoint and disjoint environments. 

The technique was designed with three major considerations in mind: cost-extensibility, easy 

instrumentation, and support for standalone and integrated deployments, which were discussed in 

more detail in section 3.1. The technique was integrated with the Society of Devices Toolkit 

through the introduction of the beacon calibration and zombie identification components, as 

outlined in sections 3.4.1, 3.4.2, and 3.4.3. Finally, section 3.4.4 demonstrated the technical 

decisions that were made throughout the design and modelling of the positioning technique. 
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CHAPTER 4: EVALUATION 

Two experiments were conducted to investigate the accuracy of the proposed technique for 

providing spatial awareness in ubiquitous environments. Specifically, the experiments 

investigated the accuracy of the location measurements estimated using the BLE beacons and its 

precision and impact on identifying and re-pairing users across disjoint ubiquitous environments.   

4.1 First Experiment 

The first experiment was used to evaluate the proposed technique as a standalone indoor 

positioning and tracking system by investigating the accuracy of the location measurements 

computed using the BLE beacons. The beacon location estimates were compared to the actual 

location measurements returned by a Microsoft Kinect treated as a benchmark. 

4.1.1 Apparatus 

The experiment was conducted using three consumer-grade Estimote Bluetooth beacons set to 

broadcast at a signal strength of +4 dbm and running Estimote’s 3.1 OS. The beacons were 

placed at the boundaries of the tracking area of a 2nd generation Microsoft Kinect to ensure that 

the Bluetooth signals cover the entire tracking area as shown in Figure 14. The Microsoft Kinect 
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was used to provide the benchmark for the location measurements estimated from the Bluetooth 

beacons. 

4.1.2 Design 

As basis for comparison, the measure of Euclidean distance was used to contrast the beacon-

based device location against the actual Kinect-based user location. 

4.1.3 Experiment Variables 

The experiment examined a single independent variable which is the average distance from the 

device to each Bluetooth beacon. Distances  𝒅𝟏,𝒅𝟐, and 𝒅𝟑 were computed by calculating the 

Euclidean distance between the user’s actual location, provided by the Microsoft Kinect, and the 

Figure 14 - Placing Estimote Bluetooth beacons at the boundaries of a Microsoft Kinect's 

field of view. 
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registered location of each of the three closest Bluetooth beacons, as shown in Figure 15. The 

average distance d is computed, then, by dividing the sum of these three distances by three. 

Given the range of the Microsoft Kinect, which spans approximately 4 meters in front of the 

Kinect and a view angle of 70o, and the placement of the Bluetooth beacon in this experiment, 

the average distance 𝒅 to each of the beacons produced values ranging from 1.3 to 4.3 meters. 

Figure 15 - Computing the average distance by averaging the user's distance to the 

closest three Bluetooth beacons. 
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The dependent variable was the accuracy of the location estimated by trilateration the Bluetooth 

beacon signals. The Accuracy was assessed by computing the Euclidean distance between the 

beacon-based device location and the actual Kinect-based user location, which is referred to as 

the Measurement Error. 

4.1.4 Procedure 

At the start of the experiment, the SoD locator service is started alongside an instance of the SoD 

Kinect Client, a mobile application is started on an iOS device, and a user is asked to stand in the 

field of view of the Kinect while holding the mobile device. The user is instructed to enter the 

Person ID assigned to them by the Kinect Client in the mobile application to pair the device with 

the user.   

Once paired with the device, the user is instructed to move within the field of view of the 

Microsoft Kinect for about 6 minutes while data is collected from the Microsoft Kinect and the 

beacons. 

4.1.5 Results 

The Measurement Error produced by trilaterating the Bluetooth beacon signals was measured as 

the Euclidean distance between the beacon-based device location and the actual Kinect-based 

user location. We collected a total of 381 observations (6 minutes and 21 seconds × 1 

observation per second). The grand mean Measurement Error was 1.83 meters (SD = 1.29 

meters). 

The experiment observations were organized into 7 categories based on the user’s average 

distance to each beacon. The categories covered distances from 1 meter to 4.5 meters, spanning 
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0.5 meters each. The initial analysis revealed that there was a significant effect of the average 

distance to each beacon upon measurement error (𝐹6,374 = 277.1, 𝑝 < .001). 

Running post hoc comparisons using the Tukey HSD test indicated that the mean score for the 

first three categories [1, 1.5] (M = 0.86, SD = 0.51), [1.5, 2] (M = 1.35, SD = 0.56), and [2, 2.5] 

(M = 1.94, SD = 0.30) were significantly different than each other and the rest of the categories. 

The four remaining categories did not significantly differ otherwise. Figures 16 through 22 

outline the measurement error distribution corresponding to each of the seven categories6.  

  

                                                 

6 The integral of the average distance over any interval is the probability that the measurement error specified by it 

will lie within that interval. 

Figure 16 - Measurement error distribution for the [1, 1.5] category. 
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Figure 18 - Measurement error distribution for the [1.5, 2] category. 

Figure 17 - Measurement error distribution for the [2, 2.5] category. 

Figure 17 - Measurement error distribution for the [1.5, 2] category. 

Figure 18 - Measurement error distribution for the [2, 2.5] category. 
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Figure 20 - Measurement error distribution for the [2.5, 3] category. 

Figure 19 - Measurement error distribution for the [3, 3.5] category. 

Figure 19 - Measurement error distribution for the [2.5, 3] category. 

Figure 20 - Measurement error distribution for the [3, 3.5] category. 
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Figure 22 - Measurement error distribution for the [3.5, 4] category. 

Figure 21 - Measurement error distribution for the [4, 4.5] category. 

Figure 21 - Measurement error distribution for the [3.5, 4] category. 

Figure 22 - Measurement error distribution for the [4, 4.5] category. 
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4.1.6 Discussion  

This section discusses the implications of the results of the first experiment with respect to the 

standalone implementations category. The section details the implications of the results on 

standalone implementations, reflecting on the research questions and goals of the thesis, and 

provides sample recommended use cases in which the technique performs well as a standalone 

implementation. 

4.1.6.1 Standalone Implementations 

The results of the first experiment indicate that most of the statistical significance that was 

reported stemmed from observations that had a high average distance to each BLE beacon. More 

specifically, it was observed that the measurement error grew linearly in the area of interest and 

quadratically otherwise as the user moved further from the BLE beacons (Figure 23). By 

studying the chart, it can be observed that achieving a measurement error of less than 1 meter 

becomes highly unlikely when the average distance to each Bluetooth beacon becomes larger 

than 2 meters. 
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To better understand the implications of the experiment results on the overall accuracy, the 84th 

percentile of the measurement error for each of the seven categories was computed and plotted, 

as seen in Figure 24. Reading the chart, it can be observed that the 84% of the observations 

achieved a measurement error that was within the 0 and 2 meters range as the average distance to 

each beacon remains below 3 meters. 

4.1.6.2 Comparison to Existing Techniuqes  

A recent study by Lymberopoulos et al. (Lymberopoulos, et al., 2015), comparing the accuracy 

of a diverse set of 22 indoor positioning and tracking technologies revealed that only 3 of the 22 

tested technologies achieved a measurement error below 3 meters. In particular, the lowest 

measurement error (0.72 meters) was achieved by Reimann et al.'s ArgusNetViewer (Reimann, 

Figure 23 - Beacon proximity vs accuracy: A chart outlining the correlation between the users 

distance from the beacons and accuracy of the beacon-based location measurements. 
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Bestmann, & Ernst, 2013), followed by Beder et al.'s Wifi fingerprinting-based localization 

technique (1.56 meters) (Beder & Klepal, 2012).  

Based on the results of our first experiment, our approach shows to be capable of achieving an 

average accuracy of 0.86 meters by keeping the average distance to the closest three beacons 

between 1 and 1.5 meters, which suggests that the proposed technique does score higher than the 

vast majority of the indoor positioning technologies put to test in the referenced study.  

Figure 24 - 84th Percentile of measurement error: A chart outlining the maximum 

measurement error that occurs 84% of the time as a function of the user’s average distance 

to each beacon. 
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4.1.6.3 Beacon Placement 

 The results of this experiment becomes of particular interest to system engineers and users when 

attempting to determine the number of BLE beacons required to achieve the target accuracy in an 

environment. By using the properties of Equilateral Triangles (Euler, 1767), a model for the 

placement of the BLE beacons has been constructed. 

As shown in Figure 25, the model relies on placing the BLE beacons at the vertices of an 

equilateral triangle, which provides a tracking radius that is equal to the radius r of the 

circumscribed circle (Kay, 1969) containing the triangle, and guarantees a maximum average 

distance m to the three beacons of 4r/3 as a worst case scenario when the user is at point p 

(furthest point to the BLE beacons), as shown in Equations 5, 6 and 7 below: 

Figure 25 - Beacon Placement Model, where r is the radius of the tracking area, p is the 

point furthest from the beacons, and d1, d2, and d3 are the distances from point p to each of 

the beacons. 
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m = (d1 + d2 + d3)/3 meters   (5) 

Since d1, r, and the segment connecting the point p to the center of the circumscribed circle 

construct a smaller equilateral triangle, Equation 5 becomes: 

m = (r + r + 2r)/3 meters   (6) 

m = 4r/3 meters   (7) 

OR 

r = 3m/4 meters   (8)  

By consulting Figure 24, the maximum tolerable measurement error E is used to determine the 

maximum average distance using the formula:  

E = 1.203×m0.7743 meters    (9) 

Using the value of m, it is possible to use Equation 8 to determine the radius r at which the 

beacons need to be placed, and accordingly the maximum area that could be tracked using three 

BLE beacons while remaining within the required maximum tolerable measurement error E, as 

follows:  

Maximum accurately trackable area = (2r) 2 = 4r2 meters    (10)  

For example, to accurately track an environment with a maximum tolerable measurement error E 

of 2 meters, Equation 9 is used first to obtain the maximum average distance m, as follows:  

2 = 1.203×m0.7743  

m = 1.93 meters 

The radius r is found by plugging the computed maximum average distance m into Equation 8, 

which is then used to find the maximum trackable area (Equation 10), as follows:  

r = 3m/4 = 1.45 meters 

Maximum trackable area = 4r2 = 5.8 meters 
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Which is the maximum trackable area up to an accuracy of 2 meters, using three Bluetooth Low 

Energy beacons.   

4.1.6.4 Cost Estimation 

Using the constructed beacon placement model, it is possible to track a diameter of 2.25 meters 

(approximately an area of 5 square meters) at an accuracy of 1.65 meters at a cost of just below 

$100 dollars (since a three beacon pack costs between $75 - $99 US as shown in Table 3). As a 

result, the system proves to be more economically viable compared to other Kinect based or RF-

based low end/low cost systems, as shown in Table 4. 

Technology Sensor Type Infrastructure to Track 5 meter2 Approximate Cost 

Kinect-based Microsoft Kinect 1x Microsoft Kinect $140 

WiFi-based Wi-Fi AP 3x Wi-Fi Access Points $150 

Table 4 - Approximate cost of tracking a 5 meter2 space using low-end low cost tracking 

technologies. 

4.2 Second Experiment 

We conducted a second experiment to evaluate the integration of the proposed technique with an 

existing indoor positioning system (the SoD toolkit) by investigating the precision of the re-

pairing process as recently lost users (zombie users) attempt to transit through disjoint 

environments.  

4.2.1 Apparatus 

The apparatus for this experiment were almost identical to the previous one, with the following 

differences:  
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• The experiment was conducted using two 2nd generation Microsoft Kinects, covering disjoint 

fields of view, to simulate two non-overlapping environments (e.g. two separate rooms in a 

building). This allowed us to simulate two environment sizes: 1) a smaller 6 × 2 meters area 

covered by one Microsoft Kinect (Figure 26), and 2) a larger 6 × 4 meters area covered by the 

two Microsoft Kinects (Figure 27) 

Figure 26 - A small simulated environment covering a 6x2 meters area. 
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•   Seven BLE beacons, placed at the boundaries of the tracking areas of the two Microsoft 

Kinects, were used rather than three to cover a larger area across the fields of view of the two 

Kinects, as shown in Figure 27  

The number and the placement of Bluetooth beacons in this experiment were inspired by the 

results of the preceding one. To reduce the measurement error, the seven Bluetooth beacons were 

placed to guarantee that the average distance between any point within the field of view of the 

two Microsoft Kinects and the closest three beacons is within 2.5 meters. 

Figure 27 - A larger simulated environment (6x4 meters): two Microsoft Kinects covering 

two disjoint spaces (24 square meters in total), and seven Bluetooth beacons placed across 

the room to reduce the average distance of a user standing in the field of view of either 

Kinect. 
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4.2.2 Design 

The experiment used a between-subjects factorial ANOVA design. Independent variables were 

the number of users seen by the Microsoft Kinect (U = 1, 2, 3, and 4 users), the number of new 

untracked users to the area of the tested environment (Density = 0.042, 0.083, 0.125, 0.167, 0.25, 

0.333 person per square meter), the number of devices in the zombie state to the number of new 

untracked users (𝒁𝒓𝒂𝒕𝒊𝒐 = 1, 0.75, 0.66, 0.5, 0.33, and 0.25), and the use of an external user-

counter to track the number of users in the room (C = T or F) (Table 5).  

The Density was chosen as an independent variable to test the accuracy of the technique in 

different user-congestion settings, while the 𝑍𝑟𝑎𝑡𝑖𝑜 was chosen to test the accuracy of the 

technique in mapping zombies to their respective users in variable difficulties.  The number of 

users was chosen between one and four as the Microsoft Kinect can recognize up to a maximum 

of four users at one time. The dependent variable was the precision of re-paring a device in the 

zombie state to its respective user once it is seen by one of the Microsoft Kinects. The number of 

users was chosen between one and four as the Microsoft Kinect can recognize up to a maximum 

of four users at one time. The dependent variable was the precession of re-paring a device in the 

zombie state to its respective user once it is seen by one of the Microsoft Kinects. 

The dependent variable takes one of four possible values: True Positive (TP) which indicates that 

a device in the zombie state has been successfully re-paired to its corresponding user, True 

Negative (TN) which indicates that a device in the zombie state was not paired with the wrong 

user, False Positive (FP) which indicates that a device in the zombie state has been re-paired to 

the wrong user, and False Negative (FN) which indicates that a device in the zombie state was 

not paired with its corresponding user. An observation is considered as a TN or a FN if 10 



 

63 

seconds (the time required for 10 beacon-based location updates) have elapsed since the user has 

become visible to the Microsoft Kinect.    

4.2.3 Procedure 

At the start of the experiment, the SoD locator service is started alongside two instances of the 

SoD Kinect Client, a mobile application is started on each iOS device held by the users, and 

users are asked to stand in the field of view of the Kinect while holding the mobile device. Users 

are instructed to enter the Person ID assigned to them by the Kinect Client in the mobile 

application to pair their devices with the user. 

Once paired with their devices, patches of 1, 2, 3, or 4 users were instructed to move around the 

room, leaving and entering the field of view of the Microsoft Kinect (becoming zombies and 

then becoming re-paired) 10 times per 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 × 𝒁𝒓𝒂𝒕𝒊𝒐 × 𝑼 × 𝑪 configuration, while data is 

collected from the Microsoft Kinect and the beacons. 

Figure 28 shows an example configuration, in which the total number of new users visible to the 

Kinect U = 3, the number of Zombie users = 2, and the 𝒁𝒓𝒂𝒕𝒊𝒐 = 0.66. The example 

configuration shows the smaller environment setting, with an area of 6 × 2 meters (12 square 

meters) and a User Density = 0.33 users per square meter. For the purposes of the example 

configuration, we assume that an external user counter sensor is present (C = True).  

In Figure 28.1, two users start in the field of view of the Kinect, registering their devices with 

their own Kinect based locations, and thus becoming tracked within the system. Once paired 

with their devices, the users are instructed to move around the environment. As the users leave 
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the field of view of the Kinect, the system invalidates the user's Kinect-based location, relying 

solely on the BLE-based location, and changes the user's state to a Zombie state (Figure 28.2). 

Figure 28.3 demonstrates the case as a new untracked user approaches the field of view of the 

Kinect around the same time during which the two other users are transiting back to the field of 

view of the Kinect, moving from the Zombie state to the Tracked state. In such a case, a number 

of scenarios are possible. Figure 28.4 shows the best case scenario, in which devices 

corresponding to users 1 and 2 are re-paired to their corresponding owners, with the new user 

being assigned a new user ID. Figure 28.5 shows yet another possible scenario, in which user 1 

gets correctly re-paired, but user 2 gets mismatched with the new user re-pairing their device to 

the wrong user. Finally, Figure 28.6 shows the worst case scenario for this configuration, in 

which the all users get mismatched, assigning the two Zombie users as well as the new user 

incorrectly.        
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Figure 28 - Example configuration for the second experiment. Independent variables are 

U=3, 𝒁𝒓𝒂𝒕𝒊𝒐 = 𝟎. 𝟔𝟔, Density=0.33, and C=True. 
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New Users Zombie Users Density 𝒁𝒓𝒂𝒕𝒊𝒐 

(
𝒛𝒐𝒎𝒃𝒊𝒆 𝒖𝒔𝒆𝒓𝒔

𝒏𝒆𝒘 𝒖𝒔𝒆𝒓𝒔
) 

User Counter 

4 1 0.167 

0.333 

0.25 T 

F 

 2 0.167 

0.333 

0.5 T 

F 

 3 0.167 

0.333 

0.75 T 

F 

 4 0.167 

0.333 

1 T 

F 

3 1 0.125 

0.25 

0.33 T 

F 

 2 0.125 

0.25 

0.66 T 

F 

 3 0.125 

0.25 

1 T 

F 

2 1 0.083 

0.167 

0.5 T 

F 

 2 0.083 

0.167 

1 T 

F 

1 1 0.042 

0.083 

1 T 

F 

Table 5 - Independent variables: 𝒁𝒓𝒂𝒕𝒊𝒐 is the quotient of the number of devices in the 

zombie state to the number of new users visible to the Microsoft Kinect at a given time, and 

Density is the quotient of the number of new users to the area of the tracked environment 

(12 & 24 square meters). 
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4.2.4 Results 

The success rate of the re-pairing process was measured as the ratio of TP and TN to the total 

number of observations. We collected a total of 1200 observations (10 observations ×  𝑼 ×

 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 × 𝒁𝒓𝒂𝒕𝒊𝒐  ×  𝑪).The results of the second experiment corresponding to each of the 

performed permutations can be found in Table 6. The grand mean success rate was 68.73% (SD 

= 19.56%). Figure 29 outlines the percentage of each TP, TN, FP, and FN observation with 

respect to the number of users U. 

The initial analysis revealed that there was a significant effect of the Density of users within the 

tracked environment upon the success rate (𝐹1,24 = 159.56, 𝑝 < .001). There was, also, a 

significant effect of the number of zombie users to the number of new untracked users 𝐙𝐫𝐚𝐭𝐢𝐨 on 

Figure 29 - Percentage of TP, TN, FP, and FN observations for each of the different U 

categories. 
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the success rate (𝐹1,24 = 16.70, 𝑝 < .001). There was, however, no significant effect of 𝑼 or C 

on the re-pairing process success rate.   

Running post hoc comparisons indicated that the different Density categories were significantly 

different than each other (𝐹1,38 = 117.51, 𝑝 < 0.001). The comparisons, however, reported no 

significant differences in the means of the 𝒁𝒓𝒂𝒕𝒊𝒐 categories. Figure 30 outlines the mean and 

standard deviation of the re-pairing success rate corresponding to each of the four Density 

categories. 

 

 

 

Figure 30 - Success rate of the re-pairing process: A chart outlining the mean and standard 

deviation for each of the density groups. 
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Area User Density # Users # Zombie Devices  C TP TN FP FN 

12 0.083 1 1 T 10 0 0 0 

24 0.042 1 1 T 10 0 0 0 

12 0.083 1 1 F 9 0 0 1 

24 0.042 1 1 F 10 0 0 0 

12 0.167 2 1 T 7 7 3 3 

24 0.083 2 1 T 9 9 1 1 

12 0.167 2 1 F 8 8 2 2 

24 0.083 2 1 F 9 9 1 1 

12 0.167 2 2 T 14 0 6 0 

24 0.083 2 2 T 18 0 2 0 

12 0.167 2 2 F 14 0 6 0 

24 0.083 2 2 F 17 0 2 1 

12 0.25 3 1 T 6 16 4 4 

24 0.125 3 1 T 8 18 2 2 

12 0.25 3 1 F 5 15 5 5 

24 0.125 3 1 F 7 17 3 3 

12 0.25 3 2 T 10 5 13 2 

24 0.125 3 2 T 16 10 4 0 

12 0.25 3 2 F 10 5 9 6 

24 0.125 3 2 F 15 8 5 2 

12 0.25 3 3 T 18 0 12 0 

24 0.125 3 3 T 22 0 8 0 

12 0.25 3 3 F 17 0 11 2 

24 0.125 3 3 F 20 0 9 1 

12 0.333 4 1 T 3 23 7 7 

24 0.167 4 1 T 7 27 3 3 

12 0.333 4 1 F 2 22 8 8 

24 0.167 4 1 F 6 27 2 5 

12 0.333 4 2 T 9 9 11 11 

24 0.167 4 2 T 13 15 7 5 

12 0.333 4 2 F 8 8 12 12 

24 0.167 4 2 F 12 13 7 8 

12 0.333 4 3 T 9 0 21 10 

24 0.167 4 3 T 10 17 10 3 

12 0.333 4 3 F 7 0 23 10 

24 0.167 4 3 F 9 17 9 5 

12 0.333 4 4 T 19 0 21 0 

24 0.167 4 4 T 25 0 15 0 

12 0.333 4 4 F 15 0 18 7 

24 0.167 4 4 F 23 0 14 3 

Table 6 - Results of the second experiment. Table shows the different permutations 

performed as part of the experiment. Ten permutations were performed of each row. 
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4.2.5 Discussion  

This section discusses the implications of the results of the second experiment with respect to the 

integrated implementations category. The section details the implications of the results on 

integrated implementations, reflecting on the research questions and goals of the thesis, and 

provides recommended integrated implementations where the technique could be used to 

mitigate the issue of tracking users across disjoint environments. 

4.2.5.1 Integrated Implementations 

The results of the second experiment suggest that most of the statistical significance rose from 

observations that had a higher user density. Analyzing the results with respect to the Density 

variable, it was observed that the accuracy of the re-pairing process degraded exponentially as 

the density of users in the environment grows (Figure 31). By studying the chart, it can be 

observed that achieving a re-pairing accuracy of more than 80% requires the density of users in 

the environment to be smaller than 0.17 users per square meter. 

Based on the results of the second experiment, there is a significance degrade in the success of 

the re-pairing process in settings where there was more than one user in a 6 square meters area 

(0.17 users per square meter), which proves to be problematic and unusable in crowded settings.  
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Nonetheless, with a re-pairing success rate of more than 80% for less dense settings, the system 

promises to overcome the problem of tracking users across sparse disjoint environments.  

4.2.5.2 Recommendations 

An example of such sparse environments where the proposed technique could be used is a setting 

where an indoor positioning and tracking system is required to track the interior of a set of rooms 

in a building with high accuracy, while allowing users to be correctly identified as they move 

through the hallways of the building from one room to another.  

To achieve this, a high-end indoor tracking system could be used to accurately track the interior 

of the rooms, and extending its functionality by integrating the proposed technique. This will 

ensure an adequate level of accuracy within the rooms, while allowing users to be correctly 

Figure 31 - The success rate of the re-pairing process as a function of the user density in the 

environment. 
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identified and re-paired as they transit between these rooms, eliminating the extensive 

instrumentation overhead and high installation costs associated with high accuracy tracking 

technologies. The user identification and re-pairing accuracy can also be improved through the 

introduction of physical constraints such as allowing users to enter or leave a tracked room one 

user at a time, which can be easily implemented as most room doors can reasonably fit only one 

person at a given time.  

4.3 Limitations 

Although an indoor positioning and tracking technique was developed throughout this thesis, it is 

important to note that the aim was not to develop a complete system that is usable in any given 

scenario. Instead, this thesis focuses on the development and the evaluation of the technique's 

major components and algorithms, with the objective of answering the research questions and 

meeting the research goals discussed earlier.  

This section describes the limitations in the scope of the thesis and the capabilities of the 

proposed technique within two categories: technique related limitations, and evaluation related 

limitations. 

4.3.1 Technique Limitations 

This section discusses the key shortcomings and challenges of using Bluetooth Low Energy 

beacons as the means of positioning and tracking users and devices within an environment. 

4.3.1.1 Accuracy 

It's worth noting that although the proposed technique scores higher, when used in standalone 

implementations, than many of the existing indoor positioning systems, using Bluetooth Low 
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Energy beacons as the sole mean of positioning and tracking within indoor environments still is 

not suitable for accuracy-critical settings. As a result, the proposed technique is suggested to only 

be used to provide a rough estimation of the position of users and their devices within an indoor 

environment, using the beacon placement model to estimate the level of measurement error a 

specific setting normally yields.  

Nonetheless, the technique proves, as revealed in the results of the evaluation of the technique, to 

be a practical complement to existing indoor positioning systems when support for tracking 

across disjoint environments is required.  

4.3.1.2 Interference 

As with any radio-frequency (RF) based technology, Bluetooth Low Energy is also prone to 

electromagnetic interference, which results in faulty signal strengths, and thus erroneous position 

estimations.  

Sources of interference are often unavoidable in a home or office environment as many of our 

everyday devices and machines (such as microwaves, wireless gadgets, satellite service, baby 

monitors, etc.) operate over the same radio frequency as Bluetooth Low Energy. Different 

Bluetooth receivers and transmitters could, also, theoretically interfere with one another, 

although such a scenario is unlikely since Bluetooth Low Energy uses frequency hopping 

(Townsend, Cufí, Akiba, & Davidso, 2014) to thwart narrowband interference problems.   

Nonetheless, the effects of RF interference could be minimized by freeing the indoor 

environment of external interference sources, such as defective or poorly shielded cabling, high 

voltage power lines, as well as concrete and metal barriers. 
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4.3.2 Evaluation Limitations 

This following subsections discuss two major aspects of evaluation that were left out of the 

scope of this thesis during the two experiments conducted: usability evaluation, and the 

evaluation of the technique in multiple real-world settings.   

4.3.2.1 Usability 

The evaluation of the proposed technique intended to mainly assess the accuracy of the technique 

in tracking users and devices within and across indoor environments. However, an important 

aspect that was not addressed nor discussed during the design of the evaluation of the technique 

is its usability.  

While usability testing has been left out of the scope of this thesis, a usability study is due in 

order to better understand the users' perception of and experience with the technique in general 

and the level of accuracy it provides in contrast with the low cost it requires. 

4.3.2.2 Multiple Real-world Settings 

Another limitation of the experiments conducted is that in both of the experiments, users were 

tracked within a controlled lab environment that simulated a room setting, which gives insight 

only into a limited sample of the potential indoor environments in which this technique could be 

applied.  

Therefore, a more comprehensive experiment needs to be performed to examine the proposed 

technique in a wide range of real-world environment settings. Examples of such settings include 

wall separated spaces of different barrier materials, different furniture arrangements within the 

same space, and spaces spanning separate rooms or floors. 
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CHAPTER 5: CONCLUSION & FUTURE WORK 

This thesis has demonstrated an approach for indoor positioning and tracking using BLE sensors, 

to ultimately help in the facilitation of the development and deployment of spatially-aware 

environments. The approach is adaptable to disjointed environments, and deals with situations 

such as zombie users in environments, a common challenge for engineering ubiquitous 

environments. This was achieved by combining a Bluetooth Low Energy based positioning 

approach with existing indoor positioning and navigation techniques. 

The indoor positioning and navigation technique that has been proposed in this thesis was 

discussed in two parts: the modelling and design of the positioning technique, and the evaluation 

of the technique. The proposed technique was designed with three major considerations in mind: 

cost extensibility, and versatility of implementation, and follows a multi-lateration approach to 

positioning users and their devices using the measured signal strength to pre-positioned 

Bluetooth Low Energy beacons in the environment. The technique was integrated into the 

Society of Devices Toolkit to demonstrate its versatility as well as evaluate the accuracy of the 

proposed technique in re-pairing zombie users as they transit across disjoint environments.  

The second part of the thesis presented an evaluation of the proposed technique in the form of 

two experiments, assessing the accuracy of the BLE based location measurements and the 

precision of the technique in identifying zombie users across disjoint indoor environments 

respectively. The results of the experiments showed that this solution is both a practical 

alternative for indoor positioning at the room level, as well as a viable means of handling 

disjointed spaces in a low-cost manner. Analyzing the results of the evaluation phase led to the 

development of a beacon placement model that allows system engineers and users to determine 
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the placement, cost and number of Bluetooth Low Energy beacons necessary to achieve the 

required accuracy in an environment.  

5.1 Research Contribution  

The purpose of developing the proposed indoor positioning and tracking technique outlined was 

to answer the research questions posted in section 1.4. These questions are repeated below and 

are addressed in the following sections, which also summarizes the main contributions and 

conclusions of this thesis. 

1. What is the current state of research in indoor positioning and navigation, particularly 

within the context of ubiquitous computing environments?  

2. How accurately can the relative movement of a user be measured using the signals of 

the Bluetooth Low Energy beacons?  

3. How accurately can the proposed technique identify and re-pair users as they transit 

across disjoint environments?  

4. What is the infrastructure required to track users and their devices sufficiently in an 

indoor environment using Bluetooth Low Energy beacons?  

5.1.1 Research Question 1: Current State of Research  

The first research question posed at the beginning of this thesis concerned the current state of 

research within the field of indoor positioning and navigation, which was aimed to better 

understand the different approaches and challenges encountered in the field. Chapter 2 

demonstrated an overview of the current research space, provided in the form of a taxonomized 
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literature review, categorizing the different approaches to indoor positioning and navigation. The 

categorization was based upon the infrastructure and instrumentation requirements, as well as 

upon the requirement of an absolute model of the environment. This categorization is intended to 

help system engineers in determining the most suitable approach for the use case at hand by 

outlining the advantages and drawback of each approach. 

5.1.2 Research Question 2: BLE Based Location Accuracy 

One of the most important conclusions of this work is that indoor positioning using Bluetooth 

Low Energy beacons can be a practical alternative to existing approaches at the room level. The 

answer to the second research question was presented in Chapter 4, section 4.1.5 and discussed 

in further detail in section 4.1.6. The results of the first experiment, which examined the 

accuracy of the BLE based locations, indicated a negative correlation between the accuracy of 

location estimates and the average distance to the BLE beacons. However, the results suggest 

that the proposed technique is capable of achieving an average accuracy of 0.86 meters when the 

user's average distance to the BLE beacons is kept below 1.5 meters. 

5.1.3 Research Question 3: Zombie User Re-pairing Accuracy 

Due to the limitations of tracking and identifying zombie users as they transit across disjoint 

indoor environment, it is necessary to seek cost effective techniques to automatically re-associate 

these users with the system. In section 3.4.3, a zombie identification component was introduced 

for identifying zombie users. The introduced approach is lightweight and can be integrated with 

existing indoor navigation systems. The results of the evaluation of the zombie identification 

component are presented in section 4.2.4 and are discussed in section 4.2.5, which indicates an 
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inverse correlation between the precision of the zombie identification success rate and the user 

density of the environment, and thus addressing the third research question. 

5.1.4 Research Question 4: Infrastructure Requirement 

The answer to the fourth research question of this work is dependent on the second and third 

questions. That is, the infrastructure required to achieve the necessary level of accuracy tracking 

users and devices within and across indoor environment using the proposed approach is 

dependent on the accuracy of the BLE based locations and the precision of the zombie 

identification process. To address this question, a beacon placement model was developed and 

presented in section 4.1.6 to aid system engineers and users determine the amount of 

infrastructure (and cost) to achieve a desired level of accuracy using the proposed technique. 

5.2 Future Work 

Despite being extensively discussed in the literature, indoor navigation and positioning, 

particularly with respect to ubiquitous environments is yet to be solved. There are a number of 

avenues of future work that need be explored before a comprehensive system based on the 

positioning technique discussed in this thesis can be deployed. In the following sections, these 

avenues will be divided into two broad categories: enhancements to the internals of the 

implementations of the technique, and more extensive evaluation of the technique.  

5.2.1 Technique Related  

There are a number of directions of future work that could be taken in order to enhance the 

internals of the implementation of the proposed technique. This section outlines further work that 

has been identified in this area.  
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5.2.1.1 Positioning Algorithm Enhancement 

There are numerous possible enhancements that could be introduces to the algorithms presented 

in this thesis. Positioning algorithms could be categorized into two groups: probabilistic and 

deterministic.  

Probabilistic algorithms consider input signals as random values drawn from a distribution that is 

based on a known model, and produces a distribution of possible outcomes, outlining the 

likelihood (probability) of each outcome. Deterministic algorithms, on the other hand, use the 

input signals, without making any assumptions of the distribution or the model of the data, and 

produces a single solution that best represents the outcome of the inputs.   

For the purposes of the work done as part of this thesis, the proposed technique utilized a 

deterministic algorithm that relies on trilaterating the signal strength to nearby pre-positioned 

BLE beacons. However, a future direction for future work is to use a probabilistic approach to 

indoor positioning. Such an approach may be useful for representing the various constraints in 

the environment (such as movable objects, interference sources, etc.), and is easier to work with 

as the number of variables in the model becomes cumbersome to be addressed individually. 

5.2.1.2 Android Client  

Another direction for future work is related to integrating the proposed technique with the 

Society of Devices Toolkit. As discussed in section 3.4.4.1, iOS was chosen as the target 

platform for integrating the proposed technique with the SoD Toolkit due to the recent 

complications with BLE and iBeacon Android libraries. However, considering that these 
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limitations will be removed in the future, it would be possible to integrate the technique with 

SoD's Android client library. 

5.2.2 Evaluation Related 

As the evaluation of the proposed technique, for the purposes of this thesis, focused mainly on 

assessing the accuracy, this leaves room for multiple directions of future work and more 

comprehensive evaluation of the proposed positioning technique to be carried on, as described 

below.   

5.2.2.1 Usability Evaluation 

Although usability testing has been left out of the scope of this thesis, it would be useful to 

incorporate a usability evaluation of the technique from the perspective of system engineers as 

well as end users. This will lead to a better understanding of the users' perception and experience 

with the technique, and will guide the design and development of existing and future features.  

The results of such a usability evaluation should, also, be contrasted to those of other indoor 

positioning and navigation systems to assess how the proposed technique compares in usability 

as well as in functionality to existing implementations and technologies. 

5.2.2.2 Real World Setting Evaluation 

A major question that must be addressed is how the proposed technique might be deployed and 

how it would perform if evaluated in real-world settings. This is important as different indoor 

environments impose various constraints and often require variable levels of tracking accuracy. 

As a result, a more comprehensive evaluation of the proposed technique must be conducted to 

consider a wide range of real-world constraints and settings, such as wall separated spaces of 
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different barrier materials, different furniture arrangements within the same space, and spaces 

spanning separate rooms or floors.   
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