
What Makes a Good Code Example?

A Study of Programming Q&A in StackOverflow

Seyed Mehdi Nasehi, Jonathan Sillito , Frank Maurer, and Chris Burns

Department of Computer Science
University of Calgary
Calgary, AB, Canada

{smnasehi, sillito, frank.maurer, chris.burns}@ucalgary.ca

Abstract— Programmers learning how to use an API or a

programming language often rely on code examples to support

their learning activities. However, what makes for an effective

code example remains an open question. Finding the

characteristics of the effective examples is essential in

improving the appropriateness of these learning aids. To help

answer this question we have conducted a qualitative analysis

of the questions and answers posted to a programming Q&A

web site called StackOverflow. On StackOverflow answers can

be voted on, indicating which answers were found helpful by

users of the site. By analyzing these well-received answers we

identified characteristics of effective examples. We found that

the explanations accompanying examples are as important as

the examples themselves. Our findings have implications for

the way the API documentation and example set should be

developed and evolved as well as the design of the tools

assisting the development of these materials.

Keywords- code example; documentation; API; social

learning

I. INTRODUCTION

Programming is a non-ending problem-solving
adventure. Whether a bug needs to be fixed, a new feature
needs to be added, the design of some working code needs to
be enhanced, or a legacy system needs to be changed,
programmers are seeking different sources of information to
get some advice on how to accomplish these tasks. Code
examples can come to their help and lift the burden of
solving problems on their own. It is well-known in
educational psychology that worked examples (i.e. solved
problems) are more efficient means of learning new
materials than trying to solve problems from scratch [21].
Consequently, the developer burden can be reduced if an
example that solves their problem is found, so that they can
just (re)use it.

Developers rely on different sources of knowledge to
find answers to their problems. During the maintenance
phase of software life cycle, code is the main source of
knowledge about the system. However, maintainers are eager
to find somebody to talk to and to help them understand that
code [25]. In other words, fellow developers and their
expertise are an invaluable source of knowledge for
developers and maintainers. Even if they are not familiar

with the system under maintenance, they can transfer their
past experience to the information seekers.

There are other sources to find answers containing code,
besides other developers. A questioner can refer to
documentations, books, tutorials, etc., or search online
resources available on the web. The first step in finding
answers is to formulate a question. It can be articulated in
natural language when the audience is a human being, or has
to be expressed in some kind of query language to retrieve
relevant examples. However, even if a developer is able to
find a relevant example, then they are still bound by the
quality of that example. In other words, finding a relevant
example is necessary but not sufficient to ease the
developer’s task; however, finding good examples can do the
trick.

But what are the characteristics of a good example? This
is the main question this paper tries to address. We wanted to
find out what kind of code examples actually helps
developers and maintainers solve their problems and what
attributes distinguish them from not-so-helpful examples.

To answer these questions we needed a source of good
examples. We turned to the online programming Q&A web
site (StackOverflow, hereby SO) to gather such information.
SO is a place for developers to post their programming
questions and for fellow developers to provide answers. The
questioner can add a few tags to the question to help others
(e.g. potential responders) find out about what the question is
about. The questioner can select one answer as the most
helpful one (called the accepted answer). Site members can
vote on questions and answers. The positive and negative
votes (called upvote and downvote respectively) show how
helpful that question/answer was for the audience. The
difference between the number of up/downvotes determines
the score of a question/answer. Each site member has a
reputation determined by a reputation score. As they
participate in different activities on SO, by posting questions
or answers, voting on them, posting comments, etc. their
reputation score would increase and a greater reputation
value means more capabilities for a member. For instance,
they can edit questions/answers or can close a Q&A thread.

The interactive nature of SO makes it possible for both
questioners and responders to clarify the vagueness in a
question/answer. Even other site members can edit
questions/answers as they see it fit. SO has the three
properties of new social learning technologies [28]: It

978-1-4673-2312-3/12/$31.00 ©2012 IEEE

supports learners to find the right content using natural
language, not just relying on keywords for finding the
content; it supports learners to connect with the right people
(question tags show what domain of expertise is needed and
people with that expertise can answer the question); and it
motivates people to learn by encouraging them in the
question/answer game with the reputation incentive gained
from votes.

We used the score of the questions/answers as a metric to
determine which questions/answers SO members consider
more helpful. A collection of Q&A threads containing
answers with relatively high scores gave us a sample of
recognized answers 1 . By studying those answers, we
identified attributes of good answers, such as example
conciseness, importance of familiar context, and presenting
best practices. We found that the prose explaining the
example has the same importance as the code. We studied
the structure of such explanations and different elements
present in them. We further did a categorization of questions
based on questioner’s goals.

The contributions of this study are:

• Characteristics of good code examples;

• Attributes of the explanation that should accompany
the code;

• The relationship between these attributes and the
question types;

• Implications on how to enhance example and
documentation development processes as well as
tools that can be used during that process.

The rest of this paper has the following structure. The
next section provides basic statistics about the SO web site.
The third section explains how we selected our sample and
how the qualitative study has been done. It also provides the
definition of some important terms used throughout this
paper. After that the study findings are presented. Then a
discussion about the findings and the implications of them on
improving current development processes for examples and
documentation are presented. Related work section followed
by summary and future work concludes the paper.

II. STACKOVERFLOW STATISTICS

Mamykina et al. conducted a statistical study of the entire
SO corpus on the usage patterns to find out what is behind
the immediate success of it. Some software developers
believe that SO has replaced web search/forums as their
main source of finding answers to their programming
problems [16]. These findings show that a majority of the
questions will receive one or more answers (above 90%) and
very quickly (with a median answer time of 11 minutes).

Since this study was done in August 2010 and the SO
web site has a rapid growth rate, we decided to recalculate
some of the statistics presented in that paper using the
publicly available data dump query tool2 . The mentioned

1 The definition of these terms is given in Section III.
2 http://data.stackexchange.com/stackoverflow/query/new

study also lacks any statistical analysis of answer votes
which is a main metric in our study design and analysis. The
following statistics were calculated at the end of March
2012.

There are some one million registered users on SO. They
have posted 2.78 million questions, 5.77 answers and 10.5
million comments. The average score of answers is 1.8
(σ=6.2), of questions is 1.5 (σ=5.9). Fig. 1 shows the
distribution of answer scores. From this figure it is obvious
that higher scores are quite rare. In fact, 87% of answers
have a score of 3 or less, and only 2.3% of answers have a
score of 10 or greater.

Most of the questions receive at least one answer (91.8%)
and receive it rather quickly (with median time of 15 minutes
to receive the first answer). In the first hour, 70% of
questions receive their first answer, and in the first day, 89%
of them. Since accepting an answer is optional, the ratio of
questions with an accepted answer is not very high (only
62.5% of questions with one or more answers have an
accepted answer with the average answer score of 2.94). The
median time of accepted answers being posted is 24 minutes.
63% of accepted answers are posted in the first hour after the
question been posted and 87% in the first day.

III. STUDY DESIGN

A. Sample Selection

Having a minimum reputation score, every SO member
can vote on all the questions and answers posted on the site3,
with a positive/negative vote. Higher scores indicate a
question/answer is considered more helpful by site members.
To start our analysis of what a good code example is, we
needed a sample of Q&A threads that:

• Contains an answer with a relatively high score.

• That answer has to contain some code.

From site statistics we know that only 13% of all answers
have a score of 4 or more. We chose 4 as the high score
threshold (which we consider a conservative approach for
determining good answers). Therefore we consider an
answer with a score of 4+ as one with a high score. For
pragmatic reasons we focused on one programming language
(Java). Each question is normally labeled with some tags
showing the categories under which this Q&A thread would
be classified. We developed a Java program to crawl the site
and retrieve pages that contain the java tag, an answer worth
7 points or more, and the HTML <code> tag (used for
highlighting programming code inside questions/answers).
The crawling was stopped after visiting 150,000 pages and
resulted in 497 pages having all the mentioned attributes.
Then we manually inspected these pages and removed
duplicates and pages that only had the javascript tag. As a
result, the sample size was reduced to 357 pages. In the next
round of inspection, we removed pages without any real
code examples (due to the use of the <code> tag for
highlighting normal text or keywords), pages without any

3 Unless the thread is closed for some reason.

answer containing example code that also had 4 points or
more, and some more duplicates4. Our final sample has 163
unique Q&A threads, each has at least one answer containing
code that gathered 4 or more points. The shortest threads
only have one answer and the longest one contains 29. Since
the scores of questions and answers are subject to change due
to the openness of the site, our sample shows those numbers
on the date these pages were retrieved. Since the crawling
program has a nondeterministic behavior due to changes in
the site’s contents, running it again will not reproduce that
same group of pages. Therefore, we provide our sample as a
compressed file for other researchers to download5.

B. Definitions

In the rest of this paper we use a few terms and to clarify
things, their definitions are provided here.

Score: The difference between upvotes and downvotes
for an answer.

Normalized score: To be able to make answers to
different questions comparable, we normalized the scores of
all the answers in a Q&A thread using linear scaling
transformation. Therefore all the normalized scores are
between 0 and 1.

Recognized answer: These are answers that are
distinguished either by the questioner, the community, or
both. We use the following three rules to determine if an
answer is recognized. All the accepted answers are
recognized. All unaccepted answers with a normalized score
of 0.4 and more are recognized. Since only 2.4% of all the
answers posted on SO have a score of 10 or more, we
decided to consider all the answers with such scores in our
collection to be recognized, regardless of their normalized
score.

Low-vote answer: All the unaccepted answers that have a
normalized score of 0.1 or less are in this group.

Long answer: If the printed version of an answer fills two
or more pages (with our printer driver), we considered it as a
long answer.

Figure 1. Distribution of answer scores on SO

4 We could alternatively use SO’s public data dump for selecting the

sample, but the nondeterministic nature of the crawler ensured the
randomness of the sample which was enough for this study. We used a
lower threshold of 4 during our manual filtering to keep threads with
answers containing real code, even with a lower score of 4 or more. We
chose this lower threshold since we knew its appropriateness from the
statistical analysis.
5 It can be found at http://ase.cpsc.ucalgary.ca/uploads/ICSM2012.zip.

C. Analysis

We started our analysis by open-coding
questions/answers in a subset of our sample similar to the
way it is done in grounded theory [4]. We chose this method
because we did not have a priori knowledge what categories
would be relevant, so we chose a methodology that supports
developing categories from data. We coded interesting
elements of questions/answers and tried to use the language
of the users for our codes. The first 63 threads were gone
through open-coding and after doing it for some of them we
started to find higher level categories concurrently. After
doing it for those threads we realized that we reached
saturation (no more new categories did emerge), but we only
saw some aspects of already found categories. So we decided
to stop open-coding and continue with focused-coding. Some
of the categories were adopted as theoretical concepts to help
us create interpretive description of the data6.

Our main research question is what makes a good code
example, so we have mainly focused on the answers being
posted on SO that contain code examples. Our findings
provide the attributes of those examples present within
recognized answers. It was also observed that recognized
answers do not just provide code. They usually provide some
explanation besides the code. Therefore, another part of our
findings deals with the structure and organization of the
explanation element of recognized answers. Our first
impression was that these two elements of an answer,
namely code and prose accompanying it, are equally
important and studying their attributes will help us
understand what makes a good answer to a programming
question. To make sure that these attributes actually make an
answer a better one, we also compared the recognized
answers to the low-vote ones based on these attributes.
Answers do not live in the void. They are answers to some
questions. Our analysis also resulted in a categorization of
question types in our sample.

IV. FINDINGS

We start with a categorization of the questions. These
question types are important, since we found that some
answer attributes are related to the question types. The main
part of this section is dedicated to the presentation of our
main findings about the attributes of recognized answers.
Finally the common attributes of low-vote answers will be
discussed.

A. Question Types

The main goal of SO visitors is to find an answer for
their programming questions. The first step is to formulate an
appropriate question that provides enough information about
the problem to the potential responders. The flexibility of the
site enables a questioner to refine their question as the Q&A
session unfolds. It is common for a question to be edited
multiple times by the original poster or even by other site
members. Our sample of edited questions shows that the
wiki-like feature of the site makes it possible to improve the

6 Our coding summary is publicly available at

http://ase.cpsc.ucalgary.ca/uploads/ICSM2012-Coding.zip.

question content based on the feedback from other site
members if the question did not originally provide enough
information or it was somewhat ambiguous.

SO question types can be described based on two
different dimensions. The first dimension deals with the
question topic: It shows the main technology or construct
that the question revolves around and usually can be
identified from the question tags. These types are API related
questions, object-oriented programming/design questions,
language basics questions, questions about migrating to a
new language and comparing constructs of two languages,
and questions asking for algorithms or how to improve the
performance of an algorithm.

The second dimension is about the main concerns of the
questioners and what they wanted to solve. The question
types in this group are:

• Debug/Corrective: Dealing with problems in the code
under development, such as run-time errors and
unexpected behavior. It could also be about working
code which is not satisfactory due to its current design
or structure and thus seeking a better design.

• Need-To-Know: Questions regarding possibility or
availability of (doing) something. These questions
normally show the lack of knowledge or uncertainty
about some aspects of the technology (e.g. the presence
of a feature in an API or a language).

• How-To-Do-It: Providing a scenario and asking about
how to implement it (sometimes with a given
technology or API).

• Seeking-Different-Solution: The questioner has a
working code yet is seeking a different approach for
doing the job.

We did not find a meaningful relationship between the
question types from the first dimension and the attributes of
recognized answers, so hereby we just focus on the second
dimension. Question types do not necessarily show separate
sets, some of them actually overlap, i.e. a question might
belong to more than one type. Fig. 2 shows the distribution
of second dimension question types in our sample.

B. Attributes of Recognized Answers

The responders are encouraged to provide code in their
answers, since SO is dedicated to programming questions.
But just providing code is not enough. The code usually is
accompanied by some explanation. The analysis of
recognized answers in our sample showed that they possess
some attributes, either regarding the code or the explanation
in the answer. Table I lists these attributes with a short
description of each attribute and some examples. In the rest
of this section we present the most important attributes of
recognized answers in more details. For each attribute we
also compared the recognized answers having it to the low-
vote answers in the same thread to find out if that attribute is
the distinguishing factor between them. Consider a
recognized answer attribute, A. From these comparisons we
found that A is a distinguishing factor if the only difference

between a recognized answer and a low-vote answer, is that
the low-vote answer lacks A. On the other hand, just having
some of these attributes is not enough to make an answer a
recognized one. Having some other (negative) attributes such
as lack of enough explanation, not providing any code when
it is the main goal of the questioner, using unfamiliar
context, and not using best practices can lead to a low score.
In other words, a good answer needs to have some basic
features such as explanation, code (if it was asked by the
question), and it should be correct. Only when an answer has
these basic attributes, having other recognized answer
attributes, presented in the rest of this section, would be a
distinguishing factor to make it a recognized one.

1) Concise Code
The code presented within answers is considered as

concise if either it is shorter than similar code inside other
answers to the same question, has less than 4 lines of code,
being labeled as concise in the comments by the audience, or
it is apparent that its complexity has been reduced; for
instance, when it is clear that some parts of the
implementation were removed to make the code simpler.

We found that many recognized answers in our sample
provide the concise solution code: 48 Q&A threads have one
or more recognized answers with this attribute. One way to
make code concise is to leave unnecessary details out and
show their absence with some place-holders (such as
comments or ellipses) which usually transforms the code to a
solution skeleton. This technique is used when the
implementation details are considered irrelevant or readers
are assumed to easily figure out how to put the missing
details back there. In our sample we have 18 recognized
answers using this technique. Most of them (15) use it to
show the structure of the solution (e.g. a pattern or general
usage scenario of an API) and imply that the structure is
more important than the implementation details. However,
some implementation tips could be included as comments to
show the way of transforming the skeleton into full-fledged
code.

For instance, the following code snippet shows how
anonymous inner classes are used in Java as an idiom in
place of function-pointers in other languages. The structure
of the solution is the main point of the solution, and thus the
implementation of the method body is considered irrelevant
and left out:

Collections.sort(list, new Comparator<MyClass>(){

 public int compare(MyClass a, MyClass b)

 {

 // compare objects

 }

});

Sometimes one line of code is the complete answer for
the question (it is called a one-liner by the site members). As
an example consider the following method with a single line
body.

public static byte[] toByteArray(String s) {

 return DatatypeConverter.parseHexBinary(s);

}

The API method call provides the functionality needed
by the questioner, namely converting a string of hex values
to a byte array.

TABLE I. ATTRIBUTES OF RECOGNIZED ANSWERS

Attribute Name What is it? Explanation and Examples

Concise Code Less complex and shorter code examples - Eliminating implementation details
- Using place-holders

Using Question

Context

Answer code can build on top of the question
code; either to correct it or improve it

- Usually results in more concise code
- Using question code closely, if possible; otherwise using identifiers from it

Highlighting

Important

Elements

The answer starts with highlighting the key
element of the solution

- The element name could be hyperlinked to external pages for further information
- Some examples of these elements: the cause of error in question code, the name
of an API class, and the name of a pattern/best practice

Step-by-Step

Solutions

The code divided to multiple chunks, each
chunk is described separately

- Suitable for explaining facts to novices
- Can be used to explain how things work in detail (e.g. how code is executed)
- Suitable for solutions with code in multiple files

Links to Extra

Resources

The answer has hyperlinks to other sources of
information

- The external resource could show more complex code for almost similar
scenarios, and/or more explanation
- The preferred resources could have an authoritative/official nature

Multiple

Solutions

Answers in a Q&A thread could provide
alternative solutions to a question

- Can be used as a refernce for people with similar questions
- Alternative solutions could use different classes from one API, different classes
from different APIs, or different versions of an API

Inline

Documentation

Comments can be used as an alternative way
of explanation

- Using normal comments, Javadoc comment, or exception messages as a means of
explaining the code or using comments as place-holders for implementation details
- Directly usable code with a mini-guide inside it

Solution

Limitations

The answer explains the limitation of the
solution

- Could be initially part of the answer, or added later due to the comments
- Some examples: performance issues, usability of the solution, and security risks

API Limitations Explicitly mentioning the shortcommings of
the API used by the questioner

- It could be the lack of functionality, API design issues, or even a bug in the API
- Highlighted when it is the main source of the problem for the questioner
- A workaround solution is usually presnted

It is wrapped inside a method with a name reflecting the

functionality mentioned in the question which makes it more
relevant to the question’s vocabulary than the original
method name.

Comparing the recognized answers having concise code
to the low-vote ones based on the length of the code inside
them revealed that for half of the low-vote answers the
distinguishing factor is the code length. For the rest, we saw
that even though the low-vote ones have a code with similar
length, some other factors contributed to their low scores,
such as lack of explanation, inefficiency of the code, using a
complex domain, and not covering all cases.

2) Using Question Context
Providing code is not restricted to answers. Some

questions also present code snippets as part of their problem
description. It is very common for the Debug/Corrective
questions to contain code, but it does not mean that only this
type of questions presents code. 58% of questions in our
sample provide some code snippets. Fig. 3 shows the
distribution of questions with code among different question
types.

When the question code has some flaws or is not
working, the answer usually provides some corrective
suggestions. We have 10 recognized answers that apply
corrections to the question code and represent the corrected
version. Since the answer code does not necessarily have to
show the whole code, using the question code also results in
more concise code (7 out of 10). For instance, if the question
code can be fixed by adding some missing statements or
changing some arguments, only those changes need to be
represented, probably with a few other lines of code
surrounding them. A good sample of this is the answer to a
question regarding polymorphic CriteriaQuery in the
Hibernate API. The question code has more than ten lines of

code, but the answer just suggests that the following line
from the question code
Path<Object> path = from.join("idTag").get("code");

needs to be replaced with this one:
Path<Object> path = ((Path) from.join("idTag")

.as(RfIdTag.class)).get("code");

The unexpected behavior of the question code can be a
result of questioner’s inaccurate knowledge of the API or
language elements. Misleading documentations or
misreading them can be blamed for questioner’s wrong
conception, as one questioner puts it:

“the Javadoc is a bit confusing.”
 Then the solution will show how to apply changes to the

question code in order to use those misused elements
correctly.

The answers that use the question code are not limited to
those that just provide a working solution. Some of them also
provide suggestions on how to improve the code, either by
improving its readability or by applying best
practices/patterns/idioms to the question code, regardless of
this change being the main goal of the question. This type of
improvements could also have some pedagogical benefits for
questioners as they learn how to write better code.

Figure 2. Distribution of question types in our sample

For instance a responder suggests the following as a best
practice that the questioner should follow, even though it was
not the source of the problem:

“You should also get used to define the type of the
elements in the list.”

The extent to which the elements of the question code are
used in the solution varies. The question code can be used
closely if the amount of change for fixing the problem or
improving the design is not considerable. In our sample, we
observed that the question code has been used closely on
occasions when adding or removing a few statements would
fix the problem or some minor restructuring would improve
the code. On the other hand, even if the solution is
dramatically different in design and implementation from the
question code, or when the question code is incomplete,
some elements from the question (i.e. identifiers) can be
used, probably to make it easier for the questioner to
understand the solution. We observed that in the majority of
these cases (7 out of 9) the questioner does not know how to
do the task and this leads to an inadequate code snippet in the
question. For instance, a questioner wants to get the integer
values of enum members. His code shows an enum:
public enum TK{

 ID,GROUP,DATA,FAIL;

}

Then it shows the questioner’s current solution of
defining and getting those values. The accepted answer
explains that this approach is against best practices, thus the
solution has a completely different structure, but at least it
uses the name of the enum type (TK) in the solution:
Map<TK,T> map = new EnumMap<TK,T>(TK.class);

TK tk = ...;

T something = ...;

map.put(tk, something);

Comparing the recognized answers that use question
context to the low-vote ones revealed that for almost half of
the low-vote answers, not using the question context in the
solution was in fact the distinguishing factor. For the rest, we
found that even though the low-vote ones use the question
context in their code, some other factors contributed to their
low scores, such as lack of explanation, longer solutions, and
not using best practices.

3) Highlighting Important Elements
A considerable number of recognized answers (43

answers, each belongs to one of 36 different questions) start
the discussion of the answer with highlighting the most
important element of the solution. For How-To-Do-It
question, it is usually the name of the API element to be used
in implementing the desired questioner’s scenario. The
answer highlights that element, and sometimes links it to
external resources like the Javadoc entry of the API element,
followed by the solution using it. The highlighted element
could also be a design pattern name to be used to improve
the current design of the question code, when the questioner
seeks to improve the current design of their code. The name
of the pattern is mentioned first followed by the solution. For
instance,

“This sounds like a good candidate for the Specification
pattern.”

In 8 recognized answers to some Debug/Corrective
questions, the answer starts with highlighting what causes

the problem for the questioner: The lack of knowledge on
how to use an API method/class; e.g. not knowing how to
use special characters when using the String.split method.
Bad programming, wrong assumptions about what the
questioner implemented, or not being familiar with a
development tool are some other causes of problems present
in our sample. For instance:

“You may have inadvertently selected Java Desktop
Application.”

In 5 occasions the answer starts with highlighting a list of
things (in contrast to only one element). These answers have
the common property that their questions can be solved in
multiple ways, each with its advantages/disadvantages. The
answer first provides a list of pros/cons of these alternative
solutions to justify the preferred solution that follows.

Comparing the recognized answers with highlighted
elements to the low-vote ones revealed that for almost half of
the low-vote answers, they do not highlight the element and
that is the main difference between them and the recognized
ones. For the rest, we found that even though the low-vote
ones do the highlighting, some other factors contributed to
their low scores, such as lack of explanation and lack of code
to show how to implement the required functionality or fix
the problem.

4) Step-by-Step Solution
As the name implies, these answers (32 answers in our

sample, each belongs to one of 21 different questions)
present the solution in a detailed and ordered fashion. They
might divide the code into some chunks, describing each
small piece of code separately. These informative answers
are utilized for different reasons.

In 7 answers, when the questioner explicitly asks about
some basic facts, or when it is clear from the question or
problem that they are not aware of those basic facts, this
format is used; e.g. explaining the benefits of getters/setters
or the bridge methods in Java. In some of these questions,
the questioner explicitly describes themselves as non-
experts. Apart from the step-by-step format, the examples
presented in these answers have the following interesting
attributes: they are quite simple and use a familiar domain.
They also explain to newcomers how things work.

 A good example that shows the last attribute is a
question asking about an infinite loop containing a strange
x=x++ statement. Unlike normal Debug/Corrective questions,
the main goal is not to find how to fix it (the fix is obvious),
but rather to learn why it behaves like this. The accepted
answer tries to explain how the code actually works by
providing a simulation (a method that simulates the post-
increment operator) and step-by-step using this method (by
rewriting the original code) to explain what happens when
the original code is run.

This format is also used for some How-To-Do-It
questions (7 instances). The questioner is not usually a
novice in these cases. For instance, they might be familiar
with a construct in Java and want to know how to simulate it
in C#. Since an answer to these questions normally involves
multiple elements (some class and sub-class definitions,
method implementations, and usage code), it seems a
suitable format to use a step-by-step approach which

introduces and discusses these elements one by one and
explains how they fit together: This format is used when the
answer needs to provide multiple elements (sometimes in
different places/files). We have 3 instances of step-by-step
solutions that use this format due to the both previously
mentioned reasons. They suggest using a design pattern or a
best practice. Since a design pattern/best practice usually
consists of multiple elements, to explain why it should be
used/it is a good practice, a step-by-step format is used. But
they also describe the philosophy of the design and how
things work for non-experts.

Our Comparison of the recognized answers with step-by-
step solutions to the low-vote ones revealed that for almost
half of the low-vote answers, they do not use this format and
that is the main difference. For the rest, even though the low-
vote ones use this format, some other factors contributed to
their low scores, such as less explanation and using a more
complex code/context.

5) Providing Links to Extra Resources
The expected length of an answer, and the time window

for answering, make short answers more appealing for
responders (consider the high percentage of answers posted
in the first hour of a thread’s life). We should mention that
there are few really long recognized answers in our sample,
but most of the recognized answers are relatively short. To
keep the answer short, the responder can provide links to
external web sites that contain longer/more complex
examples, contain examples with slightly different scenarios,
and/or provide more detailed explanation. It is encouraged to
provide such links, however the answer should be self-
contained by providing a summary of the external source
contents. This self-containment will prevent the answers
from becoming useless due to dead links. So, an answer is
expected to actually answer the question, regardless of
having links to other resources. This technique is quite
common for answers to questions of the Need-To-Know
category (19 recognized answers to 15 different questions
use this technique).

Let’s see what these sources have in common: In 6
instances the external resource presents information from
some well-known and respected people in the community,
and it is used to justify the appropriateness of the answer.
Examples of these resources are a book by a well-known
author about best practices in Java, an official book
presenting the language specification, an interview with the
creator of the C# language, and an online FAQ web site
about the Java language constructs by a well-known
instructor.

Figure 3. Percentage of questions containg code for each question type

Another source of information that can be referred to is
the documentation of the API or language. The standard
Javadoc entries can be referenced when the questioner is
unaware of a method or class to be used. The documentation
can have the format of a tutorial/reference which provides
more detailed explanation of the language/API elements and
has more code samples.

C. Common Attributes of Low-Vote Answers

As we discussed in the previous section, having some of
the attributes of recognized answers does not necessarily
translate into becoming a recognized answer. Therefore, we
decided to study low-vote answers in general to see what
attributes they have in common that might have led to their
poor score. Lack of code, especially when the question asks
for it explicitly or implicitly7 is one shared attribute of low-
vote answers. Lack of explanation is another one, even if the
explanation comes in the form of code comments, it would
be better than similar solutions without any explanation on
how the code works. Table II presents a summary of these
attributes with some examples. A good answer is one
without any of these attributes in the first place. Only then
possessing the attributes shown in Table I would lead to a
better solution more likely to be recognized by community.

D. Recognized Answers without Code

In coding our sample we encountered a few recognized
answers (32) that have one of the common attributes of the
low-vote answers, i.e. they do not provide any code. This
was strange, since we did not expect to see recognized
answers without code due to the way we did our sampling. A
further investigation clarified the situation. Half of the
recognized answers without code actually refer to the code in
the question and provide some explanation about that code
(e.g. their dis/approval of the design of the code and the
reason behind it). Three of these answers provide links to
external web pages that provide code examples. The rest
(except for 3 interesting cases) are answers to some high-
level Kneed-To-Know questions regarding concepts, such as
the pitfalls in the design of an API or comparing two API
classes, which normally does not need any code to explain.

The 3 interesting answers in this group could have
provided some code examples to the How-To-Do-It
questions, but instead they just provide a link to a Javadoc of
the API class/method or just describe the algorithm. From
their comments we found that the responders might have
assumed the questioners can go from this starting point and
would be able to solve their problem, even without code
examples. For instance, a question on how to compare two
version strings has an accepted answer that just describes the
scenario steps of doing the asked functionality, without
showing any code. The questioner confirms in the comments
that these steps are similar to “what I suspected I’d have to
resort to. This also involves looping over the tokens in the
shorter of the two version strings. Thanks for confirming.”

7 How-To-Do-It is the major question type containing questions that ask

for some code examples. In our sample 95% of their recognized answers
provide code examples in the answer.

TABLE II. COMMON ATTRIBUTES OF LOW-VOTE ANSWERS

Attribute Explanation/Examples

Lack of code Especially when a questioner asks for code
example (e.g. how to initialize a static map in
Java?)

Lack of

explanation

e.g. not mentioning solution limitations

Shortcomings

of solution

Avoidable shortcomings (e.g. throwing exceptions)
Not conforming to question constraints
Using an unfamiliar context
Long code examples when shorter solutions exist

V. DISCUSSION

Our study has several implications for providers of the
support material for developers. It can show how the process
of producing supportive materials can be enhanced and what
kind of tools could be used during that process. We start with
a summary of some of our findings that leads to those
implications. Then we discuss the implications. Finally we
discuss the limitations of our study.

Customized answers: We found that a main attribute of
good answers is that they are normally customized to the
questioner’s needs. Many answers are directly applicable to
the problem, especially for the Debug/Corrective and How-
To-Do-It questions. If the context of the problem is provided
(either using code or in plain English), good answers would
try to use it while presenting the solution. The familiar
solution context makes it easier for the audience to
understand and use the solution. It reduces the questioner’s
intellectual effort needed to apply the solution to their
problem and thus decreases the cognitive distance [15]. This
very attribute is one that is absent from some other
information sources (documentation, open source
repositories, and code search engines).

Familiar context: Even when no context is provided for
the question, the responder can choose a familiar one (at
least familiar for most of the audience). In this case, the
questioner does not have to ponder on the unfamiliar context
before they are able to understand the solution. We saw that
when the questioner is relatively novice, the answer can use
a more detailed format (e.g. step-by-step) to ease the learning
process. In other words, the responder would choose the
proper presentation format based on the questioner’s
expertise level. Another example is those accepted answers
that just describe the solution very briefly, since they know
the questioner is able to get started with this initial
information and do the rest herself.

The impact of question type: The analysis of the
distribution of attributes of recognized answers and their
question types showed that those attributes are likely to be
determined by the second group of question types (i.e. “what
the questioner wants”) than by the technology or construct of
the question. This relationship is shown in Table III. These
attributes stand out for the shown question types (i.e. they are
more common for these types); however, it does not mean
that they are not used for other question types at all.

Although knowledge sharing sites like SO seem to
replace traditional sources of support for developers (such as
API documentation), our findings show that there is still a
need for more thorough sources of information dedicated to a

specific API/language. The authority attribute of information
sources originated from API/language designers makes them
more dependable for users. Robillard had a similar finding
that examples tied to API designers are more attractive for
developers [23].

A. Implications

Our findings have some implications on how the current
state of tools, examples, and documentation can be
improved. The main advantage of the online Q&A sites,
namely customized answers to the questions, is hardly
transferable to the mentioned sources of knowledge;
however, some of the attributes of the recognized answers
can be adopted by the information providers.

Retrieval Tools: Many tools use code repositories and
apply different mining techniques to retrieve examples. As
our findings show, the code itself is not useful enough in
many occasions. Therefore, mining knowledge repositories,
such as SO and developers’ forums, should be considered as
an alternative for retrieving more useful examples
accompanied with necessary explanation, and perhaps
formatted in some ways to facilitate understanding.

Documentation: Documentations that just provide textual
descriptions are not as useful as those sprinkled with several
examples. To prepare such documentation, writers need to
predict what kind of examples the audience would need and
what questions they might have. Since nobody can anticipate
each and every question, the documentation should evolve
(as the API/language it describes does), not only to cover
new features, but also to add examples and explanation for
problems that API/language users are facing frequently
which are absent from the current version of the
documentation. To find out about these problems, the tools
mentioned in the previous section can be handy. It is also
possible to add a wiki-like capability to the online
documentation, so that users’ contributions can be added to
it, but in a way that is easily distinguished from the official
segments.

Examples: Developers of an API/language should
provide a comprehensive set of examples for the potential
adopters of their product [23].

TABLE III. RELATIONSHIP BETWEEN RECOGNIZED ANSWER

ATTRIBUTES AND QUESTION TYPES

Question Types Answer Attributes

Debug/Corrective

Highlighting Important Elements (e.g. cause of
problem)
Using Question Code (to revise it)

Need-To-Know

Highlighting Important Elements
Step-by-Step Solutions
Using Question Code
Link to External Resources

How-To-Do-It

Highlighting Important Elements (e.g. API class
name)
Step-by-Step Solutions
Using Question Code

Different

Solution

Highlighting Important Elements (e.g. pattern
name)
Step-by-Step Solutions
Using Question Code

 This set needs to evolve, as it is the case for the
documentation. Therefore they can benefit from the same
knowledge mining techniques. It is also important to provide
different examples for audience with different levels of
expertise.

B. Limitations of the Study

Our criteria for building our sample might be regarded as
too restrictive (focusing on Java Q&A and using threads
containing code examples with relatively high score).
However, we used it since these criteria serve our main goal
of finding attributes of good code-based answers. There
might be a lot of recognized answers without code, but
would barely provide much insight into reaching our goal.
Another limiting assumption of our study was the score of
answers. We assumed that answers with higher scores
generally mean better solutions; however, other factors such
as answer posting time, the question topic, and the responder
identity might affect these numbers. To alleviate the effects
of these factors we chose a high score of 4 for answers in our
sampling process to make sure that some niche questions that
attracted fewer people would not be truncated. We also
compared answers to the same question and not with answers
to other questions.

The generalizability of our findings could be regarded as
another limitation. However, our findings have some
overlaps with some other studies [13, 23, 27] which suggests
that our results could be generalized to some extent. At least
our findings can be used as hypotheses to be examined in
later studies.

Another concern would be the reproducibility of our
findings. The coding of questions and answers were done by
the first researcher. A second researcher then coded all the
questions and 32 answers from 10 randomly selected Q&A
threads. We computed Cohen’s kappa inter-rater reliability
values [5] for different question types and answer attributes.
This value is between 0.69 and 0.79 for the question types
and between 0.68 and 1 for the answer attributes. This
ensures that our results could be reproduced with a high
probability by other researchers.

VI. RELATED WORK

APIs play a major role in developing software (65% of
the questions in our sample ask a question related to some
API). There are some studies addressing issues in learning
APIs. Ko et al. found six learning barriers that end-user
programmers would face. They found that programmers can
overcome some of these barriers by finding relevant
examples. However, they might face some other barriers
when trying to adapt these examples to their needs [14]. This
is not often the case with examples on Q&A web sites, since
the answer code is usually tailor-made to the questioner’s
needs. Robillard’s findings based on a survey from
professional developers show that API learning resources
have a similar importance as the API design on the ease of
learning for developers. He also found that developers want
some well-structured and complete documentation and a
comprehensive set of examples that show usage best
practices for different scenarios [23]. A study of discussions

in a programming forum categorized three major types of
questions (asking for a solution, using a wrong solution, and
using a solution incorrectly) and found several obstacles
imposed by the API for each category, for instance improper
default solutions and hard to find elements [13]. Finding
relevant Q&A threads could be a challenge, especially in
large forums. Gottipati et al. developed a text classification
method on different types of entries in software forums and
showed that their tool would outperform normal search
engines in recovering relevant answers to user queries [10].

Using the web as a main source for programmers to
gather information has been the focus of some research
studies. Programmers use the information available on the
web for three main reasons: just-in-time learning,
clarification, and remembering difficult things. They use
different types of queries (natural language, code, or a
mixture of both) based on their main objective [3]. Q&A
web sites can be a good source to provide the needed
information to programmers. An analysis on how
programmers conduct Q&A on SO resulted in several
question categories (how-to, review, error, conceptual, etc.)
and that questions containing code are very common for
review questions. Besides the question type, other factors,
such as the question posting date and time, the identity of the
questioner, the technology in the question, the length of the
question, and the availability of code in the question affect
receiving good answers [27]. The web can also provide
alternative means of API documentation. A study showed
that blogs cover 87.9% of a specific API’s methods and
provide tutorials and personal usage experiences. They also
found that these sources are the main way of support for
some niche communities [20].

Using examples is a main source of help for both
professional [24] and end-user programmers [29]. Both
groups are trying to solve a problem by reusing those
examples. For novice developers, having more knowledge
about the architecture of a framework will be a major factor
in adapting framework usage examples more efficiently, so it
was suggested that learning a framework should start with
teaching novices about the design of that framework [12].

There are also tools designed to extract code from source
repositories to provide them as examples. Some of them use
mining technique to locate features [17, 22]; others extract
common API usage patterns [1, 2, 30]. These tools rely on
queries consisting of keywords to find examples. Holmes et
al. developed a tool that uses the current development
context (i.e. types used in code under development) as the
query to find similar code snippets that might be reused [11].
The extracted code by all of these tools does not necessarily
have a familiar context and is not always accompanied with
helpful explanation. To overcome some of these
shortcomings, Stylos et al. developed a tool that extracts
some common usage scenarios using web search (such as
object creation) and injects them into the API documentation
[26]; albeit for very limited scenario types.

Documentation is also a main source of information for
developers [23]. Dagenais and Robillard studied the creation
and evolution of the documentation, and found that different
types of documentation are more appropriate for libraries and

frameworks. They also found that mailing lists could be
considered as bug reports and be used in the evolution of the
documentation [7]. Dagenais and Ossher built a tool that
helps developers to create light-weight documentation while
using a framework by defining different steps of a task and
adding elements to each step and thus creating a set of guides
[5]. Nontrivial and infrequent knowledge about how to use
elements of an API could be hidden under tons of API
documentation text. Two studies defined different types of
these hidden elements (called directives) [8, 18]. Dekel also
built a tool integrated to an IDE to present these important
elements to developers while they are using the API and
showed that it improved the outcome of documentation
reading for their study subjects [9].

VII. CONCLUSION AND FUTURE WORK

Q&A web sites like SO are providing a new means for
programmers to participate in social learning [28]. The shear
amount of questions and answers posted on the site shows
the popularity and success of this way of learning. This also
provided us with a good source for studying the properties of
well-received answers. We found that code examples and the
accompanied explanation are two inseparable elements of
recognized answers. We also found attributes of these two
elements and techniques being used to shape these elements,
such as making concise examples, shaping the explanation
based on the questioner’s expertise level, and making use of
the question context to decrease the cognitive distance.
These findings can be used by documentation and example
developers to create more usable artifacts for potential users.

We are going to combine these findings with our
previous study [19] to apply some of these findings on
automated tests and study their effects on developers
learning experience.

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns as Partial
Orders from Source Code: From Usage Scenarios to Specifications,”
in Proceedings of ESEC/FSM 2007, New York, NY, USA, 2007, pp.
25–34.

[2] S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Leveraging Usage
Similarity for Effective Retrieval of Examples in Code Repositories,”
in Proceedings of FSE 2010, New York, NY, USA, 2010, pp. 157–
166.

[3] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R.
Klemmer, “Two Studies of Opportunistic Programming: Interleaving
Web Foraging, Learning, and Writing Code,” in Proceedings of CHI
2009, New York, NY, USA, 2009, pp. 1589–1598.

[4] K. C. Charmaz, Constructing Grounded Theory: A Practical Guide
through Qualitative Analysis. Sage Publications Ltd, 2006.

[5] J. Cohen, “A Coefficient of Agreement for Nominal Scales,”
Educational and Psychological Measurement, vol. 20, no. 1, pp. 37–
46, Apr. 1960.

[6] B. Dagenais and H. Ossher, “Automatically Locating Framework
Extension Examples,” in Proceedings of FSE 2008, New York, NY,
USA, 2008, pp. 203–213.

[7] B. Dagenais and M. P. Robillard, “Creating and Evolving Developer
Documentation: Understanding the Decisions of Open Source
Contributors,” in Proceedings of FSE 2010, New York, NY, USA,
2010, pp. 127–136.

[8] U. Dekel and J. D. Herbsleb, “Improving API Documentation
Usability with Knowledge Pushing,” in Proceedings of ICSE 2009,
Washington, DC, USA, 2009, pp. 320–330.

[9] U. Dekel and J. D. Herbsleb, “Reading the Documentation of Invoked
API Functions in Program Comprehension,” in Proceedings of ICPC
2009, 2009, pp. 168–177.

[10] S. Gottipati, D. Lo, and J. Jiang, “Finding Relevant Answers in
Software Forums,” in Proceedings of ASE 2011, 2011, pp. 323–332.

[11] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona Example
Recommendation Tool,” in ACM SIGSOFT Software Engineering
Notes, New York, NY, USA, 2005, pp. 237–240.

[12] D. Hou, “Investigating the effects of framework design knowledge in
example-based framework learning,” in Proceedings of ICSM 2008,
2008, pp. 37 –46.

[13] D. Hou and L. Li, “Obstacles in Using Frameworks and APIs: An
Exploratory Study of Programmers’ Newsgroup Discussions,” in
Proceedings of ICPC 2011, 2011, pp. 91–100.

[14] A. J. Ko, B. A. Myers, and H. H. Aung, “Six Learning Barriers in
End-User Programming Systems,” in Proceedings of VL/HCC 2004,
Washington, DC, USA, 2004, pp. 199–206.

[15] C. W. Krueger, “Software Reuse,” ACM Comput. Surv., vol. 24, no.
2, pp. 131–183, Jun. 1992.

[16] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design Lessons from the Fastest Q&A Site in the West,” in
Proceedings of the 2011 annual conference on Human factors in
computing systems, New York, NY, USA, 2011, pp. 2857–2866.

[17] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: A Search Engine for Finding Functions and Their
Usages,” in Proceedings of ICSE 2011, 2011, pp. 1043–1045.

[18] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What Should
Developers be Aware of? An Empirical Study on the Directives of
API Documentation,” Empirical Software Engineering, Dec. 2011.

[19] S. M. Nasehi and F. Maurer, “Unit Tests as API Usage Examples,” in
Proceedings of ICSM 2010, 2010, pp. 1–10.

[20] C. Parnin and C. Treude, “Measuring API Documentation on the
Web,” in Proceedings of Web2SE 2011, New York, NY, USA, 2011,
pp. 25–30.

[21] J. L. Plass, R. Moreno, and R. Brünken, Cognitive Load Theory, 1st
ed. Cambridge University Press, 2010.

[22] M. Revelle, B. Dit, and D. Poshyvanyk, “Using Data Fusion and Web
Mining to Support Feature Location in Software,” in Proceedings of
ICPC 2010, 2010, pp. 14–23.

[23] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers,” IEEE Softw., vol. 26, pp. 27–34, Nov. 2009.

[24] M. B. Rosson and J. M. Carroll, “The Reuse of Uses in Smalltalk
Programming,” ACM Trans. Comput.-Hum. Interact., vol. 3, no. 3,
pp. 219–253, Sep. 1996.

[25] C. B. Seaman, “The Information Gathering Strategies of Software
Maintainers,” in Proceedings of ICSM 2002, 2002, pp. 141 – 149.

[26] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving API
Documentation Using API Usage Information,” in Proceedings of
VL/HCC 2009, Washington, DC, USA, 2009, pp. 119–126.

[27] C. Treude, O. Barzilay, and M.-A. Storey, “How Do Programmers
Ask and Answer Questions on the Web?” in Proceedings of ICSE
2011, New York, NY, USA, 2011, pp. 804–807.

[28] J. Vassileva, “Toward Social Learning Environments,” IEEE
Transactions on Learning Technologies, vol. 1, no. 4, pp. 199–214,
Dec. 2008.

[29] S. Wiedenbeck, “Facilitators and Inhibitors of End-User
Development by Teachers in a School,” in Proceedings of VL/HCC
2005, 2005, pp. 215– 222.

[30] T. Xie and J. Pei, “MAPO: Mining API Usages from Open Source
Repositories,” in Proceedings of MSR 2006, New York, NY, USA,
2006, pp. 54–57.

