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Abstract 

Tree visualization is a branch of information visualization dedicated to visualizing 

hierarchy within a dataset. It has widespread applications in visualizing Ancestry, the File 

System, an Organizational Chart, Internet Addressing, and many more. To adequately 

represent a particular hierarchical dataset, customization of existing tree layouts or even 

building a novel tree layout is necessary. A review of the existing information 

visualization toolkits shows their limitations in providing layout customization and task-

specific interaction support for trees. Using the existing toolkits, developers often are 

required to write code from scratch to implement/customize a tree layout if it is not 

supported by the toolkit. This process requires significant effort from developers both in 

terms of coding and in understanding the domain. 

 

This thesis presents findings from usability studies of AVIT – an API for Visualizing and 

Interacting with Trees. AVIT has been developed with the main focus of providing ease 

of use to software developers in implementing and customizing different tree layouts with 

task-specific interaction support. To gather developers’ feedback, two usability 

evaluations of AVIT were conducted. The first evaluation identified usability problems in 

AVIT. Based on the feedback, changes were made to the API and the documentation to 

improve usability. A second evaluation was conducted on an updated version of AVIT to 

determine what impact the changes had on the usability experience of the API and 

identified additional usability issues for future iterations of development. Lessons learned 

from developing and evaluating AVIT are also discussed to aid future work in this area. 
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Chapter One: Introduction 

This thesis presents the findings from the evaluations of a newly developed API for 

visualizing and interacting with trees (AVIT). Tree visualization, also known as hierarchy 

visualization, is a branch of information visualization dedicated to the graphical 

representation of connected acyclic graphs. It is an area of research that has widespread 

practical use in visualizing hierarchy in datasets. Some examples include ancestry (family 

trees), file systems (directory trees), organizational charts, internet addressing, and library 

catalogues. There are many different tree layouts available, each having pros and cons 

when visualizing particular types of datasets [5].  

Currently, some information visualization toolkits are available that provide support for 

drawing tree layouts. A review of the existing toolkits (for details see Chapter 2) by the 

author has shown that they support only a handful of common tree layouts and are not 

flexible enough in providing customization and interaction support like: using different 

shapes for the different levels of tree, generating hybrid tree layout (for details see 

Chapter 2). On one hand, to provide developers with the most common tree layouts, a lot 

of implementation work is required by a toolkit implementer. On the other hand, it is very 

hard to fulfill a user’s individual needs as each new hierarchical dataset may require a 

tailored tree layout for its adequate representation.  

Also most of the current toolkits have been evaluated to show their performance and 

expressiveness in generating different types and sizes of tree layout, but limited user 

studies have been done to evaluate the usability of those toolkits [e.g. 7, 8, 10, 11]. While 

performance evaluation, code comparison and expressiveness evaluation is important, 
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those evaluation techniques do not address the learnability and ease of use of those 

toolkits by target users. This thesis discusses the usability evaluation of AVIT. The main 

findings from the evaluation are that an interactive demo helps learn the API, and while 

less code to do more is good but there are difficulties in understanding the underlying tree 

layout generation concept.             

This chapter aims at providing necessary background information for this thesis. 

Motivations and background will be discussed in Section 1.1, research problems, research 

questions and research goals are stated in Section 1.2, Section 1.3 and in Section 1.4 

respectively. Finally the chapter concludes with an overview of the organization of the 

remainder of this document. 

1.1 Motivation and Background  

This section provides details about the background and the motivation for the research. 

First, a short overview of different tree layouts is provided. Next an overview of existing 

information visualization toolkits and their limitations in providing tree drawing and 

interactions support is discussed. Finally, to address the limitation of existing toolkits, a 

short discussion on the proposed operator-based tree layout generation process [6] is 

provided. 

1.1.1 Tree Layouts 

Unlike other plots and charts, tree drawings subsume an entire family of diagrams. There 

is not THE tree layout but more than 200 variants of them [5]. Despite their diversity, tree 

visualization techniques can be categorized into three major types: Node-link diagram, 

Space-filling diagram and Layered diagram.  
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In a node-link diagram, nodes are distributed in space and are connected by a graphical 

edge from parents to their children. In a space-filling diagram each node occupies an area 

and child nodes are “contained” within their parent. A layered diagram signifies the tree 

structure using layering, adjacency and alignment. A hybrid layout combining node-link 

and space-filling tree diagram is also possible [27]. 

Within each type of tree diagrams there are many different variants available [5]. The 

algorithm by Reingold and Tilford [28], later modified by Walker [29] provides examples 

of various node-link tree layout techniques. The algorithm produces a classical tree 

drawing (shown in Figure 1.1 (1)) where the inherent hierarchy of the data is clearly 

noticeable. Eades [30] proposed a radial algorithm for tree drawing where nodes are 

placed on concentric circles according to their depth in the tree. The root of the tree lies 

on the center. The children of the root lie on the smallest inner ring, and their children lie 

on the second smallest ring, and so on (shown in Figure 1.1 (2)). A radial view is good 

for representing wide trees with a lot of children nodes as the available drawing space 

(circumference of the circular layout) increases with the tree’s depth. 

The main drawback of node-link diagrams is their inefficient use of screen space, wasting 

space in the root side of the tree and cluttering the opposite side. On the other hand, space 

filling techniques such as tree-maps [31] ((showed in Figure 1.1  (4)) make full use of 

screen space. Tree-maps encode structure using spatial enclosure. Using a tree-map, it is  
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Figure 1.1: Different variants of Tree Layout, (1)-(3) are variants of node-link tree, 

(4)-(6) and (9) are examples of space-filling tree and (7)-(8) are examples of layered 

tree drawing.[Generated using AVIT] 
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easy to get a single view of an entire tree and it is easier to spot large/small nodes. 

However, one of the important limitations of tree-maps is the difficulty in discerning the 

hierarchical structure. Variations of tree-maps like nested tree-map and cascaded tree-

map layout [32] has been developed to provide insight into the hierarchical structure by 

adding nesting or cascaded effects ((shown in Figure 1.1  (5, 6)). 

Layered tree diagrams preserve the hierarchy structure and are slightly more space 

efficient than node-link diagrams as there is no explicit edge between parent and child 

nodes. Also, child levels are layered constrained to parent’s extent to restrict the growth 

in width. Example of layered tree diagram are the Sunburst tree ((shown in Figure 1.1  

(8)) and Icicle Plot ((shown in Figure 1.1  (7)) 

1.1.2 Information Visualization Toolkits 

Tree drawings have become a standard type of diagram, which information visualization 

tools are expected to support. Some examples of existing information visualization 

toolkits that provide tree drawing supports are The InfoVis Toolkit [11], Protovis [7], 

prefuse [9], Programmable Tree Drawing Engine [8], D3.js [13], JavaScript InfoVis 

Toolkit [12] and HiDE [10]. However, existing toolkits are limited in the sense that they 

only provide support for limited number of tree layouts (for details see Table 1.1: Tree 

Layout). Also customizing a tree layout e.g., changing the color or shape of a node in a 

particular level or having a hybrid tree layout, is not well supported in the existing 

toolkits.  

If developers, who want to incorporate a tree visualization component in their 

application, need a different tree layout that is not supported by the toolkits, they either 
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have to entirely implement the new visualization component or they require sub classing 

a pre-existing visualization widget in the toolkit to fulfill their requirements [9]. This 

process has a steep learning curve and might reduce the developer’s productivity.  

Furthermore, many of the mentioned toolkits do not provide adequate task-specific 

interaction support for tree visualizations (for details on task-specific interaction see 

Section 2.2) which hinders the efficient exploration of the tree visualization. For 

example, the Programmable Tree Drawing Engine [10] has no interaction support and 

only generates static tree layout. Protovis [7] provides interaction support like zoom, pan, 

and drag but is limited in providing task-specific interaction support, e.g. no support for 

highlighting a sub-tree rooted on a selected node of a tree or showing a path between 

nodes.   

In Table 1.1 a feature-based comparison between The InfoVis Toolkit [11], Prefuse   [9], 

D3.js [13] and JavaScript InfoVis Toolkit [12] has been shown. 

Table 1.1: Feature comparison of existing information visualization toolkits 

Features 

The InfoVis 

Toolkit 

(Released: 2004) 
Prefuse 

(Released: 2007) 

D3.js 

(Released: 

2011) 

JavaScript 

InfoVis 

Toolkit 

(Released: 

2011) 

HiDE 

Imported data 

types support 

CSV, XML, TQD, 

TreeML,GraphML 

Newick, TM3, 

DOT 

CSV, XML 

TreeML, 

GraphML 

CSV, TSV, 

XML, JSON 
JSON TSV, XML 

Implementation 

Language 

Java Java JavaScript, 

SVG,CSS 
JavaScript, 

SVG 
Java, 

Processing 

Tree Layout Node Link, Tree-

map, Icicle 
Node Link, Tree-

map, Sunbursts 
Node Link, 

Tree-map, 

Icicle, 

Node Link, 

Tree-map, 

Icicle, 

Tree-map 
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Sunbursts, 

Dendrograms, 

Indented trees, 

Circle 

Packing. 

Sunbursts 

Toolkit Design Polylithic
1
 Polylithic Polylithic 

 

Polylithic Polylithic 

Interaction  Interactive filter, 

distortion. 
Pan, zoom, drag, 

rotate, interactive 

filter, distortion, 

animation, 

display node 

information, 

highlighting 

neighbor 

Pan, zoom, 

drag, rotate, 

animation, 

display node 

information 

Pan, zoom, 

drag, 

animation, 

display node 

information 

Filter, 

Animation, 

display node 

information 

Extensibility 

for new 

visualization 

Need to write 

entirely new 

component or 

requires sub 

classing a pre-

existing 

visualization 

widgets. 

Some hybrid or 

new visualization 

can be 

constructed by 

using existing 

operators or by 

introducing new 

operator. 

New 

visualization 

can be 

constructed by 

using a set of 

helpers 

provided by 

D3. 

Need to write 

entirely new 

component or 

requires sub 

classing a 

pre-existing 

visualization 

widgets. 

Visualization 

can be 

customized 

using 

different 

values to 

operator 

parameters. 

Currently 

extensibility 

to new tree 

layouts are 

not supported 

Hybrid Tree  Not Supported Currently not 

Supported but 

can be 

constructed by 

using existing 

operators or by 

introducing a 

new operator. 

Not Supported 

but can be 

constructed by 

using set of 

helpers 

provided by 

D3. 

Not 

Supported 
Not 

Supported 

Generating 

Novel Tree 

layout 

Not Supported Not Supported Possible. Not 

Supported 
Not 

Supported 

Documentation 

and Supporting 

materials 

JavaDoc 

No User 

community 

JavaDoc, 

Incomplete User 

Manual 

User manual 

with details 

description 

and lots of 

complete 

User manual 

with details 

description 

and lots of 

complete 

User manual 

with details 

descriptions 

of the 

operator, 

                                                 

1
 http://www.infovis-wiki.net/index.php?title=Polylithic_design 

http://www.infovis-wiki.net/index.php?title=Polylithic_design
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example, 

Tutorial 

materials, 

Active Google 

group 

example, 

Tutorial 

materials, 

Active 

Google group 

video 

tutorial. 

Layout 

Drawing 

Approach (See 

Chapter 2) 

Global Global Global Global Local 

 

It is evident from the toolkit comparison in Table 1.1 that they provide support neither for 

generating hybrid trees nor for novel tree layouts and one needs to follow a complex 

procedure to incorporate those layouts into those toolkits. They also are equipped with 

only a limited number of tree layouts. Also, most of the interaction features on those 

toolkits are generic like zoom, pan, and drag; task specific interaction for trees is not 

implemented on the mentioned toolkits. 

Considering the diversity of tree diagrams [5], it makes sense to have an API only 

focusing on drawing different types of tree layouts. If a generic tree drawing approach 

can be developed, it will be possible to render different tree layouts by following a simple 

process. It will require less coding effort for the developers to draw and customize 

different tree layouts through an API that has been developed using the generic tree 

drawing approach. Also if the APIs are evaluated with users, usability problems of the 

API and the documentation can be discovered. Findings from the usability studies can 

help make important design decisions to refine the API and associated documentation and 

thus will help improving the usability experience of the user of the API.  
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1.2 Research Problems and Collaboration 

From the review of the existing information visualization toolkits, the author of this thesis 

found that most of the existing toolkits are not only limited in providing flexible 

customization support for drawing different tree layouts but also lack in providing task-

specific interaction support (for details see Chapter 2). To address these limitations, the 

author of this thesis feels the needs for a new generic tree layout generation approach, 

which will provide flexibility in layout customization and interaction support with 

minimal coding effort. Generating hybrid layout and novel layout should also be possible 

using the new approach. 

Developing a new generic approach for tree drawing is itself a very challenging problem 

to solve that requires deep knowledge about the inner workings of different tree layout 

algorithms. To address this challenge, the author of this thesis collaborated with Hans-

Jörg Schulz, a visiting information visualization researcher from the University of 

Rostock, Germany in developing “A generative Layout Approach for Rooted Tree 

Drawings” based on the operators [6].  

To clarify the author’s contribution in the process, the following few paragraphs 

summarizes the different phases of the research work for this thesis.  
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Figure 1.2: Overview of the different phases of the research. 

The author collaborated with Schulz, in completing Phase 1 and Phase 2 of the research. 

Phase 3: Usability evaluation has been conducted solely by the author of this thesis and 

also forms the main contribution of this thesis. The following sub-sections provide some 

details regarding the contribution of the author during different phases of the research. 

1.2.1 Phase 1: Developing Generative Layout Approach for Tree Drawing 

During the collaboration, Schulz and the author of this thesis examined the tree layout 

literature to identify the patterns and commonalities in different tree layouts, participated 

in regular brainstorming sessions and worked closely together in developing a new 

generic tree layout drawing approach. While the author closely participated in the 

process, Schulz came up with the main concept of generative tree layout drawing 

approach using operators [6].   
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The operator-centric design pattern [49] is well known to information visualization 

community and has been applied in building different information visualization tools 

such as the HiDE toolkit [10]. Using an operator-centric design visual data processing is 

decomposed into a series of composable operators that enables flexible and 

reconfigurable visual mappings [61]. In the approach proposed by Schulz et al. [6] tree 

drawing pipeline is decomposed into a series of simple operators and by combining 

different operators in a particular order different tree layouts can be generated. 

During the collaboration, the author acted as a developer who was looking for a web-

based API for visualizing and interacting with trees. The author presented the 

requirements he had for such tree visualization API to Schulz. The author’s inexperience 

with tree visualization helped bring the developer perspective in designing the tree 

drawing process, hiding the details of the complex tree drawing algorithm.  

The author suggested that if the mathematical complexity of the tree drawing algorithm 

can be hidden behind abstracted methods, it will be easier to understand for a general 

developer who does not have expertise in tree visualization. Based on frequent 

discussions with Schulz and feedback provided by the author, several refinements of the 

operator-based tree generation concept along with its implementation in the API have 

been made by Schulz. 

1.2.2 Phase 2: API Development 

In Phase 2, a prototype API (AVIT) has been implemented using the developed tree 

drawing concept in Phase 1. For AVIT, the author of this thesis has implemented the data 

loader, renderer and interaction module while the layout pipeline module has been 
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written by Schulz (for implementation details of the each module of AVIT see Chapter 

3). 

1.2.3 Phase 3: Usability Evaluation 

The target users of the API were the developers who do not have expertise in information 

visualization but need to use tree visualization components in their web-based 

application. To understand the developer’s reaction using AVIT, it is essential to conduct 

usability studies with the target developers. Findings from the usability evaluation will 

help in identifying the usability problems they face while working with the API. Steps 

can be taken based on the identified issues to refine the API and the documentation 

materials to better support developer needs. 

To address this issue, the author has designed and conducted two separate usability 

evaluations on different version of the API. 

1.3 Research Questions 

The usability evaluation of AVIT forms the foundation of this thesis. The main focus of 

the usability evaluation was to identify the usability problems of AVIT and to gather 

suggestions to refine the API and its associated documentation materials – so that the 

usability experience of the API can be improved. While conducting the usability 

evaluations, the following research questions were of interest: 

1. Does the operator-based approach support drawing different tree layouts using a 

concise specification? 

2. Can a tree layout be customized within a minimal amount of time using existing 

components of the API? 
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3. Is it possible to generate novel tree layouts using AVIT? 

4. How much effort is needed from the developers to learn the operator-based 

approach of generating tree layouts? 

5. How helpful are the documentation and other learning materials for completing a 

task? 

6. How can the interaction features of AVIT be improved? 

7. How can the usability experience of AVIT be improved? 

The first two research questions can be answered by implementing different example tree 

layout using the API. The third research question can be answered by drawing usable tree 

layouts using AVIT which are not available in existing tree layout literatures. The fourth 

research question is hard to answer considering the time limitation of the usability study 

in a controlled environment but usability studies will help to identify some common 

learnability problems with the API. This will be a good starting point to get initial insight 

about the learnability issues of the API. To address research questions five to seven, 

iterative evaluations need to be conducted and each evaluation will add some new 

improvement on the API and its associated documentation to fulfill the identified needs 

of the developers.  

1.4 Research Goals  

There are two main goals of this thesis. The first goal of the thesis was to develop an API 

based on the operator-based approach for tree drawing. This will help to answer the 

research questions 1 to 3. This research goal has been discussed in Chapter 3, which 

describes the AVIT, the API created for fulfilling the mentioned first goal. 
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The second goal of the thesis was to identify the usability problems of the API and refine 

the API to provide better usability experience. This will help answer research questions 

four to seven. Two separate usability studies have been conducted by the author to 

determine the usability of the API and the associated learning resources.  

The first study was a preliminary one and was concentrated on gathering early feedback 

from developers regarding the usability of the developed API. The API and the supported 

learning materials were updated based on the findings from the first user study. A second 

usability study has been conducted on the updated version of the API. The main goal of 

conducting the second usability study was to determine the impact that these changes had 

on the usability experience and also to determine further usability issues with the API. 

Details of the first usability study and the second usability study have been discussed in 

Chapter 4 and Chapter 5 of the thesis, respectively. 

1.5 Thesis Structure 

This thesis is divided into seven chapters: 

Chapter 2 describes existing information visualization toolkits and their support in 

visualizing trees along with the description of their evaluation approaches. In this chapter, 

some existing visualization toolkits are described and task-specific interaction 

classification for tree visualization is provided. The advantages and shortcomings of 

using these types of toolkits are analyzed from a developers’ perspective. 

In Chapter 3, a detailed description of the developed API is provided. In this chapter, 

fundamental design, tree layout generation and interactions features of the API are 
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explained. Some walkthrough examples for generating and interacting with different tree 

layouts using the API are given. 

Chapter 4 describes the first usability evaluation of the API. This evaluation was 

conducted to determine a developer’s behavior and satisfaction level while using the 

newly designed API and its associated support materials. Chapter 4 provides the details 

surrounding the setup of the study, as well as the data analysis process. Findings from the 

data analysis are used to identify and categorize usability problems with the developed 

API and the documentation materials. Suggestions to improve the usability of the API are 

made. 

Chapter 5 describes the second evaluation which was conducted on the revised version of 

the API. Detailed description of the changes made in the API, study setting, data analysis 

and findings are provided.  

Chapter 6 describes the evaluation of AVIT based on the Cognitive Dimension of 

Notation (CDN) framework. Detailed evaluation of the operator-based notation of AVIT 

across different dimensions of CDN framework is described.  

Chapter 7 closes this thesis by answering the research questions and outlining the 

contributions to the area of developing usable tree visualization APIs and suggests 

possible future work for this research area. 

1.6 Chapter Summary 

In this chapter, motivation and background for this thesis has been discussed. A brief 

overview explaining various tree layouts, limitations of existing information visualization 
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toolkits in providing tree drawing and customization support is provided. Research 

problems, different phases of the research and collaboration have been explained. Finally, 

research questions to investigate and goals of this thesis were stated. 
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Chapter Two: Related Work 

Information visualization is an important area of research that focuses on making sense of 

complex abstract data via visual representations. It has numerous applications in Data 

Mining, Biology, Sociology and many other areas. Despite potential uses in many areas, 

information visualization applications are difficult to implement as they require a great 

deal of background knowledge regarding complex layout algorithms, mathematics, and 

design dynamic graphics before development can begin [9]. Both industry and academy 

have attempted to address the problem of building complex information visualization 

applications, and they focus on a tool support approach. The main purpose of building 

visualization toolkits and frameworks has been making it easier for the user who wants to 

use visualization component for their application.  

Tree visualization is an important branch of information visualization that focuses on 

visualizing hierarchy in the data. There are more than 250 variants of tree layout [5] that 

can be generated through a variety of different algorithmic approaches [22]. To provide 

different tree layout support in existing visualization toolkits, the implementation of a 

substantial number of different layouts is necessary. As there is no “one size fits all” tree 

layout that will fulfill the individual needs of the users to adequately represent their 

hierarchal dataset, it is necessary to provide a customization option in each API to 

accommodate other layouts using a set of reusable components [9].  

This chapter discusses the tree drawing approach, interaction support and toolkit 

evaluation approach of the existing information visualization toolkits. How the developed 

AVIT based on the operator-based approach fits in this scenario will also be discussed. 
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Section 2.1 discusses tree drawing approaches in existing information visualization 

toolkits, Section 2.2 provides an overview of interaction support in visualization toolkits 

and Section 2.3 provides an overview of the evaluation approach of current toolkits. 

2.1 Tree Drawing in Existing Toolkits 

An overview of the available literature on information visualization toolkits done by the 

author shows that current approaches to generate tree drawings differ mainly in whether 

they allow a user to specify a tree layout globally or locally. 

2.1.1 Global Tree Layout Approaches  

Global tree layout approaches generally apply one layout specification to the entire tree. 

The use of these approaches is often quite compact, with only a single line of code for the 

actual generation of the drawing and a few extra lines to adapt drawing styles and colors. 

These approaches hide most of the complexity of the layout, which make them easy to 

use. On the other hand, customizing a tree layout according to user needs, such as 

assigning different shape for nodes in different levels of the tree or arranging sub-trees in 

a different order based on the topology or attributes of the tree or drawing a hybrid tree 

layout, is difficult to do using a toolkit that follows a global tree drawing approach. 

Also in a global tree layout approach if an unsupported tree layout algorithm is needed, it 

has to be implemented as an entirely new layout – it cannot be put together as a 

combination of the existing tree layout functions. Notable examples for global tree layout 

approaches are the layout.tree function in IBM SPSS Graphics Production Language, 

which is based on [33], or the handful of tree layout classes built into prefuse [9] and 

Protovis [7]. 
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For example, the Protovis [7] API uses a global layout specification for tree drawing. 

Figure 2.1 illustrates the output “Squarified tree-map” layout from the Protovis API. A 

code sample to generate the tree using Protovis [7] is also provided in Figure 2.1(b). 

 

(a)Squarified tree-map layout using Protovis 

 

(b)Code to generate the Squarified tree-map layout using Protovis 

Figure 2.1: Global tree layout specification. (Tree-map layout using Protovis [9]). 
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This example visualizes class hierarchy data from the Flare visualization toolkit [41]. 

Different colors refer to different packages of the Flare visualization toolkit [41] while 

each area encodes file size. From the code example in Figure 2.1, it can be seen that using 

Protovis [7] to draw a tree-map layout, first the tree-map layout specification has to be 

loaded, then styling information like coloring for leaf node and label orientation can be 

added via a few extra lines of code.  

If developers need to customize the above layout in Protovis [7], e.g. making the size of 

the visualized shape of the packages of the Flare visualization toolkit [41] proportional to 

their actual file size as described in dataset, or if they want to use a top-down layout 

rather than traditional tree-map, they either need to implement a new layout algorithm to 

support their need or they need to extend the existing tree-map layout in Protovis [7]. 

Both of these approaches to customize the layout require significant effort from 

developers in terms of coding and understanding the domain. 

2.1.2 Local Tree Layout Approaches  

Local tree layout approaches on the other hand, provide more flexibility by allowing a 

user to use different layouts, node ordering and drawing styles for different levels, for 

leaves, or for different parts of the tree. Naturally, these approaches require specification 

to govern all the individual aspects of different local tree layouts, as well as to select the 

sub-trees on which to apply them. Yet this allows the user to influence the resulting 

layout on a more fine-grained level than do the global approaches do, which permits 

much more opportunity to customize a layout by mixing the ones that are provided. 
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Examples of local tree layout approaches are the Tree Visualization Language
2
 with its 

XPath-based expressions to configure the underlying TreVis Framework [34], the 

Hierarchical Visualization Expression notation [10], and the Programmable Tree 

Drawing Engine [8]. 

An example of the Cartesian Space Filling layout (tree-map) using the Hierarchical 

Visualization Expression notation [10] can be seen in Figure 2.2. HiVE [10] describes 

hierarchical visualizations in which variable values are used to condition the data above 

them in the hierarchy. 

 

Expression: sHier(/,$country); sOrder(/,HIER); sSize(/,FX); 

sColor(/,HIER); sLayout(/,SF); 

Figure 2.2: Cartesian Space Filling layout using HiDE toolkit and the corresponding 

HiVE expression. 

                                                 

2
http://sape.inf.usi.ch/tools/trevil 

http://sape.inf.usi.ch/tools/trevil
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The example layout in Figure 2.2 – visualizes data from Eurostats, “Consumption of 

energy by country over time” using the HiDE toolkit [50]. From Figure 2.2, it can be seen 

that a HiVE expression follows an expression-based approach for drawing and 

manipulating the tree layout where each expression contains a number of parameters. By 

assigning different variable values in the parameter of the expression “sName(path, var1, 

var 2)”, different customization can be made in the layout (for details of the expression 

see [10]). 

 

Expression: sHier(/,$country); sOrder(/,HIER); sSize(/,$consump); 

sColor(/,HIER); sLayout(/,SF); 

Figure 2.3: Cartesian Space Filling layout drawn using HiDE toolkit and the 

corresponding HiVE expression. 

In Figure 2.2 the size of every node is fixed: sSize(/,FX);, if we want to assign a 

proportional size to each node, based on their consumption rate then we just change the 

parameter in sSize(/,FX); to sSize(/,$consump); where $consum is a variable containing 
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values of consumption rate for each country. After making the changes it will generate 

the layout shown in Figure 2.3. 

The above example shows that using local tree layout approaches, layout customization 

can be made by minimal changes in the code using already available functions of the 

toolkit, but one needs to spend a significant amount of time understanding the 

functionality of each operator. Also the above-mentioned HiVE expression [10] and its 

associated HiDE toolkit [50] can only draw space-filling layouts like tree-map. Other 

types of tree layout are not supported yet. 

It is notable that both global and local tree drawing approaches break down the tree 

layout along the data – applying the layout either to all of the data or to parts of it. The 

layout process itself is, if at all, only subdivided in the two steps of the actual node 

placement (e.g., radial, Slice and Dice, indentation) and the definition of a drawing style 

(e.g., color-coding, labels, node shapes). A further breakdown of the layout process into 

more fine-grained steps will be necessary to gain more flexibility in specifying tree 

layouts, so that an even wider range of tree drawings can be generated by mere 

specification. 

To counter this problem, an operator-centric generative tree drawing approach has been 

recently proposed by Schulz at el. [6]. Schulz observed that despite the large variety of 

tree drawings, many of the most common ones follow a similar overall process [6]. Using 

this operator-based model of tree layout, it becomes possible for a user to generate 
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countless different tree drawings
3
 by plugging different operators or operator sequences 

in the layout pipeline. This concept was later used by the author as a cornerstone of 

building the API for Visualizing and Interacting with trees (AVIT). 

2.2 Interaction  

Interaction is an essential part of information visualization through which user’s 

understanding of the dataset is changed or enhanced [37]. With suitable interaction 

support some limitations of the static representation can be overcome and the “cognition 

of a user can be further amplified” (e.g., [38, 39]). Implemented interaction features that 

are common on current information visualization toolkits are zoom, pan, drag, search, 

select, distortion and filter [7, 9, 10, 11, 41]. While these interaction techniques are useful 

for revealing some property of the dataset, task-specific interaction for a specific 

visualization type, like tree, will help reveal important characteristics of the dataset.  

Current information visualization toolkits have limited task-specific interaction support 

for tree visualizations and one needs to follow a complex procedure to incorporate new 

interactions in those toolkits. For a comparison of the list of interactions supported by the 

current toolkits see Table 1.1. Information visualization toolkits, in general, cover a 

broader area of visualizations techniques that are not limited to only tree visualization but 

also support graphs, scatter plots and other types of visualizations. Interaction techniques 

implemented in these toolkits mainly focus on covering a broad range of visualizations in 

general and focus less on interaction specific to a particular domain of visualization. For 

example, the prefuse toolkit [9], provides zoom, pan, drag, filter, distortion, and rotate 

                                                 

3
 http://tinyurl.com/operatordemo 

http://tinyurl.com/operatordemo
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interaction techniques (for details see Table 1.1), which can be used equally over any 

type of visualization, such as tree, graph or scatter plots. However, task-specific 

interactions for a tree like comparing sub-trees or showing a path between the root node 

and a selected node, are not currently supported in prefuse [9]. 

Even toolkits specific to tree visualization, either produce a static layout with no 

interaction support or provide specialized, domain-specific interaction techniques to 

visualize the dataset of a specific domain [40]. For example, the Programmable Tree 

Drawing Engine [10] which is a python based toolkit for visualizing trees, only produces 

static tree layouts. PhyloWidget [35] is a program for viewing, editing, and publishing 

phylogenetic trees. It supports zoom, pan, search, node edit, labeling, sorting, removing 

elbow (nodes with one parent and one child) and random mutation interactions that are 

useful in exploring phylogenetic trees. However, PhyloWidGet [35] lacks interaction 

support for other task-specific interactions such as tree comparison or sub-tree 

highlighting.  

It has been observed from the taxonomy of tasks for tree visualization [40], graph 

visualization [36] and network evolution [56] that tasks can be categorized into four 

major groups: topology-based tasks, attribute-based tasks, browsing tasks, and the 

overview tasks. In the following subsections each task group focusing on tree 

visualization will be discussed. 
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2.2.1 Topology Based Tasks 

Topology based tasks are tasks in which the user needs to identify global structures or 

patterns of interest in their data or among specific entities. Topology based tasks for trees 

as described in [40] are listed below: 

 Overall characteristics: Identifying the size and depth of the tree. Which branch 

is the deepest? Is there any variation in depth between sub-trees? 

 Path: Showing the path of a node from the root or path between selected nodes. 

 Local relatives: Identifying the children, sibling or cousins of a node. 

 Distant relatives: Finding a node’s ancestor or descendent, finding the common 

ancestor of any two nodes of the tree. 

 Filtering by level: Displaying only the first level of the tree or only 4 levels down 

or show the tree removing all the leaf nodes. 

 Counting nodes: Which branch contains the largest number of nodes? Or which 

branch/node has the maximum number of leaves? 

 Comparison: comparing similarity between sub-trees, identifying the difference 

between multiple trees in a structure or number of nodes. 

2.2.2 Attribute Based Tasks 

Attribute based tasks are tasks in which the user need to discover information based on 

the node or edge values. 

 View detailed information about a node or edge. 

 Search for a particular node/edge having a specific attribute value. 

 Find all the nodes or edges within a range of values. 
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 Sort nodes based on attribute value. 

2.2.3 Browsing Tasks 

Browsing tasks help in exploring the tree layout. 

 Locating a node, knowing its path. 

 Going back to a previously visited node. 

 Explore the tree by performing a series of up and down movements within the 

tree. 

2.2.4 Overview Tasks 

Overview tasks provide summary information about a tree layout.  

 Size of the tree e.g. depth, number of total nodes, total leaves. 

 Node with maximum or minimum number of children. 

The list of tasks mentioned-above is not a complete list but covers a broad area of the 

most common tasks with trees [40]. 

It was observed throughout the course of this research that some task-specific interactions 

for tree visualization are not suitable for all types of tree layout. For example, topology- 

based tasks like showing the path between a node and the root of the tree or finding a 

common ancestor do not make sense for interacting with a space-filling tree layout like 

tree-maps where only the leaf nodes can be seen. 

Different interaction techniques that are suitable for exploring a particular type of tree 

layout might not be useful for a different type of tree layout. If interaction techniques 

using the above task-taxonomy can be implemented in an API, it will provide much 
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freedom to the developer to select those interaction features that will better suit their 

requirements for a particular type of tree layout. 

In the developed API for Visualizing and Interacting with Trees (AVIT), a specialized 

interaction layer was constructed allowing task specific interactions for trees (for details 

of the implemented interactions see Chapter 3). 

2.3 Evaluating Visualization Toolkits 

This section provides an overview of the toolkit evaluation approaches followed by their 

designer for existing information visualization toolkits. 

After conducting a review of the existing information visualization toolkits, the author 

identified the following evaluation approaches which were commonly used in evaluating 

the existing information visualization toolkits by their designer: 

 Performance evaluation 

 Application Coverage 

 Heuristic-based evaluation. 

 Usability evaluation 

 User adoption  

 Longitudinal user studies. 

Performance evaluation mainly focuses on evaluating the load time and memory uses 

for different types of visualization layouts with small to large datasets using the toolkit. 

For example Protovis [7] and D3.js [13] have evaluated the load time and memory uses 

of different visualization layouts with the dataset ranging from 10 to 100,000 points using 
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profiling tools. Performance evaluation provides valuable information about how 

efficiently the system processes different datasets and provides some insight about the 

scalability of the system. 

Application coverage mainly tests the expressiveness of the toolkit. It is done by 

implementing existing visualizations or crafting a novel design using the toolkits by their 

toolkit designer. It provides valuable information regarding generating different layouts 

using the toolkits. All the information visualization toolkits reviewed by the author used 

this evaluation approach by building various example visualization applications using the 

toolkit.  For example, using the prefuse toolkit [9] the toolkit designer built a novel 

hierarchy browser called degree-of-interest trees.  The designer of the Flare Toolkit [41], 

D3.js [13], Polaris [47] and Protovis [7] also built various example applications using the 

toolkit to evaluate the expressiveness of those toolkits. 

While expressiveness evaluation is helpful, it does not evaluate the difficulty a user might 

face in learning and using the toolkit. Visualization toolkits are typically built by the 

visualization researchers who have years of experience and a deep understanding of the 

area. When visualizations start to be used by a broader set of developers, it is better to 

conduct evaluations with developers, who do not have much background in visualization, 

in order to gather their feedback on the understandability and ease of use of those 

toolkits. Having expertise in visualization, some of these usability issues might not be 

noticeable to the visualization researcher if they only conduct a self-evaluation of the 

toolkit.  
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Heuristic-based evaluation is an evaluation technique that follows an inspection method, 

using measurements to identify conceptual barriers and pointing out side effects of design 

decisions [42]. This approach is not task-specific and does not need the involvement of 

API end users [42]. The main benefit of heuristic based evaluation is that, it can be 

applicable early in the design cycle of the API when usability testing is not possible or as 

a cost-effective method when resources are scarce.  

The Cognitive Dimensions Framework [43] takes a similar approach as a heuristic-based 

evaluation for evaluating the effectiveness of notational systems such as programming 

languages and visual interfaces [43]. It has been used to evaluate the accessibility of the 

Protovis [7] API.  The InfoVis Toolkit [11] followed a heuristic-based approach 

described by Shneiderman and Fekete [45] to evaluate the quality of their tool.  

The main drawbacks of heuristic-based evaluation are that it requires significant expertise 

from the evaluator, multiple expert evaluations to ensure the reliability of the evaluation 

and the fact that often a large number of identified problems using heuristic evaluation 

are minor problems which might not have much impact on the actual user of the system 

but will be very costly to fix [44]. 

Usability evaluations are conducted with the actual users of the system in a lab 

environment, with limited time and specially designed tasks. A usability evaluation helps 

to identify the problem that might plague the actual user of the system and provide useful 

recommendations for the designer to address those problems. A study conducted by 

Jeffries et al. [46] comparing four different evaluation techniques showed that usability 
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evaluation exposed more severe problems, recurring problems and global problems than 

heuristic evaluation [46]. Also, some usability problems are highly unlikely to be 

discovered without conducting usability testing [44]. 

Some examples of information visualization toolkits that have been evaluated with 

usability studies in a lab environment are the prefuse toolkit [9] and the Papier-Mache 

toolkit [21]. 

Considering the limited time and simple nature of the task used in the usability studies, it 

is often hard to predict the learnability of the toolkit compared to the real task in an actual 

work environment where a developer might have more time. Sometimes the domain 

knowledge required for using an API is also quite high and conducting usability studies 

in a limited time frame might not be the most suitable method for evaluation. Usability 

studies are conducted in a controlled environment and, therefore, are limited in terms of 

how participants realistically react under time constraints and observation. It can also 

happen that a complex real task is much more difficult to do with the toolkit than the 

simpler tasks designed for the usability studies, which might give a false result about the 

usability of the API. To counter this problem, many researchers proposed longitudinal 

studies [57, 58, 59] where studies are performed over several weeks, even months, with 

the same participant group. It provides a better understanding about both the learnability 

and the usability of the toolkit to perform complex real tasks. 

Examples of information visualization toolkits that have been evaluated using 

longitudinal studies are the XML toolkit [25] and the InfoVis Toolkit [11]. The XML 
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toolkit [25] and the InfoVis Toolkit [11] have been evaluated by projects developed by 

students using those toolkits over a period of a week to three months. 

For a better understanding of the usability of an API, it is good to use a combination of 

the evaluation approaches stated above. Different methods have various strengths and the 

best evaluation of a new toolkit comes from applying multiple evaluation techniques 

[44]. For example, for the prefuse toolkit [9], a combination of application coverage, 

usability studies and the user adoption method has been used for evaluation; the InfoVis 

Toolkit [11] used application coverage, heuristic evaluation and longitudinal studies for 

evaluation. 

In this thesis, the author has followed multiple evaluation techniques to evaluate the 

developed API: application coverage, heuristic evaluation and iterative usability studies.  

The main reason behind conducting iterative usability evaluation is that it helps 

determine the major usability issues with the API at an early stage of development, and 

provisions can be made to address those issues. Conducting follow-up usability studies 

will evaluate if there is any improvement in usability after making those changes and will 

also help identify further usability issues.  

2.4 Chapter Summary 

In this chapter, available literature on the topic of information/tree visualization toolkits 

has been presented covering three different aspects: tree drawing approaches in existing 

toolkits; task specific interaction support for trees; and different evaluation approaches 

followed by the researcher to evaluate those toolkits. While work has been done to 

support different tree layout and interaction features in existing toolkits, they are still 



33 

 

limited in providing flexibility in customization and task-specific interaction support for 

tree visualization. It will be helpful for the developer to have a new API for visualizing 

and interacting with trees that will address those limitations. Conducting multiple 

evaluations of the newly developed API will help identify usability issues. Steps can be 

taken to improve the usability of the API based on the discovered usability issues from 

the studies. 
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Chapter Three: AVIT – an API for Visualizing and Interacting with Trees  

In this chapter requirement, the fundamental design rationale and the implementation 

details of the AVIT will be discussed. AVIT uses the operator-based generative tree 

drawing approach proposed by Schulz at el. [6] as a fundamental design consideration for 

tree drawing. For interaction support, the author has implemented an interaction layer in 

the API based on the task taxonomy for tree visualization as discussed in Chapter 2.  

Section 3.1 describes the requirements of the API, in Section 3.2, API fundamentals, the 

tree layout generation approach based on the operator-based concept is discussed and 

Section 3.3 provides implementation details of the API with examples. 

3.1 Requirements for the API 

The API has been developed to address the limitations of the existing toolkits in 

providing customization and interaction support for different tree layouts as described in 

Chapter 1 and Chapter 2. The following requirements as discussed in Chapter 1 and 

Chapter 2 were the main focus for developing AVIT: 

(1) Using AVIT it will be possible to draw a wide range of existing tree layouts. 

(2) The layout specification should be concise. 

(3) AVIT will provide flexibility in customizing the tree structure. 

(4) Generating hybrid tree layouts will be possible. 

(5) Drawing a novel tree layout will be possible using existing components of the 

AVIT. 

(6) The API will provide task-specific interaction support for tree visualization. 
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3.2 Fundamentals of the API
4
 

This section provides details regarding the operator-based tree drawing approach 

developed by Schulz et al. [8] which was used as a cornerstone for developing AVIT. 

Schulz et al. [6] observed that despite the large variety of tree drawings, many of the 

most common ones follow a similar overall process of six stages [6]. Schulz named this 

process the layout pipeline. The different results of this process ranging from implicit, 

space-filling tree-maps to explicit, node-link radial layouts are merely due to different 

layout actions performed at each of these stages. These actions were named layout 

operators. Using this operator based model of a tree layout, it becomes possible for a user 

to generate countless different tree drawings by plugging different operators or operator 

sequences into the layout pipeline. The following subsections provide the details of the 

operator-based tree drawing [6]. 

3.2.1 Operator – based Tree Layout Generation Approach 

The six stages of the layout process as described below permit a high-level differentiation 

between the intent with which different operations are carried out during layout 

generation: 

0. INITIALIZATION for supplying the initial drawing space; 

1. TRAVERSAL for moving up or down in the tree; 

2. PREPROCESS for preparing the nodes to be laid out; 

3. PRELAYOUT for preparing the drawing area for layout; 

4. ALLOCATION for assigning drawing space to the nodes; 

                                                 

4
 This section uses contents from the co-authored paper [8]. Co-author’s permission has been attached in 
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5. POSTLAYOUT for final beautification of the layout result. 

The proposed operator-based approach uses this workflow of six stages as a fixed layout 

pipeline, in which Stage 0 is only invoked once, whereas Stages 1 through 5 are 

repeatedly passed through for each level of the tree. This helps the second requirement of 

developing the API, hiding most of the housekeeping functionality, such as data 

management and tracking the layout dimensions, and leaving only these stages exposed 

for customization with a few layout operators. The layout pipeline and its six stages are 

described in the following section. 

3.2.1.1 The Tree Layout Pipeline 

Tree layout procedures differ in whether they traverse the tree top-down or bottom-up. It 

has been observed by Schulz et al.  [48] that the main distinction between the two is a 

subdivision layout for top-down traversals vs. a packing approach for bottom-up 

traversals.  

In the operator-based approach, Schulz et al. partition the tree into its individual levels 

Ld, where d denotes the depth of a level. Each level consists of a set of tuples of the 

general form ({si},{ni}).The first element of these tuples contains geometric shapes si 

which is a subset of R
dim

 with dim ϵ {2,3}, e.g., rectangles or circles in 2D, or cuboids or 

spheres in 3D. The second element contains the nodes of the tree that are associated with 

the geometric shapes. Shapes and nodes can be thought of as objects that internally hold a 

number of properties. Shape properties include their position, their extent, and their 
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orientation. Nodes contain information about their parent, as well as a number of 

numerical attributes, such as the number of children and siblings and the depth and value. 

The tuples can occur in three different variants: 

 1 shape, n nodes: Such a tuple holds the initial state of a top-down, partitioning 

layout. The multiple nodes are siblings. The singular shape encloses the drawing 

space assigned to the parent of the multiple nodes. For such tuples, the layout 

algorithm should distribute that space among the nodes. 

 m shapes, 1 node: Such a tuple holds the initial state of a bottom-up, packing 

layout. The multiple shapes belong to the children of the singular node. For these 

tuples, the layout algorithm should tightly pack the shapes and assign the 

bounding shape of the packing result to the parent node. 

 1 shape, 1 node: Such a tuple holds the end result of a successful layout. Whether 

it was generated top-down by partitioning a single shape into multiples shapes or 

bottom-up by packing multiple into a single shape, in the end each node is 

assigned its individual shape. 

This transition from (1, n) / (m, 1)-tuples into (1, 1) tuples is performed along the 

different stages of the layout pipeline. Each layout stage can be viewed as an iterator over 

all tuples t in Ld, which applies a set of layout operations to t. The layout pipeline is 

iteratively passed through until all nodes have been assigned their individual shape. For 

top-down traversal, a full pass through the layout pipeline detailing the changes that each 

stage makes to Ld have been shown in the following. A schematic overview of the entire 

process is given in Figure 3.1. 
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Figure 3.1: Schema for top-down tree layout pipeline. The stages colored dark gray 

are those that can be configured through operators. The light gray stages are 

constant as the direction of traversal is fixed depending on whether the layout is top-

down or bottom-up. The variables s denote geometric shapes, the variables n denote 

nodes of the tree. The index p marks parent shapes/nodes; the index c marks child 

shapes/nodes. Changes made at the individual stages to the current level Ld are 

highlighted in red. Modifications are denoted with a prime symbol, copies are 

denoted with a hat symbol. Blue indicates a mere renaming of the variables without 

any change to them, which is done so that each iteration through the layout process 

starts with a level Ld. [6] 

Stage 0: initialization is a preparatory stage that defines the shape of the root node for its 

subsequent subdivision in the layout process. It can be customized to transform the 

usually rectangular initial drawing space into an initial shape as it is expected by the 
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following layout. Common uses are radial layouts with angular subdivision that expect a 

circular space, or layouts that grow outwards and thus require a down-scaled initial space, 

so that they do not exceed the available overall space during layout. 

The Principal State forms the defined starting point for the layout of each level Ld. It 

consists of a set of (1,1)-tuples. This is by definition true for the root level L0 after 

initialization and it must be true for the result of Stage 4 that assigns each node its own 

shape. The just laid out child nodes are now considered parents themselves and passed as 

an input to the following traversal to retrieve their children for laying out the next level. 

Stage 1: traversal is fixed to a top-down DESCEND. It takes the current level Ld and 

advances it to Ld+1 by composing a new tuple for each existing one. First, the new tuples 

contain a copy ŝp of the parent shape sp. This makes sure that all subsequent steps no 

longer manipulate the parent shape sp itself, but the one in which the children are to be 

laid out. Second, the newly created tuples contain the set of children {nc1, nc2, ….} of the 

respective parent node {np}. If Ld+1 = Ǿ, the layout process terminates. 

Stage 2: preprocess adapts the set of nodes of each tuple for its subsequent layout. This 

can be, for example, a sorting operator or a weighting operator. The latter multiplies a 

numerical attribute of a given node with a weight. Depending on this weight, the size of 

the later assigned space will be either smaller or larger than it would otherwise have been. 

It can thus be seen as a scaling on data level. This is particularly important for space-

filling layouts in which scaling up a node in the view space after the space allocation 

would result in overlap and thus over-plotting. 
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Stage 3: prelayout adapts each tuple’s drawing space. This is done, if not all of the given 

space shall be distributed among the children, e.g., shrinking the space as necessary to 

maintain a border, or reconfiguring the space entirely. The latter is used, for example, to 

realize parent-centric radial layouts, instead of further subdividing a circle section 

resulting from a previous subdivision and thus making just another subdivision with 

respect to the same circle center, one can simply embed a new full circle into the circle 

segment. This circle will then be subdivided with respect to its own center and thus 

produce a parent-centric layout. 

Stage 4: allocation assigns each node of a tuple’s node set a portion of the tuple’s space. 

These portions are not required to be overlap-free, even though most allocation strategies 

adhere to a strictly exclusive subdivision. After the assignment of individual drawing 

space to each node, additional steps can be undertaken to further optimize a possibly 

crude first space allocation. The end result is again a set of tuples that can be mapped 

onto the Principal State and thus be used as a starting point for the next level’s layout. 

Stage 5: postlayout is performed after Stage 1 has made its copy of the resulting space 

and starts off with the next level’s layout on an independent drawing space. Then, this 

stage can perform any final adjustments regarding the appearance, such as reshaping it 

into a dot and selecting a connector style to produce an explicit node-link rendering. If 

none is made, the shapes will be drawn as they are – simply as rectangles, circle 

segments, etc. 
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3.2.1.2 The Tree Layout Operators 

Operators are of imperative nature, they capture what to do in which order, which is close 

to the procedural thinking about layout generation. As the inputs, as well as the outputs of 

all operators are the aforementioned tuples, they can be called in arbitrary order, left out 

completely (identity operator), or even be called multiple times in a row with no 

conceptual restriction. Because of this consistent behavior, each pipeline stage will not 

only admit a single such operator, but also sequences of operators. At each pipeline stage, 

the operators of such a sequence are applied in order to all tuples of the level Ld, which is 

currently laid out: 

 foreach t ϵ Ld  { 

     foreach op ϵ op_sequence { 

  op (t, P, c) 

  } 

} 

The operators are thereby called with three parameters: t is the tuple it shall be applied to, 

P is a set of operator-specific parameters that govern the details of its function, and c is a 

conditional that can be used to select a range of nodes for which this operator is to be 

applied. The conditional is used to express local tree layouts that apply different operators 

to different parts of the tree. If the conditional does not hold true for the current tuple t, 
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then t is passed back unchanged. Otherwise, the operator transforms the tuple with 

respect to the given parameters: 

 

Depending on its purpose, each stage changes t only in one aspect – its geometry, the 

shape(s), or its data, the node(s). In line with [49], Schulz et al. further discern between 

two types of operators: creation operators and modification operators [49]. In 

combination, the scope of an operator (a tuple’s shape or data element) and the type of an 

operator (creation or modification) yield four different kinds of operators: data creation, 

shape creation, data modification, and shape modification. These four kinds of operators 

give additional justification to the observed six stages of the pipeline, as there are exactly 

four stages (Stage 1 through 4) – one to apply each kind of operator, plus one stage each 

for preparing (Stage 0) and finalizing (Stage 5) the layout through additional shape 

modifications. Table 3.1 lists which types of operators are applicable at each stage and 

gives some examples for them.  

Table 3.1: Applicable operators at each stage of the layout process. 

Stage Type Scope Examples 

Stage 0: 

initialization 

modification Shape RESHAPE, SCALE, ROTATE 

Stage 1: 

traversal 

creation Data DESCEND, ASCEND 

Stage 2: 

preprocess 

modification Data ORDER, WEIGHT 
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Stage 3: 

prelayout 

modification shape SCALE, ROTATE, 

TRANSLATE,RESHAPE 

 

Stage 4: 

allocation 

creation shape SQUARIFY, SLICE, STRIP, 

PACK. 

Stage 5: 

postlayout 

modification shape RESHAPE, TRANSLATE, 

SCALE, ROTATE, FILL. 

 

With this mapping in the background, the pipeline can check automatically whether a 

given operator is used correctly at a certain stage and thus aid debugging of the layout. In 

the following, all four kinds of operators are shortly discussed and some instances of such 

operators are given. 

Data Creation Operators construct a tuple’s node (set) from existing tuples. In the top-

down case, this is done through the DESCEND operator, which takes a node and 

retrieves its children as a new node set. In the bottom-up case, this is done through the 

ASCEND operator, which takes a set of sibling nodes and retrieves their parent as a new 

node. Both operators can be used as an interface to a variety of data sources, e.g., not 

only given trees that are stored on disk, but also to tree generating algorithms that merely 

produce a new level when called. Data creation operators are used exclusively in Stage 1 

of the layout process. 
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Shape Creation Operators have to visually reproduce the effects of the used data 

creation operator. If, in Stage 1, a DESCEND was used to “split” a parent node into its 

children, the same has to be done to its geometry – the shape has to be subdivided into a 

number of shapes for the children. This can be done by using operators, such as SLICE 

for a slice/dice subdivision, STRIP for a Strip tree-map like subdivision, or SQUARIFY 

for a subdivision as it is used in Squarified tree-map. Yet, if an ASCEND operator was 

used in Stage 1 to “merge” a number of child nodes into their parent node, this has to be 

reflected here as well, and the child shapes have to be packed with a PACK operator into 

a parent shape. Shape creation operators are only used in Stage 4 of the layout process. 

Data Modification Operators prepare the nodes for subdivision or packing. An example 

is the ORDER operator to sort a set of siblings, as it is required by some subdivision 

operators, such as SQUARIFY. Another possibility is to scale a node’s attribute value 

through the WEIGHT operator to influence the shape creation. If a node is assigned a 

weight of 0, this is equivalent to a pruning of the tree at this node. Data modification 

operators can only be used in Stage 2 of the layout process. 

Shape Modification Operators adapt the visual appearance of shapes. This includes three 

different aspects: shape transformation, shape alteration, and shape representation. 

Operators that transform the shape are the common geometric transformations SCALE, 

ROTATE, and TRANSLATE. Yet, these operators cannot, for example, alter a 

rectangular shape into a circular one. This is what the RESHAPE operator does. Shape 

alteration is commonly used in Stage 0 to yield a circular drawing space for radial 

layouts, but also in Stage 5 to alter the shape into a dot to create a node-link diagram. 
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Furthermore, the RESHAPE operator is used to switch from a root-centric to a parent-

centric layout approach simply by reshaping, for example, a circle segment from a 

previous subdivision step into a new full circle. While transforming or altering a shape 

modifies its geometry, shape representation operators, such as FILL, SET STROKE 

WIDTH, etc., customize its appearance. This also includes operators to configure a 

connector line in case the displayed shapes require an edge to make the parent-child-

relationship explicit. Operators of this kind are used in Stages 0, 3, and 5. 

3.3 Implementation of the AVIT 

Using the operator-based tree layout generation process [6] as described in Section 3.2, 

AVIT − a web based API for Visualizing and Interacting with Trees −  has been 

implemented. The API has been written using JavaScript, SVG and HTML5, so that it is 

independent of specific platforms and readily available as an interactive demo over the 

web. The following subsections provide the detailed description of the architecture of the 

API with examples. 

3.3.1 API Architecture 

This section describes the high level architectural details of the API. The API consists of 

four independent modules as shown in Figure 3.2. The details of the modules are 

described below: 
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Figure 3.2: High level architecture of AVIT 

3.3.1.1 Loader 

Loader module loads and parses the data to be visualized. Currently, it supports the 

TreeML
5
 data format but the module has been written in such a way so that it can be 

easily extended to support other types of data format in future. 

For example, assume a developer needs to visualize a movie data set. Suppose that we 

have only two genres of movie, action and comedy. Within each genre we have some 

movie names. So, for our dataset we have three levels of hierarchy: Movies, Genres and 

Movie names. 

                                                 

5
 http://www.cs.umd.edu/hcil/iv03contest/datasets.html 
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Figure 3.3 shows the representation of the data in TreeML format. It starts the tree with a 

tag <tree>. Non–leaf nodes are represented with <branch> tag and leaf nodes are 

represented as <leaf> tag. 

 

 

Figure 3.3: Movie Dataset in TreeML format 

After the data has been loaded, a DFS traversal is run through the data to compute node 

attributes such as level, depth, number of children of the tree. Computed node attributes 

are stored in the DOM tree as a stats property. 

3.3.1.2 Layout Pipeline 

This module parses the operator sequence for each stage, as specified in the configuration 

file, and carries it out for each level of the loaded tree. The final result of this module is 

an assigned screen coordinate for each shape to be drawn based on the layout. 
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The implementation of the operators op(t, P, c) in the API hides the first argument, the 

tuple t, from the user as the pipeline takes care of looping through the tuples and carries 

out the operators on them. Furthermore, the last argument, the conditional c, is optional. 

If no conditional is given, it is assumed as TRUE and thus the operator is applied to all 

nodes. The result is an operator signature that looks very much like a procedure call and 

should thus be familiar to most programmers. The details of each operator can be found 

online.
6
 The configuration file for drawing a classical tree layout using the API can be 

seen in Figure 3.4. 

 

 

Figure 3.4: Configuration file for Classical Tree Layout 

 

                                                 

6
 http://tinyurl.com/operatordocs. 
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3.3.1.3 Renderer 

After the layout task has been completed from the layout pipeline module, the renderer 

module produces the SVG code from the layout. Figure 3.5 shows the rendered classical 

tree layout generated using the dataset from Figure 3.3 and configuration file in Figure 

3.4. 

3.3.1.4 Interaction Layer 

The interaction module has been implemented as a separate layer on top of the rendered 

tree layout. Based on the task taxonomy for tree visualization as described in Chapter 2, 

topology and attribute-based interaction has been implemented in the API. 

 

Figure 3.5: Rendered Classical Tree Layout using AVIT 
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In the API, interaction can be added via a simple call to the addEvent(eventType, 

eventName) method which takes the interaction type and interaction name as 

parameters. 

Examples of topology based interactions as implemented in the API are, highlighting a 

sub-tree rooted on a node, finding the ancestor or descendent of a node, showing the path 

to the root, highlighting children and sibling, selecting an area of a tree for closer 

inspection. 

Figure 3.6 shows an example of topology-based interaction: the sub-tree highlighting of a 

selected node. The interaction has been provided as an option to a menu in the API. To 

 

Figure 3.6: Topology based Interaction (Highlighting sub-tree) 
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add this menu interaction one needs to add the line addEvent(“click”, 

“showMenue”); in the addInteraction.js file. 

Attribute-based interactions implemented in the API were search interactions for 

searching by a particular attribute value of a node, showing details of a particular node as 

tooltip, sorting nodes based on these values, and filtering nodes based on a specified 

range . 

Figure 3.7 shows an example of an attribute-based interaction where the mouse hovering 

on a node displays the detailed information about that node. To add this interaction 

addEvent(“mouseover”, “showAttribute”) has to be added in the 

addInteraction.js file . 

 

Figure 3.7: Attribute based Interaction (Showing details of the node Action where 

V: Value, C: Number of children, LF: number of leaves, S: Sub tree Size) 
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3.3.2 Examples 

Examples in this section extend the previous example and also provide some new 

examples to show the features of the API in fulfilling the requirement (RQ) as mentioned 

in Section 3.1.  

3.3.2.1 Generating Different Tree Layouts with Concise Specification (RQ 1 and RQ 2) 

Examples presented in this section used the movie dataset described in section 3.3.1.1. 

Figure 3.8 shows the radial node-link tree layout along with the configuration file to 

generate the layout. It can be seen that with only 13 lines of code and seven operators, 

one can generate a radial node-link layout using AVIT. 

 

Figure 3.8: Radial node-link tree layout 

To generate a sunburst layout from the above code, one just need to comment the line 

reshape (DOT) in the POSTLAYOUT stage of the radial node-link layout as by default 

tree layout is drawn using a space filling approach.  The generated sunburst layout along 

with the configuration file is shown in Figure 3.9.  
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Figure 3.9: Sunburst tree layout 

The following few examples shows, how by making minimal changes in the 

configuration file one tree layout can be generated from another. (Parts of the code 

changed from previous configuration file are highlighted in Bold). These examples also 

verify the flexibility provided by AVIT in customizing tree layout. 

 

Figure 3.10: Custom node-link tree layout 



54 

 

For example in Figure 3.10, a customized radial node-link layout has been generated 

using circular shapes for the leaf nodes and rectangular shapes for non-leaf nodes as a 

conditional parameter.  

In the layout specification it was required to put any conditional parameter within a 

quotation. As condition itself may contain commas, the design decision of putting 

condition parameter within a quote has been made to make clear separation of the 

condition parameter from the other parameters.  

In Figure 3.11, an icicle plot tree layout has been generated by commenting a few lines 

from the previous configuration file and changing the color to blue in the fill operator. 

Commenting reshape (CIRCLE) operator in INITIALIZE phase in Figure 3.11 selects 

rectangular drawing area as a default drawing option as specified in the design of AVIT. 

 

Figure 3.11: Icicle plot 



55 

 

 

Figure 3.12: Nested Squarified tree-map layout 

Figure 3.12 shows a nested Squarified tree-map and the configuration file used to 

generate the layout. 

3.3.2.2 Customizing Tree Layout (RQ 3) 

In Figure 3.13 a highly customized tree layout with different shapes and colors for nodes 

in different levels of tree has been drawn. It can be seen from t Figure 3.13 that the space- 

filling layout has been drawn up to level two of the tree and a node-link layout has been 

drawn for rest of the levels. 
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Figure 3.13: Customized tree layout 

3.3.2.3 Generating Hybrid Layout (RQ 4) 

The following example in Figure 3.14 shows a hybrid tree layout generated using AVIT. 

The hybrid layout in Figure 3.14 combines the radial node-link and a tree-map layout.  

 

Figure 3.14: Hybrid tree layout (radial node link + Squarified tree-map) 
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3.3.2.4 Generating Novel Layout (RQ 5) 

Just by changing the drawing area to a circular one by adding reshape (CIRCLE) in the 

INITIALIZE stage (with comparison to the configuration file in Figure 3.12), a novel tree 

layout named “Nested Squarified Pietree” (a modified version of nested Squarified tree-

map), has been generated using AVIT (see Figure 3.15 ). This layout is presented in our 

paper [6] and has been accepted by the information visualization researcher community 

as a novel tree layout. 

 

 

Figure 3.15: A novel tree layout generated using AVIT. 

3.3.2.5 Interaction (RQ 6) 

Examples related to fulfilling RQ 6 regarding interaction features of AVIT have already 

been provided in Section 3.3.1.4. 
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Figure 3.16: Search and Brushing-and-Linking interaction techniques using AVIT. 

Figure 3.16 shows an additional example of implemented interaction features in AVIT: 

search interaction. Matching movie nodes (“Shrek”) is highlighted in both layouts.  The 

example in Figure 3.16  shows that, using AVIT, it is possible to add brushing and 

linking interaction [51] where interactive changes made in any visualization are 

automatically reflected in the other visualizations. To add brushing and linking using 

AVIT, one just needs to use two or more svg drawing areas on the screen so that different 

tree layouts can be drawn. Any interaction performed in any of the layouts will reflect the 

outcome on both layouts. 
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3.4 API Documentation 

To support the API, online wiki-based documentation
7
 has been written by the author. In 

the online documentation, details of interaction features, operator definitions, their uses 

and example code are provided. An interactive tutorial with complete examples of 

different tree layouts was also provided with the documentation. Details of the 

documentation features will be discussed in Chapter 5, Section 5.2. 

3.5 Limitation of the API  

Currently the API supports TreeML format datasets to visualize a tree. The data loader 

module has been written in a way so that support for other data formats can be added 

easily. To add support for a new dataset format, one needs only to write a specific parser 

to convert the data format into TreeML format.  

The operator-based tree drawing approach used in the API, supports only 2D trees with 

rectangular and circular shapes. Therefore, layouts relying on 3D or polygonal 

subdivision cannot be reproduced with it. Yet, most common layouts can be generated 

with this set of geometric shapes, while the involved computational geometry, e.g., for 

the RESHAPE or the shape-agnostic SQUARIFY operators, is still manageable and has 

satisfactory runtimes even for larger trees. 

Current version of the API only support circular, rectangular and point shape for nodes 

for a node-link tree layout. Also, only straight edge between nodes using a line shape can 

be drawn. Other type of shape for nodes and edges can be added in the API by making 

                                                 

7
 http://tinyurl.com/operatordocs 
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changes in the renderer module but it will require coding effort and knowledge of SVG 

drawing from the user. 

Interactions specific to comparing different trees, or sub-trees of the same tree, are not yet 

added in the API. It is possible, though, to add these features using the existing 

components of the interaction layer of the API. For example, if someone wants to 

compare whether two trees are of equal size, he just needs to compare the size property 

for each tree which is automatically computed when the tree data is loaded using the 

loader module of AVIT.  

3.6 Chapter Summary 

In this chapter, detailed descriptions of the requirements, design decisions and 

implementation details of AVIT have been provided. Step-by-step examples are shown to 

evaluate the expressiveness of the API in fulfilling the stated requirements. Limitations of 

the API have also been discussed. 
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Chapter Four: Usability Study 1: Developers reaction to AVIT 

This chapter describes a preliminary evaluation of AVIT. The preliminary evaluation was 

performed to receive early feedback regarding the usability and appropriateness of AVIT. 

Another goal of conducting the preliminary study was to debug the experiment and come 

up with a better design for the second usability study. This evaluation was conducted 

after major features of AVIT, such as operator-based tree drawing, basic interaction 

support and reference-based documentation had been implemented. 

The study was guided by four primary research questions, identified in Section 1.3, 

namely:  

(1) Which of AVIT’s features do developers like?  

(2) What difficulties do developers face while using the operator-based approach to 

drawing tree layouts? 

(3) How useful are the given documentation and tutorial materials for finding task 

related information?   

(4) How can AVIT be improved to better support developers’ expectations?  

The following sections provide details of the study. 

4.1 Study Setting 

The preliminary evaluation was mainly concentrated on collecting developers’ behavior 

and exposing their satisfaction with the API. The following sub-sections provide details 

regarding the method followed for the study. 
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4.1.1 Participants 

Participants were recruited from the student population of the Computer Science and 

Environmental Design department at the University of Calgary using mailing lists. A 

monetary compensation of $20 was offered for participation. Respondents were pre-

screened about their programming experience using a questionnaire. Participants must 

have had at least 1 year of experience with programming to be included in the participant 

pool. 

The preliminary study consisted of eight participants (referred to as P1…P8). Six out of 

the eight participants reported a minimum of 2 years’ experience with Object Oriented 

programming languages, while others had experience with the Processing programming 

language
8
. Participants included three PhD students, three M.Sc. students, and two senior 

undergraduate students. Two of the participants had industry experience before coming 

back to academia (P5, P8). Although all the participants were from academia, their 

expertise level is anecdotally comparable to that of recent graduates in software 

development positions. Figure 4.1 and Figure 4.2 shows the summary of participants’ 

background experience. 

                                                 

8
 http://processing.org 
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Figure 4.1: Participants Background 

 

Figure 4.2: Participants Programming Experience 

From the background questionnaire asked during the evaluation, I found that participants 

had different levels of experience with visualization tools. A participant was considered 

to possess an intermediate level of experience with visualization tool if s/he had taken  
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courses in visualization or had worked on at least one project focusing on visualization or 

had familiarity working with visualization APIs. If a participant’s experience was limited 

to the use of common visualization tools like the Excel graph or the Google chart API, 

their experience level was considered novice. 

4.1.2 Tasks 

Participants were asked to complete two programming tasks – each with several subtasks 

of increasing difficulty. Task 1 was a training task and meant to familiarize participants 

with the API. For the Task 1, participants were given a predefined operator-based tree 

layout in which they had to make small changes to modify the layout. For example, some 

of the subtasks of Task 1 were re-ordering the nodes or rotating the layout. Participants 

were also required to add and test some interactions to the visualization as a subtask of 

Task 1. As this first task was designed for training the participants for the actual coding  

tasks, they were given hints in the task specification to help them with completing the 

task. For example, in some subtasks of Task 1 the concrete operator to be used was 

 

Figure 4.3: Example of a sub task of Task 1 
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specified and they had to find the right stage in the layout pipeline to place it in and in 

some other subtasks the correct stage was pointed out to them and they had to find the 

right operator to use. An example sub-task of Task 1 can be seen in Figure 4.3. In Task 2, 

the participants were handed a print-out of a desired layout and they were asked to build 

it from scratch.  

It has been reasoned by the author that dividing the tasks as a training task and an actual 

task helps to bring participants quickly up to speed with the API. Use of training tasks 

has also been observed in the usability study performed in [21]. For all the given tasks 

and subtasks, participants were provided with the printout of the expected output so that 

they could verify whether the task was complete. A complete task description used for 

the study can be found in Appendix D.1: Task Description. 

4.1.3 Study Setting 

The study was conducted individually with each participant in a laboratory setting. The 

participants had no prior knowledge of the API and they were given a 15 minute 

introductory tutorial, after which they had to complete two the programming tasks. The 

participants were given a time limit of 50 minutes (Task 1 30 min, Task 2 20 min) to 

complete the entire programming task. Participants completed the study using a text 

editor (Notepad++) to write code and a web browser (Firefox) to test the outcome. Two 

main information sources were used in the study: the API documentation and the tutorial 

material. After the programming phase a semi-structured interview was conducted in 

which the participants were asked to comment on the challenges they experienced during 

the programming study. The interviews lasted 10-15 minutes. 
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4.2 Data Collection and Analysis 

This section describes the details of the data collection and analysis method followed for 

the study.  

4.2.1 Data Collection 

For the study, four data collection techniques have been used: the think-aloud protocol; 

author’s notes from observations, screen-capture videos, and semi-structured interviews. 

Code that was created by the participants during the programming phase of the study was 

also collected. In the think-aloud protocol [1], participants were asked to verbalize their 

thought process while solving a particular programming task.  

After the programming phase, a semi-structured interview was conducted in which the 

participants were asked to comment on the challenges they experienced during the 

programming study. The primary reason behind keeping these interviews semi-structured 

was to let participants freely express their opinions and experiences about using the API. 

A sample questionnaire of the post study interview can be seen in Appendix F. The 

questionnaire works as a starting point of the conversation and many follow up questions 

were asked based on the participant’s responses. 

The screen contents, the verbalizations of the participants, and the interview sessions 

were captured using Camtasia
9 

and a standard audio recorder. The study produced a total 

of eight different programming sessions and about eight hours of screen-captured videos 

and verbalizations of participants working with the API. 

                                                 

9
 http://www.techsmith.com/camtasia.html 
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4.2.2 Data Analysis 

For every participant, a measurement of how successful they were in completing a 

programming task and the amount of time they spent completing each task were 

recorded. Almost all the participants used the entire allotted time for each task; therefore 

completion time was not a good differentiating factor for judging developer success. As a 

result, the decision was made to base the analysis on the rate of completion of the tasks. 

Accordingly, a system of three-valued success levels for the task similar to Tullis and 

Albert [2] was devised. Tasks could be completed, partially completed, or incomplete. 

Each task and sub-task were further divided into a set of granular steps that need to be 

completed for the successful completion of the task and determined the completion rate 

of those steps.  

Table 4.1: Breakdown of Task 2 to determine complete, partially complete and 

incomplete task. 

Task Steps for completion Completed 

Partially 

Completed 

2 (1) Select the scale operator with 

appropriate parameters for nesting effect. 

 

(2) Placing the scale operator in 

PRELAYOUT Stage. 

 

(3) Select squarify operator with appropriate 

parameters for allocation. 

 

(4) Placing the squarify operator in 

ALLOCATE stage. 

 

(5) Select fill operator with appropriate 

parameters for coloring effects. 

 

(6)Placing the fill operator in 

POSTLAYOUT stage. 

Five successful 

sub-tasks including 

steps 1, 2, 3, 4, 6 

and a partially 

successful one. 

Four successful 

sub-tasks 

including step 1, 2, 

3, 4 and a partially 

successful one. 
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For example, Table 4.1 shows the breakdown of Task 2 and how the completion rate of 

Task 2 is determined based on the completion rate of the individual steps. All the steps 

mentioned in Table 4.1 for Task 2 can be completed in any particular order by the 

participants and will still produce a valid output as long as all the steps are completed. 

For complete details regarding the breakdown of each task and sub-tasks into the 

individual steps, and how their success levels were measured see Appendix E. 

A task was considered to be complete if the participants completed all the major steps as 

explained in Appendix E. The remaining steps should also be partially completed, so that 

there are no major effects on the output. For example, a task has been considered 

complete if the participant completes all the major steps but make a typographical error  

 

 

Figure 4.4: Task Completions by Participants 
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(e.g. missing comma or quotation) in the parameter value. As there was not much error 

message support for typographical errors in the preliminary version of the API, code with 

minor typo has been accepted as complete. The summary of task completions by 

participants can be seen in Figure 4.4. 

 

Figure 4.5: Phases of thematic analysis [15] [17] 

The next step of the data analysis was to determine the challenges participants faced 

while using the API and identifying the main reasons behind the failure in completing a 

task. Ways to minimize the difficulties faced by the participants were also explored. 

For the analysis a thematic analysis approach, a type of qualitative data analysis process 

has been followed. Thematic analysis mainly focuses on finding, examining and 
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recording patterns within data [17]. A theme “captures something important about the 

data in relation to the research question” [17]. According to Braun et al. [19] thematic 

analysis can be performed through the six phase analysis process as presented in Figure 

4.6. 

Braun et al.’s six phases of thematic analysis has been used as an inspiration for the data 

analysis. The author slightly adapted the analysis process to make the analysis task faster. 

For instance, the author did not do a thorough transcription of the think-aloud data but 

instead applied codes directly to think aloud and screen capture data based on the 

identified initial themes from the observation notes. The following subsection describes 

the details of the data analysis process followed by the author. 

4.2.2.1 Stage 1: Identifying Participant’s Actions from Observation Notes. 

In this stage, observation notes taken by the author while conducting the usability study 

were reviewed. Notes were taken in a structured format for each task to record the action 

performed by a participant (see Figure 4.6). From the analysis of the note data, 

participants’ actions that were relevant to answering the research question were listed. 

Actions like reading the task specification and viewing output were not listed as these 

were not relevant to the research questions. 
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Figure 4.6: Observation notes taken by the author. 

After that, the listed actions of interest were categorized into documentation-related, 

error- related, understandability of the API related and other relevant issues categories. 

Categorized actions listed by the author can be seen in Figure 4.7. 
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Figure 4.7: List of actions and their abbreviation as recorded by the author. 

4.2.2.2 Stage 2: Coding of Think-Aloud and Screen-Captured Data 

After completing the Stage 1 of the data analysis, the author went through the recorded 

screen capture and think-aloud data for each participant and applied codes based on the 

listed actions in the Stage 1.  The analysis of the screen capture and think-aloud data 

helped the author identify additional issues with the API, and also gave him a better 

understanding of the intention behind an action performed by a participant. For each 

participant, a summary of their actions and issues faced was recorded. 
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Figure 4.8: Parts of the coded actions with comments for P1 from screen-capture 

and think-aloud data. 

For example, Figure 4.8 shows for P1, the partial recorded summary of actions performed 

with comments. 

The actions performed by the participant can result in success or failure. For example, if a 

participant found an element via browsing the documentation that was relevant to the task 

and it ultimately helped him complete the task, the action was considered a success. 

Otherwise, it is considered a failure. From the example in Figure 4.8, it can be seen that 

P1 first started with a trial and error approach based on his learning from the tutorial. 

After making some wrong guesses with operator selection and an operator misplacement 

error, P1 looked into the documentation for a relevant example to find the appropriate 

stage for placing the operator. Unfortunately, there was no stage information provided in 
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the documentation, so the action was unsuccessful. P1 then expressed his confusion about 

the naming of the stages of the tree layout pipeline. He said that the names of the stages 

were not intuitive for him to learn and he didn’t understand where to place an operator. 

P1 also mentioned, how his knowledge of CSS mislead him to put the styling related 

operator in the PRELAYOUT stage, as he thought all the styling code, like in CSS would 

have to be applied before the layout is drawn and to him the PRELAYOUT stage is the 

stage to do that. After that, P1 looked into the documentation for relevant examples to 

perform a scale operation. Next he looked into the wiki for the method definition of the 

fill operator and later faced a parameter mistype error for the fill operator. 

After the coding, frequencies of each type of action performed by a participant were also 

counted by the author. Frequencies of different actions performed along with the 

recorded comments made helped identify the usability issues faced by a participant and 

the reason behind those issues. 

4.2.2.3 Stage 3: Transcribing and Summarizing Interview Data 

After transcribing the interview data, the author went through the data to know more 

about the participant’s overall impression of the API and the suggestions they have for 

improving the API and its associated documentation. Transcribed interview data has been 

coded using the actions listed from Stage 1 as starting codes. Additional codes from the 

transcribed data, beside the mentioned codes in Stage 1, are listed in Table 4.2. 
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Table 4.2: Additional codes from the Interview Data 

Codes 

Provide Complete Example. 

Provide details of the operator functionality. 

Confusion about operator ordering 

Requested new Features 

Provide explicit error message. 

Provide example covering more usage scenario. 

Provide details of different tree layout algorithm. 

Domain knowledge. 

Where to place an operator? 

Simplicity of the operator-based approach. 

 

4.2.2.4 Stage 4: Generating Central Themes 

Finally, the author went through the codes from Stage 2 and Stage 3 of the analysis to 

identify interesting patterns in participants’ behaviors and the challenges they faced while 

using the API. Related instances are organized and presented as a central theme in the 

findings sections.  
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Figure 4.9: Generating main themes from coded data. 

For example, codes that were related to difficulty in understanding the tree layout 

generation process were sorted and later clustered to generate Theme 2: “Participants 

had difficulties in understanding the recursive nature of the tree layout generation 

process and the dependencies between different layout stages.”  

High frequencies of codes, like operator misplacement error, wrong guessing about 

selecting an operator and confusion about an operator, as observed from the coded think-

aloud and screen-capture data, suggests that participants had difficulties understanding 

the tree layout generation process used in AVIT. This observation was also later verified 

by the participants during their interview while answering to a question regarding the 

understandability of the operator-based tree generation process. Relevant codes from this 

category helped generate Theme 2. 

4.3 Findings 

This section provides the detailed description of the identified themes from Stage 4 of the 

data analysis. 
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Theme 1: All participants liked manipulating the tree visualization using the operator-

based approach for its simplicity and immediateness. 

In the API, the complex algorithm for generating tree layouts was hidden behind simple 

operators. Developers were only exposed to the operators; following the steps of the 

developed tree layout generation algorithm and using the operator in a certain order, they 

could generate a tree layout. This simplicity was highlighted by many participants, as 

they enjoyed not having to deal with the complexity hidden behind the operators. As P8 

mentioned, “with few instruction I can generate complex visualization which I really like 

very much. So I think it is very powerful, write less and do more.”  

Another participant (P2) said “I just need to understand what effects it [an operator] has 

on the visualization but I do not need to understand the inner workings.” 

The observed simplicity is directly tied to the immediateness, as a code change means to 

move an operator from one place to another one, without having to care about any 

surrounding code and the effect can be immediately seen in the output browser window. 

It was remarked by P6, that “when you have very simple commands like this it makes it 

easier for you to explore and try out different things.” These statements mirror the two 

properties of operator-based design: the declarative nature of the operators, which only 

specifies what, shall be done, but leaves how to the software, and their consistency in 

performing a particular action, which permits to experiment by shuffling them around 

freely [60]. 
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Theme 2: Participants had difficulties in understanding the recursive nature of the tree 

layout generation process and the dependencies between different layout stages. 

It has been observed from Stage 2 of the analysis process, and later verified from the 

interview data, that participants had difficulties understanding the underlying concept of 

the tree layout generation process. During Stage 2 of the analysis, it has been observed 

that all the participants faced operator misplacement errors and made some wrong 

guesses while working on Task 2. For instance P2’s main problem was “ the 

understanding of the process of the underlying stages that the data visualization goes 

through and how they affect the visual representation.” 

P6 said: “... I think the most difficult things for me were to know where to put 

everything.” 

Participants were also not clear about how placing the operator in a different order will 

affect the output layout. According to P8“the clarity of putting certain instructions in 

certain order was not very intuitive for me. ..sometimes I did not know the right order.” 

Theme 3: Training tasks and trial and error approach were helpful to learn the API. 

Although the participants faced difficulty understanding the underlying concept as 

described in Theme 2, five out of eight participants were able to complete Task 2 from 

what they learned in the training task and just by using a trial and error approach while 

experimenting with different orders of the operators. As participants can see the 

immediate effect of the changes they made in the output browser, they can make 
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necessary changes in their code to generate the desired output based on their learning 

from their previous actions. 

 Since this playful approach in turn also gives them insight into the layout process, each 

trial was valuable as a hands-on learning experience about tree layouts.  

Theme 4: Failure due to the lack of domain knowledge about different tree layouts. 

From Figure 4.4 it can be seen that no participant was able to complete Task 1.8 and Task 

1.9. They also struggled with Task 2 

In Task 1.8 and Task 1.9, participants were asked to manipulate the code so that it 

generates a Sunburst tree layout and a node link variant of it. To successfully complete 

these tasks, participants needed to make the necessary changes in the code of the radial 

node-link tree layout (from Task 1.7), so that the layout transforms to a layered tree 

layout (see Section 1.1.1 for different types of tree layout). In a layered tree layout there 

are no explicit edges between parent and child nodes and child levels are layered 

constrained to parent’s extent to restrict the growth in width. To complete Task 1.8, it 

was necessary to hide the edges between nodes. By not having this knowledge of layered 

tree, most participants struggled with starting with the correct step. 

Also for completing Task 2, “generate a nested Squarified tree-map layout”, one needs to 

use the squarify(“leaves”) operator in the ALLOCATION stage of the tree layout 

generation process. It was observed from the Stage 2 of the data analysis that six out of 

the eight participants selected the wrong allocation operator in their first try of Task 2. 

Four out of the eight participants selected the wrong parameter for order() and squarify() 
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operator while working on Task 2. As P1 expressed his confusion and frustration while 

working on Task 2 “which function I should use to allocate the space?” … how could I 

get nesting effect by default it is [a] rectangle.” 

From the background questionnaire, and post study interviews, it has been confirmed that 

most participants were not familiar with different tree layouts: tree-map, sunburst. It is, 

obviously, helpful to have some background knowledge regarding the tree layout if you 

want to generate that layout. For example, if someone wants to generate a slice and dice 

tree-map layout, it is necessary to know that allocation of space among child nodes has to 

be done via horizontal and vertical subdivision. Having this knowledge about different 

tree layouts is necessary to select the appropriate operator for the task. 

Theme 5: The effect of operator ordering on the output layout was difficult to 

understand. 

Participants also faced difficulty making the connection regarding how the output tree is 

affected depending on placing operators in a particular order in the configuration file. As 

P7 said while working on Task 1.9 for resizing the node shape, “the obvious problem 

right now is I don’t know. I don’t have natural feelings for the stages yet, so I actually 

have no clue where and what to do. I kind of have a feeling of what I thought it should be 

but right now what is missing in my head is a link between at what stage does this part 

get resized and where I should change it.” 

It has been observed from Stage 2 of the data analysis that all participants have faced this 

difficulty of ordering operators. 
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Theme 6: Not displaying explicit error messages was frustrating. 

For the preliminary evaluation, displaying explicit error messages was not implemented 

in AVIT. For example, if a user places an operator incorrectly, the system does not notify 

the user in any way. Not having this feature confused the participant as they had no way 

of knowing of the reason behind the error. Most participants were expecting a 

consolidated error message that will explain the root cause of the error and will provide 

guidance to correct the error. 

As P8 expressed frustration while he misses a parameter in the function and the system 

does not warn him with any explicit error messages.  “I forgot to put the leaves as a 

second parameter and it did not give me any error messages, that is a problem but there 

is no distinct visual output. So I know something going wrong but don’t know what is 

going wrong.” 

In another task, P4 mentioned “I got confused, … little syntax highlight or error message 

showing the system did not recognize this value will be very helpful”. P3 and P7 also 

mentioned the need for syntax highlighting and auto complete features. 

Theme 7: Confusion about operators. 

There are two different operators in the API to perform a scaling (resizing) operation for 

nodes, shapes and edges − scale_to and scale_by. Operator scale_to does an absolute 

scaling while scale_by does a relative scaling. The scale_by operator is mostly used for 

creating borders/nesting effect where one wants to shave off a few pixels along the 
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border, whereas the scale_to operator is used in most cases for encoding parameter values 

(such as depth in the tree, number of siblings etc.) directly in a node's shape. 

It has been observed, in Stage 2 of the analysis, that participants struggled to understand 

when to use which scale operator to have a desired effect on the output. 

As P6 mentioned: “it was kind of confusing to a naïve user like me understanding what a 

scale_to and scale_by does? If you can make it more explicit in the documentation via 

examples showing when I say scale to top, what it actually does so give example of each 

combination with figure, so that user can understand what it actually does” 

P2 said “If I scale it in ALL direction and only top, I don’t see any difference in the 

output which is weird.” 

Theme 8: Limitation in customizing the implemented interaction features. 

In the preliminary version of the API, the option of adding interaction was provided via a 

single method named addEvent(). Different interaction options can be added by selecting 

different parameters to the addEvent() method. For example, if someone wants to show 

menu interaction on mouse click, s/he just needs to call a function addEvent(“click”, 

addMenue). It has been observed from the data analysis that participants found it easy to 

add different interactions option using this approach and the completion rate of 

interaction related task (Task 1.7 and 1.10) was also very high. 

However, the then-current implementation of the interaction feature only provided some 

default interaction options like highlighting sub-trees, and displaying node attributes. No 

options were provided to add customized or new interaction features. 
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Three out of eight participants stated that it would be really nice to have flexibility in 

adding new or customized interactions implemented by the developer using the API. This 

was difficult using the current approach used in the AVIT as it hides all the details of the 

implementation code from the developer. 

4.4 Suggested Improvements 

This section describes the suggested improvements for the API and its associated 

documentation materials to address the identified usability issues of AVIT. The 

improvements have been suggested by the author based on the findings from the 

preliminary evaluation. 

4.4.1 Interactive Demo Tutorial 

To provide better understanding of the tree layout generation process, an interactive 

demo tutorial with complete example code for different tree layouts can be provided as 

learning material in addition to the documentation. The demo tutorial will be a good 

starting point for the developer who wants to use AVIT for drawing trees. The interactive 

tutorial will allow making changes in the demo code and will show the effect on the 

output layout right away. It will help developers understand the effect of different 

operators and their various parameters on the output tree layout. Also, in the 

documentation, adding the details of the API architecture and functionality of individual 

modules with a step-by-step example will provide better understandability of the API [4]. 

The author expects that interactive demo tutorial will help improving the usability issues 

as mentioned in Theme 2 and Theme 5 and will provide better learnability of the API.  
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4.4.2 Displaying Explicit Error Message 

To address the operator misplacement error mentioned in Theme 6, explicit error 

messages can be shown describing the cause of the error with suggestions regarding what 

needs to be done to fix it. Also, the documentation can be updated with recommended 

stage information for an operator. This will help minimize the confusion due to operator 

misplacement errors. As P7 commented during the post-session interview, “when I was 

trying to make changes and I can’t see anything as output, that’s kind of frustrating, it 

should show at least something in there, if not it should show at least an explicit error 

message that says you need to finish these.” 

4.4.3 IDE Support 

To address errors due to the missing parameter or typographical mistakes as described in 

Theme 6, IDE support for the API code can be provided. If features provided by modern 

IDEs – like auto complete and syntax highlighting – can be added, it will help minimize 

the missing parameter and typographical error.   

4.4.4 Detailed Operator Documentation 

As mentioned in Theme 7, all participants found the scale operator difficult to 

understand. A detailed example showing the effect of placing scale_to and scale_by 

operator in different stages of the layout generation process can be added in the 

documentation, to increase understandability. Similar explanations can also be added for 

other operators in increase the understandability. 

To address the issue regarding operator ordering as mentioned in Theme 5, additional 

examples showing the effect of placing an operator in different stages can be added in the 
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operator documentation. As P2 suggested during the post-session interview regarding 

operator ordering, “show the effect of the positioning of different operators, like give a 

visual example of how the API is used, for example if you make scale here it makes this 

smaller but if you make scale there it makes it bigger. So you have to go to a point where 

the user understands how the different stages affect the visualization. That was my main 

problem.” 

4.4.5 Documentation on Tree-Layout 

Short descriptions of different types of tree layout, like the sunburst and tree-map should 

be added to the documentation.  This will help developers who do not have domain 

knowledge about tree visualization to quickly learn what operators they need, to draw a 

particular type of tree layout. 

4.5 Limitations of the Evaluation  

Participants had no previous experience with the API and most of them were not familiar 

working with data visualization tools.  As the target audience of the API is the general 

developer who does not have a background in visualization, it makes sense for the 

usability study to gather feedback from such developers. However, it also means that our 

results provide limited insights into the behavior of the developer who has years of 

experience working with visualization tools. 

The time limitations of the study for each task also limit the validity of our results. It has 

been seen from the studies done by other visualization toolkit researchers that it takes 

days or sometimes even weeks to get a good understanding of their visualization toolkit 

and building useful visualizations with them [11]. Also, in a real development scenario, a 
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developer might have more time to spend with the API and, over time, might have a 

better understanding of the API to complete the task. Although, given the lab setting and 

pre-defined tasks, the findings cannot be considered complete, but it was a good starting 

point to identify some major usability issues with the API and the documentation. 

The study consisted of only eight participants. This suggests that the findings from the 

study can’t be generalized. However, given the preliminary nature of the study and the 

goal of discovering major usability issues with the API and its documentation, the 

findings informed the next steps of the API development and evaluation. 

4.6 Discussion 

In exploring the answers to the research questions listed at the beginning of this chapter 

from the analysis results, the first research question about “Which of AVIT’s features do 

developers like? ” has been answered in Theme 1 in Section 4.3. It has been seen in 

Theme 1 that participants liked the simplicity and the conciseness of the operator-based 

tree drawing approach very much. 

In answering the second research question regarding “What difficulties do developers 

face while using the operator-based approach to drawing tree layouts?”, it has been 

found from the analysis results that participants had difficulties understanding the tree 

layout generation process, correct operator ordering and recovering from an error. Details 

of the difficulties faced are explained by Theme 2, Theme 5, and Theme 6 in Section 4.3. 

The next research question was about “How useful are the given documentation and 

tutorial materials for finding task related information?” In general, the documentation 
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and training task was found helpful to learn about operator definition but lacks in 

providing any detailed description about the functionality of different operators and their 

effect on the output layout. 

Finally, to answer the research question “How can AVIT be improved to better support 

developers’ expectations?” improvements have been suggested as mentioned in Section 

4.4. 

4.7 Chapter Summary 

The preliminary study was conducted to get early feedback from developers regarding the 

usability of the API. From the results, it can be seen that although participants liked the 

simple, playful nature of the API, they had difficulties understanding the underlying 

concept of the tree layout generation process. Based on these findings, several 

improvements have been suggested to update the API and the documentation to improve 

the usability. To determine the usability of the updated API and its documentation a 

second evaluation was undertaken. The next chapter discusses the results of the second 

evaluation conducted on the updated API. 
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Chapter Five: Usability Study 2: Improving Usability Experience of AVIT 

Based on the findings from Study 1 (see Chapter 4: Findings), several ideas for improving 

AVIT and its supporting documentation materials have been suggested. AVIT and the 

documentation materials have been updated based on those ideas (see section 5.1 for 

details of the changes made). This chapter describes a second evaluation of AVIT, 

conducted to gain further insight into developers’ reactions to the updated API. 

The second evaluation has been conducted to address the following research question 

“How do the changes made in the API affect the usability experience?” The broad 

research question can be broken down further into the following questions. 

 Does updated supporting material improve the learnability of AVIT? 

 How effective were the examples provided in the documentation? 

 How can the interaction features implemented for AVIT be improved? 

 What other possible interactions can be added in AVIT? 

 Can this evaluation identify additional usability issues? 

5.1 Changes Made in the API 

Findings from Study 1 identified usability problems with AVIT and the supported 

documentation materials (see Section 4.3: Findings). Suggestions derived from the 

analysis of Study 1 (see Section 4.4: Suggested Improvements) were used to update the 

API and supporting documentation. This section provides details regarding the changes 

made by the author in the API code and the documentation materials for the second 
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evaluation. Section 5.2.1 and 5.2.2 discusses the changes made in the documentation 

materials while Section 5.2.3 and 5.2.4 discusses the changes made in the API code. 

5.1.1 Interactive Demo Website for Tree Layout 

An interactive demo website with some full tree layout examples has been added as 

support material for the API.
10

 In the interactive demo, a user can make changes in the 

code section (Figure 5.1(3)) and then re-run the layout to see the effect of the change in 

the output section (Figure 5.1(4)). A list of example tree layouts (Figure 5.1(1)) along 

with different datasets has been provided (Figure 5.1(2)) in the demo. A user can browse 

through different example tree layouts along with their associated code just by clicking 

the link on the left. 

 

Figure 5.1: Screenshot of the interactive demo website. 

                                                 

10
 http://tinyurl.com/operatordemo 
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5.1.2  Updated Wiki Documentation  

The Wiki for the API was updated with a more detailed description of the functionality of 

the operators, the recommended stage to put the operator and with detailed example code 

covering different usage scenarios. 
11

 A screenshot of the wiki can be seen in Figure 5.2. 

At the top, navigation links to switch between different operator definitions are provided. 

In Figure 5.2, the order operator has been selected and details of the order function 

definition, parameter details along with example code can be seen. 

 

Figure 5.2: Screenshot of the API documentation. 

                                                 

11
 http://tinyurl.com/operatordocs 
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5.1.3  Error Messages 

Error handling code for operator misplacement has been added in the API. For example, 

from Figure 5.3 it can be seen that putting order (SHUFFLE) in the initialization stage 

and then running the layout displays an error message. The error message shows the 

operator placement error along with a recommendation how to fix the error. Some of the 

other error messages added in AVIT were for leaving all the stages in the layout 

specification blank and for not selecting any allocation operator. 

 

Figure 5.3: Operator misplacement error message. 
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5.1.4  Renaming of Layout Stage  

The ROOT_LAYOUT stage in the configuration file from the preliminary study has been 

renamed to INITIALIZE. The reason for the change is that, before, it was implied that the 

overall pipeline needed to start with the root. While this is true for the implementation, 

the operator-based concept is much broader and would also accommodate for a bottom-

to-top layout, which starts with the leaves instead of the root. In order to avoid confusion, 

this stage has been renamed to INITIALIZE. 

Some of the suggested improvements from the preliminary evaluation have not been 

incorporated in the updated API due to time limitations. For example, IDE support for the 

configuration file is still not provided by the updated API. Furthermore, documentation 

describing different tree layout algorithms was not provided considering the limited time 

of the usability study and having the option to find the relevant information by searching 

on the web. 

5.2 Study Setting 

The following subsections provide the details of the methodology followed for the second 

usability study. 

5.2.1 Participants 

A new group of participants were recruited from the Computer Science student 

population at the University of Calgary and from industry by using mailing lists. 

Monetary compensation of $20 was offered for participation. Respondents were pre-

screened using a questionnaire and selected based on relevant programming experience. 

To be included in the participant pool participant must have had at least 1 year of 
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programming experience. To avoid the learnability effect, participants who participated 

in the preliminary evaluation were not eligible to participate in the second evaluation. 

The study consisted of twelve participants (referred to as P1…P12). All the participants 

have at least 3 years’ experience with programming. Participants included two people 

from industry, two PhD students, seven M.Sc. students, and one senior undergraduate 

student. Although most of the participants were from academia, their expertise level is 

anecdotally comparable to that of recent graduates in software development positions. A 

summary of the participants’ backgrounds is presented in Figure 5.4 and Figure 5.5. 

Figure 5.4 shows a chart with the proportion of participant from industry and academia 

while Figure 5.5 displays a bar chart of participants programming experience in terms of 

years. 

 

 

Figure 5.4: Participants Backgrounds 
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Figure 5.5: Participant Programming Experience 

As described in Chapter 4, from the background questionnaire asked during the 

evaluation, I found that participants had different levels of experience with visualization 

tools. A proportion of participant’s levels of experience are presented in Figure 5.6. 
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Figure 5.6: Participants experience with visualization tools 

 

5.2.2  Tasks 

Participants were asked to complete three programming tasks with several subtasks of 

increasing difficulty. Task 1 was a training task, Task 2 was a tree layout generation task 

and Task 3 was an interaction related task.  

Task 1 was designed to familiarize participants with the API. For Task 1, participants 

were given a predefined, operator-based tree layout in which they had to make small 

changes to adapt it − for example some of the subtasks of Task 1 were re-ordering the 

nodes or rotating the layout. Participants were also required to add and test some 

interactions to the visualization as a subtask of Task 1. As this first task was designed for 

training the participants with the actual coding, they were given hints in the task 

specification to help them with completing the task: In some subtasks of Task 1 the 

concrete operator to be used was provided to them and they had to find the right stage to 

place it in, and in some other subtasks the correct stage was pointed out to them and they  
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Figure 5.7: Example of a training sub-task 

had to find the right operator to put there. An example of a subtask of Task 1 can be seen 

in Figure 5.7. In comparison to study 1 some of the sub-tasks of Task 1 were enhanced 

with a detailed explanation of the outcome of the change made to provide better 

understandability of the operator function. 

In Task 2, the participants were handed a printout of a desired layout similar to study 1 

and they were asked to build it from scratch. Details of Task 2 can be seen from Figure 

5.8.  
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Figure 5.8:  Generating Tree layout (Task 2) 

 

In Task 3, participants were directed to add some interactions to the visualization. An 

example of a subtask of Task 3 can be seen in Figure 5.9. 
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Figure 5.9: Interaction sub task.  

The author observed that dividing the tasks into a training task and an actual task helps to 

bring participants quickly up to speed with the API. For all the given tasks and subtasks, 

participants were provided with a printout of the expected output so that they could verify 

whether their task is complete. 

The complete task description used for the study can be seen in Appendix D.2. 

5.2.3 Study Setting 

The study was conducted individually with each participant in a laboratory setting. The 

participants had no prior knowledge of the API and they were given a 15-minute 

introductory tutorial, after which they had to complete some tree layout tasks using the 

operator-based approach. The participants were then given a time limit of 50 minutes 

(Task 1 15 min, Task 2 20 min, Task 3 15 min) to complete the entire programming 

task. Participants completed the study using a text editor (Notepad++) to write code and a 

web browser (Firefox) to test the outcome. Two main aids were used in the study: the 

API documentation and the interactive demo materials. After the programming phase, a 

semi-structured interview was conducted in which the participants were asked to 
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comment on the challenges they experienced during the programming study. The 

interviews lasted 10-15 minutes. 

 

 

Figure 5.10: Overview of study setup.  

5.3 Data Collection and Analysis 

This section describes the details of the data collection and analysis method followed for 

the study.  

5.3.1  Data Collection 

For the study, four data collection techniques have been used: the think-aloud protocol 

[1], structured notes from the observations, screen-capture videos, and semi-structured 

interviews. Code that was created by the participants during the programming phase of 

the study was also collected. In the think-aloud protocol [1], participants were asked to 



100 

 

verbalize their thought process while solving a particular programming task. The think 

aloud protocol gave insight about understanding why a participant experienced difficulty 

completing a certain task. Comparisons between participants’ verbalized thought 

processes and the design decisions made for the tree layout generations were also made 

possible. 

After the programming phase, a semi-structured interview similar to the preliminary  

study was conducted. The screen contents, the verbalizations of the participants, and the 

interview sessions were captured using Camtasia
12 

and a standard audio recorder. The 

study produced a total of 12 different programming sessions and about 12 hours of 

screen-captured videos and verbalizations of participants working with the API. 

 

 

Figure 5.11: Overview of data collection process. 



101 

 

5.3.2 Data Analysis 

For every participant a measurement of how successful they were in completing the 

programming tasks was recorded. For the measurement, Task 2 and Task 3 have been 

considered. Task 1 was a training task and was not considered for the evaluation. Eight of 

the twelve participants successfully completed Task 2. Task 3 was successfully 

completed by all the participants. 

Figure 5.12 shows the Task 2 completion time by the participants with a cutoff time of 20 

minutes. P1, P2, P6 and P9 failed to complete the Task 2 within the time limit as 

highlighted red on the chart in Figure 5.12.  

 

Figure 5.12: Task 2 completion time by participants. 

                                                                                                                                                 

12
 http://www.techsmith.com/camtasia.html 
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A descriptive statistics analysis using Microsoft Excel with task completion time for the 

participants produces the following result. 

 

Figure 5.13: Descriptive statistics analysis for Task 2 completion time. 

It can be seen from Figure 5.13 that on average a participant took 11 minutes to complete 

the Task 2. From the confidence interval calculation in Figure 5.13, it can be said with 95 

percent confidence that the population mean is 11 minutes plus or minus 3.8 minutes. 

Findings from the screen capture data also suggest that a participant who use the help 

from the interactive demo tutorial while working on the Task 2 has a higher success rate 

in completing Task 2. They also took less time than other participants who did not use the 

interactive demo but were able to complete the task as shown in Table 5.1.  
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Table 5.1: Participants using the live demo (red means did not complete the task). 

 Participants 

did not use 

Live Demo 

Participants 

used Live 

Demo 

Participant 

Number  

P1,P2, P3, P6, 

P8, P9, P11, 

P12 

P4, P5, P7, 

P10 

Average 

completion 

time in minutes 

13.75 8.25 

 

While asking the other participants for the reason behind not using the interactive demo, 

some of them replied they forgot about it, and one participant said it seemed time 

consuming for him to copy code from the demo to the actual code. However, the 

implication from the screen capture data analysis by the author is that developers may not 

yet be used to interactive demo based documentation. When they face any problem, many 

just consulted the main wiki documentation and did not look into the additional 

interactive tutorial provided. It suggests that embedding the interactive example in an 

appropriate place in main wiki documentation might be more helpful than giving it as a 

separate source. 

The next step of the data analysis was to determine how participants reacted to the API, 

the difficulties they were facing while completing the tasks and measures taken by them 

to overcome those difficulties.  

As described in 4.2.2.1, the author noted a list of actions performed by each of the 

participants during the programming session of the study. While conducting the analysis 
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of the screen capture and think aloud data, in addition to the actions described in the 

preliminary study, the following actions by the participants were points of interest for 

answering the research questions.  

• Playing with the interactive demo to understand the API. 

• Comments regarding uncertainty of the outcome of a piece of code. 

• Comments regarding addition of different interaction features to the layout. 

For analysis of the data, a thematic analysis approach as described in Figure 4.5 in 

Chapter 4 has been followed to generate themes from the data [14]. The following 

subsection discusses the phases of the thematic analysis as applied in the data analysis for 

the study. 

5.3.2.1 Phase 1: Data Familiarization 

The author went through the collected think aloud and interview data and completed the 

transcription. All the transcriptions have been put into the Saturate application [16] for 

further analysis. Figure 5.14 shows a screenshot of a transcribed data from P6 in the 

Saturate application. 
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Figure 5.14: Transcribed data from P6 as stored in the Saturate application. 
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5.3.2.2 Phase 2: Generating Initial Codes 

After the transcription was completed, the author went through the transcribed data to 

find interesting parts that are related to the research questions. Relevant codes were 

applied to interesting parts of the data. For example, while going through the transcribed 

data any quotes from participants that mentioned the usefulness of the interactive demo 

were tagged with a code “interactive demo was very useful”. Figure 5.15 listed all the 

quotes from different participants that were coded with “interactive demo was very 

useful”. 

After completion of the initial coding phase a total of 61 initial codes had been recorded. 

Some of the applied codes along with their data source can be seen in Figure 5.16. 
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Figure 5.15: Data for the initial code “interactive demo was very useful” from the 

Saturate application. 
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Figure 5.16: Some applied initial codes. 

5.3.2.3 Phase 3:  Searching for Themes 

After finishing the initial phase, codes were categorized into potential themes. For 

example, one of the potential themes identified was learnability of the API. Any code that 

was relevant to learning the API was listed under the learnability category. Figure 5.17 

shows the codes listed under the learnability category. 
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Figure 5.17: Theme Learnability. 

All the potential themes identified after this phase can be seen in  

Table 5.2. For example, codes that provide suggestions regarding how the documentation 

can be improved are  

Table 5.2: Potential Themes 

Potential Themes 

Learnability 

Usefulness of the documentation 

Issues with Documentation 

How can documentation be improved? 

Good feature of the API 

Issues with API Code 

How can Interaction be improved? 

Additional issues (IDE, auto-complete) 
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listed under the theme how documentation could be improved? Codes that are not related 

to the API or the learning materials but which affect the usability of the API were 

categorized under the theme additional issues. 

From each potential theme and its relevant codes, several main themes have been 

generated. For example, from the potential theme issues with documentation, Theme 4 

and Theme 5 have been generated to discuss different issues with the examples provided 

in the documentation as described in Section 5.5. 

5.3.2.4 Phase 4: Reviewing Themes  

To reduce biasing effect, all the themes were reviewed and refined in consultation with 

another researcher, who went through the applied codes and raw data and agreed with all 

the codes applied by the author. Some of the codes were combined to generate a new 

code while others were discarded as not being relevant to the research question. 

Conflicting codes were resolved by going back to raw the data and identifying the main 

reason behind the conflict. 

For example, the conflict between the codes “underlying concept was hard to grasp” and 

“layout generation process was understandable” was resolved by careful analysis of the 

raw data. From the data, it was noticed that seven participants have been coded with the 

code “underlying concept was hard to grasp” while only one participant (P11) was 

coded with “layout generation process was understandable”. To find out why P11 has a 
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different opinion about the API, a detailed analysis of the think aloud, interview and 

background data of P11was performed. 

From the data, it was clear that P11 had 2 years of research experience working with tree 

visualization and was quite familiar working with some graphics framework like 

OpenGL. P11 also mentioned that his knowledge with tree visualization and graphics 

framework helped him to understand the API as he said “I think also my domain 

knowledge with OpenGL helps me to understand the functionality of different operators 

and where to place them.” 

While it was an interesting finding that suggests that evaluating the API with a domain 

expert might have a different result in terms of usability of the API, I did not presented it 

as a main theme in the findings as I have only one participant having research experience 

in tree visualization. Also, the target audience for the API is developers who do not have 

domain knowledge in this area. This issue needs further exploration, probably by 

conducting a usability study with domain experts. 

Phase 5 and 6 (as explained in Figure 4.5) of the thematic analysis process have been 

combined and represented in the findings section. 

5.4  Findings 

In this section, themes identified in Phase 4 of the thematic analysis are defined and 

presented in detail. How the presented themes help answer the research questions is also 

discussed. Themes 1 to Theme 8 are related to the usability of the API while Themes 9 

and 10 describe the user experience with the API. 
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Theme 1: Interactive demo and training task was helpful for learning the API. 

Relevant codes supporting this theme are listed in  

Table 5.3. 

 

Table 5.3: Relevant codes for Theme 1 

Relevant Codes Participant Frequency 

Live demo helps learning the API 7 

Training task helps understand the API 3 

Learning via trial and error 7 

 

The interactive demo was a good starting point to learn about the power of the API. In the 

interactive demo, many example tree layouts along with their associated code were 

provided. Participants can also make changes in the code and see the effect right away in 

the output panel. Most participants found it very useful in learning and exploring the API. 

As P11 expresses his satisfaction regarding the demo tutorial “it was very helpful to know 

what layouts are possible using the API and we can try and change to generate a new 

type of layout. That was pretty neat.” 

The purpose of adding a training task in the programming session was to facilitate the 

learning of the API.  Many participants found the training task very helpful in learning 

the API. As P12 mentioned “I also think the training task was helpful for me to 

understand the API better, by trying and making changes in the given configuration file.” 
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Observations very similar to the preliminary  evaluation were also observed in the second 

evaluation: “because of the simplicity and immediateness of the operator-based 

programming trial and error played an important role in learning the API”. 

From P8 “This interactive demo really helps me to get insights via trial and error as I 

can see the output right away in the browser. It was trial and error and learning at the 

same time for me.” 

Theme 2: Difficulty in understanding the underlying concept of the tree layout 

generation process. 

Relevant codes supporting this theme are listed in Table 5.4. 

Table 5.4: Relevant codes for Theme 2 

Relevant Codes Participant Frequency 

Domain Knowledge 6 

Underlying concept was hard to grasp 7 

Confusion with scale operator 8 

 

Although eight out of twelve participants were able to complete the tree layout generation 

task, most of them faced difficulty understanding the underlying concept of the tree 

layout generation process. Most of the participants were unfamiliar with different tree 

layouts and had no prior background working with a tree visualization API. As a 

consequence, the main concept of the tree layout generation was hard for them to grasp.  

Also, some operators of AVIT were very specific to certain tree layouts and without 

having the domain knowledge; it is difficult to understand which operator has to be 
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selected to implement them. For example, for drawing a Squarified nested tree-map 

layout as specified in Task 2, one needs to allocate the space between nodes so that they 

resemble a square. To do that, the allocate (SQUARIFY) operator has to be called in the 

ALLOCATION stage. It is also necessary to order the nodes in ascending/descending 

order for the Squarified tree-map algorithm to work properly. So, if a developer had 

never used a tree-map layout before, it would be very difficult for him to understand 

which parameter he should use to get the job done. As P11 mentioned “First of all the 

squarify operator seems a bit magical to me. I was not sure what it really did, I just knew 

that I should use it for this task, so I used it.” 

Participants suggested that providing detailed descriptions of different tree layout 

algorithms and architectural details of the API in the documentation and spending more 

time with the API might help them to understand the API better. 

Theme 3: Examples, without having the detailed description of the usage scenario, were 

hard to follow by the participants. 

Relevant codes supporting this theme are listed in Table 5.5. 

Table 5.5: Relevant codes for Theme 3 

Relevant Codes Participant Frequency 

Provide a story or connection with the examples 6 

Demo video explaining different operators 2 

Detailed description of different stages 3 

Detailed visual example of scale operator 4 

Provide complete example 3 
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Most of the examples provided in the API documentation were just concise code 

fragments with the corresponding output figure. Some participants found the code 

examples difficult to follow. They suggested following a storytelling approach describing 

the motivation behind the example code to make it more understandable. As P3 said, on a 

question regarding how to improve the API documentation, “provide a better connection 

regarding what you trying to accomplish and how you will accomplish that. Try to have a 

user story with the examples.” 

Participants also demanded addition of a section in the documentation describing the 

architectural details of the API. A complete, step-by-step example explaining the 

connection between different layers of the API will help them to understand the main 

design concept of the API. 

As P12 mentioned “You should provide me some documentation that describes the 

architecture of your API and how all these different layers are working together to 

generate a tree layout. Because if I understand why you put those things I can understand 

how to use this layer and where to put the relevant operator much better. If you can give 

more philosophical details before the technical details in your API that will help me 

understand the API better.” 

Theme 4: Examples should cover as many different usage scenarios as possible. 

Relevant codes supporting this theme are listed in Table 5.6. 
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Table 5.6: Relevant codes for Theme 4 

Relevant Codes Participant 

Frequency 

Provide more examples covering different 

parameter values 

2 

Provide link to the interactive demo in the 

operator documentation 

5 

Provide documentation describing different 

tree layouts 

3 

 

Although some examples were added in the revised documentation showing the effect of 

placing an operator in different stages of the tree layout pipeline − participants still asked 

for more examples showing the effect on the output layout for using different parameter 

values in an operator. Some participants suggested that providing a relevant link to the 

interactive demo for every operator definition would be very helpful as they can try out 

coding directly in the demo website and observe the effect on output right away.  

Theme 5: Confusion due to inconsistency in method definition and parameter ordering.  

Relevant codes supporting these themes are listed in Table 5.7. 

Table 5.7: Relevant codes for Theme 5 

Relevant Codes Participant Frequency 

Use consistent function definition 8 

Confusion with lasso interaction 7 

Inconsistency in parameter definition 4 
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It has been observed from the study that some inconsistency in method name and 

parameter ordering creates confusion among the participants. For example, method 

definition for setStrokeWidth and setStrokeColor has a scope parameter where the value 

of scope could be either NODES or EDGES, while the fill method has no scope 

parameter. 

setStrokeWidth(scope, width, condition) 

setStrokeColor(scope, color, condition) 

fill (color, condition) 

While working with the fill method, some participants were also expecting a scope 

parameter for the fill method and were confused when they later found in the 

documentation that there is no scope parameter for fill. Participants also suggested 

renaming the fill method to setFillColor to remain consistent with the other methods 

name. It is also considered a good API design practice to have consistent name and 

parameter ordering across methods [18]. 

Participants were also confused by the overloaded addEvent method. The purpose of 

addEvent was to add different interaction features to the visualization. For example, for 

displaying menu options, one needs to call addEvent(“click”,”showMenu”) and for 

displaying the node attribute on mouse over, one needs to call addEvent(“mouseover”, 

“showAttribute”). Most participants suggested that it is better to give different method 

names to these different interaction technique like addMenu(“click”) or 

showNodeAttribute(“mouseover”) than using only the addEvent method to add them.  
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As P9 mentioned “If you have a specific function for every separate interaction instead 

of just addEvent that will be more understandable for me. Like for lasso you can have a 

addLassoEvent() function and in the parameter you can provide how you want your lasso 

to be like.” 

It is also a recommended practice by Bloch, an API usability researcher [18], to have 

different names to methods rather than overloading them if their behavior is significantly 

different. 

Theme 6: Examples provided in the live demo were a good starting point for the tree 

layout task. 

While working on Task 2: Generating a Squarified tree-map layout, some participants 

were looking for a similar example in the interactive demo website. While browsing the 

examples in the demo website, the example tree-map layout caught their attention, which 

they thought was relevant to Task 2. They started modifying the code in the demo 

website to see the effect on the output and to have an understanding of the process. P5, 

P7 and P10 were able to generate the Squarified tree-map layout by making changes in 

the example tree layout from the website. Examples provided in the documentation were 

also helpful for understanding the API,  as P12 mentioned: 

“The examples also give me some intuition regarding your API about how a developer 

should use the API. From initial tutorial lot of things were not clear to me but those 

examples give me more feedback to understand how it is actually working.” 
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Theme 7: Operator misplacement error messages and stage recommendation in the 

documentation helps in recovering from the error. 

Relevant codes supporting this theme are listed in Table 5.8. 

Table 5.8: Relevant codes for Theme 7 

Relevant Codes Participant Frequency 

Error message was helpful 4 

Stage recommendation 6 

 

It has been observed that compared to the first usability study there was far less confusion 

about the operator misplacement in the second usability study. Participants who faced 

such errors were always able to fix them by following the suggestion in the error message 

or using the recommended stage information in the documentation. However, it was also 

noticed by the author from the observation made during study that four out of the twelve 

participants were just closing the error message box without reading the message and 

thus failed to use the suggestion provided in the message to fix the error. All of those four 

participants were able to fix that error later by looking into the recommended stage 

information in the documentation. This observation suggests that it is good to have 

multiple sources of help, so that, if a user misses one source of help, somehow s/he can 

use help from some alternate source. 

Theme 8: Lack of explicit error messages and not having IDE support was frustrating. 

Relevant codes supporting this theme are listed in Table 5.9. 
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Table 5.9: Relevant codes for Theme 8 

Relevant Codes Participant Frequency 

Provide IDE support 5 

Lack of an auto complete feature 4 

No error message for mistype 5 

 

Most developers are used to working in integrated development environments (IDEs) and 

expect to have code completion and IntelliSense [62] support. Lacking this feature 

requires more effort from the developer to memorize method names along with their 

available parameters. As all participants were new to the API, they needed to look back 

and forth between the documentation and their code for the appropriate methods and their 

parameters. This was very time consuming and a frustrating experience for them as they 

expected to have this kind of support provided by an IDE.  

As P12 mentioned “I also miss the IDE support very much. … While doing the coding a 

very simple mistype leads to error and I have no idea what is going wrong without 

carefully looking into the documentation. There is no feedback. Lacking this kind of IDE 

is a kill for the developer.” 

P7 said “Actually one time I ended up putting a parameter that I should not have. I got 

tripped on that.” 

Also, in the API under study, there was no explicit error message shown for mistyping a 

method name or parameter value. Although all the participants were able to fix their error 
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by consulting the provided documentation, it was very time consuming and sometimes 

they got lost without being able to find the root cause of the error. 

As P1 expressed his frustration while facing a parameter mistype error “Don’t see any 

difference.. don’t know why.. why it does not work..OK,, quotes gosh. And I don’t 

understand why I need to use quote here.  It is getting strange.” 

The next two themes describe the user experience of AVIT regarding interaction features. 

 

Theme 9: The cognitive effort in finding the resulting node after performing an 

interaction was high. 

When a participant performed a search interaction or a node selection operation the 

selected nodes were highlighted (see Figure 3.16). It was observed from the study that 

participants faced difficulties to find the highlighted node as a result of the interaction. 

Suggestions received from the participants for improvements in this included making the 

selected node bigger or providing animation support to make it clearly evident to reduce 

the cognitive burden on the user to identify the selected nodes. 

Theme 10: Expectations due to familiarity with similar interaction features. 

Relevant codes supporting this theme are listed in Table 5.10. 
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Table 5.10: Relevant codes for Theme 10 

Relevant Codes Participant 

Frequency 

Use familiar interaction for multiple node 

selection 

3 

 

In the API, for selecting multiple nodes, the developer had the option to draw any circular 

shape in the visualization area and any node that will lie inside the circular area will be 

selected. It was observed from the study that participants preferred a drag option to draw 

an automatic rectangle for them and expected that any node that will lie inside the 

bounding box of the rectangle will get selected. When asked about the reason behind this 

choice, participants expressed their familiarity with similar rectangular-based interaction 

for node selection in other applications. 

5.5 Limitations of the Second Evaluation 

Findings presented from the second usability study are based on systematic observation 

of programmers working with AVIT in a laboratory environment. Given this setting, 

there are factors that limit the generalizability of the observations. 

The ease of use and the challenges faced by the participants are related to a certain extent 

to the tasks and experience of the participants. Some of the findings from the study also 

have been observed in other API usability studies in different settings [3, 6, 9,21 and 24]. 

However, given the exploratory nature of this study for finding the effect on the usability 

experience of the API for the changes made, and also given the lab setting and pre-

defined tasks, the findings cannot be considered complete, but only a starting point. 
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Also, the same researcher designed the API documentation, supporting material and the 

usability study; there is a possibility of some bias. To address this issue the author has 

designed the tasks for the study in a way so that there is no single direct solution to the 

task available, in the provided documentation, and it needed some exploration by the 

participant to complete the task. 

Participants were given a small and fixed amount of time. This makes the study a bit 

unrealistic considering the real work environment of a developer. Multiple studies show 

that program development time is different on the order of 10 to 1 for different 

developers [23]. As in a real world scenario, some developers might have more time to 

spend in the task and thus might have a different experience with the API. To compensate 

for this limitation, the data analysis has been done not focusing on the task completion 

rate but on the overall usability experience of the developer with the API. 

To use the full power of the API in generating and customizing diverse tree layouts, one 

needs to have a clear understanding of the tree layout generation process used in the API. 

Participants had no previous experience with the API and most of them had no 

experience working with tree visualizations. This is a common scenario for programmers 

in industry and is convenient for conducting controlled studies. However, it also means 

that findings from the study provide limited insights in to the behavior of the developer 

who has years of experience working with the tree visualization tools. 

With only a 15 minute tutorial, two real tasks and 12 participants, the questions and the 

challenges observed in the study are limited. Furthermore, given the observation that 
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“programmers often approach larger programming tasks by focusing on smaller subtasks” 

[26], it can be said that the challenges and usability problems observed should be seen as 

a good starting point for further explorations. 

5.6 Discussion 

The second usability study showed that the updated version of the API with the support 

of the interactive demo tutorial and updated documentation has slightly better learnability 

compared to the previous version. The updates in the API also helped recovering from 

operator placement errors by showing explicit error messages. 

It was also evident from the study that developers still had some difficulties grasping the 

main concept of the tree layout generation process. Similar observations were made in the 

first study. Results of both usability studies suggest that without having domain 

knowledge about different tree layouts or without spending longer time with the API, 

understandability of the tree layout process will remain difficult.  

Empirical studies have also shown that tree layouts, like tree-map and Sunburst, require 

training before users can use them effectively [11]. It is quite difficult to grasp the tree 

layout generation process in the limited time period of the study without having a 

background in this area.  

While examples in the documentation were helpful and provided a good starting point for 

task completion, they still need to be improved with detailed use case descriptions and, 

preferably, with more usage scenarios. Documentation and the associated example code 

should be updated iteratively based on the developer feedback.  
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Although it was supposed to be easy to add different interaction features via a simple 

function call, participants suggested using different method names for different 

interaction features rather than overloading them with a single addEvent function. The 

author will make necessary changes in the interaction layer to incorporate those changes 

in a future version of the API. 

The study also suggested to explicitly highlight the outcome of an interaction so that it 

requires less effort from participants to identify the results of an interaction. Participants 

also provided valuable suggestions regarding new interaction features such as showing 

path between nodes, animation − will be added in a future version of the API by the 

author. 

In comparison with the first usability study, in the second study, some usability issues 

from the first study have been minimized, some issues remained the same and additional 

usability issues have been found. The main concern about the API is the difficulty in 

understanding the underlying tree generation concept. The author feels that the API will 

require some time from its user to understand different tree layouts and their generation 

process. Conducting longitudinal studies with developers who will be spending more 

time with the API for building real world application can add some light from that 

perspective. 

Also, operator-based tree drawing introduces a new notational syntax for specifying tree 

layouts. Findings from the usability study showed that participants still had difficulties in 

understanding the recursive nature of the layout pipeline and the effect on the output 
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layout for placing operator in different order. To understand the cognitive load of AVIT 

notational syntax on the developers, the author has decided to conduct an evaluation of 

AVIT syntax using the Cognitive Dimension of Notation (CDN) framework proposed by 

Green et al. [43]. The  Cognitive Dimension of Notation (CDN) framework are design 

principles for notations, user interfaces and programming language design and are used to 

evaluate the usability of an existing information artifact. The author expects that an 

evaluation based on the CDN framework will provide more insight regarding the 

learnability and the understandability of AVIT syntax and will help understand the 

findings from the usability studies. The evaluation will be described in Chapter Six. 
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Chapter Six: Evaluation of AVIT using the Cognitive Dimension of Notation 

Framework 

The Cognitive Dimensions of Notation (CDN) framework proposed by Green et al. [43] 

is an inspection method for evaluating the effectiveness of notational systems such as 

programming languages and visual interfaces. CDN provides a collection of cognitive 

dimensions: useful heuristics for evaluating a notation system and the environment in 

which it is manipulated [43].  

In AVIT, operator-based tree drawing introduces a new notational syntax for specifying 

tree layouts. To understand the cognitive load of this notation on the developers, the 

author has decided to conduct an evaluation of AVIT notational syntax using CDN 

framework [43]. Inspired by work done by Clarke et al. [52, 53, 54], the author expected 

that an evaluation based on the CDN framework would provide more insight regarding 

the learnability and the understandability of AVIT and would help describe the findings 

from the usability studies. 

 In the following subsections, the operator-based notation system of AVIT has been 

evaluated using the dimensions of CDN framework. 

6.1 Evaluating AVIT using CDN Framework 

The following sections provide succinct descriptions of different dimensions of CDN 

framework (see Green et al. [43] for more detailed description of each dimension). The 

operator-based notations of the tree layout specification used in AVIT are evaluated using 
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the dimensions described in [43]. Relevant findings from usability studies are described 

in terms of dimensions from CDN framework where appropriate. 

6.1.1 Abstraction Gradient  

“What are the minimum and maximum levels of abstraction exposed by the notation? 

Can details be encapsulated?”[43] 

All operators implemented in AVIT for specifying tree layouts are highly abstracted and 

hide the details of the complex mathematics necessary to actually create these layouts 

from developers. These abstractions were made to make it easier for a developer to use 

those operators without worrying about their inner workings. However, as mentioned in 

[45], having to master several abstractions all at once in the limited time period of the 

usability study might be difficult for the developers and can affect the learnability of the 

API.  

Findings from usability studies also confirm the benefits and drawbacks of abstraction 

provided by operators. From Theme 1 in Section 4.3, participants liked the abstraction 

provided by the operator-based approach because it allowed them to focus on being able 

to generate the tree layout without worrying about complex mathematical details. 

However, it was also evident from the findings that participants found it difficult to 

master the overall process of tree layout generation and had difficulties understanding 

some operators as described in Theme 2 and Theme 7 in Section 4.3. 

6.1.2 Closeness of Mapping  

“How closely does the notation represent the problem domain?”[43] 
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In AVIT, the notation and problem domain are loosely linked: the mapping requires 

conceptualizing the visualization in terms of operators, which in turn have a number of 

effects (and side-effects) on visual properties.  

To increase the closeness of mapping in AVIT, operators have been named according to 

their function. For example, the rotate operator rotates a shape by a specified degree. The 

operator reshape updates the shape of node/s as specified in the parameter.  

However, it has been observed from the usability studies that participants had difficulties 

selecting the right operator for a task’ possibly due to the poor closeness of mapping from 

the task to the operator needed to complete it. For example, in the second usability study, 

six out of the twelve participants had difficulties creating the nesting effect for Task 2: 

“drawing a nested Squarified tree-map layout”. The nesting step of Task 2 required a 

scale operator to create the nesting effect. Part of the problem faced by the participants 

might lie in the poor closeness of mapping from the nesting task to the operator (scale) to 

accomplish that. 

6.1.3 Consistency 

“When a part of the notation has been learned, how much of the rest can be inferred?” 

[43] 

Most operators in AVIT are idiosyncratic but composed in a consistent fashion. The input 

as well as the output of all operators are the aforementioned tuples, they can be called in 

an arbitrary order, left out completely (identity operator), or even be called multiple times 

in a row with no conceptual restriction. 
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6.1.4 Diffuseness/Terseness  

“How many symbols or how much space does the notation require to produce a certain 

result or express a meaning?” [43] 

The number of operators needed to generate a tree layout using AVIT is small and each 

operator with its few parameters can be considered terse. Also the entire code to generate 

a tree layout using AVIT is concise. 

As observed from Theme 1 of the first usability study, participants liked the concise 

specification for drawing trees using AVIT. This property also helped their learning of 

AVIT via trial and error, as making small changes in the operator usually shows visible 

changes in the output layout (for details see Theme 3 in Section 4.3). 

6.1.5 Error-proneness  

“Does the design of the notation influence the likelihood of the user making a mistake?” 

[43] 

As observed from the usability studies there is one notation of the operator parameters in 

AVIT that encourages users to make mistakes based on their familiarity with object-

oriented programming languages. 

In AVIT, a condition parameter c of an operator was required to be put within quotes. For 

example, if developer wants to change the shape of the nodes in level 2 of the tree to 

rectangular shape, they need to use the reshape operator in the POSTLAYOUT stage as 

reshape(RECTANGLE,“node.level==2”);. 
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It was observed in the studies, five out of twelve participants did not use quotes around 

the conditional parameter. They thought, as node is an object, it does not require putting 

quotes for accessing its property. 

6.1.6 Hard Mental Operations (HMO) 

“How much hard mental processing lies at the notational level? Are there places where 

the user needs to resort to fingers or penciled annotation to keep track of what’s 

happening?” [43] 

Each operator in AVIT is simple and is defined for a specific purpose. However, 

understanding proper operator sequence to draw a particular tree layout might increase 

the HMO. Also some operators like squarify , slice, strip  require domain knowledge to 

understand their functionality. 

This high level for HMO has been observed in both usability studies where participants 

had difficulties understanding the underlying tree layout generation process in AVIT (see 

Theme 2 in Section 4.3 and Theme 2 in Section 5.4). 

6.1.7 Hidden Dependency 

“Are dependencies between entities in the notation visible or hidden?” [43] 

Operators in AVIT have different effects on the output tree layout based on their 

placement in different stages of the layout pipeline. For example, placing a reshape 

operator in the INITIALIZE stage will affect the entire drawing area of the tree, while 
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placing the reshape operator in the POSTLAYOUT stage only affects the nodes in a 

particular level of the tree. 

This dependency is not evident from the layout specification, which might give a false 

impression that all operators perform the same function irrespective of their placement in 

the layout pipeline. 

Results from both usability studies shows that participants had difficulties understanding 

the effect on output for shuffling operators around different stages of the tree layout 

pipeline. This observation is described in Theme 5 in Section 4.3 and Theme 2 in Section 

5.4. 

6.1.8 Premature Commitment 

“Do programmers have to make decisions before they have the information they need?” 

[43] 

In AVIT, there is less premature commitment in the sense that each operator is 

independent and does not restrict the user to which operator has to be called first. It will 

show an output layout based on the current placement of the operator, although this might 

not always make sense as a useful tree layout. 

However, to generate a particular type of tree layout, AVIT operators have to be placed 

in a particular order in the layout specification file and demand some premature 

commitment from the developer to understand proper ordering [55].  
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It has been observed from the usability studies (see Theme 5, Section 4.3) that 

participants had difficulties understanding the proper ordering of operators to generate a 

particular tree layout. 

6.1.9 Progressive Evaluation  

“Can a partially-complete program be executed to obtain feedback on “How I am 

doing”?” [43] 

AVIT has excellent support for progressive evaluation. Programs can be executed any 

time and the program environment supports viewing the output based on partially 

completed code. It allows evaluating the problem-solving progress at frequent intervals. 

The programmer has the option of simply changing the code based on their understanding 

from progressive evaluations and AVIT executes the program again to view the updated 

output. This progressive evaluation support was helpful to learn the API via trial and 

error as observed from the usability studies. 

6.1.10 Role-expressiveness  

“Can the reader see how each component of a program relates to the whole?” [43] 

In AVIT, the operators are typically identified by their name and constructor parameters. 

In many cases, documentation or code-inspection is required to understand the effects of 

executing the operator. This in turns make it difficult to understand the relevance of an 

operator to generate the complete tree layout. 
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This difficulty of understanding how each individual operator fits into the overall tree 

layout generation process has been evident in the conducted usability studies (see Theme 

2 in Section 4.3 and Theme 2 in Section 5.4 for details). 

6.1.11 Secondary Notation 

“Can programmers use layout, color, or other cues to convey extra meaning, above and 

beyond the official semantics of the language?” [43] 

In AVIT secondary notation is available through the comment syntax. As no editor/IDE 

support was provided for AVIT’s operator-based notation, no other type of secondary 

notation like syntax highlighting was available. 

It was observed from the usability studies that not having syntax highlighting and IDE 

support for AVIT was a frustrating experience for all the participants (see Theme 8 in 

Section 5.4).  

6.1.12 Viscosity  

“How much effort is required to perform a single change?” [43] 

AVIT has low viscosity. In AVIT, with minimal effort, significant change in the output 

can be made. For example a classical node-link layout can be converted to a radial node-

link layout just by adding the reshape (CIRCLE) operator in the INITIALIZE stage.  

Participants from usability studies found this feature of doing more by writing less code 

very useful, as mentioned in Theme 1, Section 4.3. 
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6.1.13 Visibility 

Local visibility of AVIT is quite good. The entire specification for a tree layout can be 

seen in the computer screen.  Also, the six stages of the layout pipeline provided 

recommendations in grouping related operators and thus increases the readability of the 

layout specification. 

6.2 Limitation of the CDN Analysis 

Findings from the CDN framework analysis provided a better understanding of the results 

from the usability studies and helped to point out some of the root causes of the usability 

issues in AVIT. However, without conducting usability studies, many of those issues 

would have been difficult to identify using only the CDN framework. For example, from 

the CDN framework analysis, it was not so evident that participants will face operator 

misplacement errors. However, the usability studies show a lot of misplacement errors 

Also, findings from the CDN analysis cannot be viewed as a list of usability problems. 

Dimensions described in the CDN framework are interrelated and fixing a problem in one 

dimension in CDN usually affects some other dimensions [43]. For example, increasing 

abstraction can cause the closeness of mapping dimension to be reduced and it can also 

worsen the hidden dependencies and hard mental operations dimensions if it is not 

chosen properly. Usability studies, on the other hand, provide facts about the specific 

usability problems that actual users of the API are facing. API designers can thus 

prioritize those problems and can take appropriate measures to address those problems 

either by making changes to the API code or updating the documentation. Also as the 
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CDN framework only evaluates notational systems, the effects of documentation and 

tutorial materials on the usability of an API can’t be conclusively evaluated using CDN.  

The CDN analysis of AVIT has been conducted solely by the author from his 

understanding of the dimensions and usability study results. While self-evaluation of 

AVIT provided valuable insight it might be less reliable as it is not verified by any other 

researchers. 

6.3 Discussion 

Findings from usability studies showed that developers had difficulties in understanding 

the tree layout generation process used in the AVIT. This observation has been explained 

in terms of the weakness of AVIT in closeness of mapping, hard mental operations, 

hidden dependencies, role-expressiveness dimensions in the CDN analysis. Also, some of 

the errors observed in the usability studies have been explained by the weakness of AVIT 

notations in the error-proneness dimension of the CDN framework. 

In line with Jeffries et al. [44], the author of this thesis believes that it is always better to 

conduct multiple evaluations using different evaluation techniques to assess the usability 

of a tool. Evaluations conducted using usability studies and CDN gave valuable insight 

about the usability of AVIT and helped in describing the root cause for many usability 

issues. However, the main purpose of developing AVIT was to being able to generate and 

customize different tree layouts via a concise specification without worrying about the 

complexity of the tree layout algorithms. So, abstracting those mathematical complexities 

behind operators was necessary to address that goal. This abstraction – although it 

increased the mental operations and hidden dependencies, and decreased the closeness of 
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mapping – is liked by many developers who enjoyed the ability to do more by writing 

less code. Also, a high task completion rate from the usability study suggests that this 

approach provide enough flexibility to learn the system by having high progressive 

evaluation support and low viscosity and thus supports learning of the API via playful 

trial and error approach as mentioned in findings of second usability study.  

As making changes arbitrarily across a dimension might worsen usability in some other 

dimensions, further investigations need to be done to find standard remedies which will 

provide ways of improving performance on selected dimensions that matters most to the 

actual users of AVIT.  
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Chapter Seven: Conclusion 

This thesis presents findings from usability evaluations of an API for visualizing and 

interacting with tree layouts. First, an overview of the challenges involved in drawing and 

interacting with trees using current toolkits was presented to provide the background 

necessary to understand the challenges of this field. An API, AVIT was created to make 

flexible customization and task-specific interaction with tree visualizations possible. The 

structure of AVIT was explained, and the design of the system and its concrete 

implementation were discussed. Two usability evaluations were conducted to point to 

potential answers for the research questions, described in Section 1.3, and to give an 

insight into the strengths and weaknesses of AVIT. Ways to improve the usability of 

AVIT were also explored. 

7.1 Thesis Contributions 

The first contribution of this thesis is exploring the usability of AVIT by conducting two 

separate usability evaluations. Usability evaluations were conducted to find answer to the 

research questions in Section 1.3.  

The first three research questions, related to generating different tree layouts, flexible 

customization support, and concise layout specifications have been answered by building 

example tree layouts using AVIT, as explained in Section 3.3.2. It has been seen that, 

using AVIT different tree layouts can be constructed with concise specifications. Also, a 

customized tree layout can be generated using existing components of the API rather than 
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implementing from scratch in a short period of time. Generating hybrid and novel tree 

layouts is also possible. 

The research question, about “How much effort is needed from the developers to learn 

the operator-based approach of generating tree layouts?” was difficult to answer 

considering the limited time period of the usability studies. But the findings from the 

usability studies suggest that AVIT has a steep learning curve.  Conducting longitudinal 

studies with developers using AVIT to build real world applications will help finding a 

better answer of this research questions.  

The next research question was “How helpful are the documentation and other learning 

materials for completing a task?” In general, documentation and learning materials were 

helpful to participants in completing tasks but were not sufficient. Suggestions have been 

received to enhance the documentation. Also, it was observed that the improved 

documentation for the second usability study provides better performance in terms of 

error reduction and improved the learning effort via an interactive demo tutorial and 

detailed description of each operator in the wiki documentation. 

The research question , “How to improve the interaction features of the API?” has been 

answered by gathering suggestions regarding improving the way to add interaction 

features in the API and collecting new interaction features request as explained in Section 

5.4 . 

The next research question regarding “How can the usability experience of the operator-

based Tree API be improved?” is explored by running multiple user studies and by 

evaluating the API using the CDN framework. Results from the usability studies and the 
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CDN framework analysis provide suggestions to improve the usability of the API and 

thus provide a starting point in answering this research question. 

Answers to these research questions, fulfills the second research goal as listed in Chapter 

1. 

The second contribution is the AVIT − API for Visualizing and Interacting with Trees. 

AVIT was co-developed by the author based on a new concept for tree drawing to 

address the limitation of existing toolkits. AVIT provides flexibility in tree layout 

customization via concise, operator-based syntax and has task-specific interactions 

support for trees. AVIT fulfills the first research goal listed in Chapter 1: “developing an 

API based on the operator based approach for tree drawing”. 

The third contribution of this thesis was the literature review covering the challenges of 

tree layout customization and task-specific interaction support in existing information 

visualization toolkits, which is presented in Chapter 1 and Chapter 2. This review 

provides the current state of tree visualization support in existing toolkits and also 

discusses the evaluation approach used for those toolkits by their designer. 

7.2 Future Work 

AVIT has shown promise in its ability to improve support for tree visualization and 

interaction. However, there is always room for improving the API and augmenting the 

research. 

Firstly, the interaction layer in the API can be extended to take advantage of the operator 

sequences already implemented for drawing trees. For example, topology based 



141 

 

interactions like folding of a sub-tree rooted on a node can be accomplished by carrying 

out a “reshape(NONE)” operator for the selected node and all its descendants. A zooming 

interaction can be tied to the WEIGHT operator to enlarge sub-trees of interest, while at 

the same time automatically scaling down other parts of the layouts. This would make the 

operators useful even beyond the pure layout generation.  

Secondly, longitudinal studies have to be conducted to gather a better understanding 

about the usability of the API. The API has recently been made publicly available for 

developers to use in their web-based applications. Developers can spend a longer time 

with the API while building a real world application. Results from such longitudinal 

usage based on the applications built by the developers can add additional insight into the 

evaluation findings. Also conducting a usability study with domain experts can add 

another dimension to the findings. 

Thirdly, further investigation needs to be done to reduce the cognitive load of learning 

the API by finding an appropriate balance in the different dimensions of the CDN 

framework as discussed in Chapter 6. 

Fourthly, to make the underlying concept of the tree layout generation process used in the 

API more understandable, documentation should be updated with video demos, scenario-

based examples and interactive training tasks. 
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Appendix A: Background Questionnaire 

 
 How many years of experience do you have with any programming language? 

 

 

 

 Do you have any experience/familiarity working with data visualization? If yes 

please mention the type of data visualization you have used so far. 

 

 

 

 If applicable, provide the names of the data visualization tools you have used so 

far?  

 

 Are you currently in academia or industry? 

 

 

 What is your role in your current organization? 
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Appendix B: Task Description 

B.1 Task Description for Study 1 

Task Descriptions 

1 1.1 Order the nodes in ascending order of number of leaves. 

1.2 Make the edges between nodes 3px wide [Hint: use 

operator setStrokeWidth()] 

1.3 Scale the nodes shape so that every node is 10px wide 

[Hint: use operator scale ()] 

1.4 Rotate the layout so that it looks like the given figure 

(Hint: Entire layout is affected). 

1.5 Rescale the node shape to 5px, then fills the node color 

Dark to light, flowing from root to subsequent levels [You 

can choose any color from palette [see documentation].] 

[Hint: Use node.level as a value and root.height as max 

value for color filling]. 

1.6 Change the layout so that nodes are arranged in circular 

topology [Hint: Change the drawing space shape in 

ROOT_LAYOUT] 

1.7 Add Lasso selection Interaction with rectangle as a 

bounding area [Make necessary changes in 

addInteraction.js file] 
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1.8 Make necessary changes in POSTLAYOUT stage, so that 

it shows sunburst layout [Given Figure]. 

 

1.9 Transform the node shape to circular shape. [Given 

Figure]. 

 

1.10 Add Menu based Interaction so that mouse clicking on a 

node display the menu option [Make necessary changes in 

addInteraction.js file] 

2 Nested Squarified Tree-map is type of Tree-map where 

children nodes are embedded within parent nodes layout 

with offsetting between successive levels to produce the 

nesting effect. It allocates the drawing space between 

leaves node in a way so that the node resembles a square. 

Modify the config file for Task 2 to generate the following 

Nested Squarified Tree-map layout. [Given Figure] 
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B.2 Task Description for Study 2 

Training Task 

Task 1 

In this task you have to make small changes in the configuration file for a given tree 

layout. The purpose of the task is to understand the functionality of different layout 

operators and how the tree layout changes based on their placement in different stages of 

the layout generation process. 

See the example Tree layout in the browser for Task 1 (your starting point): 

You have been provided with a sample configuration file that produces the following 

output.  

Dataset: Computer Science research group at University of Calgary. 
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Task 1.1  

Order the nodes in ascending order of number of leaves. 

Expected Output Layout: 
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Task 1.2 

Make the edges between nodes 3px wide [Hint: use operator setStrokeWidth()] 

 

Expected Output Layout: 
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Task 1.3 

Scale the nodes shape so that every node is 10px wider [Hint: use operator scale ()] 

Expected Output Layout: 

 

 

 

 

Task 1.4 

Rotate the layout so that it looks like the following figure (Hint: Entire drawing area is 

affected). 

Expected Output Layout: 
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Task 1.5  

Rescale the node shape back to 5px, then fills the node color Light to Dark, flowing from 

root to subsequent levels [You can choose any color from palette [see documentation]. 

[Hint: Use node.level as a value and root.height as max value for filling]. 

Expected Output Layout: 
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Task 1.6 

Open the radial.cfg file and also click the Radial Node-Link in the browser. It will 

display radial tree layout (a different representation) of the same dataset. 

Expected Output Layout: 
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Try the following change in the config file: 

 Comment out the reshape (CIRCLE) in INITIALIZE stage and see what 

happens (click the Radial Node-Link to reload the layout). 

Expected Output: 

o It will generate the bottom up version of the layout similar to the layout 

you have seen in task 1.1. 

 

 

Reasoning behind the Output: 
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o Why bottom up? [If you remember by default drawing area is selected as 

rectangular region. As scaling in the prelayout has been done from 

bottom direction it generates the bottom up layout]. 

 Uncomment the reshape(CIRCLE). 

 Comment out the reshape (DOT) in POSTLAYOUT stage and see what happen. 

o  By default every node is assigned a drawing space. When reshape(DOT) 

is called in post layout it actually draw a dot on the middle of the assigned 

space of that node, hide the view of the space and thus generate the 

explicit layout. By commenting out the reshape(DOT),  it will generate 

the default implicit layout known as sunburst layout. 

 Comment out the reshape (CIRCLE) in INITIALIZE stage and see what 

happen (click the Radial Node-Link to reload the layout). 

o It will generate the bottom up tree (implicit layout) commonly known as 

icicle plot. 

 

 

Task 1.7 

Currently node values are being displayed as labels which are quite messy and hard to 

read for some of the nodes. Please make necessary changes in the addInteraction.js file 

so that node labels are not displayed. Then add the interaction code to show the node 

value only when there is a mouse over event is fired on that node. 
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Layout Task 

Task 2 

Nested Squarified Tree-map is type of tree-map layout with offsetting/gap between 

successive levels that produce the nesting effect [Child nodes are embedded within 

parent nodes]. It allocates the space between nodes in a way so that it resembles a 

square.  

Modify the config file for Task 2 to generate the following layout. 

Expected Output Layout 
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Interaction Task 

Task 3.1 

Add Menu Interaction so that mouse clicking on a node displays the menu option [Make 

necessary changes in addInteraction.js file] 

Test the Interaction: Click on the different menu option and see what happen. 

 

Comments: 

 

Task 3.2 

Add Lasso selection Interaction by selecting rectangle as a bounding area [Make 

necessary changes in addInteraction.js file] 

Test the Interaction: 

Drawing a rectangular region on the layout will highlight the node that lies inside the 

region. 

 

Comments: 
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Task 3.3 

[Search Interaction] Please type the name of a Node in the search box above the layout to 

search for that particular node (Case sensitive) (Example: PhD, ASE Lab, Frank Maurer). 

Test: Matched node should be highlighted. 

Comments: 
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Appendix C: Task Breakdown 

 

Table: Breakdown of programming task and how their success level is measured 

 

Task Individual Steps Completed Partially 

Completed 

1 1.1 1. Select the order operator. 

2. Select appropriate parameter 

(ASCENDING and leaves) for the 

operator. 

3. Placing the operator in appropriate 

stage (Stage: PREPROCESS). 

 

Two successful 

sub-tasks 

including sub 

tasks 1 and 3 and 

a partially 

successful one 

(typo). 

One successful 

sub-tasks 

including sub 

tasks 1 and a 

partially 

successful one. 

1.2 1. Select the setStrokeWidth() operator. 

2. Choose appropriate parameter for the 

operator (3px). 

3. Placing the operator in appropriate 

stage (POSTLAYOUT). 

 

Two successful 

sub-tasks 

including step 1 

and 3 and a 

partially 

successful one. 

One successful 

sub-tasks 

including step 1 

and a partially 

successful one. 

1.3 1. Select the scale operator. 

2. Choose appropriate parameters value 

for the operator (SCALE_TO, 10px). 

3. Placing the operator in appropriate 

stage (POSTLAYOUT). 

Two successful 

sub-tasks 

including step 1 

and 3 and a 

partially 

successful one. 

One successful 

sub-tasks 

including step 1 

and a partially 

successful one. 

1.4 1. Select the rotate operator. 

2. Choose appropriate parameter value 

for the operator (90). 

3. Placing the operator in appropriate 

stage. (ROOT_LAYOUT). 

Two successful 

sub-tasks 

including step 1 

and 3 and a 

partially 

successful one. 

One successful 

sub-tasks 

including step 1 

and a partially 

successful one. 

1.5 1. Select the scale operator. 

2. Choose appropriate parameter value 

for the operator (5px). 

3. Placing the operator in appropriate 

stage (POSTLAYOUT). 

4. Select the fill operator. 

5. Choose appropriate parameter value 

for the operator (“Color from platte”, 

DARK2LIGHT. “node.level”, 

Successful sub-

tasks including 

step 1, 3, 4, 6 

and a partially 

successful one. 

One successful 

sub-tasks 

including step 1, 

4, 5 and a partially 

successful one. 
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“root.height”). 

6. Placing the operator in appropriate 

stage (POSTLAYOUT). 

1.6 1. Select the reshape operator. 

2. Choose appropriate parameter value 

for the operator (CIRCLE). 

3. Placing the operator in appropriate 

stage. 

(ROOT_LAYOUT). 

Two successful 

sub-tasks 

including step 1 

and 3 and a 

partially 

successful one. 

One successful 

sub-tasks 

including step 1 

and a partially 

successful one. 

1.7 1. Call addLasso function for adding 

interaction. 

2. Choose appropriate parameter value 

for the interaction function (rectangle). 

Two successful 

sub-tasks. 

One successful 

sub-tasks 

including step 1 

and a partially 

successful one 

1.8 1.Commenting the reshape operator in 

POSTLAYOUT 

2. Make changes in scale operator in 

POSTLAYOUT to produce the space 

filling effect. 

Two successful 

sub-tasks.  

One successful 

sub-tasks 

including step 1 

and a partially 

successful one 

1.9 1. Select the reshape operator. 

2. Choose appropriate parameter value 

for the operator. 

3. Placing the operator in appropriate 

stage. 

(POSTLAYOUT). 

4. Placing the operator in right order in 

the stage (right after the scale operator to 

produce the desired effect). 

Three successful 

sub-tasks 

including step 1 

and 3 and a 

partially 

successful one. 

Two successful 

sub-tasks 

including step 1 

and 3 and a 

partially 

successful one. 

1.10 1. Call appropriate function for adding 

interaction. 

2. Choose appropriate parameter value 

for the interaction function. 

Two successful 

sub-tasks. 

One successful 

sub-tasks 

including step 1 

and a partially 

successful one 

2 (1) Select the scale operator with 

appropriate parameters for nesting effect. 

(2) Placing the scale operator in 

PRELAYOUT Stage. 

(3) Select squarify operator with 

appropriate parameters for allocation. 

(4) Placing the squarify operator in 

ALLOCATE stage. 

 

(5) Select fill operator with appropriate 

parameters for coloring effects. 

(6)Placing the fill operator in 

POSTLAYOUT stage. 

Five successful 

sub-tasks 

including step 1, 

2, 3, 4, 6 and a 

partially 

successful one. 

Four successful 

sub-tasks 

including step 1, 

2, 3, 4 and a 

partially 

successful one. 
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Appendix D: Post Study Questionnaire 

• Were the sample documentation, tutorial and example code along with the live 

demo provided useful for performing the sample task? 

• Was it easy to find the relevant documentation/help using the sample 

documentation and example code?  

• What difficulties did you face while performing the sample task? And how were 

those difficulties overcome (how was the participant able to move on with the 

task)? 

• What do you think about the operator based programming for manipulating the 

visualization? 

• Do you find the naming and placement of the operator understandable? 

• Did the operator name matched with your expectation about the functionality of 

the operator? 

• Suggestions/comments regarding the interaction part?  

• Was the documentation for the interaction part helpful? 

• Suggestion to improve the interaction parts (parameter, more flexibility) 

• What are the interactions you suggest for exploring tree visualization? 

• Was the API easy or difficult to use? What was easy, what was difficult?  

• Would you use the API in future for any visualization task? If not, why? 

• Do you have any final suggestions for improving the API? 

 

 

 


