

Test-based Feature Management

for Agile Product Lines

Felix Riegger

Diplomarbeit

Fakultät Informatik

Studiengang Informatik

Hochschule Mannheim

26. Februar 2010

Matrikelnummer: xxx

Ausgeführt bei: Prof. Dr. Frank Maurer

 Agile Software Engineering Group

 Department of Computer Science

 University of Calgary

Betreuer: Prof. Dr. Astrid Schmücker-Schend

Zweitkorrektor: Prof. Dr. Ivo Wolf

Page | i

Abstract

Software product lines (SPL) and agile methods are both widespread practices in

software development. A SPL is a family of software which is based on common features,

but at the same time allows variations to fit the customer needs. In order to create a SPL,

domain engineering is required to identify commonalities and variations of the family.

This means a lot of upfront work to produce requirement and design artifacts before

actual implementation.

In agile methods lightweight artifacts such as executable specifications are used to

enable a bottom up development process. In executable acceptance test-driven

development these artifacts are recorded as acceptance tests before the actual code is

written.

Agile product line engineering tries to integrate SPLs and agile methods to benefit from

the advantages of both. One approach is to map features of the product line to

acceptance tests instead of using specification and design documents.

Agile Product Liner DSL offers a domain-specific language (DSL) that enables users to

create a graphical feature model and link features to acceptance tests. These tests can be

executed directly from the feature model.

Page | ii

German Abstract

Software Product Lines (SPL) und agile Methoden sind zwei weit verbreitete Verfahren in

der Softwareentwicklung. Eine SPL ist eine Softwarefamilie, welche auf gemeinsamen

Features basiert, aber gleichzeitig Anpassungen erlaubt, um den Wünschen des Kunden

zu entsprechen. Um eine SPL zu erstellen wird das sogenannte Domain Engineering

angewendet, wodurch Gemeinsamkeiten und Veränderbarkeit der Softwarefamilie

identifiziert werden. Dazu müssen Anforderungsanalysen und Entwürfe erstellt werden,

was einen sehr hohen Aufwand im Vorfeld bedeutet.

In Agilen Methoden wird auf leichtgewichtige Elemente wertgelegt, wie zum Beispiel

ausführbare Spezifikationen, um einen Botton-Up-Entwicklungsprozess zu ermöglichen.

In Executable Acceptance Test-driven Development werden solche Artefakte in Form von

Akzeptanztests geschrieben, bevor der eigentliche Quelltext geschrieben wird.

Agile Product Line Engineering versucht SPLs und agile Methoden zu vereinen, um von

den Vorteilen beider Verfahren zu profitieren. Ein Ansatz ist es den den Featuren einer

SPL Akzpetanttests zu zuordnen, anstatt Spezifikationen und Entwurfsdokumente zu

verwenden.

Agile Product Liner DSL bietet eine domänenspezifische Sprache (DSL), welche es einem

Anwender ermöglicht ein graphisches Featuremodell zu erzeugen und Features

Akzeptanztests zu zuordnen. Diese Tests können direkt aus APLD ausgeführt werden.

Page | iii

Acknowledgements

I would like to take this opportunity to thank everyone who has helped and supported

me.

To Prof. Dr. Schmücker-Schend and Prof. Dr. Maurer, who supervised this thesis and

made my two stays in Canada possible and to Prof. Dr. Wolf for being my co-supervisor.

To Uta Fehlinger for her help and endless morale support which got me through.

To Denis Elbert for the great time we spent together in Calgary and the good

collaboration while developing the fundament of GreenPepe 2010.

To Theodore Hellmann, Amanda Mickley and Yaser Ghanam for proof-reading my work.

To the members of the ASE Group as well as Heiko Ordelt for their help, guidance and

support.

Page | iv

Table of Contents

ABSTRACT ... I

GERMAN ABSTRACT ... II

ACKNOWLEDGEMENTS ... III

TABLE OF FIGURES .. VI

LIST OF ABBREVIATIONS .. VIII

1 INTRODUCTION ... 1

1.1 GOAL OF THIS WORK ... 3

1.2 STRUCTURE OF THIS THESIS ... 3

2 RELATED WORK .. 4

2.1 AGILE PRODUCT LINE ENGINEERING ... 4

2.2 FEATURE MODEL DSL ... 4

2.3 GREENPEPE 2010 .. 5

3 FUNDAMENTALS .. 6

3.1 AGILE SOFTWARE DEVELOPMENT ... 6

3.2 SOFTWARE PRODUCT LINES .. 8

3.2.1 Feature Modeling for SPL ... 8

3.3 AGILE PRODUCT LINE ENGINEERING ... 10

3.4 ACCEPTANCE TESTS ... 12

3.4.1 Acceptance Testing Frameworks .. 12

3.5 C#, .NET AND VISUAL STUDIO IDE .. 13

3.6 VISUAL STUDIO EXTENSIBILITY ... 14

3.7 DOMAIN-SPECIFIC LANGUAGES ... 14

3.8 MICROSOFT DSL TOOLS FOR VISUAL STUDIO ... 15

3.9 SUMMARY ... 16

4 DSL TOOLS IN DETAIL .. 17

4.1 TERMINOLOGY ... 17

4.2 ELEMENTS OF A DSL .. 17

4.2.1 Domain Model .. 18

4.2.2 Presentation of the Domain Model .. 19

4.2.3 Domain Properties ... 24

4.2.4 The In-Memory Store ... 24

4.2.5 Creation, Deletion and Updating .. 25

4.2.6 Serialization .. 26

4.2.7 Validation ... 26

4.3 THE STRUCTURE OF A DSL TOOLS PROJECT .. 27

4.4 CUSTOMIZATION ... 29

4.5 SUMMARY ... 30

Page | v

5 TEST-BASED FEATURE MANAGEMENT ... 31

5.1 PREREQUISITES ... 31

5.2 NECESSARY FUNCTIONALITY .. 32

5.3 INVESTIGATING EXISTING TOOLS ... 34

5.4 MODELING EXTENSIONS ... 38

5.5 MAPPING BETWEEN TESTS AND FEATURES ... 38

5.6 COLLAPSING AND EXPANDING OF TEST NODES .. 41

5.7 SUMMARY ... 45

6 IMPLEMENTATION .. 46

6.1 THE STRUCTURE OF APLD .. 46

6.2 MIGRATION TO VISUAL STUDIO 2010 .. 48

6.3 EXTENDING THE DSL OF FEATURE MODEL DSL .. 49

6.3.1 Introducing Tests .. 49

6.3.2 Ports Attached to Tests and Features .. 51

6.3.3 Introducing Relationship between Tests and Features .. 53

6.3.4 Constrains Relationship .. 54

6.3.5 Toolbox ... 56

6.3.6 Collapsing and Expanding of Test Nodes .. 58

6.3.7 Testing of the DSL ... 60

6.4 ADDING COMMANDS TO THE DIAGRAM CONTEXT MENU ... 61

6.5 PROVIDING EXTENSIBILITY IN GREENPEPE 2010 ... 63

6.5.1 Managed Extensibility Framework ... 63

6.5.2 Exporting an Interface from GreenPepe 2010 ... 64

6.5.3 The exported Interface ... 65

6.6 CONSUMING EXTENSIBILITY OF GREENPEPE2010 ... 68

6.6.1 Test Mapping .. 69

6.6.2 Execution of Tests, Result Presentation and Storage ... 70

6.7 EXTENDING THE CONFIGURATION TOOL WINDOW .. 71

6.7.1 Adding Tests to the Tree View.. 71

6.7.2 Execution of Tests from the Configuration Tool Window .. 72

6.7.3 Synchronizing the Configuration Tool Window with the Diagram Editor Window .. 73

6.8 GRAPHICAL REFLECTION OF THE CURRENT CONFIGURATION IN THE DIAGRAM 74

6.9 SUMMARY ... 75

7 CONCLUSION AND FUTURE WORK .. 76

7.1 PROBLEMS ... 76

7.2 CONTRIBUTIONS ... 77

7.3 FUTURE WORK ... 78

REFERENCES .. IX

Page | vi

Table of Figures

FIGURE 3-1: A FEATURE MODEL INCLUDING THE ELEMENTS OF A POSSIBLE NOTATION ... 9

FIGURE 4-1: A GEOMETRY SHAPE [32] .. 20

FIGURE 4-2: THE ALTERNATIVE SHAPE FROM FMD IS AN IMAGE SHAPE ... 21

FIGURE 4-3: A COMPARTMENT SHAPE [32] ... 21

FIGURE 4-4: A PORT SHAPE ON A PARENT SHAPE WITH A LINK .. 22

FIGURE 4-5: A CONNECTOR WITH RECTILINEAR ROUTING STYLE AND TEXT DECORATOR 23

FIGURE 4-6: ARCHITECTURE OF THE DSL TOOLS [32] .. 28

FIGURE 4-7: USE OF THE GENERATION GAP PATTERN TO INTRODUCE CUSTOMIZATIONS [32] 29

FIGURE 5-1: A FIRST DRAFT OF AN OBJECT MODEL FOR THE TEST-BASED FEATURE MODEL 33

FIGURE 5-2: THE DOMAIN MODEL OF FMD ... 36

FIGURE 5-3: SCOPE OF THIS WORK ... 37

FIGURE 5-4: AN OBJECT MODEL FOR GREENPEPPER BASED TEST ARTIFACTS .. 39

FIGURE 5-5: THE TWO MAPPINGS EXPRESS THE SAME THING ... 40

FIGURE 5-6: TWO-LAYERED MAPPING BETWEEN FEATURES AND TESTS ... 41

FIGURE 5-7: COLLAPSING WITH N PORTS PER FEATURE ... 42

FIGURE 5-8: COLLAPSING WITH ONE SINGLE PORT PER FEATURE ... 43

FIGURE 5-9: MORE THAN ONE SHAPE REPRESENTING THE SAME ACCEPTANCE TEST .. 43

FIGURE 5-10: AFTER COLLAPSING .. 44

FIGURE 5-11: POSSIBLE SOLUTION FOR COLLAPSING ... 44

FIGURE 6-1: VS 2010 DSL TOOLS MIGRATION DIALOG .. 48

FIGURE 6-2: MIGRATION COMPLETED ... 49

FIGURE 6-3: TEST DOMAIN CLASS AND ITS DOMAIN PROPERTIES ... 50

FIGURE 6-4: TESTSHAPE GEOMETRY SHAPE AND ITS DOMAIN PROPERTIES AND DECORATORS 51

FIGURE 6-5: THE NAMING OF PORTS ON FEATURES AND TESTS ... 52

FIGURE 6-6: THE FEATUREHASTESTPORT DOMAIN RELATIONSHIP .. 52

FIGURE 6-7: THE TESTHASFEATUREPORTS DOMAIN RELATIONSHIP ... 53

FIGURE 6-8: TESTPORTSHAPE AND FEATUREPORTSHAPE.. 53

FIGURE 6-9: THE TESTPORTREFERENCESFEATUREPORTS RELATIONSHIP... 54

FIGURE 6-10: THE CONNECTOR TO REPRESENT LINKS BETWEEN FEATURES AND TESTS ... 54

FIGURE 6-11: CONSTRAINS RELATIONSHIP WITH CONSTRAINTTYPE DOMAIN PROPERTY 55

FIGURE 6-12: CONSTRAINS RELATIONSHIP PROPERTIES ... 55

FIGURE 6-13: THE TOOLBOX OF AGILE PRODUCT LINER DSL ... 56

file:///F:/Thesis/MyThesis.docx%23_Toc254881056
file:///F:/Thesis/MyThesis.docx%23_Toc254881060
file:///F:/Thesis/MyThesis.docx%23_Toc254881061
file:///F:/Thesis/MyThesis.docx%23_Toc254881066
file:///F:/Thesis/MyThesis.docx%23_Toc254881067
file:///F:/Thesis/MyThesis.docx%23_Toc254881068
file:///F:/Thesis/MyThesis.docx%23_Toc254881069
file:///F:/Thesis/MyThesis.docx%23_Toc254881070
file:///F:/Thesis/MyThesis.docx%23_Toc254881071
file:///F:/Thesis/MyThesis.docx%23_Toc254881072
file:///F:/Thesis/MyThesis.docx%23_Toc254881073
file:///F:/Thesis/MyThesis.docx%23_Toc254881074

Page | vii

FIGURE 6-14: TOOLS IN THE DSL EXPLORER AND THE PROPERTIES OF THE ELEMENT TOOL TEST 57

FIGURE 6-15: THE PROPERTIES OF THE CONNECTTEST TOOL OF APLD .. 58

FIGURE 6-16: THE FOUR PRESENTATION ELEMENTS INVOLVED IN COLLAPSING EXPANDING 58

FIGURE 6-17: EXPANDING AND COLLAPSING IN APLD ... 59

FIGURE 6-18: THE FEATURE MODEL CREATED BY THE MODEL HELPER .. 61

FIGURE 6-19: THE CONCEPT OF MEF [41] .. 63

FIGURE 6-20: ADD GP2010 AS MEF COMPONENT .. 65

FIGURE 6-21: PROVIDING EXTENSIBILITY IN GREENPEPE 2010 .. 66

FIGURE 6-22: SEQUENCE DIAGRAM OF THE TEST EXECUTION ... 67

FIGURE 6-23: COMMUNICATION BETWEEN APLD AND GP2010 ... 69

FIGURE 6-24: THE TEST MAPPING DIALOG ... 70

FIGURE 6-25: THE TESTINFORMATION CONTAINER CLASS ... 70

FIGURE 6-26: CONFEATURATOR EXTENDED WITH TESTS, SHOWING CONDITIONSTEST TWICE 72

FIGURE 6-27: RESULT PRESENTATION AFTER TEST EXECUTION IN THE CONFEATURATOR 73

FIGURE 6-28: CONFIGURATION UNSAVED WARNING .. 74

FIGURE 6-29: DISCARD CONFIGURATION ACTION .. 74

FIGURE 6-30: THE GRAPHICAL REFLECTION OF THE CURRENT CONFIGURATION IN THE DIAGRAM 75

file:///F:/Thesis/MyThesis.docx%23_Toc254881090
file:///F:/Thesis/MyThesis.docx%23_Toc254881091
file:///F:/Thesis/MyThesis.docx%23_Toc254881092

Page | viii

List of abbreviations

APL Agile Product Line

APLD Agile Product Liner DSL

APLE Agile Product Line Engineering

ASE Group Agile Software Engineering Group

CIL Common Intermediate Language

CLI Common Language Infrastructure

CLR Common Language Runtime

CTS Common Type System

DSL Domain-specific language

DTE Development Tools Extensibility

EATDD Executable acceptance test-driven development

EMD Element Merge Directive

FMD Feature Model DSL

GP2010 GreenPepe 2010

IDE Integrated Development Environment

MEF Managed Extensibility Framework

SPL Software Product Line

SPLE Software Product Line Engineering

STDD Story test-driven development

TDD Test-driven development

UI User Interface

VS Visual Studio IDE

XP Extreme Programming

1 Introduction Felix Riegger

Page | 1

1 Introduction

Software has become a crucial part of nearly every industry. The importance of software

requires increasingly fast creation of high-quality software and thus increased

productivity and efficiency. Most software systems are not unique solutions, but part of a

family of similar systems that differ in specific aspects. Because of this, the process of

developing new software can be made more efficient by reusing parts of similar, pre-

existing systems.

Reuse strategies are not a new thing in software development. Traditional approaches to

software reuse are small-scale, technology-driven and the results often do not meet

business goals. The use of software product lines offers a systematic approach and

strategic reuse that yields predictable results. It is an innovative, growing concept in

software engineering. SPLs are inspired by product lines in manufacturing where they

have been shown to provide measurable benefits [1]. A SPL describes the commonalities

and variations of different systems that can be instantiated from it. A single software

system that is derived from the product line consists of a selection of configurable

reusable artifacts.

An example for a SPL is mobile phones from Nokia. Mobile phones share a common set

of features like telephony, text messaging, display output, input keys but at the same

time these features vary from phone to phone. Instead of re-implementing the same

feature for every phone that supports it, artifacts can be reused. By establishing a

product line Nokia was able to increase the production of phones per year from 4 to 25-

30 [1].

Software product line engineering (SPLE) is used to create and manage such a product

line. The first step in SPLE is domain engineering, in which commonalities and variations

of the similar systems are identified and core assets are created that include all of these

elements. This requires a lot of upfront analysis and design work, before actual products

can be derived from the product line. One common way to describe the commonalities

and variations are feature models that present the product line. Based on the feature

models, a feature management includes configuration mechanisms.

1 Introduction Felix Riegger

Page | 2

Another increasingly popular approach to create software is agile software development

(ASD). ASD is based on practices referred to as agile methods. Agile methods are

lightweight software development processes that emphasize that responding to changing

requirements is more important than sticking to a plan. Intense upfront design is avoided

since ASD views change as a natural part of software development. Instead, after basic

architectural decisions have been made, short development iterations are used to

produce running software as fast as possible. Intense customer collaboration makes sure

that the evolving software product actually does what the customer wants and needs.

One common practice in agile methods is executable acceptance test-driven

development. Acceptance tests are usually created by the customer and describe what

the future system needs to do from the customer’s perspective. Frameworks like

GreenPepper allow the automated execution of these acceptance tests against the

system under development.

Agile product line engineering (APLE) is a young field that tries to integrate ASD and SPLE.

One big difference between the two practices is the amount of upfront design work.

While domain engineering in SPLE requires a huge effort before actual products can be

created, agile methods try to minimize upfront design and produce running versions as

fast as possible. Although the integration attempt is challenging, it has a huge potential of

increasing quality, cuts in cost and reductions in time-to-market [2].

Different approaches can be used to integrate ASD and SPLE. First, agile methods can be

used to tailor product instances to a specific situation. This method targets SPL-based

organizations that want to become more agile [3; 4]. Second, it is possible to create

product lines using agile practices. As mentioned above, in agile methods acceptance

tests are commonly used to describe what the system under development has to do, and

thus are also design artifacts. The Agile Software Engineering (ASE) Group at the

University of Calgary uses these test artifacts to describe and define features of a product

line [5; 2; 6]. In order to get further insights and to evaluate and evolve this approach,

tool support is needed. The creation of such a tool is the goal of this work.

1 Introduction Felix Riegger

Page | 3

1.1 Goal of this Work

The goal of this work is to create a test-based feature management tool as extension for

Visual Studio 2010. The name of this tool is Agile Product Liner DSL (APLD). The basis of

feature management is a feature model, which can be represented either textually or

graphically. APLD should allow a user to create, edit and save such a model which means

according tool windows, wizards and/or editors are needed. Additionally, APLD should

allow a user to create configurations. A configuration means a selected subset of the

features from the feature model. A user needs to save and load configurations and needs

to validate them. To make the feature management test-based the modeling also has to

include tests. Features and tests have to be set into relation with each other. The tests of

the model have to be mapped to acceptance tests in the file system. Furthermore, tests

should be executable from APLD.

1.2 Structure of this Thesis

The second chapter gives a short overview on which research work and on which tools

this work is based. The third chapter describes ASD and SPLE in more detail and how

APLE tries to combine them. Moreover, insights into the technical fundamentals are

delivered, which comprise the .NET Framework, C#, the integrated development

environment (IDE) Visual Studio (VS) and how it can be extended. It also introduces

domain-specific languages (DSL) and the DSL Tools. The fourth chapter describes the DSL

Tools in more detail, as they are an important basis for this work. In chapter five a

concept containing the characteristics of a system which meets all the requirements of

the goal of this thesis is developed and chapter six illustrates how APLD is actually

implemented. The final chapter presents the conclusion of this work and gives an

overview of possible future work.

Class, method and special names are written in italic, whereas code fragments are

written in the font Consolas with a gray background and a black outline surrounding the

paragraph.

2 Related Work Felix Riegger

Page | 4

2 Related Work

2.1 Agile Product Line Engineering

This work is based on research on APLE conducted by Ghanam and Maurer in [5] and [2]

as well as Ghanam, Maurer and Park in [6]. In [5] a detailed theoretical description of

how variability and traceability can be managed via executable specifications is given.

This work looks into how this can be realized as tool support in Visual Studio 2010.

Chapter 3.3 describes APLE and the above mentioned approaches in more detail.

APLD is based on two extensions for Visual Studio 2008 and 2010 respectively, Feature

Model DSL and GreenPepe 2010. Both tools are shortly introduced in the following two

sections.

2.2 Feature Model DSL

Feature Model DSL (FMD) [7] is based on DSL Tools [8], a Microsoft product, and was

developed by André Furtado and published under the Microsoft Public License. Its

original design was proposed by Gunther Lenz and Christoph Wienands in the book

Practical Software Factories in .NET [9]. The current version of FMD is an extension for

Visual Studio 2008 and offers, among other things, a visual designer, a toolbox, and

property windows for creating feature models. It also includes a configuration tool

window, which allows creating configurations, that means features are selected. This

configuration can be validated and saved. HTML reports can be generated reflecting the

whole model and the current configuration. Additionally, custom build actions can be

added and triggered from this tool window. They must be provided in separate

assemblies and must implement a certain interface. FMD is described in more Detail in

5.3 and DSL Tools in chapter 3.8 and chapter 4.

2 Related Work Felix Riegger

Page | 5

2.3 GreenPepe 2010

GreenPepe 2010 (GP2010) is an extension for Visual Studio 2010 developed by the ASE

Group. The purpose of GP2010 is to execute acceptance tests based on the executable

specifications of GreenPepper, a tool developed by Pyxis Technologies [10] (see 3.4.1

Acceptance Testing Frameworks). GP2010 is integrated into the Solution Explorer of

Visual Studio and offers test execution from the context menu. The test execution and its

results are visualized in a separate tool window, the GreenPepe View. As of the time of

writing, GP2010 stores the result HTML files in the same directory in which the test itself

is located. To view and edit tests and test results, Visual Studio’s built-in HTML editor is

used.

In comparison to the Visual Studio extension offered by Pyxis, GP2010 allows the

execution of HTML files in the Solution from the VS Solution Explorer. This enables

developers to store the acceptance tests together with the source code of the system

under test. The extension from GreenPepper needs a connection to a Confluence or

XWiki server to access, store and run acceptance tests. GP2010 was developed with the

beta versions of the VS 2010 SDK and is based on .NET 4. Consequently, it requires VS

2010 to run.

3 Fundamentals Felix Riegger

Page | 6

3 Fundamentals

This chapter gives insights into the theoretical and technical foundation of this work.

First, ASD and SPLE are described. This allows for the deeper discussion of APLE which

follows. Acceptance tests, the key element of an approach to APLE this work is based on,

are also described. Then the .NET Framework, C#, and the Visual Studio IDE are

introduced and it is described how Visual Studio can be extended. Finally, domain-

specific languages and DSL Tools to create DSLs for Visual Studio are presented.

3.1 Agile Software Development

The term was introduced through the Manifesto for Agile Software Development [11] in

2001 by a group of seventeen people called the Agile Alliance. The members of this group

are advocates of lightweight development processes. Agreeing on the importance of

being able to respond to changing requirements within the project time frame, they

chose the term agile to refer to the values and principles comprised by the manifesto

[12]. The manifesto encompasses the following values:

“We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more.” [11]

It is important to note, that this does not mean that the items on the right have to be

abolished or do not have any value, but that the items on the left provide more value.

Traditionally organizations have put a huge emphasis on processes and tools,

documentation, contract and planning and have neglected the items on the left. An agile

3 Fundamentals Felix Riegger

Page | 7

process emphasizes values like interaction between individuals and acceptance of

changes and at the same time use the items of the right when necessary or if they add

indispensible value [13].

The Agile Manifesto introduced twelve principles:

 Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software

 Welcome changing requirements, even late in development

 Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale

 Business people and developers must work together daily throughout the project

 Build projects around motivated individuals

 The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation

 Working software is the primary measure of progress

 Agile processes promote sustainable development

 Continuous attention to technical excellence and good design enhances agility

 Simplicity – the art of maximizing the amount of work not done – is essential

 The best architectures, requirements, and designs emerge from self-organizing

teams

 At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly

Agile methods are lightweight software development methodologies that adhere to

those principles and introduce among other things short development iterations,

disciplined project management and quick adaptation to changing requirements. Some

3 Fundamentals Felix Riegger

Page | 8

specific types of ASD are Extreme Programming (XP) [14], Scrum [15], Crystal

Methodologies [12], Adaptive Software Development [16] and Agile Unified Process

(AUP). These types use, among others, practices like test-driven development (TDD),

executable acceptance test-driven development (EATDD), continuous integration (CI),

pair programming and daily scrum meetings.

3.2 Software Product Lines

Clements and Northop state in Software Product Lines: Practice and Patterns: “A

software product line is a set of software-intensive systems sharing a common, managed

set of features that satisfy the specific needs of a particular market segment or mission

and that are developed from a common set of core assets in a prescribed way.” [17]

Software Product Line Engineering (SPLE) is a paradigm to develop software applications

using common platforms and mass customization [18]. A software platform is a set of

software subsystems and interfaces that form a common structure from which a set of

derivative products can be efficiently developed and produced [19]. Besides the code, a

software platform includes requirements, architecture, documentation and all other

artifacts that are indicated by the development process.

Typically SPLE comprises two parts, domain engineering and application engineering.

Domain engineering is conducted upfront to create a platform consisting of product line

artifacts. The scope of the domain is analyzed and commonalities and variations are

identified.

In application engineering, concrete instances are derived from the platform, in which

the reuse of platform artifacts saves time and resources.

3.2.1 Feature Modeling for SPL

Feature models are an important kind of requirement artifacts used in SPLs [20]. It is

even considered as prerequisite for SPLE [21]. Features describe the characteristics of a

system in terms of functionality as well as quality. Feature modeling allows a hierarchical

3 Fundamentals Felix Riegger

Page | 9

decomposition of features organized in a tree. Features can consist of sub-features and

can be mandatory, optional or alternative.

Different notations for feature models exist. One of the notations is illustrated in Figure

3-1. It consists of features that are either mandatory or optional. Features can have sub-

features that are alternatives, in which the multiplicity describes the allowed

composition. The multiplicities set in the example model describe in fact an exclusive or

([1..1]) as well as a normal or ([0..1]. Additionally, cross-cutting constraints are possible.

The two most common are Exclude and Requires. In Figure 3-1 Feature 4 excludes

Feature 6, which means Feature 4 and 6 cannot be part of the same product. Feature 3

requires Feature 7, which means, a product including Feature 3 must also contain Feature

7. The notation of the given example is also the notation used in this work.

Lee states “that the feature model can provide a basis of developing, parameterizing, and

configuring various reusable assets […]. In other words, the model plays a central role,

not only in the development of the reusable assets, but also in the management and

Root feature

Feature 4 Feature 5 Feature 3 Feature 6

Feature 1 Feature 2

Feature 7

[1..1] [0..1]

Requires

Excludes

mandatory optional

alternative

multiplicity

Figure 3-1: A feature model including the elements of a possible notation

3 Fundamentals Felix Riegger

Page | 10

configuration of multiple products in a domain.” [21] A feature management allows the

creation and manipulation of feature models and based on that, the selection of features

adhering given constraints in order to create configurations. Based on such a

configuration a product can be instantiated or other actions can be triggered, like for

example reports.

3.3 Agile Product Line Engineering

For each, ASD and SPLE, there is a lot of literature and research addressing the two

topics. When we look at APLE, however, literature and research are rare.

As mentioned before there are two different approaches to integrating ASD and SPLE.

The first tries to use agile methods as development model in SPLE, the second

emphasizes agile as key player within which SPLE techniques will be used. This

particularly targets agile organizations which want to establish a SPL [2]. An approach to

the latter sees test artifacts as possible bridge between ASD and SPLE, especially

acceptance tests, as first proposed by Ghanam, Park and Maurer in [6].

Ghanam and Maurer also proposed an Iterative Model for Agile Product Line Engineering

[2]. Instead of the platform requirement and architectural design prerequisites of

instantiating product instances, a bottom-up approach is advocated that builds the

product line iteratively from existing product instances. In this approach, acceptance

tests are seen as the corner stone of the bridge between the two practices.

In 2009 this idea was refined in Extreme Product Line Engineering: Managing Variability

& Traceability via Executable Specifications [5]. It presents how SPLE and ASD stand in

conflict and presents a strategy for overcoming them in an XP environment. This is based

on test-driven development that utilizes executable specifications in the form of

acceptance tests. Like mentioned in 3.2.1, a very common way to express variability and

commonality in software product lines is a feature model. The term feature refers to a

chunk of functionality that delivers business value [22]. The production of test artifacts is

driven by features requested by the customer. It is, however, unclear how features and

tests are related to each other. For example, a feature can be tested by several test

3 Fundamentals Felix Riegger

Page | 11

artifacts and a single test might test parts of several features. Ghanam proposes the use

of acceptance tests to model variability in product families.

Each feature of a software product line can be linked to acceptance tests which test it. In

XP it is assumed that these tests are up-to-date, and they build a sufficient

representation of the functionalities and features the system under test offers. By

bringing the features of a software product line together with features that are

represented by acceptance tests, the variability of the software family needs only be

introduced via these tests. The proposed model also shows an approach to instantiate

concrete products from the family using the test artifacts. Based on the assumption that

acceptance tests are an accurate and up-to-date reference of features in the system, the

following steps are needed to instantiate a product:

1. Select acceptance tests that are linked to the needed features

2. Execute acceptance tests with code coverage

3. Extract code covered by the executed tests

4. Verify and build

In order to introduce new features to the product line, new acceptance tests have to be

written. If changes have to be made to the system, acceptance tests must also be

adjusted. After acceptance tests have been changed, all variants of the family have to be

re-instantiated and tested to verify that nothing has been broken and the change has

propagated to all relevant versions.

3 Fundamentals Felix Riegger

Page | 12

3.4 Acceptance Tests

In the previous chapter it was proposed that test artifacts, in form of acceptance tests,

can be seen as possible bridge between ASD and SPLE. As mentioned in 3.1 EATDD is a

common practice in agile methods, mainly in XP. There are many analogous terms for

acceptance tests: executable specifications, story tests, functional tests, scenario tests,

system tests and many more [23].

Acceptance tests are high-level tests which test if the program is meeting the initial

requirements. It is usually performed by the customer. In XP, these tests are created by

the customer together with the developer during the design/planning phase. The

customer creates the tests from user stories. Acceptance tests may or may not be

automated [24].

3.4.1 Acceptance Testing Frameworks

Two popular frameworks for acceptance testing are Fit, which is described in the book Fit

for developing Software: Framework for Integrated Tests [25] and GreenPepper from

Pyxis Technologies [10]. Both offer executable specifications in form of HTML tables or

bullet lists.

Pyxis states that executable specifications is an approach to automatically execute

human written specifications against the system under test to verify if it is doing what the

customer wants. The goal of this approach is to minimize the risk of the developed

system not meeting the requirements [26].

GreenPepper defines a syntax for executable specifications and provides a Java and a

.NET runner to execute these specifications. The specification has to be written in a HTML

table or HTML bullet list. A thin layer of code, called a fixture, maps the human written

specification to the actual code.

GP2010, which was described in 2.3 and is extended in this work, is based on

GreenPepper.

3 Fundamentals Felix Riegger

Page | 13

3.5 C#, .NET and Visual Studio IDE

Microsoft’s .NET Framework is a large set of class libraries that can be used with several

programming languages (for example F#, Visual Basic or Managed C++). Moreover, the

framework provides a common language runtime (CLR). It is responsible for the

execution of .NET applications written in a .NET programming language. When an

application written in a .NET language gets compiled, it is translated into the common

intermediate language (CIL), formerly known as the Microsoft Intermediate Language

(MSIL), and assembled into byte code. This byte code gets executed in a virtual machine

at runtime and a Just-In-Time compiler translates it into native code which can be

executed by the CPU. The benefit of this is that different parts of an application can be

developed in different languages, but all will still compile to the CIL and thus are

compatible. The Common Type System (CTS) specifies how types are represented in

memory and .NET languages have to follow that specification. Not all .NET languages

support the whole set of possible types. To ensure compatibility between different

programming languages Microsoft created the Common Language Specification (CLS).

The CLS consists of a subset of data types and rules. Types defined in the CLS are

available in all .NET programming language and include types like Boolean, integer and

double. If types are used that are specific for a single .NET language, but are not part of

the CLS, the assembly cannot be used by other .NET languages. Together, all the parts

described above build up the common language infrastructure (CLI).

C# was developed by Microsoft in 2001 and is one of the languages designed for the CLI.

C# 4.0 is the latest version of the language. The specification was finalized in May 2009

and is currently in beta testing and will be released together with the .NET Framework

4.0 and Visual Studio 2010.

Visual Studio is an IDE from Microsoft that offers development for all platforms

supported by Microsoft Windows, Windows Mobile, Windows CS, .NET Framework, .NET

Compact Framework and Microsoft Silverlight.

3 Fundamentals Felix Riegger

Page | 14

3.6 Visual Studio Extensibility

Visual Studio can be extended in several ways [27]. Macros and add-ins allow the

customization of the Visual Studio IDE and are based on the Visual Studio Automation

Model. The Automation Model can be accessed through the Development Tools

Extensibility (DTE) object, which is the highest level object in the automation model

hierarchy. Macros and add-ins, however, are limited. To create custom editors or custom

project types, the Visual Studio SDK is needed, which allows the creation of VSPackages

and Managed Extensibility Framework (MEF) extensions. Many components of Visual

Studio, like the code editor, itself are VSPackages and MEF extensions.

The possible ways to extend VS do not exclude each other. An extension can be a

VSPackage that includes MEF components and at the same time uses the Automation

Model to accomplish certain tasks. Any combination is possible.

An extension developed with the DSL Tools (see 3.8) has to be a VSPackage, because the

created extension highly integrates into the Visual Studio environment, including new

designers. Using the DSL Tools project template, the necessary project structure for a

VSPackage is automatically generated. VSPackages created with DSL Tools for the Visual

Studio 2010 SDK are also MEF components, because the new version introduces a model

bus that allows DSL extensions via MEF.

APLD is based on the DSL Tools, therefore, it is a VSPackage that exports MEF

components. It also uses the DTE objects to access the VS environment.

3.7 Domain-Specific Languages

In contrary to general-purpose languages, a domain-specific language (DSL) is a special-

purpose language that is dedicated to a given problem domain and is not intended to

solve problems outside this domain. A generic or general-purpose approach provides a

solution for many problems, but the solution may be suboptimal or harder to achieve,

compared to a solution created using a DSL for a smaller set of problems [28]. The

boundaries between the two terms are blurry and one domain-specific language might

3 Fundamentals Felix Riegger

Page | 15

be more specific than another one [29]. The development of a DSL is useful when a

particular problem set can be solved more efficiently and the problem reappears often

enough. A DSL may be textual, graphical, or both. Graphical DSLs often include code

generation from the graphical model. Because DSLs are very problem-specific they are

often more accessible to experts of the given problem domain [30]. A well known DSL for

example is Microsoft Excel. Although spreadsheets are inadequate for creating three-

dimensional animations or programming real-time systems, they are very powerful in

dealing with certain forms of calculations. Furthermore, they are comprehensible for

people who are familiar with calculations, but not necessarily with programming

languages. The semantic distance between the language and the problem is smaller.

Additional examples of DSLs are regular expressions, SQL, HTML and UNIX shell scripts,

GraphViz and expectations in JMock [31].

3.8 Microsoft DSL Tools for Visual Studio

Microsoft’s DSL Tools extend the Visual Studio SDK. They can be used to implement

graphical DSLs and deploy them as extensions to the Visual Studio IDE. DSL Tools intend

to reduce the cost of designing a new DSL. Diagrammatic languages can be created

quickly and tools for generating artifacts from them can be implemented.

Graphical DSLs have important aspects, the most important being notation, domain

model, generation, serialization and tool integration [32]. The DSL Tools address these

aspects. They offer a diagrammatic language to create new DSLs and are integrated into

VS.

With the DSL designer, domain models and notations are defined. Created diagrams are

serialized to an XML file. All necessary files are generated from the model. The generated

artifacts consist of two parts. First, the code that describes the new DSL itself, which

includes notation, domain models and serialization. Second, a package for Visual Studio

which integrates the DSL into the environment, including tool windows, DSL designer,

and toolbox items. Chapter 4 explains DSL Tools in more detail.

3 Fundamentals Felix Riegger

Page | 16

3.9 Summary

This chapter described the theoretical fundamentals, which include ASD, SPLE and APLE,

as well as technical fundamentals, which include the .NET Framework, C#, and Visual

Studio and its extension, this work is based on. Since this work also involves the

extension of an existing tool, which offers a DSL for feature models DSLs in general and

Microsoft’s DSL Tools were explained. The DSL Tools are a complex and powerful

framework to create DSLs for Visual Studio. Their key elements are explained in more

detail in the next chapter.

4 DSL Tools in Detail Felix Riegger

Page | 17

4 DSL Tools in Detail

This chapter explains the fundamentals of the DSL Tools. Key elements of DSLs created

with the DSL Tools are clarified and an in-depth look into the structure of a DSL Tools

project is delivered. It also shows how a DSL can be customized to fit a given situation.

Many of the aspects explained in this chapter can be found in greater detail in the book

Domain-Specific Development with Visual Studio DSL Tools [32].

4.1 Terminology

The DSL Tools are used to create a DSL as well as code to integrate the DSL into Visual

Studio as VSPackage. The DSL and the integration code generated is C# code. Both, C#

and the DSL Tools use classes and properties, so to distinguish between them, classes and

properties related to the DSL Tools are referred to as domain classes and domain

properties, whereas classes and properties refer to classes and properties in C#.

4.2 Elements of a DSL

In the DSL Tools, a DSL consists of several components.

 Domain model

The domain model is the core of every DSL. It describes the concepts, properties,

and relationships of the language.

 Presentation layer (including graphical notation, explorer and properties

window)

This component defines how the model gets presented in the UI of the designer.

There are three types of windows: the designer; the model explorer; and

property windows. The graphical notation visible in the designer window consists

of a diagram which acts as a container for shape and connector maps.

4 DSL Tools in Detail Felix Riegger

Page | 18

 Creation, deletion and update behavior

Newly created elements have to be integrated into the model and it has to be

defined what happens, when an element is deleted, and how changes are

propagated.

 Validation

The DSL Tools offer hard and soft constraints as well as rules to allow validation

of the created model. Hard constraints restrain the user from making changes to

the model that would violate a constraint, whereas soft constraints can be

violated by the user at some points in time but not in others. Rules allow the

introduction of certain behavior depending on model changes. They can be used

to restrict certain changes or to propagate other changes through the model.

 Serialization

When a DSL is defined, a domain-specific serializer is automatically generated,

which will save and load models in a XML format. There are several

customization options available to modify that format.

4.2.1 Domain Model

The core element of a DSL designed with DSL Tools is the domain model. A domain model

consists of domain classes and domain relationships.

A domain class is a node in the domain model and represents an entity of the domain.

There is one domain class which is the root of the model: the root domain class.

Domain relationships connect domain classes and describe their relation. Each domain

relationship has two ends, a source and a target, thus they are directed. Both ends are

called a domain role and the connected class on that end is called the role player. A

domain role has a property name and a multiplicity. The multiplicity defines how many

links can have the model element as role player.

4 DSL Tools in Detail Felix Riegger

Page | 19

There are four possible values for multiplicity:

Multiplicity Description

1 / One Every model element of this class has to play this role exactly once.

0..1 / ZeroOne A model element of this class may play this role no more than once.

0..* / ZeroMany A model element of this class may play this role any number of times.

1..* / OneMany Every model element of this class has to play this role at least once.

There are two kinds of relationships, embeddings, and references. An embedded

relationship has some constraints. The multiplicity of its target role has to be either One

or ZeroOne. If more than one embedding relationship targets a domain class, the

multiplicity of each of them has to be ZeroOne, as only one model element of that class

can be embedded. In a complete domain model every domain class must be target of at

least one embedding relationship (expect for the root domain class, which is not target of

any relationship, but only source). This ensures that the domain model can be described

as a tree. The model can easily be serialized into a XML structure. It also implies delete

propagation, like in a tree: when an embedded parent model element is deleted its

children are deleted as well.

A reference does not have these constraints. Its domain roles can have any multiplicity. If

a role player is deleted, only the link is deleted by default, but not the referenced model

element.

Both, domain classes and domain relationships, know the concept of inheritance.

New domain classes and domain relationships are introduced via the DSL designer. They

appear in the classes and relationships section of the DSL definition diagram.

4.2.2 Presentation of the Domain Model

The domain model is an abstract description of the model that describes the DSL. In

order to work with the domain model and to create a model based on this domain

model, it has to be visualized. The DSL Tools offer some classes which are used to present

the elements of the domain model. The DSL Designer implements a graphical

4 DSL Tools in Detail Felix Riegger

Page | 20

representation of the model, whereas the DSL Explorer tool window offers a textual

representation in form of a tree, which implies that reference relationships cannot be

visualized (see 4.2.1). The domain property window offers access to the domain

properties of selected domain classes and domain relationships.

The DSL Designer is the main component and is realized as editor in Visual Studio. Usually

this editor is a graphical designer holding a diagram. The root domain class is mapped to

the diagram. Every other element of the model can have a graphical representation in

the form of shapes and connectors, where shapes map to domain classes and connectors

to domain relationships. A shape can be a geometry shape, a compartment shape, an

image shape, a port or a swimlane. Shapes and connectors appear in the diagram

elements section of the DSL definition diagram. In the following section, the shapes and

connectors are described in more detail.

Geometry Shapes

A geometry shape is a shape that is based on a circle, an ellipse, a rectangle or a rounded

rectangle. It can have any kind of decorator. Decorators are described later in this

section.

Figure 4-1: A geometry shape [32]

Image Shapes

An image shape allows any image to be used as shape and the shape has no outline. It

typically has a text decorator positioned outside of the image and thus the shape itself,

4 DSL Tools in Detail Felix Riegger

Page | 21

but it can also have any type of decorator. For instance the shape to describe an

alternative in FMD is an image shape and can be seen in Figure 4-2 on the next page.

Figure 4-2: The Alternative shape from FMD is an image shape

Compartment Shapes

A compartment shape is a geometry shape that has compartments. Each compartment

can have a list of elements. The compartment shape is restricted to be a rectangle or a

rounded rectangle. The collapse/expand decorator allows it to hide the compartments.

Figure 4-3: A compartment shape [32]

4 DSL Tools in Detail Felix Riegger

Page | 22

Ports

Ports are shapes that are used on the outline of a parent shape and usually act as

connection points. They can only be moved on the border of the parent shape. Except for

that peculiarity, a port shape is in fact a geometry shape and supports various kinds of

decorators. Figure 4-4 illustrates a port.

Swimlanes

The last shape is a swimlane. They are used to partition the diagram into rows or

columns. The DSL definition diagram, for example, is separated into two columns, one for

classes and relationships, and one for diagram elements.

Connectors

While shapes describe the appearance of nodes in the diagram and are mapped to

domain classes, connectors describe the appearance of links, and thus domain

relationships. A connector, like domain relationships, is directed and has a source and a

target end. Source end, target end and dash style can all be defined. A connector takes all

kinds of decorators, which will appear next to the dash. A connector can have different

routing styles such as straight or rectilinear. Figure 4-5 shows a connector with a

rectilinear routing style and an arrow as target end style.

Parent shape

Port shape

Figure 4-4: A port shape on a parent shape with a link

4 DSL Tools in Detail Felix Riegger

Page | 23

Decorators

Decorators are used to add further information to connectors and shapes. There are

three decorators available. Text decorators, image decorators and an expand/collapse

decorator. The lattermost has a predefined icon showing two small arrows. Without

customization, it only has an implemented functionality when it has been added to a

compartment shape, where it is able to expand or collapse the compartments. Text

decorators are used to put text on or next to shapes respectively, depending on the

shape. Image decorators do the same for images.

Connector and Shape Maps

The DSL Designer needs to know which shape or connector has to be used to visualize a

certain model element in the diagram. Shape and connector maps are used to provide

this information. In a shape map, the shape and the domain class that have to be mapped

are defined. Additionally, the path to the parent element must be defined to specify,

which element is the logical parent of a mapped domain class. This determines which

shape the parent shape of the shape mapped will be. With a port, for example, the

parent shape would be the shape to which outline the port is attached to. This relation is

described through the underlying domain model, and the path in the model determines

the path in the graphical notation.

Shape A

Shape B

Text decorator

Source end

Target end

Figure 4-5: A connector with rectilinear routing style and text decorator

4 DSL Tools in Detail Felix Riegger

Page | 24

4.2.3 Domain Properties

All model elements – that means domain classes, domain relationships, connectors and

shapes – can have so called domain properties. Domain properties describe states, which

are similar to properties in C#. They can be of any CLR value type and are one of three

possible kinds: Normal, Calculated, or CustomStorage. Normal domain properties follow

the standard behavior in the DSL Tools, which means that when a value is set it is

automatically serialized to the XML file that keeps the model and diagram information.

Calculated domain properties only have a getter, which has to be implemented manually.

Usually the value returned by this getter depends on other domain properties, but it can

be based on any kind of algorithm. The Important thing is that the value is not set by the

user, but is calculated at runtime. CustomStorage means that the getting and setting of

values has to be implemented manually and thus can be completely customized.

4.2.4 The In-Memory Store

When the DSL is deployed as a tool into Visual Studio the central element will be the DSL

editor. The editor consists of two parts: the DocData class and the DocView class.

DocData holds the model, whereas DocView represents the editor window and visualizes

the model. As a result, model and view are separated. DocData is responsible for loading

and saving models and has an instance of the in-memory store. When the code

describing the DSL is generated, a corresponding C# class is created for each element of

the domain model and their presentation elements. Each of these classes is a direct or

indirect sub-class of the ModelElement class. Domain classes are a direct sub-class of

ModelElement, while domain relationships are a sub-class of ElementLink, which itself is a

sub-class of ModelElement. Shapes and connectors are indirect sub-classes of

PresentationElement which itself is also a sub-class of ModelElement. The in-memory

store knows all these classes and manages all instances of them. This means that

presentation elements are part of the model and only their visualization is handled by the

view. The store is responsible for the creation, updating and deletion of any model

element. Any of these have to happen in a transaction. The store therefore has a

transaction manager which also provides undo and redo of transactions. Every model

4 DSL Tools in Detail Felix Riegger

Page | 25

element has a reference to the store it belongs to. All manipulations can also be achieved

programmatically by using the store’s API.

4.2.5 Creation, Deletion and Updating

When a new element is created and added to the store, it must be set into relation with

the other elements. As mentioned in 4.2.1, every element needs to be connected to a

parent through an embedded relationship and there must be a path back to the root

element.

Elements can be created either programmatically or by the user. To enable the user to

add elements to the model and the diagram, tools are added to the Toolbox of Visual

Studio. There are two kinds of tools, namely element tools, which add elements and

connection tools to add links between elements. Tools are created through the DSL

Explorer. Element tools are linked to the domain class they create, while connection tools

are linked to a connection builder.

The element merge directive (EMD) decides how a newly created element has to be

embedded into the model. The EMD is defined for the parent element. That means, if the

user uses an element tool and drags it over the diagram in order to create a new

element, the parent would be the class which is mapped to the diagram. The EMD of this

class decides what links have to be built between the new element and the diagram class.

By default an embedded relationship is created, indicating that the parent element owns

the new element, but this behavior can be changed. EMDs are also responsible, if the

parent has to be changed, for example when an element is moved from one swimlane to

another.

When a connection tool is used to create a new connection, it uses a connection builder.

The connection builder knows which elements may be connected and what links have to

be created in order to connect these elements. To describe this, link directives are used

or, alternatively, the connection builder can be completely customized.

4 DSL Tools in Detail Felix Riegger

Page | 26

Element and connection tools handle only the creation of domain classes and

relationships. The connectors and shapes are created automatically by the connector and

shape mappings.

To describe, what happens when an element is deleted, delete propagation rules are

used. The default rules are:

 If an embedding link or an element are deleted, the complete embedded sub-

tree is deleted as well

 Deleting an embedding child will not delete the parent

 Deleting of reference links will keep both role players

This behavior can be changed or additional rules can be added. Delete propagation can

be set for domain classes and specifies to which links the deletion is propagated. Delete

behavior is set for the domain model only. It is only intended to reflect the model, so it

does not make sense for the presentation. Further customization is possible by overriding

parts of the DeleteClosure class.

4.2.6 Serialization

When a DSL is defined, a serializer is generated automatically. It serializes the domain

model and the diagram to XML and introduces a domain-specific schema. The

serialization can be customized in several ways, but since the default behavior is not

changed in the scope of this work, serialization will not be explained in further detail.

4.2.7 Validation

There are two categories of constraints: hard and soft. Hard constraints cannot be

violated, as the user cannot set such values. Soft constraints can be violated at some

points in time, but not in others.

The DSL Tools offer validation methods to test soft constraints. The validation methods

can be applied to any class that is based on ModelElement. In case a class should

4 DSL Tools in Detail Felix Riegger

Page | 27

participate in validation, a partial class has to be created and attributed with the

ValidationState attribute setting it to ValidationState.Enabled. Every validation method in

that class has to be attributed with the ValidationMethod attribute which takes a

ValidationCategory as parameter. ValidationCategory describes when the validation

should happen. Standard values are Load, Menu, Open and Save, but custom categories

can be introduced. Load, Open and Save happen whenever the corresponding operation

is performed on the diagram, whereas Menu happens when the context menu is opened.

Each category has to be activated in the DSL Explorer in the validation properties of the

editor. Every validation method has a ValidationContext as parameter. The context allows

logging of errors, warnings and messages, which are added to the error list of Visual

Studio.

Hard constraints can be introduced by customizing the DSL, for example introducing a

special connection builder that allows only the connection of certain elements. Some are

already enforced as default behavior of a DSL, which are the maximum multiplicity of

roles, types of role players, and types of property values.

4.3 The Structure of a DSL Tools Project

A DSL Tools solution in Visual Studio contains two projects, Dsl and DslPackage. The Dsl

project provides code defining the DSL, its behavior in the designer, how it is serialized,

and how transformations work. It therefore contains a serializer/de-serializer for reading

and writing instances of the DSL from or to files, class definitions for processing the DSL

and its diagrams in an application, a directive processor enabling the user to write text

templates that will process the DSL, and essential components of the designer that edits

the DSL in Visual Studio. The DslPackage project contains code that couples the DSL with

the Visual Studio environment, which means it contains everything that is needed to

extend the Visual Studio environment with a VS Package providing the DSL. This includes

document handling code that recognizes the DSL’s file extension and opens the

appropriate designer, menu commands associated with the DSL’s designer and item

template files from which new instances of the DSL can be created. In both projects a

folder named GeneratedCode can be found, in which most of the files reside. These files

4 DSL Tools in Detail Felix Riegger

Page | 28

are generated from the DslDefinition.dsl in the Dsl project. As mentioned before the DSL

Tools themselves are a domain-specific language and offer a graphical designer to create

new DSLs. This information is stored in the mentioned DslDefinition.dsl file. The

GeneratedCode folders contain .tt files (text template) and the generated files. These .tt

files contain include directives which reference the DSL definition file as well as a

template for the file and a processor which are shipped with the DSL Tools. When the

templates are transformed, the processor generates an output file from the information

in the definition file and the referenced template. The following snippet shows the

content of the Shapes.tt which is responsible for the generation of the class Shapes.cs.

<#@ Dsl processor="DslDirectiveProcessor"
 requires="fileName='..\DslDefinition.dsl'" #>
<#@ include file="Dsl\Shapes.tt" #>

The architecture of the DSL Tools has three layers. First common features of all DSLs that

can be created with the DSL Tools are contained in the Compiled Framework layer. Next

the generated code, which puts everything defined in the DSL definition file into code.

Finally, a layer of hand crafted code, which allows further customization of the generated

code. See Figure 4-6.

Figure 4-6: Architecture of the DSL Tools [32]

4 DSL Tools in Detail Felix Riegger

Page | 29

4.4 Customization

It makes no sense to edit the generated class files to introduce further customization.

After changes have been made to the DSL definition file, the text template files have to

be transformed to propagate the changes. The generated files would be overwritten, so

the customizations would be lost. .NET languages offer the concept of partial classes,

which means a class can be distributed over multiple files by using the partial keyword.

The DSL Tools use this concept to offer customization. All the generated files are partial,

so methods can be added and methods from the framework can be overridden.

Additionally, the DSL Tools support the design pattern known as the generation gap [33].

It is a common pattern that allows simple integration of generated and hand-crafted

code and is based on double-derived classes.

Figure 4-7: Use of the generation gap pattern to introduce customizations [32]

4 DSL Tools in Detail Felix Riegger

Page | 30

The DSL Tools offer double derived classes to use this pattern. It is used by APLD to

introduce customization. It is recommended that hand-crafted classes are put in the

folder CustomCode.

4.5 Summary

This chapter explained the basics of the DSL Tools in more detail. The key elements of a

DSL defined using the DSL Tools were identified and described. Additionally, the structure

of a DSL Tools project was discussed as well as how customization can be introduced.

5 Test-based Feature Management Felix Riegger

Page | 31

5 Test-based Feature Management

This chapter looks into how the goal of this work can be achieved by meeting the given

prerequisites and developing a corresponding concept.

5.1 Prerequisites

As of the time of writing current projects of the ASE Group at the University of Calgary

are based on Java or C#. More and more projects are related to digital tables, where the

.NET framework and its graphical subsystem Windows Presentation Foundation (WPF),

have shown to have advantages over Java technology. C# is the .NET language of choice

and Visual Studio the IDE used by the ASE’s developers. As more and more projects are

based on C#, the group is especially interested in projects that intend to offer tool

support for agile development practices in the form of extensions which are available for

Visual Studio.

In the very near future Microsoft will release version 4.0 of its .Net framework as well as

Visual Studio 2010 which will support the new version to the general public. Beta 1 of

both products was released on May 18th 2009, Beta 2 on October 23rd 2009 and the

release candidate on Feb 10th 2010. VS2010 introduces a new method of deployment:

VSIX container files.

This work introduces a test-based feature management and links feature modeling to

acceptance tests. GreenPepper is the acceptance testing framework mainly used by the

ASE Group. GreenPepe 2010 is an extension for the current version of Visual Studio 2010

that allows recognition and execution of GreenPepper based acceptance tests in the

Visual Studio Environment. It is reasonable to extend GreenPepe 2010 in such a way that

it offers its acceptance test handling capabilities to other extensions in the Visual Studio

environment.

It was required that new extensions work in Visual Studio 2010. There are two ways to

achieve this: develop the new extension with Visual Studio 2008 and to make sure it runs

5 Test-based Feature Management Felix Riegger

Page | 32

in Visual Studio 2010 afterwards, or develop in Visual Studio 2010 from the beginning.

While developing extensions the developer can debug them in an experimental instance

of Visual Studio. This instance is the same version as the version in which the extension is

developed. For that reason, if the extension has to run in VS2010, it makes sense to

develop with VS2010 in order to use this debugging functionality. Also, new features like

deployment with VSIX files or extensibility via MEF are only available in the new version.

The new extension has to communicate with GreenPepe 2010, which was developed with

VS2010. It is easier to implement that inter-extension communication if both are

developed in the same version of VS. It was decided to develop the extension with the

beta versions and to take the risk of stability problems, because of all these aspects. It

also implies a migration to the most current testing version, if released.

The technical prerequisites summarized:

 C# as implementation language

 The resulting tool has to be a Visual Studio 2010 Plug-in

 Development with the Beta versions of VS2010

5.2 Necessary Functionality

In order to realize a test-based feature management, the following key characteristics

can be identified as necessary functionality. A feature model is needed that can describe

a product line as system with components, features, sub-features, and constraints for

features and sub-features. Additionally, the feature model has to include tests and

relations between features/sub-features and those tests. A user interface is needed that

allows the creation and manipulation of a feature model and the creation of

configurations. The feature model has to be persisted. The tests of the model have to be

mapped to real acceptance tests in the project.

To reach these goals in the given timeframe the following solutions are a possible

approach. First, the persistence should be realized with XML. Serialization to XML has

some benefits. The persisted model exists in a human-readable form. Moreover, it is

5 Test-based Feature Management Felix Riegger

Page | 33

wide spread and there are several libraries that offer XML serialization. Second, a dialog

based user interface in the form of wizards to create and edit the feature model and

create configurations is needed. Third, an object model is required that represents the

feature model in memory. A first draft for this model can be seen in Figure 5-1. There is

one system which can contain components. Each component can consist of several

features. These may have sub-features. A sub-feature can be default or optional and sub-

features can exclude each other mutually. This information is stored in a constraint class.

Each sub-feature can be related to an arbitrary number of tests and each test can be

related to any number of sub-features.

Figure 5-1: A first draft of an object model for the test-based feature model

Fourth, mapping the model elements that represent acceptance tests to real tests in the

project requires identification of and access to test files in the solution. Additionally, the

execution of test files and showing the result can give feedback, if the features based on

those tests are ready to be built. With GreenPepe 2010 the group already has a tool at

hand that implements that functionality. It is therefore reasonable to extend it in that

5 Test-based Feature Management Felix Riegger

Page | 34

way, so it provides access to acceptance tests in the solution and the execution of those

to other extensions in the Visual Studio Environment.

5.3 Investigating existing Tools

Feature modeling is not a new thing. Many tools exist that support the creation, editing

and/or analysis of feature models. What is new, though, is the approach to combine

feature models and acceptance tests. To implement this approach it should be

considered to extend an existing feature modeling tool instead of building everything

from scratch. There are a handful of criteria a potential tool has to meet. First, the

extension might imply the manipulation of the original source code, therefore the tool

has to be published under an open source license and the source code must be available.

Second, as mentioned before, it is required by the ASE Group that new projects that offer

tool support have to be implemented with C#. Hence, if another tool is supposed to be

extended it needs to be written in C# as well. Third, while speaking of tool support, tools

that are intended to support developers in their work have to integrate well into the

workflow. The IDE used by the development team is the central element in that

workflow, therefore, it was also required that the new tool has to integrate with Visual

Studio as the IDE of choice. After some research it was clear that there are many open

source projects that realize feature modeling in all variations of complexity, but most of

them are written in Java and are plug-ins for the Java IDE Eclipse, which eliminates them

from consideration.

Table 5-1 shows an overview of some feature modeling tools. Regarding C# and Visual

Studio, there are just two tools, which come into consideration: Feature Model Tool and

Feature Model DSL.

5 Test-based Feature Management Felix Riegger

Page | 35

Table 5-1: Overview of existing feature modeling tools

Tool name
Open

source
Language IDE Homepage

EMF Eclipse Java Eclipse [34]

Feature IDE Java Eclipse [35]

Feature Model DSL C# VS 2008 [7]

Feature Model Plugin Java Eclipse [36]

Feature Model Tool ? C# VS 2008 [37]

Hydra Java Eclipse [38]

Pure::variants Java Eclipse [39]

xFeature Java Eclipse [40]

Both, Feature Model Tool and Feature Model DSL, were created with the DSL Tools from

Microsoft and the Visual Studio SDK 2008. They work with Visual Studio 2008. The

homepage of Feature Model Tool does not state a license and the source code is not

available. Therefore only Feature Model DSL is left as potential candidate.

Feature Model DSL was published under the Microsoft Public License, which is an open

source license. It offers feature modeling integrated in the Visual Studio environment

including visual designer to create and modify models. Feature models are serialized and

persisted to XML. It also offers a configuration tool window that allows the creation of

configurations based on the feature model and offers the implementation and launching

of custom actions based on the configuration.

Since the source code is available, the tool can be modified and extended. Some

functionality identified as necessary in chapter 5.2 is already provided by FMD. Most

importantly, it includes a complete domain-specific language for feature modeling based

on the DSL Tools from Microsoft and thus provides a graphical designer and notation to

create and modify a feature model. Figure 5-2 shows the underlying domain model of

FMD.

5 Test-based Feature Management Felix Riegger

Page | 36

Figure 5-2: The domain model of FMD

Although this domain model varies from the model suggested in chapter 5.2, it is a

suitable model to express features for software product lines. The system and

components proposed in that model can be seen as features themselves, whereupon the

system would be a mandatory feature and the components can be mandatory or

optional. The model in FMD allows a more flexible design.

Of course, the provided domain model does not comprise tests. Introducing tests affects

all parts of the extension, including the underlying domain model, the graphical notation,

tool windows and the configuration window. The benefit of extending Feature Model DSL

is a completely integrated graphical feature modeling experience including test

representation and mapping. This is achievable in the given timeframe, so it was decided

to proceed with this approach.

5 Test-based Feature Management Felix Riegger

Page | 37

Another required step is the migration of FMDSL into a Visual Studio 2010 DSL Tools

project, before it can be extended.

The decision to base the modeling on FMD does not affect the extension of GreenPepe

2010 to provide the functionality described in chapter 5.2.

Extending FMD leads to the following goals. FMD has to be migrated to be a Visual Studio

2010 DSL project. It has to be extended to introduce acceptance tests into the feature

model and into the other program parts accordingly. GreenPepe2010 has to be extended

to provide access to the query of tests in the solution as well as execution of tests and

result presentation to other extension in the Visual Studio environment. A mapping

between tests in the model and tests in the solution has to be realized. This can be

achieved by consuming the extension points introduced to GreenPepe 2010.

Figure 5-3 illustrates the scope of this work and how Feature Model DSL and GreenPepe

2010 are extended and integrated.

GreenPepe 2010 Agile Product Liner DSL

Scope

of

work

- Modeling
extensions

- Test mapping
- Configuration tool

window extensions

- Export test
execution, test
results and test
recognition

Feature Model DSL GreenPepe 2010
core

Inter plug-in
communication

Figure 5-3: Scope of this work

5 Test-based Feature Management Felix Riegger

Page | 38

5.4 Modeling Extensions

The DSL of FMD has to be extended with the following elements:

 Tests

A test in the feature model represents an acceptance test.

 Relationship between features and tests

Features can be linked to tests.

 Exclude relationship between features

FMD offers a Constrains relationship between features. So far the only constraint

that can be chosen is require. This relationship also has to offer an exclude constraint.

How these extensions are implemented is described in more detail in 6.3.

5.5 Mapping between Tests and Features

A mapping between acceptance tests and features can be realized with different levels of

granularity. When we look at how test artifacts can be mapped to features it is important

how acceptance tests are organized. This of course depends on the used testing

framework. Executable specifications based on GreenPepper are stored in HTML pages.

Each page can consist of several tests (which can be defined in tables or lists). The test

pages are usually organized in a test project. This is illustrated in Figure 5-4. Three levels

of granularity can be identified, which are described in the following.

Usually there are not many test projects. Most of the time there is just one per system

under test. Although it might happen in theory that it would make sense to map a feature

to a complete test project, this is very improbable.

5 Test-based Feature Management Felix Riegger

Page | 39

Ghanam and Maurer propose to map features to tests on the test page level, which

means tests are mapped to test tables inside a test page [5]. Although their ideas are

based on the FIT framework and FitNesse, his approach is relevant as FIT and

GreenPepper have many similarities and the table structure is almost identical. This

approach has some advantages. All tests for a single feature can be organized in a single

test page. In this case, variability moves to the test page level. Test tables can be

specified as default, thus the feature would make no sense without the functionality

tested at this point. Other test tables can be specified as optional. The tested

functionality can be seen as an add-on. However, this approach has two disadvantages.

To introduce variability on the test page level, the acceptance testing frameworks (in this

case FIT or GreenPepper) have to realize the concepts of variability on the test page level

by supporting keywords like default and optional. In order to map features to single test

tables, test page files have to be parsed, and an object model representing all artifacts of

a test page has to be created. This has to include test tables, test lists and text and make

them accessible at runtime. That means a parser is needed but implementing such a

parser takes too much time considering the limited timeframe of this work.

The third option would be to map features to test files, thus test pages. Instead of having

tables that describe a certain part of functionality a whole test page is used for the same

Feature

Test Project Test Page (html file)

Test (table, list)
1 n

1

Fixture System under test unit n n

Test Artifact

n n

n

n

1

Figure 5-4: An object model for GreenPepper based test artifacts

5 Test-based Feature Management Felix Riegger

Page | 40

thing. This would mean a whole test page can be optional or default. A test page can, of

course, include just a single test table or list. Consequently, if we consider having just one

table per test page, the mapping to test pages and the mapping to single tables can mean

the same thing. See Figure 5-5.

To avoid the need of changes in the acceptance test framework itself the variability can

be moved to the feature model. That means that, instead of introducing new keywords

to the acceptance testing framework, the needed information is specified in the features

that are mapped to the tests, thus in the feature model.

Of course this approach has limitations. The user has to spread related tables over

different test pages, although it might be appropriate to group them in the same test

page in terms of semantics. On the other hand, using this approach, no information

about the content of a test page is needed. Hence, there is no need for a parser. Features

can be mapped to files. Additionally, the acceptance testing framework can stay as-is and

no customizations are needed, which is an advantage especially when new versions of

the testing framework are released.

Test page 1

Test page 2

Test page 1

Feature 1

Feature 1

Test table A

Test table B

Test table A

Test table B

Figure 5-5: The two mappings express the same thing

5 Test-based Feature Management Felix Riegger

Page | 41

Considering the limited timeframe of this work, it was decided to take the third

approach. A feature can be mapped to several test pages which are in fact several HTML

files. Like described in Figure 5-4 the mapping between tests and features is n-to-n.

To implement this mapping in the graphical feature model, a 2-layered mapping is

needed. One layer maps features to tests as part of the diagram. This mapping would be

n-to-n. The second layer maps tests in the feature model to real acceptance test files in

the file system. A test in the model can either be mapped to a file or not, thus the

relation is 1-to-0..1. This is illustrated in Figure 5-6.

5.6 Collapsing and Expanding of Test Nodes

A DSL developed with the DSL Tools offer graphical modeling in the form of diagrams. A

system can consist of several features. Each of these can be mapped to several tests. The

space a diagram can take on a screen is very limited, so if there are too many items in the

diagram one can lose track quite easily. In order to keep the user from being

overwhelmed, hiding of tests as well as collapsing and expanding of certain tests would

be helpful. First of all, to offer collapsing and expanding, the user needs something to

perform such actions. As the user interacts with a diagram by clicking on a specific area ,

this would be an intuitive approach. A good solution for that would be to use ports,

Diagram

Feature

File system

Test

n

n

Test file 1 0..1

Figure 5-6: two-layered mapping between features and tests

5 Test-based Feature Management Felix Riegger

Page | 42

which are described in 4.2.2. Ports are special shapes that are used on the outline of

other shapes as end point of incoming or outgoing connections. In order to trigger

collapsing and expanding, these ports can be made clickable. As the mapping between

tests is n-to-n, some questions emerge on how collapsing and expanding can be realized.

One question is how many ports a test and a feature shape should have. A possible

approach can be seen in Figure 5-7. A feature has a port for each connected test.

Collapsing or expanding would be for each connection. It would be very unhandy to

collapse and expand every single connection. Besides there would still be the question

what happens when one of the connections to Test 2 has to be collapsed.

As the modeling process is feature-centered another idea would be, that all test

connections a feature has must end in a single port on the feature shape. See Figure 5-8.

The user can show and hide all tests that are connected to and hence relevant for this

feature by clicking the one existing port. But there is still the question of what happens

with Test 2, which is connected to two features, if the port of one of these features is

clicked. If only the connection is hidden, there is no graphical hint how many connections

this test actually has.

Click to
collapse

Test 1 Test 3 Test 2

Feature 1 Feature 2 Feature 3

Figure 5-7: Collapsing with n ports per feature

5 Test-based Feature Management Felix Riegger

Page | 43

In order to solve this issue, one solution would be to introduce an extra test shape for

each connection a test has. That means that for every connection between a feature and

a test a separate test shape is introduced. The feature has its own test shape. To indicate

that different shapes are actually representing the same test, a new relation is

introduced (Figure 5-9). If the port of a feature is clicked, all connected tests are hidden,

while all tests connected to other features are still visible.

To indicate that a test is actually connected to more than one feature, ports are also

introduced for tests. This can be seen in Figure 5-10. This approach has two crucial

disadvantages. The connections between test shapes presenting the same test grow

exponentially. The original goal, to improve the overview, would not be reached and

even worse, clarity would even decrease with every other connection a test has. Another,

even more important issue is that the meaning of the diagram would be destroyed. A

Click to
collapse

Test 1 Test 3 Test 2

Feature 1 Feature 2 Feature 3

Figure 5-8: Collapsing with one single port per feature

Click to
collapse

Test 1 Test 2

Feature 1 Feature 2

Test 2

Indicates the two
tests represent
the same test

Figure 5-9: More than one shape representing the same acceptance test

5 Test-based Feature Management Felix Riegger

Page | 44

user would expect that there is a one-to-one relation between an actual test and the

shape by which it is presented. Thus, two test shapes stand for two different tests.

To avoid this, another approach can be considered. This time ports are used on both ends

as connection end points for connections between features and test shapes. If a feature

is connected to one or more tests it has a port that enables collapsing and expanding. A

test shape has a port for each connection to a feature. Collapsing hides all connections.

Test shapes only get hidden if the last visible connection has to be hidden. An example

can be seen in Figure 5-11. After collapsing the children of Feature 1, Test 1 is hidden,

because it is only connected to Feature 1, whereas Test 2 is still visible because of its

connection to Feature 2. The port on the test shape of Test 2, that has no outgoing

connection shows, that the test is connected to another feature. This last approach is

used for APLD.

Click to
expand

Test 2

Feature 2 Feature 1

Indicating another
shape representing
test 2

Click to
expand

Test 3 Test 2

Feature 2 Feature 3 Feature 1

Indicating a

connection to

another feature

Figure 5-11: Possible Solution for Collapsing

Figure 5-10: After collapsing

5 Test-based Feature Management Felix Riegger

Page | 45

Instead of collapsing tests individually it should also be possible to hide all at once. To

realize this, Hide all tests and Show all tests commands can be added to the context

menu of the diagram.

5.7 Summary

In this chapter a plan to realize a test-based feature management was developed,

following the given prerequisites. A set of required functionalities was identified whose

main elements are a feature model including tests, mapping to existing test files and the

execution of those as well as a configuration tool that allows the selection of features to

create a configuration. Existing feature modeling tools were investigated, the possible

extension of those was evaluated and as a result it was decided to extend FMD. It was

investigated how the test mapping can be realized and it was decided to map to test files.

A collapsing and expanding strategy was developed to keep the overview in the model. It

was elaborated what elements have to be added to the DSL provided by FMD. In order to

query and execute tests it was planned to utilize GP2010.

6 Implementation Felix Riegger

Page | 46

6 Implementation

After a concept has been developed this chapter shows the key development steps to

realize this concept. As mentioned in the previous chapter APLD is based on FMD. First,

FMD has to be migrated to be a VS2010 project. Its DSL is then extended to provide test-

based feature modeling. The resulting DSL Tool including the extended DSL is called

APLD. GreenPepe2010 is extended to offer the query of tests in the solution and the

execution of tests via MEF. APLD uses the functionality offered by GreenPepe 2010 to

realize test mapping, test execution from the model diagram as well as the configuration

tool window and representing test results in both, the diagram and the tool window.

6.1 The Structure of APLD

APLD is a DSL Tools project and therefore adheres to the structure described in chapter

4.3. In APLD many customizations are introduced and are located in the CustomCode

folders of the two projects Dsl and DslPackage. All generated code is in the same

namespace, which is predefined by the DSL Tools and cannot be changed. Therefore, the

namespace of FMD was renamed to UofFCASE.AgileProductLinerDSL. As described in

chapter 4.4 the concept of partial classes is used to customize the generated code, which

implies that all classes are in the same namespace. To structure the project, partial

classes are further spread over different folders, which describe the included

functionality by name. All code that describes functionality that does not fit in a special

description is located in the folder CustomCode directly.

Dsl project

 Bounding

Custom code that ensures the connection points on ports

 CollapsingExpanding

Code that is related to the collapsing and expanding of tests

6 Implementation Felix Riegger

Page | 47

 ConnectionBuilders

Custom connection builders that describe how connections are created in the

diagram

 Decorators

Custom decorators

 Deletion

Custom code which is related to deletion

 DiagramColoring

Code related to the custom coloring of model elements

 Util

Helper classes related to the DSL itself

 Validation

Custom validation code

DslPackage project

 Commands

Custom commands in the context menu of the diagram are defined here

 Confeaturator

All code that is related to the configuration tool window

 Handler

Classes that forward actions to the DSL or to GreenPepe 2010

 Mapping

Code that is related to the mapping of test files

 Util

Helper classes related to the Visual Studio environment

6 Implementation Felix Riegger

Page | 48

6.2 Migration to Visual Studio 2010

Before Feature Model DSL can be extended it has to be migrated to be a Visual Studio

2010 DSL project. The Visual Studio 2010 DSL SDK includes a migration tool to migrate

existing Visual Studio 2008 DSL projects to work with the new version of Visual Studio.

Figure 6-1: VS 2010 DSL Tools migration dialog

The tool is a separate program which cannot be executed from within the Visual Studio

IDE. After the migration tool has completed its work only minor changes have to be made

in order to get the plug-in working in Visual Studio 2010. The setup project had to be

removed as the deployment has changed to the new VSIX container file. This is created

automatically at compile time.

6 Implementation Felix Riegger

Page | 49

Figure 6-2: Migration completed

6.3 Extending the DSL of Feature Model DSL

6.3.1 Introducing Tests

The first step to extend FMD is to extend its domain model as it is the core of the DSL. So

far it consists of the following domain classes (also see Figure 5-2):

 FeatureModel

 FeatureModelElement

o Feature

o Alternative

Feature and Alternative are derived from FeatureModelElement.

6 Implementation Felix Riegger

Page | 50

And the domain model consists of the following domain relationships:

 FeatureModelHasFeatureModelElements

 FeatureModelElementReferencesSubFeatureModelElements

 Constrains (Requires only)

To introduce tests to the domain-specific language a new domain class called Test is

needed. As a test is not a feature model element, the new domain class Test is not

derived from the domain class FeatureModelElement.

The Test domain class firstly needs a property test name. To identify a test file

unambiguously in the solution the relative path to the test file and the unique project

name, to which the file belongs, are needed. Besides this information, it makes sense to

store if a test is actually mapped in a Boolean value. As APLD also allows test execution

from the model diagram, the result of the last test run needs to be stored. To do so an

enumeration TestResult is introduced containing the following literals:

 None

There is no test result stored for the test class, which means the test of the model is

not mapped to a test in the solution, the test was mapped but never executed from

the model or the test result was reset.

 Exception, Fail, Ignored, Successful

The execution of GreenPepper acceptance tests can have these four results.

The Test domain class and its domain properties can be seen in Figure 6-3.

Figure 6-3: Test domain class and its domain properties

6 Implementation Felix Riegger

Page | 51

For defining the visual appearance of a test in the model diagram a shape has to be

introduced that represents a test.

A geometry shape is the right choice. It is called TestShape. A geometry shape can also

have domain properties to store information needed for the visual representation.

Additionally it can have decorators. Like described in chapter 4.2.2, there are three types

of decorators. Text decorators add text, and icon decorators are used to put icons on a

connector or a shape. Text and icon decorators can be used on all kinds of connectors

and shapes. There is a special third decorator that is used to paint a collapsing/expanding

icon on shapes. It has a predefined icon and allows expanding and collapsing of

compartment shapes. TestShape has a text decorator to present the test name on the

shape. The IsCollapsed domain property is needed for collapsing/expanding (see chapter

6.3.6).

Figure 6-4: TestShape geometry shape and its domain properties and decorators

6.3.2 Ports Attached to Tests and Features

To realize the collapsing/expanding strategy designed in chapter 5.6, it is necessary to

attach ports to tests and features. As mentioned in 4.2.2, a port is a shape which, except

for being attached to the outline of a parent shape, is similar to a geometry shape. This

means a port has also be mapped to a domain class that describes the port in the model.

The port on a feature will serve as connection end point for connections to tests. As a

result its domain class is called TestPort and its shape, the port itself, is called

TestPortShape. Consequently, the domain class of ports attached to the outline of tests,

which serves as end points for connections to features, is called FeaturePort and the port

6 Implementation Felix Riegger

Page | 52

FeaturePortShape. Thus, the names of the ports are exactly the opposite of their parent

names. Figure 6-5 illustrates this.

Figure 6-5: The naming of ports on features and tests

To actually attach a port to a parent in the domain model, a domain relationship is

needed. A port cannot exist without its parent shape that is why it is necessary to use an

embedding relationship. As a port is directly attached to the outline of its parent this

relationship does not need to be visualized, thus there is no need to introduce a

connector and map it to the relationship. To relate the test port domain class to the

feature domain class the embedded relationship FeatureHasTestPort is introduced. As

defined in 5.6, a feature can either have no or one test port, therefore the multiplicity is

ZeroOne, whereas a test port can belong to a single feature, thus the multiplicity is One.

See Figure 6-6.

Figure 6-6: The FeatureHasTestPort domain relationship

The other introduced domain relationship is TestHasFeaturePorts. The name already

indicates a test can have any number of feature ports. That means the multiplicity is

ZeroMany. A feature port belongs to a single test. See Figure 6-7.

Feature Test

TestPort(Shape)

FeaturePort(Shape)

6 Implementation Felix Riegger

Page | 53

Figure 6-7: The TestHasFeaturePorts domain relationship

To present instances of TestPort and FeaturePort in the diagram, of course, ports are

used as shapes, which can be seen in Figure 6-8. The IsCollapsed domain property is

needed for collapsing/expanding (see chapter 6.3.6).

Figure 6-8: TestPortShape and FeaturePortShape

6.3.3 Introducing Relationship between Tests and Features

Because ports are introduced as connection endpoints (see 6.3.2), links between features

and tests have in fact to be between test ports and feature ports. Like defined in the

collapsing and expanding strategy in 5.6, links share a single test port, but every link has

its own feature port. This indicates a multiplicity of ZeroOne for test ports and ZeroMany

for feature ports. Tests and feature can exist in the model without being related to each

other. Because of that the appropriate relationship between them is a reference

relationship. Figure 6-9 shows the relationship how it is implemented in APLD.

6 Implementation Felix Riegger

Page | 54

Figure 6-9: The TestPortReferencesFeaturePorts relationship

To represent the relationship, a connector is needed. The connector is called

TestConnector. Figure 6-10 illustrates this. The IsCollapsed domain property is used for

collapsing/expanding (see chapter 6.3.6).

Figure 6-10: The connector to represent links between features and tests

6.3.4 Constrains Relationship

FMD includes a relationship called Constrains. Both roleplayers of this relationship are of

type Feature. That means one feature constrains another feature. In FMD the

relationship has a domain property of type string, which is the basis for the text

decorator of the relationship. Its default value is Requires. There is no validation

implemented except for the hard coded constraint that the relationship can only have

features as source and target role.

APLD introduces an Excludes constraint which is based on the Constrains relationship.

The DSL Tools offer a special enumeration domain type named Domain Enumeration. A

new Domain Enumeration called Constraint which includes the literals Requires and

Excludes. A new domain property called ConstraintType which is of this enumeration type

is added to the Constrains relationship. The text decorator of this relationship is

6 Implementation Felix Riegger

Page | 55

connected to the new domain property. The Constrains relationship is illustrated in

Figure 6-11.

Figure 6-11: Constrains relationship with ConstraintType domain property

After a Constrains relationship has been placed the type can be set in its properties (see

Figure 6-12).

Figure 6-12: Constrains relationship properties

Validation

As mentioned before the Constrains relationship in FMD does not include any kind of

validation. There are two areas where the validation of constraints applies, firstly in the

model itself, which specifies which elements can constrain other elements and secondly

in the configuration where it has to be determined if a certain combination of features

violates constraints.

The Exclude and the Require constraint do not make sense between features of the same

branch. That a child element requires its parent is implicit, while a parent that requires its

child is not possible. Similarly, a child that excludes its parent is not possible, same for a

6 Implementation Felix Riegger

Page | 56

parent that excludes its child. Therefore custom validation methods are introduced that

warn the user if there are constraints within the same branch of the model before the

diagram is saved. They are located in the Customcode\Validation folder in the Dsl project.

6.3.5 Toolbox

As described in chapter 4.2.5 to allow the user to create elements and connections tools

are required. These tools are linked to the diagram editor of the created DSL and show up

in the Toolbox of Visual Studio when a diagram is opened. Figure 6-13 shows the tools of

APLD. Two of the tools are introduced by this work, whereas the rest were already

supported by FMD. The two added tools are the element tool called Test, which is used

to add new tests to the feature model and the connection tool ConnectTest, which is

responsible for adding connections between features and tests.

Figure 6-13: The toolbox of Agile Product Liner DSL

Tools are created in the DSL Explorer. In order to define a new element tool, the element

class, a tool name and a caption have to be specified. Additionally, a tooltip, an icon,

notes, and a help keyword can be set. Element classes know what has to be done in order

to be created, therefore no special builder has to be specified. Figure 6-14 shows the DSL

Explorer and the properties of the Test element tool.

6 Implementation Felix Riegger

Page | 57

Figure 6-14: Tools in the DSL Explorer and the properties of the element tool Test

Chapter 4.2.5 explained that connection tools use a connection builder to create

connections. The ConnectTest connection tool uses the TestConnectBuilder class to create

connections between features and tests (see Figure 6-15). A connection builder has to

provide the methods CanAcceptSource(…), CanAcceptSourceAndTarget(…) and

Connect(…). The first two methods check if source and target element are valid for the

connection to be created. The last method performs the actual connection. The

TestConnectionBuilder allows a feature as source and a test as target or the other way

round. The built connection always has the test as target and the feature as source. The

connection builder is also responsible for building FeaturePorts and TestPorts as needed

(see 6.3.2) including the embedded relationships FeatureHasTestPort and

TestHasFeaturePorts.

6 Implementation Felix Riegger

Page | 58

Figure 6-15: The properties of the ConnectTest tool of APLD

6.3.6 Collapsing and Expanding of Test Nodes

To implement the collapsing and expanding strategy developed in 5.6, several steps are

necessary. The needed ports and the according domain classes have been introduced in

chapter 6.3.2. Collapsing elements affects only the presentation while the domain model

has to stay unchanged. Consequently only the following classes which are responsible for

presentation are involved: TestPortShape, TestConnector and TestShape. In theory also

FeaturePortShape has to be involved, as it also has to be hidden when collapsed. But as it

is a child of the TestShape on whose outline it resides, its visibility is determined by that

parent automatically.

Feature Test

TestPortShape

FeaturePortShape

TestConnector

TestShape

Figure 6-16: The four presentation elements involved in collapsing expanding

6 Implementation Felix Riegger

Page | 59

Each of the three presentation elements has a domain property (see 4.2.3) of the type

Boolean called IsCollapsed to indicate if it should be visible or not. The kind of the two

IsCollapsed domain properties of TestConnector and TestShape is set to Calculated. Both

return the value that is returned by the IsCollapsed domain property of TestPortShape,

whose kind is set to Normal.

TestPortShape has a custom decorator called CustomExpCollapseField. It is derived from

the standard text decorator class TextField and overrides the method

GetDisplayText(ShapeElement parentShape). It returns a “+” or a “-“ sign depending on

the IsCollapsed domain property of TestPortShape. In case TestPortShape is collapsed “+”

is returned and “-“ otherwise.

When a TestPortShape is clicked the value of its IsCollapsed property is inverted which

causes the custom decorator to show the opposite sign. Additionally, an event is raised,

called CollapsingChanged. All instances of TestConnector and TestShape that are

connected to the instance of TestPortShape are registered for that event. They update

their visibility according to their calculated IsCollapsed property. If it is set to true, they

are hidden and visible otherwise.

Figure 6-17: Expanding and Collapsing in APLD

6 Implementation Felix Riegger

Page | 60

Figure 6-17 shows how collapsing and expanding looks in APLD. The features Devices and

ContainerItems have their children collapsed. One of its children is the test

ConditionsTest. The two free ports indicate the connections to other features (in this case

to the two above mentioned features). The collapsing of the tests under Actions would

lead to ConditionsTest being hidden.

APLD additionally offers a hover effect. If the mouse enters a test shape all hidden

connection will be shown and hidden again as soon as the mouse leaves the test shape

area. If the mouse enters a port, only that connection gets visible.

6.3.7 Testing of the DSL

In order to test the DSL with automated tests a model has to be created

programmatically. For this purpose a helper class called ModelHelper is used. The class

creates an in-memory store (see chapter 4.2.4 The In-Memory Store) for the DSL. An

example model is created by adding all needed model elements to the store. This

includes domain classes, domain relationships between those classes, shape and

connectors and shape and connecter maps. As explained in chapter 4.2.4 also the

presentation elements are model elements in the store. Every model element instance is

kept in a dictionary (a map collection type in C#) in the helper class for easy access. The

tests get the model from the helper class and perform the tested functionality in the

store.

The model created by the model helper is illustrated in Figure 6-18. The diagram shows

the names of the elements in the dictionary used by the helper class. The test model

currently does not include the Constrains relationship.

6 Implementation Felix Riegger

Page | 61

6.4 Adding Commands to the Diagram Context Menu

In APLD many actions can be triggered from the diagram. To add new commands to the

context menu of the DSL designer several steps are needed. The commands as well as the

symbols have to be added to the Commands.vsct file in the DslPackage project. Then the

command has to be added to the AgileProductLinerDSLCommandSet.cs class. Additionally

two event handlers are needed for each command. A handler is responsible for checking

if the command is applicable for the current selection, thus if the command should be

visible and active in the context menu. It is recommended that this handler is called

OnStatus<commandName>, whereas commandName stands for the actual name of the

command. The second handler is responsible for performing the command and is

recommended to be called OnMenu<commandName>.

feature

feature4 feature2 feature3

test test3 test2

conCon
conCon3

conCon2

testPort testPort2

featurePort

testPort3

featurePort3
featurePort2

featurePort4

testCon3
testCon4

testCon2
testCon

Figure 6-18: The feature model created by the model helper

6 Implementation Felix Riegger

Page | 62

The following commands were introduced in the context of this work:

 Map to acceptance test in Solution

The command is visible if a single test is selected in the model. It opens the

mapping dialog. (See chapter 6.6.1)

 Unmap acceptance test

The command is visible if a single mapped test is select. It sets the test to be

unmapped. (See chapter 6.6.1)

 Import all unmapped acceptance test

The command is always visible. It imports all tests that are not mapped yet into

the diagram, thus it creates new tests and maps them immediately. (See 6.6.1)

 Run acceptance test

The command is visible if a single mapped test is selected. It executes the

mapped acceptance test. (See chapter 6.6.2)

 Run all acceptance tests under this node

The command is visible if a single feature model element is selected, thus a

feature or an alternative. (See chapter 6.6.2)

 Reset all test results

The command is always visible. It resets all test results by setting the test result

domain property to none, which results in a blue color of the test shape. (See

chapter 6.6.2)

 Show all tests

The command is always visible. It shows all test shapes, thus it expands all tests

that are connected to features and makes sure that all other tests are visible as

well. (See chapter 6.3.6)

 Hide all tests

The command is always visible. It collapses all tests that are linked to features

and hides all other test shapes. (See chapter 6.3.6)

6 Implementation Felix Riegger

Page | 63

6.5 Providing Extensibility in GreenPepe 2010

With the .NET Framework 4.0 a new library is introduced called Managed Extensibility

Framework (MEF). Visual Studio 2010 introduces MEF as a new way to extend the IDE

and already offers several extension points based on MEF, mainly for the editor. Also the

new DSL Tools offer model extensions via MEF.

6.5.1 Managed Extensibility Framework

The Managed Extensibility Framework (MEF) is a framework developed by Microsoft that

simplifies the creation of extensible applications, offering discovery and composition

capabilities [41]. It provides a standard way for applications to expose features and

consume external extensions. It offers discovery approaches to locate and load available

extensions. Moreover, it supports tagging extensions with additional metadata.

Figure 6-19: The concept of MEF [41]

6 Implementation Felix Riegger

Page | 64

The core components of MEF consist of a catalog and a composition container. The

catalog offers discovery and the container coordinates creation and satisfies

dependencies. To export or import services MEF introduces composable parts. These are

attributed to declare exports and imports. Composable part can be added to a container

explicitly or are discovered through the use of catalogs. They depend on contracts which

are string identifiers. The container uses the contract information as well as the metadata

to match up imports to exports.

Visual Studio has its own implementation of a composition container which derives from

the MEF composition container. Additionally it has its own export and catalog provider.

Visual Studio scans certain directories for assemblies that are MEF Components and

composes them. The directories are:

 %LocalAppData%\Microsoft\VisualStudio\10.0Exp\Extensions

 %VS10_Install_Dir%\Common7\IDE\Extensions

 %VS10_Install_Dir%\Common7\IDE\CommonExtensions

6.5.2 Exporting an Interface from GreenPepe 2010

In order to export functionality to the Visual Studio environment via MEF several steps

are needed.

Firstly, GreenPepe2010 has to declare in its manifest, that it contains a MEF Component.

To do so, the source.extension.vsixmanifest file has to be edited and the GreenPepe2010

project has to be added as MEF Component.

6 Implementation Felix Riegger

Page | 65

Figure 6-20: Add GP2010 as MEF Component

The next step is to define a composable part. This happens by attributing a class or a

method. In order to ensure loose coupling an interface is defined that describes all

functionality GreenPepe 2010 exports. The implementation of that interface is then

attributed as export. The type is set to the type of the interface. Additionally the class is

attributed as shared. This causes MEF to create this class as a singleton that means only

one instance of that can be in the composition container.

 [Export(typeof(IGreenPepeService))]
 [PartCreationPolicy(CreationPolicy.Shared)]
 public class GreenPepeService : IGreenPepeService {
 ...
 }

6.5.3 The exported Interface

Agile Product Liner DSL needs to query GreenPepe 2010 for all GreenPepper tests in the

solution and it needs to command GP2010 to execute a given set of tests. Furthermore, it

has to listen for the test results.

6 Implementation Felix Riegger

Page | 66

The IGreenPepeService offers the methods GetAllTests(), RunTests() and the event

TestExecutionCompleted. The interface is implemented by the GreenPepeService class

which uses three classes, ExecutionAgent, GreenPepeTestExecuter and SolutionItems (see

Figure 6-21). The ExecutionAgent is responsible for executing tests for external callers.

For each run a new ExecutionAgent instance is constructed given the list of tests to run.

The ExecutionAgent checks if all relevant information is available and correct for each

given test. This includes the path to the test file itself, the path to the project the test

belongs to and the path to the assembly of the system under test.

Figure 6-21: Providing extensibility in GreenPepe 2010

All tests that pass this check are then executed by the GreenPepeTestExecuter class,

which is the class responsible for test execution in GreenPepe2010. The

GreenPepeService also offers the TestExecutionCompleted event. In order to get

6 Implementation Felix Riegger

Page | 67

informed about the test results it registers for the TestRunCompleted event raised by the

GreenPepeTestExecuter.

For returning all tests in the current solution, the GreenPepeService uses the method

GetTestFiles() of the SolutionItems which returns all HTML files that are marked as

acceptance tests.

The sequence of calls for the execution of tests through the interfaces by another plug-in

is illustrated in the following sequence diagram.

Figure 6-22: Sequence diagram of the test execution

If the external caller is interested in the test result, it first has to register for the event

TestExecutionCompleted. Then it can call the RunTests() method given a list of tests. The

GreenPepeService then checks if the GreenPepeTestExecuter is currently executing tests.

If so, an error message is shown and no tests are executed. If there are no tests in

execution the GreenPepeService registers for the TestRunCompeted event of the

6 Implementation Felix Riegger

Page | 68

GreenPepeTestExecuter. Then it instantiates a new ExecutionAgent and passes the list of

tests that have to be executed. The ExecutionAgent creates test objects that can be

executed by GreenPepe2010. If some given tests do not meet the criteria needed to

create executable tests these tests are rejected. Afterwards, the GreenPepeService calls

the ExecuteTests() method of the ExecutionAgent which then calls the ExecuteTests()

method of the GreenPepeTestExecuter passing the newly created tests. When the test

execution is completed the GreenPepeTestExecuter raises the TestRunCompleted event.

After being informed, the GreenPepeService then unregisters from the TestRunCompleted

event and raises the TestExecutionCompleted event containing the test results and the

list of rejected tests as arguments.

6.6 Consuming Extensibility of GreenPepe2010

Visual Studio recognizes that GreenPepe2010 has a MEF component and recognizes the

export. It adds the contract to its catalogs which allows other packages in the

environment to access it.

Imports are only satisfied by the composition container of Visual Studio, if the MEF

Component also has exports that are needed by other MEF components. Otherwise the

needed service has to be retrieved manually. To do so the component model service is

needed. To get an instance of the implementation of the needed interface the method

GetService() of IComponentModel interface has to be called. If it cannot get the

designated instance, an exception is thrown. The following code snippet shows how the

IGreenPepeService is retrieved.

IComponentModel componentModel = AgileProductLinerDSLPackage.
GetGlobalService(typeof(SComponentModel)) as IComponentModel;

this.greenPepeService = componentModel.GetService<IGreenPepeService>();

Figure 6-23 illustrates the communication between Agile Product Liner DSL and

GreenPepe2010.

6 Implementation Felix Riegger

Page | 69

Figure 6-23: Communication between APLD and GP2010

6.6.1 Test Mapping

Mapping a test in the feature model to a test file in the solution involves several steps.

First, a mapping command is needed. The command is applicable if a single test shape is

selected in the diagram. Performing that command has to open a mapping dialog, which

shows all tests found in the solution, that are not mapped yet. To get all tests of the

current solution Agile Product Liner DSL uses the method GetAllTests() offered by the

IGreenPepeService interface of GreenPepe 2010. It then checks for each returned test

whether a test in the feature model is already mapped to it. This is the case when the

IsMapped domain property of a test in the model is set to true and its relativePath and

projectUniqueName domain properties are consistent with the according values of the

given test. After selection of a test the actual mapping has to be performed and all

necessary information has to be stored in the domain properties of the test model

object.

The mapping dialog in Agile Product Liner DSL is a tree view containing all acceptance

tests found in the current solution. The hierarchy of the tree view is the same as in the

solution explorer of Visual Studio. Tests that are already mapped are shown in gray.

6 Implementation Felix Riegger

Page | 70

Figure 6-24: The test mapping dialog

Tests in the diagram which are not mapped to a test file in the solution have a gray

background (a darker gray than model elements which are not part of the current

configuration, see chapter 6.8). As soon as a test is mapped its background color is blue.

6.6.2 Execution of Tests, Result Presentation and Storage

To execute tests the method RunTests() in the IGreenPepeService interface is used. It

takes a list of TestInformation objects. TestInformation is a container class that contains

the relative path of the test file in the solution, the project name and if the test is

mapped.

Figure 6-25: The TestInformation container class

To get the test results, the TestExecutionCompleted event in the IGreenPepeService is

used. It returns the test results as argument. The result is stored in the test (see chapter

6 Implementation Felix Riegger

Page | 71

6.3.1). The color of a test shape is dependent on its TestResult domain property. A

successful test result will cause the test shape to paint itself with a green background. If

the test result is set to None, the test shape is colored blue, whereas if the test result is

Failed, Exception or Ignored the color will be red.

6.7 Extending the Configuration Tool Window

FMD offers a configuration tool window that allows the creation of a configuration, which

means the selection of a subset of features of the feature model. The tool window is

called Confeaturator. Like the domain model the Confeaturator has to be extended with

tests as well. This makes it possible to check whether all tests that are mapped to the

features in the current configuration pass. Additionally, the tests can be involved in the

instantiation process.

The tool window was created with Windows Forms, the predecessor of WPF. Therefore

the extensions are realized with Windows Forms as well. Everything related to the

Confeaturator can be found in the Confeaturator folder which is located in the

CustomCode folder in the DslPackage project.

6.7.1 Adding Tests to the Tree View

As defined before the multiplicity of the relationship between features and tests is n-to-

n. The model of the tree view, of course is a tree. That means a child node can only have

one parent. In order to add tests to the tree, regardless, a test might have to be added to

the tree multiple times, once for each feature it is linked to. An example can be seen in

Figure 6-26, where ConditionsTest appears twice in the tree view.

Tests in the model which are not connected to any feature do not appear in the tree

view. Only tests which are connected to a feature are relevant for the configuration. To

represent a test in the tree view a new node type is introduced, namely the class

TestTreeNode which derives from TreeNode. It has a reference to a test object of the

domain model and keeps the test name as well as an icon reference.

6 Implementation Felix Riegger

Page | 72

Figure 6-26: Confeaturator extended with tests, showing ConditionsTest twice

6.7.2 Execution of Tests from the Configuration Tool Window

After features have been selected in the Confeaturator and thus a configuration was

created, it might be of interest, if the acceptance tests that are related to those features

are passing. If the tests are passing, it can be assumed that the features are working and

a working instance of the product line can be instantiated. Therefore, a new action is

added to the Confeaturator that executes all tests that are linked to those features which

are part of the current configuration. To give better feedback to the user, test results

should be visible in the tree view after execution. Similar to the result presentation in the

model diagram, test nodes get colored to indicate the test result. The background of the

node gets colored green, if the related acceptance test passed, red, if the test failed. Test

nodes which are not affected by the current configuration have a white background.

Because of the fact that a test might occur multiple times in the tree view, all

occurrences of this test get colored according to the test result, as soon as a single

occurrence is part of the current configuration. This and the presentation of test results

can be seen in Figure 6-27.

6 Implementation Felix Riegger

Page | 73

Figure 6-27: Result presentation after test execution in the Confeaturator

6.7.3 Synchronizing the Configuration Tool Window with the Diagram

Editor Window

In FMD the configuration tool window Confeaturator is not synchronized with the

diagram editor. If the user changes to another diagram, the tool window still shows the

old tree and has to be refreshed manually. Besides that this is misleading, it causes issues

when tests are executed from the Confeaturator, because test results are not only

visualized in the tree but also the in the diagram. If the diagram does not represent the

same model as the configuration window, this will cause errors. To avoid this, the

configuration tool window in APLD is synchronized with the DSL designer. This means

that, when the diagram is switched, the Confeaturator automatically refreshes its tree to

reflect the model of the new diagram. When the tree view is changed programmatically

the user needs to be able to save the configuration before that happens. To achieve that,

the Confeaturator is set to dirty as soon the user selects features in the tree, which

means the user entered configuration mode. When the user wants to open another file

or diagram or if Visual Studio has to be closed, a warning will be shown and the user will

be given the option to save the current configuration (see Figure 6-28).

6 Implementation Felix Riegger

Page | 74

Figure 6-28: Configuration unsaved warning

As soon as the configuration is saved, the Confeaturator will be set to be not dirty. This

can also be achieved manually by discarding the current configuration. To do so, a

separate action is introduced which can be seen in Figure 6-29.

Figure 6-29: Discard configuration action

6.8 Graphical Reflection of the current Configuration in the

Diagram

To give better visual feedback the current configuration is reflected in the model diagram

in APLD. As mentioned in the previous chapter, as soon as a feature is selected the

configuration mode is entered. This also triggers the coloring of the element in the

diagram. Branches which are not part of the current configuration are colored in a light

gray. This affects the connections between features, the connections between features

and tests, the feature shapes, the test shapes, and the test port shapes. The color of

alternative shapes and constraint relationships stay unchanged as well as the occurrence

indicator of feature shapes (the small circles on the top of a feature). Figure 6-30

illustrates the model coloring. The feature Devices is not selected and therefore the

whole branch is shown in gray.

6 Implementation Felix Riegger

Page | 75

Figure 6-30: The graphical reflection of the current configuration in the diagram

Every time a feature is selected or de-selected all features that are in the current

configuration are calculated and then the elements in the model are colored accordingly.

To set the color, the affected classes (TestPortShape, FeatureShape, ConnectConnector,

TestConnector and TestShape) provide the methods GrayOut() and ResetColor().

GrayOut() overrides the pen and brush settings of the presentation elements and

ResetColor() clears the overrides and as a result the elements are painted in their original

colors.

6.9 Summary

This chapter described how the developed concept was implemented. APLD was created

by migrating FMD to VS2010 and extending its DSL and configuration tool window. The

DSL was extended with tests, connections between tests and features and with the

exclude constraint relationship and its validation. GreenPepe 2010 was extended to

export an interface via MEF and offers querying of GreenPepper acceptance tests,

execution of these, and the corresponding test results. APLD uses the provided

functionality to realize the mapping of tests in the model to test files in the solution, the

execution of tests from the diagram as well as from the Confeaturator.

7 Conclusion and Future Work Felix Riegger

Page | 76

7 Conclusion and Future Work

7.1 Problems

The implementation part of this work was conducted with the beta 1, beta 2 and the

release candidate of the .NET Framework 4.0, Visual Studio 2010, the VS2010 SDK and

the VS2010 DSL Tools. Even though these versions are surprisingly stable, they are not

perfect.

After migrating Agile Product Liner DSL to beta 2 the following bug occurred: launching

the project in the experimental instance of Visual Studio for debugging resulted in an

empty toolbox. There were no items in the category AgileProductLinerDSL. Some

research showed that this is a bug in beta 2 of the VS2010 DSL Tools and will only occur

after the project has been launched in debug mode. To solve this issue, the toolbox cache

has to be deleted. The cache can be found under %UserProfile%\AppData\Local\

Microsoft\VisualStudio\10.0Exp, where all *.tbd files have to be deleted. In order to

debug, nevertheless, the following work around exists. The project has to be launched

without debugging and the debugger has to be attached to the running instance

afterwards. Right after the release it was not clear, what causes the bug, how it could be

avoided, and that it is related to debugging. Consequently, the work around did not

emerge right after the release.

Fortunately, in this case, the issue could be solved or avoided respectively. But it can very

well happen that a problem with a beta version cannot be solved and the project gets

stuck, the approach has to be changed and time is lost.

7 Conclusion and Future Work Felix Riegger

Page | 77

7.2 Contributions

APLE is a young research area that tries to integrate agile software development and

software product lines. One approach to do so is to manage the commonalities and

variability of a software product line using test artifacts in the form of acceptance tests.

To support this approach a concept was developed wherein feature modeling can be

integrated with acceptance tests in the form of an extension for Visual Studio. This

extension, called APLD, was implemented and offers a test-based feature management.

Existing tools were investigated and it was decided to base APLD on FMD. APLD offers a

graphical acceptance test-based feature modeling as extension integrated into Visual

Studio 2010. It allows the mapping of tests in the feature model to real test files in the

solution. Acceptance tests can be executed from the model diagram as well as from the

configuration tool window and test results are graphically presented in the model

diagram and the configuration tool window. Additionally, while creating a configuration,

this configuration gets visualized in the model diagram. Both, the feature model and

configurations are persisted in the XML format. These files can be imported by other

tools.

GP 2010 was extended to offer a public interface for querying and executing tests. APLD

uses this interface to query and execute acceptance tests. This interface can be used by

any VS2010 extension.

APLD was successfully used to create a test-based feature model for the eHome project.

The eHome project is a smart home solution, developed by the ASE Group, that allows

the controlling and monitoring of intelligent home systems. Every home has its own floor

plan and different hardware capabilities, thus the infrastructure varies from home to

home. At the same time they share commonalities. The ASE Group decided to adopt a

SPL practice to be able to deliver systems that only encompass the requested variants,

without substantial rework. The acceptance tests of the project were written for the FIT

Framework, therefore, corresponding GreenPepper tests had to be created in order to

use APLD for the feature modeling.

7 Conclusion and Future Work Felix Riegger

Page | 78

7.3 Future Work

There are problems and limitations that have to be addressed in future work.

An important part of software product lines is the instantiation process. That means a

program has to be built according to the configuration, thus the selected features. This

instantiated program either includes only the code needed by the selected features or it

includes all code, but it is configured to only use the selected features. APLD offers a test-

based feature management that allows creating test-based feature models and

configurations. Even though these configurations can be saved, it does not support any

kind of instantiation process. Ghanam and Maurer developed an approach how the

instantiation process can be triggered from a test-based feature model in [5]. He

proposes to execute the acceptance tests that are linked to the features of the

configuration that has to be instantiated. Code coverage is used to identify all needed

classes to build the product. This might be a possible way to achieve product

instantiation. As mentioned before APLD stores the feature models as well as

configurations in XML files. Another idea is that these XML files could be processed by

other programs that do the actual instantiation. However, the structure and content of

these files are optimized to reload information and to present it in the diagram and the

configuration tool window respectively. It would make sense to introduce a new XML

schema that is optimized for the instantiation process.

The usability and the usefulness of APLD have to be evaluated. Although APLD has been

used to model the feature of the eHome project, which worked well, there has not been

a complete formal evaluation of its usefulness and correctness.

The Constrains relationship was extended with the exclude constraint in the very end of

this work. It was no time left to test this relationship. The test model described in chapter

6.3.7 has to be extended in order to test the relationship and its validation.

APLD offers capabilities to collapse and expand tests that are connected to features or to

hide tests completely. Nevertheless, diagram space is limited and as feature models can

get rather big, the overview can be lost. FMD already offered multi-diagram support with

7 Conclusion and Future Work Felix Riegger

Page | 79

cross-diagram references, but for now APLD offers test mapping only on a per diagram

basis. This would be a nice feature to have in the future.

APLD uses GreenPepe 2010 for the access to and execution of GreenPepper acceptance

tests. The communication was realized with MEF and a simple interface was created. In

the future the same mechanisms can be used to allow the mapping to and the execution

of tests from other acceptance testing frameworks or even any kind of tests. This could

be achieved by creating additional interfaces or to implement the existing one in other

extensions. If this is done, the interface should be moved to a separate project together

with all classes that carry the test information and results. Additionally, the naming of the

classes should be more abstract and the container classes have to describe tests less

specific.

Page | ix

References

[1] Bass, Len, Clements, Paul and Kazman, Rick. Software Architecture in Practice. s.l. :

Addison-Wesley, 2003.

[2] Ghanam, Yaser and Maurer, Frank. An Iterative Model for Agile Product Line

Engineering. s.l. : The SPLC Doctoral Symposium, 2008 - in conjunction with the 12th

International Software Product Line Conference (SPLC 2008), Limerick, Ireland, 2008.

[3] Hanssen, G. and Faegri, T. Process Fusion: An Industrial Case Study on Agile Software

Product Line Engineering. s.l. : Journal of Systems and Software (JSS), 2008.

[4] Carbon, R., et al. Integrating product line engineering and agile methods: flexible

design up-front vs. incremental design. s.l. : 1st Internationial Workshop on APLE 2006 -

SPLC, 2006.

[5] Ghanam, Yaser and Maurer, Frank. Extreme Product Line Engineering: Managing

Variablity & Traceability via Executable Specifications. s.l. : Agile Conference 2009,

Chicago, 2009.

[6] Ghanam, Yaser, Park, Shelly and Maurer, Frank. A Test-Driven Approach to

Establishing & Managing Agile Produt Lines. s.l. : The 5th Software Product Lines Testing

Workshop (SPLiT 2008) in conjunction with SPLC 2008, Limerick, Ireland, 2008.

[7] André, Furtado. http://featuremodeldsl.codeplex.com/. Feature Model DSL

Homepage. [Online] 2009. [Cited: January 15, 2010.]

[8] DSL Tools. [Online] [Cited: February 16, 2010.]

http://code.msdn.microsoft.com/vsvmsdk.

[9] Lenz, Gunther and Wienands, Christoph. Practical software factories in .NET. s.l. :

Apress, 2006.

[10] Software, GreenPepper. GreenPepper Software. [Online] Pyxis Technologies. [Cited:

January 17, 2010.]

http://www.greenpeppersoftware.com/confluence/display/GPW/Home/.

Page | x

[11] Agile Alliance. Manifesto for Agile Software Development. [Online] [Cited: January

26, 2010.] http://agilemanifesto.org.

[12] Cockburn, Alistair. Agile Software Development: The Cooperative Game. 2nd Edition.

s.l. : Addison-Wesley Professional, 2006.

[13] Smith, Greg and Sidky, Ahmed. Becoming Agile in an imperfect world. s.l. : Manning,

2009.

[14] Beck, Kent and Andres, Cynthia. Extreme Programming Explained - Embrace

Change. s.l. : Addison-Wesley, 2005.

[15] Schwaber, K. Agile Project Management with Scrum. s.l. : Microsoft Press, 2004.

[16] Highsmith, J. Adaptive Software Development. s.l. : Dorset House, 2000.

[17] Clements, P. and Northop, L. Software Product Lines: Practice and Patterns. s.l. :

Addison-Wesley, 2001.

[18] Pohl, Klaus, Böckle, Günther and van der Linden, Frank. Software Product Line

Engineering. s.l. : Springer, 2005.

[19] Meyer, M. and Lehnard, A. The Power of Product Platforms. New York : Free Press,

1997.

[20] Kang, K., et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. s.l. :

Technical Report CMU/SEI-90-TR-21, 1990.

[21] Lee, Kwanwoo, Kang, Kyo C. and Lee, Jaejoon. Concepts and Guidelines of Feature

Modeling for Product Line Sofware Engineering. s.l. : Cristina Gacek, editor, Software

Reuse: Methods, Techniques, and Tools: Proceedings of the Seventh Reuse Conference,

Austin, U.S.A., Apr.15-19, 2002.

[22] Version One. [Online] [Cited: January 25, 2010.]

http://www.versionone.com/Resources/FeatureEstimation.asp.

Page | xi

[23] Maurer, Frank and Grigori, Melnik. Driving Software Development with Executable

Acceptance Tests. s.l. : Executive Report on Agile Project Management, Vol. 7, No. 11,

Cutter Consortium, 2006.

[24] Myers, Glenford J. The art of software testing. s.l. : John Wiley & Sons, 2004.

[25] Mugridge, Rick and Ward, Cunningham. Fit for Developing Software - Framework for

Integrated Tests. s.l. : Pearson Education, 2005.

[26] André, Brisette and Beauregard, François. Build the right sofware! - A white paper

on accurate software development. [Online] [Cited: January 17, 2010.]

http://www.greenpeppersoftware.com/confluence/download/attachments/5/accurate_

developement_wp_en.pdf.

[27] Microsoft MSDN. Automation and Extensibility for Visual Studio. MSDN. [Online]

Microsoft, 2010. [Cited: February 18, 2010.] http://msdn.microsoft.com/en-

us/library/xc52cke4%28VS.100%29.aspx.

[28] van Deursen, A., Klint, P. and Visser, J. Domain-Specific Languages: An Annotated

Bibliography. s.l. : ACM SIGPLAN Notices, 35(6):26-36, June 2000, 2000.

[29] Mernik, Marjan, Heering, Jan and Sloane, Anthony M. When and How to Develop

Domain-Specific Languages. 2005.

[30] Taha, Walid. Domain-Specific Languages. s.l. : Invited Paper ICCES'08, 2008.

[31] Fowler, Martin. Domain Specific Language. [Online] [Cited: Janaury 10, 2010.]

http://www.martinfowler.com/bliki/DomainSpecificLanguage.html.

[32] Cook, Steve, et al. Domain-Specific Development with Visual Studio DSL Tools. s.l. :

Addison-Wesley Professional, 2007. p. 576.

[33] Vlissides, John. Pattern Hatching - Design Patterns Applied. s.l. : Addison-Wesley,

1998.

[34] EMF Feature Model. [Online] [Cited: January 12, 2010.]

http://www.eclipse.org/proposals/feature-model/.

Page | xii

[35] Feature IDE. [Online] [Cited: January 12, 2010.] http://fosd.de/fide/.

[36] Feature Modeling Plug-In. [Online] [Cited: January 14, 2010.]

http://gsd.uwaterloo.ca/projects/fmp-plugin/.

[37] Feature Model Tool. [Online] [Cited: January 12, 2010.]

http://www.giro.infor.uva.es/FeatureTool.html.

[38] Hydra Tool. [Online] [Cited: January 12, 2010.]

http://caosd.lcc.uma.es/spl/hydra/download.htm.

[39] pure::variants. [Online] [Cited: Janaury 18, 2010.] http://www.pure-

systems.com/Variant_Management.49+M54a708de802.0.html.

[40] XFeature. [Online] [Cited: Janaury 13, 2010.] http://www.pnp-

software.com/XFeature/Home.html.

[41] Microsoft. Managed Extensibility Framework Homepage. [Online] 2010. [Cited:

January 30, 2010.] http://mef.codeplex.com/.

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und ohne Benutzung anderer

als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder

sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften entnommen wurden,

sind als solche kenntlich gemacht. Die Arbeit hat in dieser oder ähnlicher Form keiner

anderen Prüfungsbehörde vorgelegen.

Mannheim, 26.02.2010

Felix Riegger

