
UNIVERSITY OF CALGARY

Enhancing Exploratory Testing with Rule-Based Verification

by

Theodore D. Hellmann

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

August 2010

© Theodore D. Hellmann 2010

ii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Enhancing Exploratory Testing with Rule-Based

Verification " submitted by Theodore D. Hellmann in partial fulfilment of the

requirements of the degree of Master of Computer Science.

Supervisor, Dr. Frank Oliver Maurer, Department of

Computer Science

Dr. Jörg Denzinger, Department of Computer Science

Professor Denis Gadbois, Faculty of Environmental Design

Dr. Mario Costa Sousa, Department of Computer Science

Date

iii

Abstract

Testing graphical user interfaces (GUIs) is difficult – they’re enormously complex,

difficult to verify, and very likely to change. This thesis presents an overview of these

challenges, followed by an overview of previous attempts to make GUI testing practical

that categorizes each approach based on the challenge it addresses. A new tool for GUI

testing, LEET, was created to apply automated rule-based verifications to manual

exploratory test sessions that had been recorded. Five main research questions are

identified:

1) Can rule-based exploratory testing be used to catch high-level, general bugs?

2) Can rule-based exploratory testing be used to catch low-level, specific bugs?

3) Can rules be reused in tests for different applications?

4) How often is it possible to use keyword-based testing on GUIs?

5) Is rule-based exploratory testing less effort than writing equivalent tests by using

a capture/replay tool and inserting verifications manually?

A preliminary evaluation of rule-based exploratory testing with LEET is performed. This

pilot study was able to provide some answers to the first four questions. It was found that

rules can be used to detect both general and specific bugs, but rules for general bugs were

easier to transfer between applications. It was also suggested that, despite the advantages

that keyword-based testing presents to human testers, it interferes with the process of

creating automated test oracles and the process of transferring rules between applications.

The fourth question, however, was unanswerable based on the results of these pilot

studies, so instead a set of recommendations for future work on the subject is presented.

iv

Acknowledgements

This thesis was not a work in isolation. It is the culmination of the guidance and support

I received from many people – and I’d like to thank a selection of them here.

- To my especially influential undergraduate professors: Lynn Lambert, Anton

Riedl, and especially Roberto Flores. Without your tolerance, good humour, and

support, I would never have made the leap from Christopher Newport University

to the University of Calgary.

- For their feedback, guidance, and, especially, reality checks: Frank Maurer and

Jorg Denzinger. Thanks for putting me on the right track, keeping me there, and

seeing this thing through to the finish.

- To all my friends – especially Ali Hosseni Khayat, without whom LEET would

have been impossible. Thanks for your friendship, support, and tolerance

throughout the years.

- To my family, for allowing my interest in the sciences to develop from such an

early age: thanks for always believing in me.

- To my kind and loving wife, Christin, who helped me through all the migraines

and the self-doubt that come with doing graduate work. Without you, I would

simply have given up on this whole thing long ago.

v

Table of Contents

Approval Page ... ii

Abstract .. iii

Acknowledgements .. iv
Table of Contents ...v
List of Tables .. vii
List of Figures and Illustrations ... viii
List of Symbols, Abbreviations and Nomenclature ...x

Epigraph ... xi

CHAPTER ONE: INTRODUCTION ..1
1.1 Graphical User Interfaces ..2
1.2 Testing – An Overview ..4

1.2.1 Manual Testing ..6
1.2.1.1 Exploratory Testing ...7

1.2.2 Automated Testing ..10
1.2.2.1 Rule-Based Testing ..12

1.3 Major Challenges of GUI Testing ...14
1.3.1 Complexity ..14
1.3.2 Test Oracle Problem ..16

1.3.3 The Impact of Changes to the GUI on GUI tests ..17
1.3.4 Real-World Cost of GUI Bugs ..22

1.4 Research Questions ..23
1.5 Goals ..25
1.6 Conclusion ...25

CHAPTER TWO: RELATED WORK ..26

2.1 Dealing with Complexity ...26
2.1.1 Avoiding the GUI ..26

2.1.1.1 Testing Around the GUI ..26

2.1.1.2 Symbolic Execution ...27
2.1.2 Automated Generation of Tests ...28

2.1.2.1 Automated Planning ..28
2.1.2.2 Evolutionary Testing ..28

2.1.2.3 Randomized Interaction ...29
2.1.3 Model-Based Testing ...30

2.1.3.1 Finite State Machines ...31
2.1.3.2 Event-Flow Graphs ..31

2.1.3.3 Event-Interaction Graphs ...32
2.2 Dealing with Change ...33

2.2.1 Testing Around the Interface ...33

2.2.2 Prototyping ..35
2.2.3 Repairing Broken Test Procedures ..35

2.2.3.1 Approaches Based on Compiler Theory ..36
2.2.3.2 Assisting Manual Repair ..36

2.2.4 Actionable Knowledge Models ...37

vi

2.3 Verifying Correct GUI Behaviour ...38

2.3.1 Smoke Testing ...38
2.3.2 Verification Based on the Previous Build ...39
2.3.3 Model-Based Verification ...39

2.3.4 Rule-Based Verification ..40
2.4 Conclusion ...41

CHAPTER THREE: LEET..42
3.1 Structure of LEET ..42
3.2 Conclusions ..48

CHAPTER FOUR: TECHNICAL CHALLENGES ..49
4.1 Interacting with Widgets ..49
4.2 Keyword-Based Identification ...51

4.3 Code Coverage Integration ..52
4.4 Technical Limitations ..52
4.5 Conclusions ..55

CHAPTER FIVE: PRELIMINARY EVALUATION ...56
5.1 Comparison to Existing GUI Testing Tools ..56

5.2 Preliminary Evaluations ...60
5.2.1 Can Rules Detect General Security Flaws in GUI-Based Applications?60
5.2.2 Can Rules Detect Specific Security Flaws in GUI-Based Applications?66

5.2.3 How Often Is Keyword-Based Testing Possible? ...79
5.2.4 How Much Effort Is Rule-Based Exploratory Testing?84

5.2.4.1 Microsoft Calculator Plus ..85

5.2.4.2 Internet Explorer 8.0 ..89

5.2.4.3 LEET ..92
5.2.4.4 How Much Effort Is Rule-Based Exploratory Testing? –

Conclusions ...95
5.3 Weaknesses of Evaluations ..96
5.4 Conclusions ..96

CHAPTER SIX: CONCLUSIONS ..98
6.1 Thesis Contributions ..98
6.2 Future Work ...101

REFERENCES ..104

vii

List of Tables

Table 1 Major features of existing GUI testing applications. ... 58

Table 2: Minimum number of erroneously enabled widgets in each test application 65

Table 3 Required changes for additional test websites ... 76

Table 4 Violations of testability rules ... 82

Table 5: Breakdown of time taken to create each test, in minutes 89

Table 6: Breakdown of time taken to create each test, in minutes 91

Table 7: Breakdown of time taken to create each test, in minutes (* - projected) 95

viii

List of Figures and Illustrations

Figure 1: Effort required to manually test an application as features are added 7

Figure 2: State diagram of manual test session ... 9

Figure 3: Effort required to implement automated tests for an application as features

are added ... 11

Figure 4: Comparison of expected effort involved in manual and automated testing 12

Figure 5: Testing a GUI-Based Application Through OS-Based Actions 18

Figure 6: Testing a GUI-Based Application via an Accessibility Framework 20

Figure 7: The process of rule-based exploratory testing. .. 44

Figure 8: Diagram showing the structure of LEET .. 45

Figure 9: Recording an exploratory test session with LEET .. 46

Figure 10: Rule for detecting 0-by-0, enabled widgets ... 64

Figure 11: Rule for detecting offscreen, enabled widgets .. 64

Figure 12 Age Gate for the Max Payne 3 website (Image source: [79]) 68

Figure 13: Conceptual representation of the rule that interacts with the month combo

box of age gates .. 72

Figure 14: Conceptual representation of the rule that interacts with the day combo

box of age gates .. 72

Figure 15: Conceptual representation of the rule that interacts with the year combo

box of age gates .. 73

Figure 16: Conceptual representation of the rule that submits the age and decides

whether the site allowed entry or not .. 73

Figure 17: The current month needed to be added as a possible value for rule that

interacted with the month combo box ... 77

Figure 18: The current day needed to be added as a possible value for rule that

interacted with the day combo box ... 77

Figure 19: No changes needed to be made to the third rule.. 78

Figure 20: Three changes were required to make the final rule compatible with the

three additional websites ... 78

ix

Figure 21: Detecting nameless widgets .. 81

Figure 22: Detecting id-less widgets... 81

Figure 23: Detecting anonymous widgets... 81

Figure 24: Detecting integer names .. 82

Figure 25: Detecting integer ids .. 82

Figure 26: Procedure (left) and oracle (right) for the first rule-based test. 86

Figure 27: The CRT-only version of the first test... 87

Figure 28: Procedure (left) and oracle (right) for the second rule-based test. 90

Figure 29: CRT-only version of the second test. .. 90

Figure 30: The procedure used for the rule-based version of the test. 93

Figure 31: The oracle used for the rule-based version of the test. 93

Figure 32: The CRT-only version of 12 out of 50 interactions in the test. 94

x

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

AKG Actionable Knowledge Graph

AKM Actionable Knowledge Model

APDT Agile Planner for Digital Tabletops

CWE Common Weakness Enumeration

EFG Event-flow Graph

EIG Event-interaction Graph

GUI Graphical User Interface

LEET LEET Enhances Exploratory Testing

MEEC Minimal Effective Event Context

SGL Sub-Goal List

TDD Test-Driven Development

TWOM Testing with Object Maps

UI User Interface

xi

Epigraph

 A process cannot be understood by stopping it. Understanding must move

with the flow of the process, must join it and flow with it.

Frank Herbert, Dune

1

Chapter One: Introduction

Nearly every modern application uses a graphical user interface (GUI) as its main means

of interacting with users. However, because GUIs allow users so much freedom of

interaction, they are very difficult to test. This thesis discusses a new approach to GUI

testing that enhances the process of manual exploratory testing with automated, rule-

based verifications.

Previous research has mainly focused on how to automate the process of writing tests, as

seen in Chapter 2. Automating GUI tests is difficult because GUIs are very complicated,

writing automated test oracles for GUIs is difficult, and changes to GUIs that do not

change the functionality of an application can still break automated GUI tests, as seen in

Section 1.3. Rule-based testing, however, is a form of automated testing which reports

erroneous application behaviour instead of verifying proper behaviour, which makes

creating automated test oracles easier and reduces the chances that a test will break when

a GUI is changed. Exploratory testing is a way of testing GUIs manually, but it too is

hampered by the complexity of GUIs. Combining exploratory testing and rule-based

testing makes use of the strengths of both of these approaches and provides a new,

promising approach to GUI testing.

The first step to combining these two methods is to record the interactions performed

during an exploratory test session as a replayable script. Next, a human test engineer

defines a set of rules that can be used to define the expected (or forbidden) behaviour of

the application. The rules and script are then combined into an automated regression test

that can be used to expand the amount of the system that was originally investigated by

exploratory testing. This approach allows a human tester to select specific parts of the

2

system that should be tested further, which, in effect, decreases the amount of manual

testing that needs to be done. At the same time, this subset of the application is tested

thoroughly using automated rule-based testing in order to verify more properties of more

parts of the application than would be possible with exploratory testing alone.

This thesis provides a review of literature detailing previous attempts to automate GUI

testing. It also discusses the method of creating a system to combine exploratory testing

with automated rule-based testing. This system was implemented as LEET (LEET

Enhances Exploratory Testing), and a pilot evaluation was used to determine that rule-

based exploratory testing is a practical approach to GUI testing that deserves further

study.

This chapter provides background material necessary to understanding the contributions

of this thesis. First, the structure of GUIs is discussed. An overview of testing is

provided next, followed by a discussion of the benefits and liabilities of manual and

automated testing techniques. Finally, the difficulties involved with testing GUIs are

discussed. Ways in which this rule-based exploratory approach can help address these

difficulties are discussed. Research questions and goals are also stated.

1.1 Graphical User Interfaces

GUIs allow users to interact with applications via text input, mouse movement, and

mouse clicks, which makes interacting with computers more natural and intuitive. GUIs

are now an essential part of most modern applications, and very few do not contain some

form of GUI. Of these GUI-based applications, 45-60% of the total code of the

application can be expected to be dedicated to its GUI [1].

3

In modern, GUI-based operating systems, the root of a GUI must be a window. Windows

are special containers of widgets, or user interface elements (UI elements), that are

grouped hierarchically. Widgets receive a user’s interactions, such as mouse clicks or

text input. These interactions are then received by the application containing the widget,

which should respond to the user’s interaction by updating its GUI. GUIs are composed

of one or more windows, each of which contains of a set of one or more widgets.

This thesis focuses specifically on GUIs running on Microsoft’s Windows line of

operating systems. The operating system used for evaluations was the 32-bit version of

Windows 7. In other operating systems, Linux variants in particular, GUIs usually

represent an interface with an application running from the command line, a text-only

interface. Text-only interfaces only allow for interactions based on textual input, and are

less complicated (and therefore easier to test) than GUI-based applications. However, in

Windows, GUIs are tightly integrated with applications, and therefore testing an

application through interactions with its GUI, rather than testing an application and its

GUI separately, is an important topic.

Additionally, the approach to testing GUIs as presented in this thesis focuses on event-

driven applications. In event-driven applications, every function performed by the

application is a response to a user interacting with the application. For example, when a

user clicks a button, some function of the application is invoked. Most desktop

applications and most websites fall into the category of event-driven applications.

Another class of applications can be described as loop-driven. Loop-driven applications

perform functions primarily in response to internal computations or the passage of time,

though user events also invoke functionality. Computer games, for example, are

4

primarily loop-driven in nature. In this thesis, an event-driven approach to testing is

explored, and so only desktop and web-based applications are considered.

1.2 Testing – An Overview

It is a basic fact of software development that applications will contain defects, or errors

in the code of the application. Defects may or may not cause faults, or discrepancies

between the desired behaviour of the system and its actual behaviour when run. Failures

occur when the faulty state of the system causes a noticeable error. The term bug is

slang, and may be used informally to refer to any of the above – but, in this paper, “bug”

will always refer to a software failure. There is not necessarily a one-to-one relationship

between defects, faults, and failures. The same fault can be caused by multiple defects in

the code of an application, and a single failure can be caused by different faults.

Testing is the process of interacting with an application in an attempt to find bugs so that

they can be fixed. Thus, the purpose of testing is to increase the odds of an application

functioning properly for users. Tests can be used to find bugs in an application, but they

are not able to show that an application has no bugs.

A test consists of two parts: a test procedure and a test oracle. A test procedure is an

ordered set of interactions that explore an application’s functionality. This can be

envisioned as a script of interactions to take in order to execute a test. The term state

refers to the values of all of the properties of different parts of an application at a given

point in time, and a test oracle describes the expected state of an application during

execution of the test procedure. Bugs are exposed when the execution of a test procedure

triggers the code in which they are contained and the test oracle notices the discrepancy

between the expected state of the application and its actual state.

5

Testing can be performed from two perspectives: black box or white box (sometimes

known as glass box). In white box testing, an application’s code is visible to the test

procedure. White box testing is used to determine the correctness of the internal

structures of an application: variables can be set, classes can be created, and individual

methods within the application can be called directly by the test. Black box testing, on

the other hand, tests the functionality of an application from a user’s point of view. The

application is interacted with through its interface, and its source code is not used. White

box testing is useful for detecting whether parts of an application are working correctly,

while black box testing is useful for determining whether the application provides the

desired functionality to the user.

Testing can also be performed at a variety of levels and for a variety of purposes. Unit

testing tests individual classes and methods of an application, and is used to determine if

individual parts of the system work correctly in isolation. Integration testing tests

different subsystems of the application in order to determine whether different parts of

the system will function correctly when interacting with each other. System testing tests

the application as a whole, and is used to determine if the application as a whole is

working correctly. Acceptance testing is similar to system testing in that it tests the entire

application, but the purpose of acceptance testing is to determine if the application

provides the functionality it was originally intended to. Regression testing is the re-

running of previous tests on an application after changes have been made to it, and is

important in ensuring that changes to one subsystem of an application don’t end up

breaking a seemingly-unrelated subsystem.

6

Manual testing is a form of testing in which human testers execute tests on an application

through its user interface. Generally, these tests are defined beforehand. However,

exploratory testing is a form of manual testing that does not use pre-defined tests, and

instead relies on the skills and intuition of individual testers. Automated testing is

performed by specifying tests in terms of executable code, which a computer then runs.

Each of these techniques is described in detail in the following subsections.

The subject of this thesis is a new approach to testing graphical user interfaces by

enhancing exploratory testing with rule-based verification. This approach leverages

manual exploratory testing to provide test procedures and leverages the advantages of

automated testing through use of rule-based test oracles. This approach is a black box,

system-level approach to testing the functionality of an application through its graphical

user interface. While the exploratory testing involved is manual, recording these tests

and enhancing them with rule-based verification leverages the advantages of automated

testing.

1.2.1 Manual Testing

In manual testing, a human will interact with a system in order to attempt to uncover

bugs. Manual testing is generally understood as scripted manual testing, in which a tester

follows a predefined script when interacting with the system. These scripts are usually

created by test engineers, and then run later by software testers. Scripts for manual

testing can be viewed as test programs written to be executed by humans rather than by

machines. Scripted manual testing is a tedious process when done repetitively (as for

regression testing).

7

A linear expenditure of effort is required to perform manual testing on new features as

well as regression tests of existing features. The graph shown in Figure 1 shows a

hypothetical example of the amount of effort required to perform this degree of testing

over several iterations of software development.

Figure 1: Effort required to manually test an application as features are added

1.2.1.1 Exploratory Testing

Exploratory testing is a form of manual testing, but it is significantly different from

scripted manual testing. Exploratory testing has been defined as “simultaneous learning,

test design, and test execution” [2]. In exploratory testing, no predefined test cases are

used, which allows testers to perform ad-hoc interactions with the system based on their

knowledge, experience, and intuition in order to expose bugs.

Scripted testing has the advantage of consistency, while exploratory testing benefits from

its reliance on human ingenuity. Both avoid the difficulties involved with creation of an

1 2 3 4 5 6

Ef
fo

rt

Iteration

Manual Effort

8

automated test oracle, as described in Section 1.3.2, by relying on a human’s ability to

judge whether or not a system meets expectations.

Despite its unplanned, freeform nature, exploratory testing has become accepted in

industry, and is felt to be an effective way of finding defects [3]. Practitioner literature

argues that exploratory testing also reduces overhead in creating and maintaining

documentation, helps team members understand the features and behaviour of the

application under development, and allows testers to immediately focus on productive

areas during testing [3] [4]. Further, a recent academic study shows that exploratory

testing is at least as effective at catching bugs as scripted manual testing, and is less likely

to report that the system is broken when it is actually functioning correctly [4].

However, there are several major difficulties involved with exploratory testing. First,

exploratory testing is limited in that human testers can only test so much of an application

in a given time. This virtually ensures that parts of the application will be insufficiently

tested if exploratory testing is the only testing strategy used to test an application. Figure

2 shows a brief example of the path through the states of an application that might be

explored in an exploratory test session. Many states of the application are left unexplored

in this example. Second, it is often difficult for practitioners of exploratory testing to

determine what sections of an application have actually been tested during a test session

[3]. This makes it difficult to direct exploratory testing towards areas of an application

that have not been tested previously, and runs the risk of leaving sections of

9

... ...

...

...
Transition (solid arrow)
and state (solid circle)

explored during
exploratory testing

Transition (dashed arrow) and
state (dashed circle) not

explored during exploratory
testing

Transition (dashed arrow)
to subsystems not

explored during
exploratory testing

Figure 2: State diagram of manual test session

10

an application untested. The difficulties encountered in testing modern software systems

are explored in detail in Section 1.3.

 Because of this, practitioners of exploratory testing argue for a diversified testing

strategy, including exploratory, scripted, and automated testing [5]. Such a testing

strategy would combine the benefits of exploratory testing with the measurability,

thoroughness, and other advantages of automated testing described in the following

subsection. However, there is a lack of tool support that would augment exploratory

testing with scripted and automated testing techniques. One of the contributions of this

thesis is the creation of such a tool and a pilot evaluation of its abilities.

1.2.2 Automated Testing

In automated testing, both the test procedure and test oracle are defined in terms of

executable code. These automated tests are then used to verify that the application

functions as expected throughout development. The main advantage of automated testing

is that the effort required of human test engineers is nearly constant. Because executable

tests can be rerun without effort on the part of human testers, regression testing is much

simpler in automated testing situations. Humans are still required to write new tests and

to fix broken tests, but tests are run automatically. This resulting necessary effort to write

new tests for each iteration can be seen in Figure 3.

There are many additional advantages to automated testing. First, automated testing is

highly repeatable. If a bug is detected during test execution, the failing test can simply be

rerun to determine if the bug is reproducible. This can make it easy to isolate the specific

interaction that triggers a bug. Second, many code coverage tools exist that work well in

tandem with the execution of automated tests. This makes it easier to determine which

11

areas of an application need additional testing. Third, many techniques exist for

automatically generating automated tests that thoroughly explore an application under

test. Some of these are explored in detail in Section 2.1.2.

Figure 3: Effort required to implement automated tests for an application as

features are added

Even if coding an automated test is assumed to be more difficult than running a manual

test, over time automated testing can be expected to save a significant amount of effort

provided that regression testing is thoroughly conducted, as in the conceptualization

shown in Figure 4. However, this is not always the case. For example, if an automated

test requires frequent maintenance, or if only a few iterations of software development

are being performed, then automated testing may well require more effort than a manual

approach. For reasons explained in the Section 1.3, the effort involved in writing

automated tests is highly variable, and can negate the benefit of not requiring a human to

execute tests.

1 2 3 4 5 6

Ef
fo

rt

Iteration

Automated Effort

12

Figure 4: Comparison of expected effort involved in manual and automated testing

1.2.2.1 Rule-Based Testing

A rule is a way of expressing the permissible states of an application. Rules can be

described using an “if... then...so...” formulation. For example, “if you are under the age

of 21, and if you are in the United States, and if you are not a member of the armed

forces, then you cannot legally purchase alcohol, so if you do a crime has been

committed” is a rule describing alcohol regulations in the United States.

In this example, the “if...” part of a rule is known as a precondition. A precondition is a

simple check to see whether a rule should apply given the current state of the application

under test. If rules have more than one precondition, all preconditions must be met in

order for the rule to apply. If the preconditions are not met, then the rule is finished

executing. Preconditions can be shared among rules, and this fact can be used with

algorithms like the Rete Algorithm in order to reduce the overhead involved with

verifying preconditions in rule-based testing [6].

1 2 3 4 5 6

Ef
fo

rt

Iteration

Automated Effort

Manual Effort

13

If a rule’s preconditions are met, then its action should be run. A rule’s action is used to

ensure that a piece of the functionality of the system is working as expected within a

given state, as determined by the precondition. A rule’s action must at least perform a

verification about the state of the system, but, in this thesis, it can also be used to drive

test execution in order to perform verifications. The action associated with a rule should

not be confused with actions used in test scripts, which signify interactions with the

application under test only and do not perform verifications. For example, in #Section,

rule actions are used to interact with the system under test so that further verifications,

also carried out as part of the rule action, will be possible. While this definition is

currently used in the implementation discussed in this thesis, it will be advisable for

future work to split rule actions into a discrete action and a postcondition in order to

intellectually separate each part of the rule.

If a rule’s verification is not met, there will be a consequence for the failure of the

application to meet expectations. Consequences can be either fatal or nonfatal. Fatal

consequences indicate that a feature of the system does not meet expectations, while

nonfatal consequences are used to draw a tester’s attention to suspicious system

behaviour. In rule-based testing, a set of rules for an application is paired with a test

procedure and used as a test oracle.

This thesis presents a combination of manual and automated testing techniques that

leverages the advantages of both techniques. Manual exploratory testing is paired with

automated rule-based testing, and the pilot evaluation of this approach, presented in

Chapter 5, shows that this pairing is promising and that further investigation should be

performed.

14

1.3 Major Challenges of GUI Testing

This section explores the issues encountered when testing modern software systems. The

underlying difficulty is that users interact with nearly all applications through a GUI.

GUIs allow users to interact with applications via text input, mouse movement, and

mouse clicks. Because GUIs offer users great freedom of interaction, the number of

possible interactions with a GUI is very large, which makes GUIs enormously

complicated from a testing perspective. This makes interacting with computers more

natural and intuitive than using a command line interface and allows users to interact with

more than one application at a time. GUIs are now an expected part of most applications.

This thesis addresses the problem of testing an application with a GUI. It is understood

that tests will interact with an application through its GUI, as users would. This is easily

accomplished through an exploratory testing approach, but difficult to do with automated

tests. Because this thesis explores an approach that makes use of a form of automated

testing, it is important to understand the reasons that automated GUI testing is difficult.

In this subsection, the issues involved in performing automated testing of an application

with a GUI are broken down in to three categories, and each is explored individually.

1.3.1 Complexity

The more freedom a user is allowed when interacting with an application’s GUI, the

larger the application’s interaction space becomes. Even a relatively simple GUI can

present an alarmingly large number of different ways in which a user can interact with it.

In terms of testing, this means that the number of possible sequences of events increases

exponentially with the length of a test script [7]. Further, the potential a suite of GUI

tests has to find bugs in an application is determined by two factors: the number of

15

possible events that have been triggered; and the number of different states from which

each of these events is triggered [8].

This means that, in order for a suite of tests to have a reasonable chance of detecting bugs

in an application, its tests will need to trigger as many events as possible from as many

different states as possible. In other words: there is an impractically huge amount of

testing that could be done on an application through its GUI, and it’s hard to detect bugs

without doing a significant portion of this testing.

The complexity of GUIs is a problem for manual and automated testing alike. For

manual testing, the main problem is that the human effort required to test a complex

system is prohibitive. While exploratory testing shows promise in terms of efficiently

identifying aberrant behaviour in GUI-based applications [3] [4], it remains impractical to

thoroughly or repeatedly test an application using only an exploratory approach. With

automated testing, it is possible to run a large number of tests cheaply, so if automated

tests are generated automatically, as in Section 2.1.2, it may be possible to thoroughly test

an application or to run tests repeatedly. However, doing so takes time and it may not be

practical to run such a test suite on a regular basis [9].

The approach described in this thesis leverages the ability of exploratory testing to focus

on an “interesting” part of an application under test and to determine correctness or

incorrectness of the application’s features. By focusing effort on testing one part of a

system over another, or testing one part of a system in detail, human exploratory testers

are implicitly exercising their judgement to identify interesting parts of an application.

Automated rule-based testing can then be used to perform further testing on this

subsystem. In this way, a only a subset of an entire application is tested, but this

16

subsystem has been deemed important due to the focus placed on it through exploratory

testing and will be tested thoroughly through rule-based verifications.

1.3.2 Test Oracle Problem

In exploratory testing, a human tester’s expectations are used in place of a test oracle to

determine if a test fails or succeeds. Creating automated test oracles to replace human

intuition is a significant problem. The effectiveness of automated testing is limited by the

ability of test engineers to define automated test oracles [10]. In automated testing, test

oracles consist of sets of values that properties of the components of an application

should have after a given step in the test procedure. These expected values are then

automatically compared to the actual values of those properties in the application during

the execution of a test. The more values a GUI test oracle is comparing, the stronger its

bug-detection ability [11]. For example, an GUI test oracle that verifies many properties

of many different widgets after each step of a test script is more likely to notice bugs than

an oracle that verifies only properties of fewer widgets, or one that only performs

verifications once at the end of a test. Even if the procedure exposes a bug in all of these

cases, if the automated oracle isn’t sufficiently-detailed, the bug could go uncaught.

However, detailed oracles are difficult to create and take much processor time to run [11].

In the previous section, it was mentioned that suites of tests for GUI-based applications

needed to trigger many events from many different states. In addition, this section shows

that, when relying on automated testing techniques alone, detailed test oracles would

need to be created to verify that each of these individual interactions is correct.

The approach described in this thesis focuses on using rules as automated test oracles.

The rules themselves, however, are defined by a test engineer to specify details about the

17

behaviour of only certain parts of an application. In this way, portions of an application

that are judged to be likely sources of bugs, or have proven to be buggy in the past, are

singled out for detailed scrutiny.

1.3.3 The Impact of Changes to the GUI on GUI tests

A problem specific to automated testing of GUI-based applications is that changes to the

GUI are able to break tests even when the underlying application is not changed in any

important sense. This is due to the fact that GUI testing frameworks interact with GUIs

by looking up specific widgets and then sending events to them. The process of looking

up widgets for interaction is what makes GUI tests fragile. GUI testing frameworks tend

to interact with a GUI from another process in order to interact with a GUI in a similar

way to a user. This fragility would not be reduced by executing GUI tests from within

the same process as the GUI itself is running, as it would still be necessary to look up a

widget in the running GUI from its representation within the code of the application.

When interacting with a GUI from another process, as shown in Figure 5, these

interactions are performed through the mediation of the operating system on which the

test and application are running. Clicking a button, for example, is achieved either

through moving the mouse over the button and sending the operating system a mouse

click event or through the use of an accessibility framework that is able to directly call all

of the events that would be invoked through this mouse click. After receiving these

messages, the operating system will then pass appropriate events along to the application.

18

TestApplication Business Logic

Button 2

Functionality

Text Box 1

Functionality

Button 1

Functionality

Text Box 1

Functionality

Clicks

Enters Text

Clicks

Enters Text

Application’s GUI

Figure 5: Testing a GUI-Based Application Through OS-Based Actions

A GUI can also be tested from within the same process, either by including tests in the

same project so that they are compiled and run in the same process as the application

itself or by injecting tests into a running application using aspect-oriented approaches.

The issue with this is that additional events may be called by clicking a widget that would

not be called by directly calling the most relevant method within an application from test

code. For example, calling a button’s “OnClicked” method from a test will invoke that

method, but would not perform additional interactions that would be raised if a user had

clicked the button – selecting the button, for instance. These additional events will not be

invoked through in-process testing, even though they may be important to the way the

application responds.

19

On the other hand, running test code from a separate process usually forces tests to

interact with an application in a very similar way to the way in which a user would, the

exception to this being when reflection is used to access the internals of a process. Out of

process testingdoes, however, introduce the complication of locating specific widgets

within the application’s process so that they can be interacted with.

The first method of interacting with an application’s GUI from an out-of-process test

used absolute screen coordinates. For example, if one step of a test procedure was to

click a close button, this button was assumed to be in a certain absolute location on the

screen. The mouse cursor would then be moved to this location, and a mouse click event

raised. Using a coordinate system relative to the window of the application’s GUI rather

than absolute screen coordinates avoids the obvious problem of windows opening at

different locations at the screen. However, even using relative coordinates will cause a

test procedure to break when a button is moved during the redesign of a GUI. Even

though the functionality of the application will be unchanged in this case, a test involving

the moved button will falsely indicate a bug in the application’s functionality.

One solution is to use an accessibility framework to locate and interact with widgets.

Accessibility frameworks provide information about the individual elements that make up

a GUI. When using an accessibility framework, widgets of a GUI implement an

AutomationPattern – an interface through which tests and other applications can easily

access properties and functionality of widgets. This information can include the name of

a widget, a unique identifier for it, its type, values of its different properties, and ways of

interacting with it. Interactions from a test with a GUI-based applications through the

mediation of an accessibility framework can be seen in Figure 6. These tools are often

20

used to enable users with disabilities – for example blindness – to use GUI-based

applications with the support of assistive technologies – like screen readers. However, by

using an accessibility framework to interact with elements of a GUI, the additional events

that are not raised through in-process testing can be raised. Examples of accessibility

framework include Microsoft’s Active Accessibility [12] and Windows Automation API

[13].

TestApplication Business Logic

Button 2

Functionality

Text Box 1

Functionality

Button 1

Functionality

Functionality

Application’s GUI

InvokePattern

InvokePattern

ValuePattern

Text Box 2 ValuePattern

Accessibility Framework

Figure 6: Testing a GUI-Based Application via an Accessibility Framework

Since accessibility frameworks can provide information that can be used to identify

widgets uniquely, it is possible to find widgets of an application that match given

parameters while running a test. There are two main schools of thought on how this

should be done. In the first, called testing with object maps, as much information as

possible about a widget is recorded when the test is written. This information can include

21

the name of a widget, its position on screen, its background color, and so on. Then, when

a test is run, the widget most closely matching this set of information can be located. In

the second approach, called keyword-based testing, each widget in an application is

required to have a unique identifier that can be used to locate it when a test is run. In this

way, only a single piece of information is required in order to locate a specific widget.

While both of these methods decrease the risk of breaking tests when changing an

application’s GUI, keyword-based testing is easier for human testers to use. Because of

this, LEET was implemented using keyword-based testing. However, as was discovered

in Chapter 5, keyword-based testing is difficult to use with automated tests, so future

work involving rule-based exploratory testing should make use of testing with object

maps.

It is still possible to change a GUI without changing the underlying application’s

functionality in ways that will cause a test to break. For example, imagine a login screen

like that found on many web pages. It consists of two text boxes: one for a username and

one for a password. Before revision, entering an incorrect username/password pair will

cause a new page to load which informs the user of the problem. After revision, a popup

window might be created to display the same information, without changing the content

of the current page. While the basic functionality of this feature, “inform the user that

their name and/or password are incorrect,” has not changed, the way the GUI displays

this information has changed sufficiently to break tests.

This sort of scenario is very common, with up to up to 74% of test cases rendered

unusable after modifications to an application’s GUI [14] [15]. This means that broken

test scripts will need to be repaired or that equivalent tests that will work on the new

22

version of the GUI will need to be created. When tests break too often, there’s a risk that

developers will start to dismiss failing tests as simply the test’s fault, in which case

developers will be less likely to rely on the test suite to catch errors, which defeats the

purpose of automated testing in the first place [16]. Research on this topic is discussed in

Section 2.2.

In order to minimize the risk of tests erroneously reporting bugs in an application, the

approach proposed in this thesis leverages rule-based testing. Since rule-based testing is

used to specify forbidden application states, rather than specific expected states, use of

this approach reduces the odds of false bug reports at the risk of not detecting bugs in

cases where preconditions of a rule are not met. However, since tests do use script-based

test procedures, it is still possible for tests to break based on errors locating widgets to

interact with.

1.3.4 Real-World Cost of GUI Bugs

Perhaps the most challenging aspect of GUI testing is that GUI-based bugs do have a

significant impact on an application’s users. Studies done at ABB Corporate Research

support this concern [17]. 60% of defects can be traced to code in the GUI, which is

directly in line with what is expected from the percentage of GUI code in an application.

While it might be tempting to think that defects arising from a GUI might be trivial, these

studies showed the opposite: 65% of GUI defects resulted in a loss of functionality. Of

these important defects, roughly 50% had no workaround, meaning the user would have

to wait for a patch to be released to solve the issue.

This means that, regardless of the difficulties involved, GUI testing is still a vital part of

the development of an application. GUIs need to be well-tested in order to reduce the

23

instances of bugs being discovered not before release of an application by testers, but

after release by customers. Despite the usefulness of automated testing in finding bugs, it

is currently common for industrial testers to bypass automated GUI testing by interacting

with the GUI through a specific test interface [18] or to skip automated GUI testing

entirely [19]. In this second case, an attempt is made to keep the GUI code too simple to

possibly fail, and the GUI is then tested manually while the rest of the application is

tested with automated test suites.

While this approach may be sufficient in certain situations, the rule-based exploratory

testing proposed in this thesis addresses the issues that prevent automated GUI testing

from being widely-used, and provides a more rigorous method for finding bugs than

manual testing alone.

1.4 Research Questions

This thesis presents a new approach to rule-based exploratory testing of GUI-based

applications that leverages keyword-based testing in order to locate widgets for testing.

Because this approach has not been attempted in detail previously, it is important to

discover what kind of testing can take advantage of this kind of approach. Two of the

research goals of this thesis can be derived directly from this fact:

1) Can rule-based exploratory testing be used to catch general bugs?

2) Can rule-based exploratory testing be used to catch specific bugs?

In these questions, general bugs are defined as bugs that could occur in many sorts of

interfaces. For example, one general bug discussed in Chapter 5 is that widgets can

respond to events even if they are not in the visible area of the computer’s screen. This

situation could occur in any GUI-based application, so it is considered to be a general

24

bug. Specific bugs, on the other hand, are defined as bugs that could only occur in

specific types of interfaces. For example, the second bug discussed in Chapter 5 deals

with a bug that can only occur in web-based applications that make use of a specific

interface through which a user can enter his or her age. This bug is considered to be

specific because it can only be encountered in very specific interfaces that are used in

very few GUI-based applications. A tangential question to these first two is:

3) Can rules be reused in tests for different applications?

This third question is addressed in Sections 5.2.1 and 5.2.2, by creating rules based on

general and specific bugs and attempting to apply these rules to various GUI-based

applications. Rules are considered reusable if it is possible to apply them to different

applications without changing them.

A fourth question was raised during the course of the preliminary evaluation:

4) How often is it possible to use keyword-based testing on GUIs?

This question was raised in response to various difficulties in conducting the

investigations in Sections 5.2.1 and 5.2.2. Since there is an alternative to keyword-based

testing – testing with object maps – this is a particularly relevant question.

Finally, an attempt was made to address the underlying question of this thesis:

5) Is rule-based exploratory testing less effort than writing equivalent tests by using

a capture/replay tool and inserting verifications manually?

This fifth research question is intended to discover whether rule-based exploratory testing

is more efficient than existing approaches to GUI testing. However, this is a very large

question, and could conceivably take an entire thesis of its own to answer, so the purpose

25

of this investigation is included simply to see if, in a small data set, rule-based testing is

always or never more efficient than creating equivalent tests with the traditional method.

1.5 Goals

There are two main goals of this thesis. The first is the development of a tool that can

support manual exploratory testing of GUI-based applications with automated rule-based

verifications. This is discussed in Chapter 3, which discusses LEET, the tool created for

this thesis to make rule-based exploratory testing possible.

The second goal is to attempt to answer the research questions listed above in order to

come up with a more focused list of recommendations for further work on rule-based

exploratory testing. If future work is to prove whether this method is more effective than

existing methods, it should be possible after attempting to answer each research question

to come up with a concrete hypothesis for use in future evaluations.

1.6 Conclusion

In this chapter, an approach to testing applications through their GUIs by enhancing

exploratory testing with rule-based verification is presented. The structure of GUIs was

explained. Basic terminology for testing was presented in order to better contextualize

rule-based exploratory testing. Manual and automated testing techniques are evaluated,

and their strengths and weaknesses are explained so that it can be seen how adding rule-

based verifications to exploratory testing can improve the process of GUI testing. The

difficulties involved with GUI testing were explained in detail so that the benefits of

enhancing exploratory testing with rule-based verification could be clarified. Finally,

research questions to investigate and goals of this thesis were stated.

26

Chapter Two: Related Work

This section presents an overview of experiences with, techniques for, and tools that

support testing an application through its GUI. There have been many attempts in

academia to deal with the problem of GUI testing, and these focus in large part on an

automated approach. Because of this, the following section will deal with publications

by area of contribution, rather than individually. Contributions are grouped into those

that deal primarily with complexity (Section 2.1), those that deal with primarily with

change (Section 2.2), and those that deal primarily with verification (Section 2.3) in GUI

testing. These areas of contribution are further subdivided where appropriate in the

following subsections.

2.1 Dealing with Complexity

One of the three major challenges involved in GUI testing is dealing with the

overwhelming complexity of the GUI itself, as originally introduced in Section 1.3.1. In

the following subsections, various approaches to reducing the amount of complexity

involved in GUI testing are summarized.

2.1.1 Avoiding the GUI

The simplest approach to testing a GUI-based application is to ignore its GUI. In this

subsection, several ways of testing a GUI-based application while minimizing the focus

that must be placed on its GUI are summarized.

2.1.1.1 Testing Around the GUI

The first option for avoiding the complexity associated with GUI testing is to circumvent

the GUI. This can be achieved by adhering to a software design pattern along the lines of

the Mode-View-Controller pattern, in which the GUI code is kept too simple to possibly

27

fail [20] [21]. It is also possible to design a specific testing interface through which to

interact with the underlying application without the additional complications of the GUI

[18]. It is worth noting, however, that neither of these approaches will uncover errors

that, in spite of the design process, occur in GUI code. However, it is possible that

accessibility frameworks, as described in Section 1.3.3, interact with the GUI in a

realistic-enough fashion that they can be used as a testing interface for GUI-based

applications.

2.1.1.2 Symbolic Execution

It is possible to use symbolic execution of a model of a GUI to derive optimal inputs to

use during testing [22]. Symbolic execution is a way of figuring out which inputs will

result in a specific path through a system being taken, and this process can be automated.

For instance, out of the many possible inputs to a text box that takes a given number of

characters, it’s highly likely that only a small number will trigger interesting or different

system behaviour [22]. By combining symbolic execution with a white-box approach to

test execution, it’s possible to identify a set of inputs that will statistically exercise more

of the code related to a widget than would be probable by selecting input values

randomly. This technique can be used to drastically reduce the number of test procedures

needed to test a section of a GUI, as only the most interesting input is used. However,

this technique has only been shown to be applicable to text input to GUI widgets, and has

only been shown to be able to identify high-level errors such as uncaught exceptions [22].

In other words, it has only been used to expose a small subset of possible bugs.

28

2.1.2 Automated Generation of Tests

It is possible to use AI systems to automatically generate test suites for GUI-based

application. These test suites tend to have weak test oracles despite having

comprehensive test procedures. A weak test oracle is one that has a low probability of

detecting a fault even if one is triggered. While it is possible to automatically generate

test procedures for a GUI, it is very difficult to automatically generate meaningful test

oracles. This subsection summarizes attempts to automatically generate test oracles

capable of detecting faults in user interfaces.

2.1.2.1 Automated Planning

Automated planning makes use of AI systems to automatically generate a path between a

given initial state in a GUI and a given goal state. This is useful in that if it is not

possible to reach the goal state, then it can be inferred that the GUI is broken. While this

kind of oracle requires no additional effort to create, it is very weak for detecting bugs.

An obvious problem with these systems is that they rely on a human tester to define the

expected behaviour of each of the widgets used in an application’s GUI for use in the

planning process – a tedious task [23] [24].

2.1.2.2 Evolutionary Testing

In evolutionary computation, a population is created by generating a set of algorithms

based on a template. Algorithms generated in this way are similar to the template used to

create them, but differ in small, randomized ways. This population is evaluated based on

a set of fitness criteria, and a new population is generated using the fittest algorithms in

the current population as the template. This process can be done iteratively in order to

produce successively fitter populations.

29

Similarly, in evolutionary testing, populations are composed of test cases, and the fitness

function used is based on factors like the number of bugs detected by the test, the amount

of the system that the test covers, and so on. It should be noted that, in this work, the

possibility that a bug report could be wrong is not considered. Using this sort of fitness

function for evaluating and evolving test cases makes it is possible to increase test

coverage in areas of the GUI that have been shown to include faults previously, and at the

same time to weed out infeasible test cases – test cases that are not executable [25] [26].

This approach has also been applied to interactions themselves by prioritizing those that

have led to faults in previous generations of tests [27].

While evolutionary testing makes it possible to increase the amount of an application that

a test covers by using this axis as part of the fitness function, it is difficult to pair these

procedures with meaningful test oracles. Oracles that check for faults like crashing

programs and uncaught exceptions can be used, but oracles that verify the correctness of

an application’s functionality cannot be generated automatically, and are not have not

been used in this method of testing. As with rule-based exploratory testing, it is possible

to define strong oracles manually and then incorporate them into the testing process, but

this has not yet been done with the fitness functions used in evolutionary GUI testing.

2.1.2.3 Randomized Interaction

Another solution to the complexity of testing a GUI-based application is to simply

interact with its GUI randomly [28] [29]. Interactions can be chosen at random from

those available at each state of the GUI, meaning that no formal definition of a test is

actually recorded. Additionally, if each sequence of interactions is recorded, it is possible

to generate a test suite made up of tests that increase overall code coverage. If two

30

sequences cover the same sections of the system, then it is possible also to select the

shorter of the two for inclusion in the test suite [28]. In this way, it is possible to generate

and refine a suite of tests geared toward increasing test coverage.

However, again, this approach is constrained by the difficulty of detecting faults through

automatically-generated tests. While it is entirely possible to detect application crashes,

uncaught exceptions, and the like, it is much more difficult to use this approach to verify

that the correctness of the application under test’s response to a specific interaction.

2.1.3 Model-Based Testing

One approach to simplifying the testing of a system is to first create a model of the

system itself. Creating such models is a tedious process, but tools for automating it do

exist. After a model has been created, it can be used to simplify the process of using one

of the approaches to automated test case generation from Section 2.1.2. However, the

basic issue with model-based testing is that these models are linked directly to the

complexity of the system under test, which, in the case of GUI-based applications, means

the models themselves can be quite complex. Further, if model-based testing simply

confirms that a GUI conforms to its model, then only verification is being done, and

validation – ensuring that a system meets its intended requirements – is omitted. In this

section, the several types of models that have been applied to the testing of GUI-based

applications are explained.

Model-based testing has several advantages, including the ability to select and optimize

test cases intelligently and the ability to thoroughly test a system as represented in its

model. However, test suites generated from models can be too large to run in a timely

manner [9].

31

2.1.3.1 Finite State Machines

It has always been tempting to try to formally specify software applications in terms of

finite state machines, or finite state automata (FSA). FSA can be used to represent an

application as a set of states and interactions that cause transitions between states. This

makes it possible to use FSA in the automated generation of test cases. The problem with

using this approach on a GUI-based application is that a FSA representation of a GUI

will have a enough states and transitions that creating and running tests from the FSA

will take a prohibitively long time. Many of these states will not be detectable through an

application’s GUI, and the effect of many transitions will be difficult to determine.

Moreover, FSA need to be entirely re-generated in the event of changes to the GUI [30].

Because of these factors, FSA remain difficult to apply effectively to testing applications

through their GUIs.

However, some specialized forms of FSA have been used for GUI testing with some

success. Variable finite state machines (VFSM) are FSA with additional global variables,

which allow for the same state to respond to the same input in different ways based on

previous input [31]. This makes it possible to decrease the number of states and

transitions that must be included in the VFSM drastically [31]. While VFSMs are a

significant improvement over FSA, they are still vulnerable to the same problems

mentioned above.

2.1.3.2 Event-Flow Graphs

Event-flow graphs (EFGs), sometimes known as event-sequence graphs [32] or complete

interaction sequences [33], are forms of FSA that can be used to model all possible

sequences of interactions that can be executed on a specific GUI [1] [34] [35] [36]. This

32

is accomplished by modeling only interactions that cause transitions to take place, and

states are represented implicitly. Because the number of such transitions is enormous

even for relatively simple GUI-based applications, and because different windows in an

application can represent independent arenas of interaction, EFGs can be simplified by

breaking the main graph down into subgraphs representing individual windows [32] [35].

Paths through these EFGs can be used as test procedures, but the effectiveness of test

oracles generated in this fashion is limited. Tests generated from EFGs can only be used

to detect differences between versions of the same GUI, including unexpected crashes,

and carry the risk of flooding developers with false positives, especially given the

enormous number of tests that can be generated from EFGs.

2.1.3.3 Event-Interaction Graphs

Event-interaction graphs (EIGs) are a refinement of EFGs that focus on GUI events that

trigger events in the underlying code of the application [34] [7]. EIGs model the ways in

which the underlying application can be manipulated so that AI planning techniques can

be used to automatically generate test cases from the model that will primarily test the

underlying application code, rather than events provided by the framework used to write

the GUI.

While it is possible to generate tests that are capable of detecting bugs in open-source

systems using this technique [7], these automatically-generated tests tend to be much

longer than necessary. In fact, it is both possible and advisable to pare these tests down

to what’s known as a minimal effective event context (MEEC) – the shortest sequence of

events capable of triggering the fault – before adding them into a regression suite, as

running the suite of generated tests can take a significant amount of time [7].

33

2.2 Dealing with Change

The second major challenge involved in GUI testing is the likelihood that the GUI will

change repeatedly over the course of development, and the likelihood that tests developed

against the previous version of the GUI will no longer work when run against the current

GUI. This topic is discussed in more depth in Section 1.3.3. The basic problem is that an

altered GUI can result in a false positive stemming from the procedure of a test. This

means that it was not possible to run the test properly, and should usually be interpreted

as a broken test. This is distinct from finding a bug, which would result in a failure

stemming from the an inconsistency between the test oracle and the running system.

While it is possible to repair broken test procedures automatically, determining whether

its test oracle is still valid in its new context requires human intervention. The following

subsections summarize attempts that have been made to make GUI test suites robust

enough to deal with failures in test procedures caused by changes to a GUI, or to ease

their repair when tests do break.

2.2.1 Testing Around the Interface

As mentioned in Section 1.3.3, one of the ways of avoiding the complexity of testing a

GUI-based application is to create a test harness through which tests can be run. This

harness will provide an interface through which widgets can be accessed. It can be used

to test whether, if widgets are calling the correct events in the code-behind, the

application will respond correctly. However, since testing harnesses skip the GUI

entirely, they are of course unable to find GUI bugs.

34

Accessibility frameworks, like those mentioned in Section 1.3.3, carry the advantages of

a test harness and are, at the same time, able to test GUI code as well as underlying

application code.

Accessibility tools interact with the GUI in ways that make them usable as test harnesses.

For example, the Windows Automation API and Microsoft Active Accessibility

frameworks are built-in to GUI-based applications programmed using Windows

Presentation Framework or Windows Forms [13] [12]. Since an accessibility framework

used in this fashion is tightly integrated with the GUI itself and will call methods in and

report events raised from these widgets, testing through an accessibility framework is

analogous to testing the GUI itself, while avoiding the complexities involved in out-of-

process testing – such as locating a widget to test and invoking its functionality.

Testing tools that are based on accessibility frameworks have the added advantage of not

needing to know the specific class of a widget when a test is run. Rather, the basic

functionality of a widget is used instead. In the Automation API, buttons, hyperlinks,

drop-down menus, and many other widgets are categorized as “InvokePattern” objects.

This means that a test that involved performing an invocation of a button would still work

if that button were changed to a hyperlink.

Because of the potential of accessibility technology to assist in testing of GUI-based

applications, it’s no surprise that many new GUI testing approaches described in

academic literature are starting to make use of this technology [37] [38] [39] [40] [41].

LEET, the implementation of rule-based exploratory testing presented in this thesis,

makes use of the Automation API in order to take advantage of this added stability.

35

2.2.2 Prototyping

Approaches to test-driven development of GUI-based applications based around

extensive user interface prototyping have sought to minimize change in the GUI once

development has started in order to provide a more stable target for GUI tests [37] [38].

In these systems, a low-fidelity prototype of the GUI is created, and usability testing is

iteratively performed on this prototype. This helps to discover and fix usability flaws in

the GUI before actual GUI development begins. These usability flaws include issues

which prevent users from actually using the system, and are likely to result in changes to

the structure of the GUI. By dealing with usability flaws before coding begins on the

actual GUI, it is less likely that the GUI will need to be changed during development.

Tests can then be recorded from the final version of the prototype. As yet, this approach

is the only one to focus on reducing the need for change, rather than on minimizing the

impact of change. While this approach is promising, it has yet to be supported through

any case studies.

2.2.3 Repairing Broken Test Procedures

When GUI test suites break, it is possible in some cases to repair the broken tests without

human involvement, or to assist in manual repair. While the automated approaches to

test repair are intriguing, human judgement is currently required in order to determine if a

test oracle makes sense in the context of a revised GUI or repaired test procedure.

Making this decision could prove more difficult than simply re-writing the entire test

[16].

36

2.2.3.1 Approaches Based on Compiler Theory

One approach to the repair of broken test scripts is based around an error-recovery

technique used in compilers. A broken test procedure can be seen as a sequence of

events which is illegal for a given GUI, so by inserting events from the new GUI into the

test procedure or by skipping events from the old procedure within the new one, it is

sometimes possible to return the procedure to a usable state [15] [14] [42]. Due to the

nature of this approach, it is entirely possible that there could be multiple ways to repair a

single broken test procedure. This means that it can be used to automatically increase

coverage of the application under test through these new versions of the same tests.

2.2.3.2 Assisting Manual Repair

Rather than attempting to automatically repair broken test scripts, it is also possible to

automatically determine where changes in a GUI are likely to have broken test

procedures, and to support manual test repair. The first step in this process is to

determine which interactions in the test procedure refer to widgets that have been altered,

and to determine the impact of their alteration on the procedure as a whole [40]. The

impact of changing a widget between similar types, for example a RadioButton and a

CheckBox, might be small in the context of a specific procedure, whereas removing a

widget entirely would have a large impact within tests where the widget is referenced.

One of the difficulties with this approach is determining why, specifically, a change in

the script is likely to break a test. It might not be obvious in the previous example why

changing a widget from a RadioButton to a CheckBox should cause the test oracle to

report a failure when both are accessed in the same way within the test. In fact, through

the Automation API, selecting either would be accomplished through a

37

“SelectionPattern” object’s “select” command. In order to better determine how a change

in the GUI has broken a test script, it may help to automatically type all references to

widgets used in the script [41]. This means that a tester would have access to the

programmatic type of objects with respect to the language in which they are coded, rather

than simply the language in which the test script is accessing them.

Another approach to simplifying the repair of broken GUI tests is to compose macros, or

groupings of commands intended to make repeatedly performing the same set of

interactions easier, out of sets of simpler interactions [43]. If a sequence of interactions is

repeated across multiple tests, combining these interactions into a single macro can

localize potential failures. The set of these macros can be separated from test scripts, and

maintained independently. If a part of the macro breaks due to changes in the GUI, the

fix simply needs to be applied to a single location in the script.

These approaches to dealing with problems involved in GUI testing are unique in that

they attempt to keep test engineers involved in the testing process, rather than to

automate all GUI testing activities. While these are promising new approaches, they lack

evaluations that would be able to show if the approach is useful in practice.

2.2.4 Actionable Knowledge Models

Actionable knowledge models (AKM) are composed of actionable knowledge graphs

(AKGs) – yet another form of FSA – and sub-goal lists (SGLs) [42]. Each SGL

represents a node or set of nodes within an AKG, and can be envisioned as a test

procedure. By using AI techniques to transition a GUI-based application between

vertices its corresponding AKG with the goal of reaching states of the application

corresponding to vertices stored in SGLs, it is possible to store test cases within the

38

abstract structure of an AKM. The advantage of doing so is that no test script is ever

generated. This means that, when the GUI changes, these changes need merely be

incorporated into the AKM, and in so doing will be propagated to every test for the

system simultaneously. However, because this approach is based on the use of a FSA, it

falls prey to the issues discussed in Section 2.1.3.

2.3 Verifying Correct GUI Behaviour

The final major challenge involved in GUI testing is the difficulty of creating strong test

oracles. This subsection presents various academic approaches to this issue, from

lightweight approaches that use weak oracles to approaches that attempt to systematically

model the behaviour of an entire GUI-based application. It is interesting to note that

verification is the least-well addressed of the three major challenges involved testing an

application through its GUI in academic literature.

2.3.1 Smoke Testing

The majority of publications which address the problem of GUI testing focus on only half

of the problem. Approaches to automatically creating GUI test procedures are discussed,

but automated creation of effective GUI test oracles is not. Tests that either possess very

simple oracles or lack them entirely are known as “smoke tests.” Smoke tests aim to see

whether the basic functionality of the system is present; in the case of GUI-based

applications, smoke tests address questions such as “does the system crash during

interactions,” “do widgets react to interaction,” and “does the system ever throw

uncaught exceptions.”

While this sort of testing is useful in that it can verify that it is possible to reach certain

states in an application after it has been modified, it’s necessary to add additional

39

verification information to these tests before it would be possible to assess whether the

system is behaving as expected, instead of testing to ensure the system is not behaving as

not expected. With weak oracles like these, GUI tests lose much of their ability to detect

faults [44].

2.3.2 Verification Based on the Previous Build

When GUI testing is performed in an environment in which continuous integration is

practiced, an interesting approach to oracle generation can be taken. Continuous

integration is the practice of requiring tests for code to be accepted as part of a program,

and of running all of these tests before a modification to the application is accepted.

When continuous integration is used as part of a software development process, it is

possible to assume that the previous version of the build is correct because it passed the

previous run of tests in order to be accepted. Each of these test runs can then simply

verify that the current build behaves in the same way as the previous one [34].

In order for such an approach to be useful, it would be necessary for the GUI-based

application that’s being tested to respond in a hard-coded correct fashion to each test until

each bit of functionality is implemented. Additionally, such a system would treat any

change to the GUI as an error, and would thus be likely to return a number of failing tests

each build unless the GUI is exceptionally stable. Because of these limitations, this

approach is only really practical for mature applications to which only maintenance work

is being performed.

2.3.3 Model-Based Verification

In principle, it might be possible to use a detailed FSM, or some other model of an

application, to describe all of the possible states of a GUI, and thereby to deduce the state

40

that should result from a given interaction. Though this has been attempted in the past

[45], the overwhelming complexity of modern GUIs is making this approach increasingly

less feasible. In fact, recent models, such as the EIG described in Section 2.1.3.3,

abstract the state of the GUI entirely and focus only on possible events as a way of

reducing complexity.

2.3.4 Rule-Based Verification

One approach to easing the creation of complex GUI test oracles is to define desired

behaviour in terms of rules, like those discussed in Section 1.2. It is then possible, after

each step of the test procedure, to verify each rule against the running system.

This approach has been used in the past to validate each state of an AJAX web interface

[46]. In this system, defining specific warnings and errors in the HTML or DOM of the

application in terms of rules presents a huge advantage, as they can simply be stored in a

rule base that is queried repeatedly during test execution. Since the test procedure of an

AJAX application can be easily automated using a web crawler, all that really needs to be

done in order to perform automated testing is to define each rule that the system should

ensure. Unfortunately, defining rules that perform validation only and are useful enough

to aid in testing remains difficult.

This previous approach was limited to AJAX applications only, and as such represents a

proof-of-concept on a simplified GUI system. However, a similar technique has been

applied to GUI-based applications, in which events are defined as a set of preconditions

and effects [23]. This technique is used primarily for automated creation of GUI test

cases, but has the additional effect of verifying that the effects of each atomic interaction

are as expected for a given widget.

41

The value of each of these approaches is that expected or unexpected states of the GUI

are stored in terms of a reusable rule. This means that it is possible to ensure that a

specific error does not occur during the execution of a large number of separate tests.

Because of this ability to test for the same properties across a long number of states, rule-

based testing plays a crucial role in LEET, as can be seen in Chapters 3 and 5.

2.4 Conclusion

In this section, academic publications on the topic of GUI testing were sorted into three

categories based on their main contributions: those that helped deal with the complexity

of modern GUIs; those that helped deal with changes in the GUI that would break tests;

and those that dealt with the difficulty of creating automated test oracles for GUI-based

applications. While work has been done to explore different methods of testing

applications through their GUIs, no publications address the issue, originally introduced

in the introduction to this thesis, of integrating exploratory testing with automated testing

methods. Further, while rule-based testing has been briefly applied to GUI-based

applications previously, LEET represents the first attempt to integrate manual exploratory

testing with automated rule-based testing, or any other form of automated testing, and to

apply this union to GUI testing.

42

Chapter Three: LEET

In Section 1, three major challenges were addressed: complexity, change, and

verification. These three difficulties must be addressed by any GUI testing tool if it is to

be successful. First, a tool must be able to deal with the overwhelming complexity of a

GUI-based application: the vast number of states that it can enter and the number of

events that can be triggered in order to move the application between states must be

reduced to a manageable subset in order for tests to be able to run within a reasonable

amount of time. Second, a tool must be able to deal with the rapid changes that GUIs

undergo during development. Broken test procedures, resulting from changes to the GUI,

should be minimized without obscuring the results of failing test procedures, which result

from changes to the functionality of the application. Third, a tool must find a way to

make use of strong, automated test oracles.

This chapter describes the design of LEET Enhances Exploratory Testing (LEET), the

implementation of the combination of exploratory and rule-based testing created to

determine whether this approach to testing GUI-based applications is practical.

3.1 Structure of LEET

LEET is designed to support manual exploratory testing of GUI-based applications

through the addition of automated rule-based verifications. Through exploratory testing,

a human test engineer explores a path through an application, and this path is recorded by

LEET as a script of automatically replayable interactions – a test procedure. In this way,

a subset of the entire application is identified for further testing. If this path proves

interesting – if bugs are found, or if the system behaves suspiciously in the tester’s

opinion – then the next step is taken. Rules are used to define either the behaviour of

43

bugs in the application or a potential failure stemming from the suspicious behaviour –

test oracles, in other words. LEET can then replay the test procedure and query the set of

rules at each step of the procedure. The preconditions of these rules, the “if...” clauses,

keep them from firing unless certain conditions are met, which reduces the number of

false failures – bug reports resulting from an inability to correctly perform a verification

rather than a failure of expectations to match the application’s behaviour. This decreases

the chances that changes to the GUI will end up breaking tests. These rules are then

queried throughout replay of the exploratory tests recorded earlier in order to ensure they

are met throughout all of those states of the application, which results in a stronger test

oracle. This procedure can be seen in Figure 7. Because users of LEET must be able to

define rules through code, LEET’s target audience is test engineers.

44

Record Exploratory Test Session
of GUI-Based Application

Create Rules Based on Expected
Behaviour of System Under Test

Run next step in the
recorded

exploratory test

Query all rule
preconditions

Run rule actions for
rules whose

preconditions are
met

Perform
consequences of

failed rules

Are there more
steps in the

exploratory test?
Yes

Did any rule actions
fail?

Yes

No

Test Completed
Successfully

 No

Nonfatal
Failure

Test discovered
 a bug

Fatal Failure

Figure 7: The process of rule-based exploratory testing.

Many different features are required in order for automated rule-based testing to

complement manual exploratory testing. Figure 8 provides an overview of these different

subsystems and how each interacts with a GUI-based application can be seen in.

45

Capture/Replay Tool Rule Engine

TestRunner

Preconditions

Verification
Actions

Consequences

Creates Defines

Uses Uses

Each rule is
a set of

Application Under Test

Interacts
With

Verifies
Correctness

Of

Structure of LEET

Scripts Rules

Records
Interactions

With

Figure 8: Diagram showing the structure of LEET

First, it must be possible to record interactions that a test engineer takes on an

application. This is accomplished in LEET through the use of a Capture/Replay Tool

(CRT). CRTs record interactions taken by a user through recording the positions of

mouse clicks and keystrokes or, alternately, through recording the events raised by an

accessibility framework. These interactions are recorded as a script, which can be

translated to executable code to be replayed. Because CRTs are able to record

exploratory test sessions, they are central to any implementation that seeks to enhance

exploratory testing with automated verifications. Currently, events from only a handful

46

of AutomationPatterns are recorded by LEET. LEET can interact with widgets that

expose InvokePattern, ValuePattern, ExpandCollapsePattern, TransformPattern,

TogglePattern, TextPattern, SelectionPattern, SelectionItemPattern, and WindowPattern

AutomationPatterns. However, this still leaves DockPattern, GridPattern,

GridItemPattern, MultipleViewPattern, RangeValuePattern, ScrollPattern,

ScrollItemPattern, TablePattern, and TableItemPattern, to be implemented in future work.

In LEET, the CRT subsystem records interactions raised through the Automation API in

a domain-specific language before compiling them into executable C# tests using the

Compiler subsystem. This allows test engineers the ability to edit tests in whichever of

these formats they find more easier to use. Compiled tests then use the Automation API

to replay the previously recorded test on the application. Figure 9 shows LEET, top, in

the process of recording a test session taking place on the sample application, bottom.

Figure 9: Recording an exploratory test session with LEET

47

Second, it must be possible to create rules (Section 1.2.2.1). This involves a system for

checking preconditions against a running application, deciding if they are met, running

the action of a rule, and determining the consequence of failure. In LEET, this is done

through the Rule-Base subsystem. The Rule-Base contains a set of rules, each of which

is a set of preconditions that are used to determine when a rule should take an action,

actions that are used to verify parts of an application under test, and consequences failing

the verification process. Preconditions and actions are checked against the running

application via the Automation API. Consequences can be either fatal or nonfatal. Fatal

consequences end a test run with an error, which signifies a bug in the application, while

nonfatal consequences display an error dialog so that human test engineers can be made

aware of a minor discrepancy and use their judgement as to whether to report it as an

error.

Third, a system is needed in order to pair a recorded exploratory test session with a rule-

base. This is necessary so that the automated test oracle can be applied to the running

GUI-based application after every step of the test procedure, which expands the number

of verifications that are performed in each state, thus increasing the strength of the test.

In LEET, this is done through the TestRunner subsystem, which runs a single step from a

test procedure at a time, then triggers the Rule-Base. In Figure 7, above, the rectangle

enclosing the various circles is the set of actions initiated by a TestRunner to perform

rule-based exploratory testing. The Rule-Base then checks all the preconditions of all of

its rules against the running system, and triggers the actions of rules which have met all

of their preconditions. This is a modified version of the Rete algorithm [6], an efficient

method of pairing facts with productions in logic-based systems. While other methods of

48

pairing preconditions to actions to take exist, this system was chosen for use in LEET to

increase the efficiency of querying the rule-base since there was concern during LEET’s

development about the efficiency of querying the rule-base. Finally, any consequences

that are raised as the result of a failed rule action are dealt with, and, if any consequences

are fatal, the test is terminated. Otherwise, the TestRunner repeats this process until there

are no more steps in the test procedure.

3.2 Conclusions

This section described the design of LEET. The motivations for enhancing exploratory

testing with rule-based testing were reiterated, and the benefits of the specific design

implemented in LEET were explained. The process of recording an exploratory test was

described, the process of creating rules was described, and the method of combining and

running these together was explained. Specific interesting design decisions were

explained. In this way, the necessity of each subsystem is made clear, and the reason that

each specific subsystem was implemented in LEET is defended.

49

Chapter Four: Technical Challenges

Several technical challenges were encountered during the development of LEET. These

challenges, along with the solutions that were decided upon, are described in this chapter

in order to provide guidance for the development of alternate implementations.

4.1 Interacting with Widgets

From a test’s point of view, three forms of interaction are required in order to test a GUI-

based application:

1) Finding a specific widget

2) Invoking that widget’s functionality

3) Verifying properties of that widget

The first two requirements were discussed in Section 1.3.3. The third requirement is the

most challenging: how do automated test oracles determine whether the system is

working correctly or not? The earliest approach to this problem was to capture

screenshots of an application’s GUI when the application was running correctly, and to

then compare the application’s GUI during the execution of a test to this screenshot. This

approach, however, is very likely to result in false reports of test failures due to minor

changes to the interface when the functionality of the application itself was working

correctly. An accessibility framework, on the other hand, can provide information about

the properties of widgets during the execution of a test, so determining the correctness of

a GUI with an automated test oracle is much easier. On the one hand, the oracles will be

more precise: it is possible to address only a small part of a GUI with a test oracle so that

minor, unrelated changes to the interface can be ignored. On the other hand, specific

information about a widget can be accessed, rather than just the way in which it is

50

rendered onscreen. Due to these advantages of testing a GUI-based application with the

aid of an accessibility framework, this is the approach taken in LEET.

The accessibility framework that LEET makes use of is the Windows Automation API

[13]. The Automation API works by providing a public interface for each widget based

on which AutomationPatterns it implements. An AutomationPattern allows access to a

widget based on the functionality of the widget. For example, buttons and hyperlinks

have the same basic functionality: they receive mouse clicks and respond by performing a

single, unambiguous function. An AutomationPattern encapsulating this functionality,

then, would allow access to a widget through the invocation of a single method. This

method would perform the equivalent of a mouse click, and thus trigger the basic

functionality of the widget. By implementing a set of AutomationPatterns describing

different parts of the functionality of a widget, its complete behaviour can be defined for

use by other programs, including tests. A diagram of this interaction is shown in Figure

6, from Chapter 1.

“InvokePattern” and “ValuePattern” are two of the patterns that may be implemented by

a widget, and each represents a part of the functionality that the widget provides.

Each widget will expose some default properties and methods through UIA, in addition to

other properties specific to each AutomationPattern it implements. Some of these

properties are implemented automatically. For example, the “AutomationID” property

will be the same as the name defined for a widget created in WPF. AutomationPatterns

for custom controls, however, must be implemented manually by developers. This

information is used to locate specific widgets during the execution of a test.

Unfortunately, it is possible that widgets can end up without AutomationIDs or other

51

identifying information. It is difficult or impossible to test properties of such anonymous

widgets. For details on the frequency of such widgets, see Section 5.2.3.

4.2 Keyword-Based Identification

Two ways to identify widgets during the course of a test when using an accessibility

framework were identified in Section 1.3.3. The first, testing with object maps, is robust

in that it can still find widgets even when part of the information they should match has

become obsolete, as can be the case when changes are made to the GUI. However, in

order to gain this robustness, it’s necessary to specify many different properties of the

desired widget. In keyword-based testing, on the other hand, the value of a single

property is used to identify a widget. This means that the values of this property cannot

be the same between any two widgets in the application. While keyword-based testing is

simpler for a human to write than testing with object maps, it can be difficult to ensure

that all widgets in a complex GUI have different unique identifiers – something not

required in testing with object maps. However, because of the simplicity of using

keyword-based testing given that an application’s widgets are uniquely identified,

keyword-based testing was used in LEET. See the pilot evaluations in Chapter 5 for

evaluation discussion of the weaknesses of this approach.

Widgets expose several default fields through the Automation API. The “AutomationID”

field is particularly important in that it should be unique. Additionally, the Automation

API can be used to locate widgets based on simple search criterion. For example, it is

possible to search for children of a given window that have a given AutomationID.

In theory, it should be possible to use the AutomationIDs of widgets in GUIs for

keyword-based identification. In practice, however, the AutomationID property is often

52

left blank by developers. For this reason, LEET will attempt to match the AutomationID

of a widget first when searching for a specific widget, and then attempt find a matching

“Name” field if that is not possible. While this sort of search is not guaranteed to find the

correct widget, it is necessary in light of the prevalence of widgets without

AutomationIDs.

4.3 Code Coverage Integration

One of the difficulties mentioned in Section 1.3.3 is determining what parts of a system

have been covered during exploratory testing. This lack of coverage information makes

it difficult to determine how adequately the system has been tested, or which parts of the

system need further attention. The most commonly-used way of recording this

information is to use a code coverage tool. Code coverage tools monitor the execution of

an application in order to determine which lines of code were executed and which were

not. This makes it possible to evaluate which parts of the system have been adequately

tested and which require further scrutiny.

Since the approach to GUI testing used in this thesis relies on exploratory testing, it must

also deal with this difficulty. LEET integrates with NCover 1.5.8 in order to make it

possible to collect code coverage information [47]. This specific version of the tool was

used because it was the last free, open-source version produced, and is distributed freely

as part of TestDriven.NET [48].

4.4 Technical Limitations

Several of the issues encountered during the development of LEET could not be resolved,

and remain outstanding issues. These technical limitations are described in this

subsection so that the underlying issues can be understood, and future attempts to

53

implement a system of enhancing exploratory testing with rule-based verifications can

take these issues into account in their design.

First, since tests are recorded through the Automation API, only widgets that implement

at least one AutomationPattern are testable. While widgets provided by the Windows

Presentation Framework and WinForms toolkit will implement appropriate patterns by

default, it is necessary to manually define patterns for custom widgets. If this is not done,

it will not be possible to record tests from or replay tests on the application. When using

LEET to test web-based applications, this is compounded based on the browser used to

display the application. AutomationPatterns will be somewhat available when a page is

viewed in Internet Explorer, for example, when the same page displays no widgets when

viewed in Google Chrome. Additionally, some functionality is not testable through the

Automation API because the AutomationPatterns to describe this functionality do not

exist. For example, there are currently no AutomationPatterns designed to support

interactions that can take place on a digital tabletop, including interactions with ink

canvases and gestures. This makes these interactions untestable through the Automation

API at present and, consequently, untestable through LEET.

Second, because LEET uses keyword-based identification of widgets, it’s necessary for

each widget to be assigned an AutomationID or, at least, a Name. If the former is not

done, it’s possible that the wrong widget may be found and used by LEET. If neither is

done, LEET will not be able to test that element. For an evaluation of how often this

happens in certain systems, see Section 5.2.3. It is possible that the problems this may

cause would be lessened if testing with object maps were used to locate widgets for

54

testing rather than keyword-based testing, so this may be an attractive approach for

alternative implementations.

Third, the use version 1.5.8 of NCover engenders a distinct weakness: it only works with

applications programmed in the .NET framework, version 3.5 and earlier. New

applications programmed in .NET 4.0 will not be coverable and, worse, will cause

NCover to crash. Further, due to the way NCover functions, the .PDB files created when

an application is compiled must be present in the same directory as the executable for the

application that’s being tested. In order to fix this issue, all that would be necessary is to

integrate with a different code coverage tool. Newer versions of NCover would be good

candidates for this, though they require purchase.

Fourth, because LEET is programmed in .NET, it can only run on PCs. Further, because

not all programming languages enable their widgets with AutomationPatterns, the

amount of testing that can be performed on applications programmed in non-.NET

languages is limited. For example, Java GUIs are partially enabled: it is possible to

record certain interactions, like clicking a button, but replaying a test script on the GUI

won’t currently work. This is due to the fact that AutomationPatterns are only partially

implemented in Java. Events are raised when widgets receive interactions, but the part of

the AutomationPattern that receives events is not implemented, which makes it

impossible to run a test on Java-based applications through the Automation API at

present.

Fifth, it’s not currently possible to record events taking place in more than one window at

a time. This means that, when applications spawn additional windows, these applications

must specifically list these windows as children of the application’s main window. When

55

testing involves interactions between one or more application, it’s necessary to switch

LEET’s focus between active windows. Future implementations of the approach to

enhancing exploratory testing with rule-based verifications will need to be able to handle

4.5 Conclusions

In this chapter, technical challenges involved in the design and creation of LEET were

introduced. Those challenges that it was possible to overcome were explained, and the

solutions used in the implementation of LEET were stated. Those challenges that were

not immediately addressable were also explained, and potential solutions were suggested.

56

Chapter Five: Preliminary Evaluation

This section presents a preliminary evaluation of LEET’s implementation of a rule-based

system of GUI testing. The questions addressed in this section are drawn from the list of

research questions provided in Section 1.4. This preliminary evaluation is not intended to

prove that the technique of enhancing exploratory manual testing with rule-based

verifications is the solution to the challenge of GUI testing, or that this approach is better

than other approaches. Rather, the preliminary evaluation is intended to show that this

approach to GUI testing is novel and practical. In order to show that the approach is

novel, LEET is compared to existing GUI testing tools in order to show that the

functionality required to meet the first research goals of this thesis, described in Section

1.5, is not provided by currently-existing tools. In order to show that the approach is

practical, four evaluations were conducted to determine whether the implementation of

LEET has resulted in a tool that is practical for use in enhanced exploratory testing.

5.1 Comparison to Existing GUI Testing Tools

This section presents a set of existing GUI testing tools, and compares the major features

of these tools to those found in LEET. The common features of these tools are

enumerated, and a summary is provided.

In order to support exploratory testing with automated testing techniques, as argued for in

[5], an exploratory GUI testing tool should provide capture/replay functionality. This

allows the tool to record exploratory test sessions so that they can be enhanced with

automated verifications for regression testing. Since the first research goal of this thesis,

as outlined in Section 1.5, is to create a tool that can enhance exploratory testing with

some form of automated testing, and capture/replay tools allow exploratory testing to be

57

recorded in a form that can be used as a test procedure, this feature is essential to

successfully enhancing exploratory tests with rule-based verifications.

The second feature that a GUI testing tool that can be used to enhance exploratory testing

with automated verifications should provide is keyword-based testing. Keyword-based

testing is essential because it makes recorded exploratory test sessions maintainable.

However, downsides of this approach when applied to rule-based verifications exist, and

are explored in Section 5.2.

The third feature that a GUI testing tool should provide for the purposes of this thesis is

the ability to use a rule-base as an automated test oracle. Without this, it would of course

be impossible to enhance previously-recorded exploratory tests with rule-based

verifications.

Three additional features that were encountered in existing GUI testing tools were also

listed because it is possible that they could be used as a basis for future methods of

enhancing exploratory testing, even though they are not essential to the approach

described in this thesis. The first feature is test abstraction. Test abstraction is the ability

to store test procedures or test oracles in an intermediate form. Tools that make use of

test abstraction store tests in a high-level form, which is only mapped to discrete

interactions with specific widgets when a test is run. The second additional feature that

existing GUI tools may possess is the ability to provide assisted test maintenance.

Assisted test maintenance is discussed in Section 2.2.3 and, while useful, is not essential

to accomplishing the research goals outlines in Section 1.5. The third feature is

automated test generation – the automatic creation of test procedures for a given GUI-

based application, similar to the approaches discussed in Section 2.1.2. While this

58

feature could be useful in automated smoke testing, it does not currently leverage the

advantages of exploratory testing. Even though these features are not central to the

research goals described in this thesis, they are still powerful testing tools, and could be

used as the basis for future attempts to enhance exploratory testing with rule-based

verifications.

Table 1 shows each of the existing GUI testing tools that were evaluated for this thesis, as

well as LEET, along with which of the features described above that they possess. Of the

24 tools compared in Table 1, all but 4 provide some form of CRT for automated

recording of GUI test scripts. Of these 20 tools, only 5 provide support for keyword-

based testing as well. Of these 5 tools that support recording of exploratory test sessions

and support keyword-based testing, only one provides support for rule-based verifications

– LEET. Only LEET provides all three features that are required in order to accomplish

the research goals set out in Section 1.5.

59

Table 1 Major features of existing GUI testing applications.

C
ap

tu
re

/R
e

p
la

y
Fu

n
ct

io
n

al
it

y

K
ey

w
o

rd
-B

as
ed

 T
es

ti
n

g

R
u

le
-B

as
ed

 T
es

ti
n

g

Te
st

 A
b

st
ra

ct
io

n

A
ss

is
te

d
 T

es
t

M
ai

n
te

n
an

ce

A
u

to
m

at
ed

 T
es

t
G

en
er

at
io

n

[49] Selenium

[50] WHITE *

[51] Rational Functional Tester

[52] Abbot

[53] AutoIt

[54] Automation Anywhere

[55] Dogtail

[56] Eggplant *

[57] GUIdancer

[58] IcuTest
[59] Linux Desktop Testing Project

[60] Phantom Test Driver

[61] QA Wizard pro

[62] Qaliber *

[63] QF-Test

[64] HP QuickTest Professional

[65] Ranorex

[66] RIATest

[67] SilkTest

[68] SWTBot

[69] Test Automation FX

[70] TestComplete

[71] TestPartner

[72] WindowTester

[73] LEET

 Feature met

* Feature partially met

60

5.2 Preliminary Evaluations

Four evaluations were conducted in order to determine if the approach to enhancing

exploratory manual testing with automated rule-based verifications as implemented in

LEET is practical. The purpose of the first two evaluations is to show that rules are

applicable to GUI-based testing, and can detect common weaknesses in GUI-based

applications. The purpose of the third evaluation is to investigate how testable GUIs

actually are when using keyword-based testing and automated rule-based verifications.

The purpose of the fourth evaluation is to investigate how much effort it is to actually

create tests for GUI-based applications by recording exploratory test sessions and adding

rule-based verifications.

5.2.1 Can Rules Detect General Security Flaws in GUI-Based Applications?

In this part of the evaluation, the ability of rule-based exploratory testing to detect

general, high-level bugs in GUI-based applications is explored. One such bug is

described, and two automated rules that could be used to catch this bug are described.

Three exploratory test sessions from three significantly different applications were

recorded, and then paired with these rules. The number of violations of these rules are

then described, and the implications of rule-based exploratory testing’s ability to detect

these violations are explored.

In some applications, widgets are initially created outside of the visible area of a screen.

This means that, while the computer is actually going through the process of creating

these offscreen widgets, users aren’t able to see or interact with them. This is done

because moving a GUI to a different position on the screen is a fast operation, once all of

its widgets have been created. It can make a GUI-based application appear to run faster

61

than it actually does if its GUI is created offscreen initially, then copied to the visible area

of the screen.

It is possible, however, to detect and interact with widgets even if they not displayed

within the visible area of the screen. Tools like Microsoft’s UIA Verify [74] can display

different properties of widgets and invoke their functionality through the Automation API

– even when they are offscreen. This means that care must be taken to ensure that an

application’s widgets do not perform their functionality in response to events until they

are actually displayed onscreen.

As a hypothetical example of how this weakness could be exploited, imagine a situation

in which options are added to an interface depending on whether a user logs in as a

regular user or as an administrator. If these options are rendered offscreen initially and

not copied to the visible area of the screen unless a user logs in as an administrator, they

could still be detected and interacted with using a program like UIA Verify. Doing so

would effectively bypass the authentication system entirely and allow non-administrators

to access functionality that only administrators should be able to access.

Three applications that were compatible with LEET were selected for use in this section

of the evaluation. In this case, a compatible application was defined as one for which it

would be possible to record exploratory tests of the application’s basic functionality using

LEET. This turned out to be somewhat difficult, as many applications made heavy use of

custom widgets. Since custom widgets are not based upon existing widgets in the

Windows Presentation Framework or in WinForms, the AutomationPatterns accessed

through the Automation API are not automatically implemented. In many of these

applications, AutomationPatterns had not been implemented for these custom widgets,

62

and so, in large part, exploratory tests of the functionality of the applications could not be

recorded with LEET. However, one application, Family.Show [75], was compatible with

LEET, and is the first application used in this part of the preliminary evaluation. The

second application, the Character Map application included with Windows 7, is an older

application – it was included with Windows operating systems since at least 1993 – and

is included to show that LEET can work on older Windows applications. The third

application is the website for Resident Evil 5 [76] , and it is used in this part of the

evaluation to show that LEET can work with websites as well as standard GUIs. Using

these three very different applications in this part of the preliminary evaluation has the

added advantage of showing that rules created for LEET can work with various

significantly different types of interfaces using the same rule.

First, two rules were created. These rules require widgets that are not displayed on

screen correctly to be disabled – unable to respond to interaction. The first rule reports

that the application being tested is broken when a widget is offscreen, but still responding

to interaction. The second rule reports a problem when a widget is dimensionless – or

contained within a 0-by-0 square on the screen – and still responding to interaction.

These rules are defined through C# code, but a conceptual representation of them in a

somewhat more readable format, similar to the domain-specific language in which LEET

records exploratory test sessions, is shown in Figures 10 and 11.

In interpreting this conceptual representation, it might be helpful to point out that the

result returned from a precondition determines if a rule’s action should be taken, and the

result of this action determines if a consequence is necessary. If anything besides “Null”

is returned from a precondition, the following rule action will be taken, and if this action

63

returns anything besides “Null,” the following consequence will take place. Additionally,

the assignment of the widget variable that takes place before preconditions can be used to

input all widgets in the application under test, and in this manner to check a large number

of widgets with the same rule.

64

Figure 10: Rule for detecting 0-by-0, enabled widgets

Figure 11: Rule for detecting offscreen, enabled widgets

Next, exploratory test sessions in which some of the basic functionality of each of these

three applications was tested were recorded using LEET. For example, the Family.Show

application is a program for creating and updating a family tree. In the test for this part

65

of the preliminary evaluation, the basic functionality of adding family members to the

tree was explored.

Finally, three TestRunner objects were created to combine each recorded exploratory test

session with the two rules shown in Figures 10 and 11. Each TestRunner was run on the

system for which its exploratory test session was recorded, and many violations of both

rules were discovered. For the execution of each TestRunner, the maximum number of

rule violations discovered after a single step in the procedure was recorded in Table 2. In

other words, the minimum number of violations of each rule discovered during the run of

each TestRunner was recorded, because there must be at least as many violations of the

rule as the highest number of violations after each step of the test procedure. While it

would have been preferable to list the total number of elements in violation of these rules

throughout the execution of each test, this number is difficult to determine due to the

number of anonymous widgets in each application – widgets that do not have values

assigned to their AutomationID or Name fields. This problem is revisited in Section

5.2.3.

Table 2: Minimum number of erroneously enabled widgets in each test application

Application
Offscreen Widgets

(Rule: Figure 10)

0-by-0 Widgets

(Rule: Figure 11)

Character Map 306 0

Family.Show 913 73

Resident Evil 5 Website 3 4

In this section of the preliminary evaluation, it was shown that is possible for exploratory

tests that have been enhanced with rule-based verifications to detect when a GUI’s

66

widgets are in a state that could be used to lead to a breach of security. Further, by using

three significantly different applications, the results show that it is possible to write rules

that test for high-level errors and reuse these rules to find violations across a range of

applications. Finally, the sheer number of violations detected – a minimum of 986

violations in Family.Show – implies that rules that test for high-level errors show good

potential to detect a large number of violations.

This means that it should be possible to detect a large number of bugs using a small set of

rules. This result implies that LEET’s approach to enhancing exploratory test sessions

with rule-based verifications is able to create strong test oracles – in other words, that it is

possible to verify an application’s functionality using this approach. Further, since rules

can be created to test for high-level errors and then detect bugs when paired with

recorded exploratory test sessions conducted on significantly different applications, these

sorts of verifications should be resistant to changes in the GUI.

5.2.2 Can Rules Detect Specific Security Flaws in GUI-Based Applications?

In this part of the evaluation, the ability of rule-based exploratory testing to detect

specific, low-level bugs in GUI-based applications was investigated. Low-level bugs, as

opposed to the general bugs that were the focus of the previous part of this preliminary

evaluation, result from specific failures in specific interfaces. The interface used as a

focus in this part of the evaluation is a specific type of validation interface used in many

web-based applications, an “age gate.” Age gates are used to verify that a user is old

enough to view the graphic content contained on the website. One bug that age gates are

vulnerable to is described. First, a single rule was created based on a manual inspection

of three of the seven websites that were selected for use. This rule utilized heuristics in

67

order to determine which widgets to interact with and whether or not the system had

responded correctly. Exploratory test sessions were recorded for each of these websites,

and the rule was paired with these recordings and run on each website. The changes to

the heuristic that were necessary in order to make the rule function properly when used to

test each new website are described. Finally, the implications of the results of this study

are discussed.

The Common Weakness Enumeration (CWE) is a database of security vulnerabilities that

have been encountered in the past. The bug used to explore this topic is based on CWE-

358, “Improperly Implemented Security Check for Standard” [77]. This weakness arises

when a security measure is implemented in such a way that it is possible for verification

to succeed even when part of the input data is incorrect. For example, Cisco encountered

this error in its VoIP phone system in 2005 [78]. In their case, phones were sent

NOTIFY signals – signals which are used to indicate that messages exist in the

customer’s voice mailbox. These notifications did not contain any authentication

information – yet they were still processed by the phone. This caused the phone to

indicate that the customers had new messages waiting in their voice mailboxes. Cisco

speculated that this bug could be exploited in order to conduct a denial of service attack

on its system by causing a large number of customers to simultaneously check their voice

mailboxes.

In order to evaluate whether LEET could detect this type of bug in the same interface in

different GUI-based applications with a single rule, it was necessary to determine what

sort of publicly-available system could be vulnerable to CWE-358 –type errors. The test

systems would have to be able to accept multiple pieces of verification data so that it

68

would be possible to send some correct segments along with at least one incorrect

segment. It was determined that the age gate system that is used to prevent minors from

accessing the content of websites of mature-rated video games could be vulnerable to this

sort of weakness. In this system, a user is asked to enter his or her age when the website

initially loads. If the date entered is old enough, the website will redirect to its main

page. Otherwise, the user is presented with an error message and denied access to the

site’s content.

Figure 12 Age Gate for the Max Payne 3 website (Image source: [79])

Age gates, like the one shown in Figure 12, take input arguments for the year, month, and

day on which a user was born. This date is then used to determine whether to redirect to

the main content of a site or to an error page. The set of rules generated for this part of

69

the evaluation, therefore, first detects if an age gate is present at a given state in test

execution. If so, the rule then inserts a partially invalid date: 29 February, 1990. While

each argument individually is valid, the date itself is imaginary since 1990 was not a leap

year, and thus contained only 28 days. Since this date is invalid, the rule is considered to

have been violated if the website redirects to its main page instead of its error page.

Websites on which to test this rule were chosen based on several criteria:

1) Is the website written in such a way that it can be accessed through UIA?

2) Is the website sufficiently similar to previously-selected websites?

The first criterion is necessary because certain web languages are not inherently testable

using the Automation API, and it is consequently not possible to test them using LEET.

For example, widgets coded in Flash do not expose any AutomationPatterns, so sections

of pages that are coded in Flash do not exist from the point of view of the UIA

Framework. Additionally, potential websites were manually inspected with UIAVerify to

weed out websites whose age gates contained widgets that were missing information that

was required for identifying them. For example, the Value property of the

“ValuePattern” form of Automation Pattern is used by this rule to determine into which

widget the year argument should be inserted, into which widget the month argument

should be inserted, and so on. If the widget representing this field did not implement

ValuePattern, or if it did implement ValuePattern but left its Value field blank, then the

website was discarded from further consideration.

The second criterion simplified the coding of the rule itself. Age gates tend to fall into

one of two categories. In the first, users select year, month, and day arguments from drop

down lists of preset values. In the second, users type these values into text fields. Each

70

of these types requires a distinct set of interactions in order to select a date, so, for

simplicity, only websites with age gates from the first category were selected.

The lists of Xbox 360 [80] and PlayStation 3 [81] games listed on Wikipedia were used

as a source of potential websites to test. Based on the criteria above, seven websites were

chosen from these lists: Max Payne 3 [79], Deus Ex 3 [82], Fallout 3 [83], Resident Evil

5 [76], Bulletstorm [84], Bioshock 2 [85], and Dragon Age: Origins [86].

In order to code a general rule base, three of the websites that were selected were used as

models when constructing the rule: Bulletstorm, Bioshock 2, and Dragon Age: Origins.

A set of elements crucial to the functionality of the rule were identified: the dropdown

boxes and their contained elements and the button that must be invoked to send this data

to the server for validation.

Each site contained various quirks that were accounted for in the creation of the rule.

These quirks made it difficult to create a single, general rule to detect this very specific

type of bug in websites that made use of similar, but far from identical, age gates. This is

different from the previous part of the preliminary evaluation, in which the error was

general enough that very different applications could contain the exact same bug, which

could be detected in the exact same way in every case.

In order to test for the bug described in this part of the preliminary evaluation, a set of

acceptable values was created within the rule in order to allow it to function correctly on

different interfaces. In this way, a heuristic of what sorts of widget names were

acceptable for a given section of the rule was created. In addition to the names of

widgets, the page to which each website redirects in the event of a valid or invalid date is

different, so another heuristic was developed to determine whether the sites had

71

redirected to the error page or the main page when the invalid date was submitted. First,

the value of the address bar is checked against the value it held at the beginning of the

rule’s invocation. If the two are not equal, it can be assumed that a page transition

occurred. If the new address contains the text “sorry,” as in the case of a too-recent date

being entered into the Bioshock 2 age gate, it is assumed that entry was denied. If this is

not found to be the case, the page is searched for an image whose name, when converted

to lower case, contains the text “esrb.” This is to determine if the Entertainment Software

Rating Board, or ESRB, logo is present. Consistently across sites, the rating of the game

was displayed as an image containing “esrb” somewhere in the text of its name, but only

after the age gate was passed. So, if this ESRB element was detected, it was assumed

that the website redirected to its main page. The rule – which is actually accomplished

using a set of three preconditions, four rule actions, and four consequences – as it looked

after creating heuristics that enabled it to run correctly on the first three websites used in

this part of the preliminary evaluation, is shown in Figures 13 through 16.

72

Figure 13: Conceptual representation of the rule that interacts with the month

combo box of age gates

Figure 14: Conceptual representation of the rule that interacts with the day combo

box of age gates

73

Figure 15: Conceptual representation of the rule that interacts with the year combo

box of age gates

Figure 16: Conceptual representation of the rule that submits the age and decides

whether the site allowed entry or not

74

Creating rules that can be used to detect general bugs in a variety of circumstances does

not appear to require additional effort, as demonstrated by the previous section.

However, creating rules that can be used to detect specific bugs in a variety of

circumstances necessitates the use of heuristics to identify which elements to interact

with and to determine what sort of response the system should show. It is possible in the

future that these heuristics could be collected into a centralized database in order to help

with the creation of rule-based tests, but this is left as future work.

After creation of the rule base was completed, exploratory test sessions were recorded for

each of the seven selected websites that were selected earlier. Each of these test

procedures loads the base URL for its target website and checks to see if the appropriate

redirection occurs. For example, when www.bulletstorm.com is loaded, the website

should automatically redirect to www.bulletstorm.com/home.

Each of these recorded exploratory tests was paired with the single rule by creating a

TestRunner object. The TestRunners that tested the three websites that were used to

develop the rule and for Max Payne 3 ran correctly, while the other four failed. Even

though these four tests ran correctly, it should be noted that these websites redirected to

their main pages when given the imaginary date. In these four cases, the rule detected

that this had happened, triggered a notification dialog, and paused execution of the test

script in this state – the current behaviour for a rule violation with a nonfatal

consequence.

75

Image 1 Bulletstorm website, with rule failure notification at center

After the rule had failed to execute correctly for Deus Ex 3, Fallout 3, and Resident Evil

5, changes were made to the rule’s heuristic based on a manual inspection of the failing

test’s website. After changes were made to the heuristic, all seven tests were run again in

order to ensure that breaking changes to the rule had not been made. The results of the

changes required in order for all tests to execute successfully are described in Table 3.

76

Table 3 Required changes for additional test websites

Game Website Changed Element Required Change

Resident Evil 5 Submit Button Name: “ENTER SITE”

Deus Ex 3 Month Dropdown Box Initial Value: Current Month

 Day Dropdown Box Initial Value: Current Day

 Submit Button Name: “Proceed”

Fallout 3 Submit Button Name: “Submit”

Max Payne 3 (no changes)

Additionally, the rule that determines if the address bar has changed to an inappropriate

URL was updated to include the postfix displayed when a too-recent date was entered for

each website. This resulted in the addition of checks for “noentry,” “error,” and

“agedecline.” The final version of the rule can be seen in Figures 17 through 20, with

sections surrounded by green boxes indicating newly-added parts.

77

Figure 17: The current month needed to be added as a possible value for rule that

interacted with the month combo box

Figure 18: The current day needed to be added as a possible value for rule that

interacted with the day combo box

78

Figure 19: No changes needed to be made to the third rule

Figure 20: Three changes were required to make the final rule compatible with the

three additional websites

The results of this evaluation show that, while it is possible to create rules to test for

specific weaknesses in an interface, applying this rule to similar interfaces will require

revisions to the rule. While the necessary revisions encountered in this evaluation were

79

minor, the fact that the creation of a heuristic was necessary shows that keyword-based

testing is perhaps as much of a liability to rule-based exploratory testing than it is an

asset. While keyword-based testing makes it easier to manually edit tests, it makes it

difficult to adapt rules to new situations. In other words, while it supports manual testing

techniques, it encumbers automated testing techniques. In the future, it would be useful

to add the ability to create tests that utilize a form of similarity-based widget lookup –

like testing with object maps – or a form of component abstraction – in which

complicated widgets are defined before rules are written – instead of keyword-based

testing. This conclusion stems from the fact that it was necessary to create heuristics to

complete the rule created in this part of the preliminary evaluation, and testing with

object maps is, after all, a form of finding widgets based on heuristics.

5.2.3 How Often Is Keyword-Based Testing Possible?

During the previous two evaluations, several complications were encountered that

prevented tests from running on certain applications or that complicated the calculation of

results (Section 1.3.3). These complications were caused by the necessity of interacting

with widgets that were not uniquely identifiable. The difficulties caused by these

complications led to the question: how often is it possible to use keyword-based testing as

a primary means of locating widgets for use with automated test procedures and oracles?

This section of the preliminary evaluation presents an exploration of this issue, as well as

a discussion of the findings.

A recurring difficulty encountered in the previous two sections of the preliminary

evaluation is that elements were encountered that could not be tested by LEET. Widgets

were encountered that had not been assigned values for either their AutomationID or

80

Name properties. This meant that LEET would not be able to locate them when a test

was run. An additional problem was that some widgets were assigned integers for their

AutomationID or Name fields. These integers appeared to be random, and would change

every time applications started. This effect can be easily seen in Microsoft Visual Studio

2010. The “Properties” pane of this application contains a toolbar that is assigned a

different AutomationID every time Visual Studio 2010 loads, making it unlocatable.

While assigning a random integer does ensure that this widget’s AutomationID field has

a unique value, it also makes that value useless for testing purposes.

Based on these observations, rules were designed to explore how often it would be

possible to use keyword-based testing as a primary means of locating widgets for use

with automated test procedures and oracles. Five rules were created to explore the

following testability issues, and these rules can be seen in Figures 21 through 25:

1) Is a widget’s AutomationElement.Current.Name field empty?

2) Is a widget’s AutomationElement.Current.AutomationID field empty?

3) Are 1 and 2 met on the same widget?

4) Is a widget’s AutomationElement.Current.Name field an integer?

5) Is a widget’s AutomationElement.Current.AutomationID field an integer?

81

Figure 21: Detecting nameless widgets

Figure 22: Detecting id-less widgets

Figure 23: Detecting anonymous widgets

82

Figure 24: Detecting integer names

Figure 25: Detecting integer ids

For this experiment, the test scripts from several of the experiments run in sections

Section 5.1 and Section 5.2 were combined with these newly-created rules. The number

of violations for each rule within each application are shown in Table 4.

Table 4 Violations of testability rules

R
es

id
en

t
E

v
il

 5
 A

g
e

G
a
te

M
a
x
 P

a
y
n

e
3
 A

g
e

G
a
te

B
io

S
h

o
ck

 2
 A

g
e

G
a
te

C
h

a
rM

a
p

F
a
m

il
y
.S

h
o
w

Missing Name 17 19 32 2 416

Missing AutomationId 23 27 38 270 795

Missing Both of the Above 17 19 32 0 103

Name is an Int 0 0 0 10 44

AutomationId is an Int 0 0 0 0 0

83

Several observations can be drawn from these results. First, none of the applications

examined supported keyword-based testing through the Automation API completely.

This could severely complicate the task of creating test scripts using the current

implementation of LEET. This means that the process of testing GUI-based applications

using LEET would often be encumbered by the added difficulty of figuring out how to

identify an element in a way that is robust against changes to the application’s GUI in

addition to the normal task of testing an application’s functionality. Additionally,

repairing broken test scripts in such cases has an added layer of difficulty: it is necessary

to determine which element was initially required for a broken test script, and what has

changed with it that has broken the script. Only after this is done can the basic question,

“Does this failure stem from an error in the application,” even be addressed.

It is interesting to note that no application tested was assigning integers to the

AutomationID fields of widgets. While this was sometimes the case with Name fields,

these widgets may still be robustly identifiable given that their AutomationID fields are

not empty. It is also interesting to note that, in the three web applications tested, no

widgets have Names that parse as integers. Another interesting result is that, whenever a

widget in one of the tested web pages is missing its AutomationID, it is also missing its

Name. Overall, the prevalence of empty AutomationID fields and anonymous elements

within all tested applications still poses a significant challenge to automated testing.

While this is not an issue for exploratory testing in isolation, it is certainly an issue for the

exploratory tests enhanced with rule-based verifications that are presented in this thesis,

as it makes creating and maintaining these automated verifications more difficult.

84

The results of this part of the preliminary evaluation can be split into two

recommendations. First, effort should be placed on educating software developers who

hope to make use of systems like LEET on the importance of assigning values to the

AutomationID and Name fields of widgets. If all widgets in a GUI-based application

were required to have a unique value assigned to their AutomationID field, for example

by including a rule ensuring that this was the case as part of the suite of tests that are

required to pass before new code can be accepted into an application’s current build, then

good coding habits could be enforced. While this option would solve the basic issue of

not being able to identify a specific widget, it would not address the problem uncovered

in the previous section – that applying specific rules to different interfaces required the

use of heuristics. The second option, therefore, would be to use testing with object maps

in future versions of LEET instead of keyword-based testing. While this option would

make it harder for human testers to edit test procedures and test oracles used by LEET, it

would overcome some of the issues encountered when attempting to test widgets that do

not have unique AutomationIDs or when applying rules to different applications. The

best way of increasing the chances of success when using rule-based exploratory testing

would, of course, be to follow both of these recommendations.

5.2.4 How Much Effort Is Rule-Based Exploratory Testing?

The fourth evaluation is designed to determine how much effort recording exploratory

tests and creating rules requires compared how much effort is required to simply record

an exploratory test and adding static verification points to it. This second option is the

approach currently used for creating tests for GUI-based applications with capture/replay

tools. This comparison is done by writing simple but equivalent tests for three

85

applications using both approaches to GUI testing. This part of the preliminary

evaluation is broken down into three sections, one for each application under test. At the

end, the implications of the results are discussed.

5.2.4.1 Microsoft Calculator Plus

Microsoft Calculator Plus [87] was used as the first test application. The focus of the rule

created for this calculator application is to ensure that division by zero will result in an

appropriate error message being displayed in the result box of the calculator. The

procedure and oracle created for the rule-based version of this test are displayed in Figure

26. Creating a test that did not use rules was accomplished by using LEET to record

interactions with Microsoft Calculator Plus and adding statements to verify that the result

of a series of rule actions was as expected where appropriate. This script can be seen in

Figure 27. Creating the rule-based version of this test was done by creating a rule that

would divide the current number by zero after each step of the test, checking to see that

“Cannot divide by zero” is displayed, and clicking the clear button to ready the calculator

for the next step of the test. The rule was paired with a recorded exploratory test script

that simply invokes the 0 through 9 keys and closes the application. The amount of time

taken to create each version of the test was recorded so that this could be used as the basis

of comparison.

86

Figure 26: Procedure (left) and oracle (right) for the first rule-based test.

87

For this section, the rule-based approach was taken first, followed by the creation of the

CRT-only version of the test. This was alternated for each of the following two sections

– Section 5.2.4.2 was CRT first, then rule-based, and Section 5.4.2.3 was rule-based first,

then CRT based. This was done in order to minimize any potential learning effect.

Figure 27: The CRT-only version of the first test.

88

Creating the simple script to invoke the 0 through 9 buttons and close Microsoft

Calculator Plus took 1 minute, and ran correctly on the first try. Creating the rule took

just under 9 minutes. The rule did not run correctly on the first attempt, and a further 3

minutes were required in order to get the rule into working order. Therefore, the total

time required to create the rule-based version of the test was a bit under 13 minutes. This

rule-based approach did uncover a bug (by the definition of the rule): when dividing 0 by

0, the message “Result of function is undefined.” is displayed instead of the expected

“Cannot divide by zero.”

Creating a script that performed all of the interactions in the simple script as well as all of

the rule actions performed by the rule base required just less than 8 minutes. This script

did not work on the first attempt. Irregularities involving the hierarchy of elements in

Microsoft Calculator Plus required 2 minutes of debugging to fix. In sum, creating this

equivalent script took just under 10 minutes.

The results of this section of the evaluation are summarized in Table 5. Creating a script

and adding verification points manually took around 23% less time than using the rule-

based approach. However, where the equivalent script has no further uses, the rule base

created in the first half of the test – which took the majority of the time to create – could

be paired with other tests of that application.

89

Table 5: Breakdown of time taken to create each test, in minutes

C
re

a
ti

o
n

 o
f

p
ro

c
ed

u
re

fo
r

ru
le

-b
a
se

d
 v

e
rs

io
n

D
eb

u
g
g
in

g

o
f

p
ro

ce
d

u
re

fo
r

ru
le

-b
a
se

d
 v

e
rs

io
n

C
re

a
ti

o
n

 o
f

ru
le

-b
a
se

d

v
er

if
ic

a
ti

o
n

s

D
eb

u
g
g
in

g
 o

f
ru

le
-b

a
se

d

v
er

if
ic

a
ti

o
n

s

C
re

a
ti

o
n

 o
f

C
R

T
-o

n
ly

v
er

si
o
n

D
eb

u
g
g
in

g
 o

f
C

R
T

-o
n

ly

v
er

si
o
n

T
o
ta

l
ti

m
e

fo
r

ru
le

-b
a
se

d

v
er

si
o
n

T
o
ta

l
ti

m
e

fo
r

C
R

T
-o

n
ly

v
er

si
o
n

Microsoft

Calculator Plus
1 0 9 3 8 2 13 10

5.2.4.2 Internet Explorer 8.0

Internet Explorer 8.0 (IE8) was used as the second test application. The rule created for

this test focused on the functionality of the back and forward buttons in IE8’s interface.

It was expected that invoking the back and forward buttons in that order should result in a

return to the current page. The test procedure was created by recording visits to 9 pages,

resulting in 8 states in which this rule could be applied as the back button is not enabled

until at least one page has been visited. The procedure and oracle created for the rule-

based version of the test can be seen in Figure 28. The time required to create and debug

both the test script and the rule for this part of the evaluation were recorded. An

equivalent script was also created using a CRT-only approach instead of rules. The CRT-

only version of this test can be seen in Figure 29.

90

Figure 28: Procedure (left) and oracle (right) for the second rule-based test.

Figure 29: CRT-only version of the second test.

Creating a script to load IE8, visit each of the 9 pages, and close IE8 at the end took

almost 4 minutes, with an additional minute and a half required for debugging, bringing

the total time required to get a script into working order with LEET up to around 5 and a

91

half minutes. Creating the rule for this test required 5 and a half minutes, with an

additional 10 minutes for debugging, leading to a total rule creation time of 15 and a half

minutes. In total, then, writing and debugging the script and rule for this test took 21

minutes. No irregularities were uncovered in the functionality of IE8 through this test

scenario.

Creation of the equivalent test without rules took 10 minutes, and several errors

prevented it from running initially. Debugging these errors took 2 minutes, bringing the

time required to code this equivalent script to 12 minutes.

The results of this section of the preliminary evaluation are summarized in Table 6. In

this case, creating a script that performed all of the interactions performed by the simple

script and rule base combination took 41% less time to do.

Table 6: Breakdown of time taken to create each test, in minutes

C
re

a
ti

o
n

 o
f

p
ro

c
ed

u
re

fo
r

ru
le

-b
a
se

d
 v

e
rs

io
n

D
eb

u
g
g
in

g

o
f

p
ro

ce
d

u
re

fo
r

ru
le

-b
a
se

d
 v

e
rs

io
n

C
re

a
ti

o
n

 o
f

ru
le

-b
a
se

d

v
er

if
ic

a
ti

o
n

s

D
eb

u
g
g
in

g
 o

f
ru

le
-b

a
se

d

v
er

if
ic

a
ti

o
n

s

C
re

a
ti

o
n

 o
f

C
R

T
-o

n
ly

v
er

si
o
n

D
eb

u
g
g
in

g
 o

f
C

R
T

-o
n

ly

v
er

si
o
n

T
o
ta

l
ti

m
e

fo
r

ru
le

-b
a
se

d

v
er

si
o
n

T
o
ta

l
ti

m
e

fo
r

C
R

T
-o

n
ly

v
er

si
o
n

Microsoft

Calculator Plus
1 0 9 3 8 2 13 10

Internet Explorer

8.0
4 1.5 5.5 10 10 2 21 12

92

5.2.4.3 LEET

LEET itself was used as the third test application. The rule for this test focused on the

functionality of the “Add Event” and “Remove Event” buttons in the in the

capture/replay functionality provided by LEET. It is expected that selecting the “Add

Event” button should add a new event to the script LEET is currently creating, and that

selecting this event and invoking the “Remove Event” button should remove that event

from the CRV.

The script used for this test was based on a test that is part of the suite of tests that were

originally developed for LEET, and has been in use since August of 2009. Recoding this

test took 7 and a half minutes, and fixing the errors made while coding it took 11

minutes. Creating the rule took 15 and a half minutes, with an additional 4 minutes for

debugging. Overall, coding and debugging the script and the rule took 38 minutes. Both

this test and the equivalent approach created without rules can be seen in Figures 30

through 32.

93

Figure 30: The procedure used for the rule-based version of the test.

Figure 31: The oracle used for the rule-based version of the test.

94

Figure 32: The CRT-only version of 12 out of 50 interactions in the test.

Coding a test that performed all of the interactions performed by the above script and rule

is very difficult, so a subset was coded. The first 12 of the 50 interactions performed in

the original script were rerecorded as well as each action performed by the rule-based

verifications in the previous approach. Performing the necessary verifications accounted

for most of the effort involved in this process and was tedious and error-prone. Doing so

took 19 minutes, with an additional 6 minutes for debugging. The amount of time for

each of these was averaged over the number of interactions recorded, and these averages

were used to project the time that would be required to record every interaction in the

original test/rule base combination by hand: 1 hour and 44 minutes. In this case, rule-

based testing presented a projected savings of over one hour. The results of this section

of the preliminary evaluation are summarized in Table 7.

95

Table 7: Breakdown of time taken to create each test, in minutes (* - projected)

C
re

a
ti

o
n

 o
f

p
ro

c
ed

u
re

fo
r

ru
le

-b
a
se

d
 v

e
rs

io
n

D
eb

u
g
g
in

g

o
f

p
ro

ce
d

u
re

fo
r

ru
le

-b
a
se

d
 v

e
rs

io
n

C
re

a
ti

o
n

 o
f

ru
le

-b
a
se

d

v
er

if
ic

a
ti

o
n

s

D
eb

u
g
g
in

g
 o

f
ru

le
-b

a
se

d

v
er

if
ic

a
ti

o
n

s

C
re

a
ti

o
n

 o
f

C
R

T
-o

n
ly

v
er

si
o
n

D
eb

u
g
g
in

g
 o

f
C

R
T

-o
n

ly

v
er

si
o
n

T
o
ta

l
ti

m
e

fo
r

ru
le

-b
a
se

d

v
er

si
o
n

T
o
ta

l
ti

m
e

fo
r

C
R

T
-o

n
ly

v
er

si
o
n

Microsoft

Calculator Plus
1 0 9 3 8 2 13 10

Internet Explorer

8.0
4 1.5 5.5 10 10 2 21 12

LEET 7.5 11 15.5 4 79* 25* 38 104*

5.2.4.4 How Much Effort Is Rule-Based Exploratory Testing? – Conclusions

 In this subsection, the effort required to write rule-based exploratory tests was compared

to the effort required to write equivalent tests using static verification points instead of

rules. Tests were created for three different applications using both of these methods, and

the time required for each was compared. The results of this portion of the preliminary

evaluation were inconclusive.

In Sections 5.2.4.1 and 5.2.4.2, it would seem that rule-based was less efficient than

coding an equivalent test by hand. In Section 5.2.4.3, however, rule-based testing was

projected to be more efficient than inserting verification points by hand. Further

evaluations are necessary before any sort of statement can be made about the efficiency

of rule-based testing.

96

5.3 Weaknesses of Evaluations

The primary weakness of these evaluations is that they are all self-evaluations. The tests

were written by the author, on systems with which the author familiarized himself. In

order to increase their credibility, it would be best to conduct user studies, in which test

subjects would be asked to write rule-based tests and non-rule-based tests. Different

aspects of these two groups could then be compared, and a more generally applicable

assessment of the resulting data could be performed. However, this is left for future

work.

A second weakness is the narrow number of test applications used in each evaluation.

Only 12 different applications were used throughout Chapter 5, and the most used in any

one evaluation was 7. In order to strengthen these evaluations, additional test

applications should be included.

A third weakness is the low number of rules overall that are demonstrated. Throughout

Chapter 5, only 11 rules are demonstrated. Additional rules should be demonstrated in

the future.

5.4 Conclusions

In this section, various preliminary evaluations of rule-based testing with LEET were

undertaken, and the implications of the results were discussed. A summary is provided

here.

In Section 5.2.1, the ability of general rules to detect violations in various GUI-based

applications was explored. It was found that rules for the detection of high-level, general

bugs could be created and used without alteration to detect bugs in three very different

applications.

97

In Section 5.2.2, the practicality of creating a specific, low-level rule and trying to apply

it to different applications was explored. It was found that, due to the level of detail

required in the rule that was created, it was necessary to use heuristics in order to locate

widgets. This implies that testing with object maps may be a better strategy for locating

widgets to use with exploratory rule-based testing than keyword-based testing.

It has been noted that keyword-based testing might cause problems when used with rule-

based exploratory testing, so Section 5.2.3 explored this issue further. Rules were

constructed to explore the testability of applications. It was found that it the applications

tested all included some widgets that were not properly enabled for testing. This implies

that effort should be spent on ensuring that developers are creating testable applications

and that it would be useful use testing with object maps in future implementations of

rule-based exploratory testing.

In Section 5.2.4, the amount of effort required to perform rule-based testing in specific

systems was explored. In two of the three tests, it was found that rule-based testing could

be expected to take longer to perform than simply coding a test that performs all of the

verifications that the rule-based approach would perform. However, in the third test,

rule-based testing proved less time-consuming than coding this equivalent test. The

results of this part of the preliminary evaluation were inconclusive, and further effort

should be dedicated to this issue.

98

Chapter Six: Conclusions

This thesis presents an approach to the testing of GUI-based applications by combining

manual exploratory testing with automated rule-based testing. First, an overview of the

challenges involved in GUI testing was presented to provide the background necessary to

understand the challenges of this field. Next, a discussion of previous attempts to provide

automated support for GUI testing was presented, and the strengths and weaknesses of

these approaches were discussed. A tool, LEET, was created to make rule-based

exploratory testing possible. This was done so that this approach to GUI testing could be

subjected to pilot evaluations. The structure of LEET was explained, and the strengths

and weaknesses of both the design of the system and its concrete implementation were

discussed. Pilot evaluations were then conducted to point to potential answers for the

research questions described in Section 1.4, and to give insight into the strengths and

weaknesses of rule-based exploratory testing.

6.1 Thesis Contributions

The first contribution of this thesis was the literature review covering the current state of

GUI testing from an academic perspective presented in Chapter 2. This review not only

provided a background to understanding the challenges involved in attempting to

automate GUI testing, but it also categorized past attempts into the major difficulty of

GUI testing, as described in Section 1.3, that each attempt addressed. This categorization

should make it easier to focus GUI testing efforts in the future because it will be easier to

determine which difficulties the advantages of a new approach address, and to understand

what’s already been done in this direction. At present, this is difficult to do in that

99

research on GUI testing tends to be self-identified based on the kind of testing involved –

self-categorized as research in regression testing of GUIs or goal-driven automated test

generation rather than as approaches that lessen the complexity of GUIs or approaches

that lessen the impact of changes to the GUI on GUI tests.

The second contribution of this thesis is LEET. LEET fulfills the first research goal

listed in Chapter 1. Not only is LEET the only tool currently able to perform automated

rule-based verifications on GUI-based applications, it’s also the only tool that provides

any sort of automated oracles in support of manual exploratory testing. Most important,

however, is that LEET makes it possible to conduct pilot evaluations to evaluate under

which circumstances rule-based exploratory testing is useful, and what pitfalls to avoid in

future implementations.

Third, this thesis explored the usefulness and practicality of rule-based exploratory

testing through investigations into the 5 research questions posed in Section 1.5. In this

way, it accomplished the second research goal listed in Chapter 1. The first question,

“Can rule-based exploratory testing be used to catch general bugs,” was investigated in

Section 5.2.1. From this pilot evaluation it would appear that not only can rule-based

exploratory testing be used to catch high-level, general bugs, but these sorts of rules can

detect a large number of general bugs by using short rules.

The second question, “Can rule-based exploratory testing be used to catch specific bugs,”

was investigated in Section 5.2.2. The pilot evaluation suggests, again, that rule-based

testing is a practical way of testing for low-level, specific bugs that occur only when

specific interfaces are used. However, one problem encountered in this section was that

LEET’s use of keyword-based testing detracted from the variety of automated rules that

100

LEET could use. It was found necessary, in fact, for heuristics to be built into the rules

used in this section in order to enable them to correctly identify widgets in a variety of

specific interfaces.

This issue was further investigated in the fourth research question, “how often is it

possible to use keyword-based testing on GUIs,” in Section 5.2.3. This section of the

pilot evaluation seems to suggest that issues confounding keyword-based testing may be

widespread. There are two ways of dealing with this issue. First, effort could be spent

educating developers on the importance of making sure the GUIs they create are

compatible with keyword-based testing in the same way the importance of Model-View-

Controller pattern has been stressed in the past. Second, future implementations of

systems that support manual exploratory testing with automated rule-based verifications

could make use of testing with object maps rather than keyword-based testing. This also

seems to be indicated by the fact that it was found necessary to start building heuristics

within rules to identify the widgets required for testing.

The third research question, “can rules be reused in tests of different applications,” is

very much related to this discussion of keyword-based testing. It was possible to use

general rules on a variety of different interfaces in Section 5.2.1 and Section 5.2.2 of the

pilot evaluation. However, effort was required to adapt the more specific rules used in

Section 5.2.2 to work on other interfaces. The pilot evaluations that were conducted were

insufficient to answer this research question, and it would be prudent to revisit this issue

with a tool that makes use of testing with object maps before passing judgement on the

reusability of rules.

101

The fifth question, “is rule-based exploratory testing less effort than writing equivalent

tests using a capture/replay tool and inserting verifications manually,” is likewise

unanswerable from these pilot evaluations. In order to answer a question of this

magnitude, more detailed case studies should be conducted using a second-generation

tool for enhancing exploratory testing with rule-based verifications.

The last contribution of this thesis is a clear plan for future research on rule-based

exploratory testing. For the next study, a second-generation tool, one that leverages

testing with object maps, should be developed. First, evaluations should be conducted to

determine whether this new implementation is superior to LEET in its ability to create

low-level, specific rules that can be run on multiple applications. Next, this tool should

be used to compare rule-based exploratory testing to testing performed by adding

verifications manually to a recorded exploratory test. Several axes should be used in this

evaluation: how much effort is it to create each kind of test; how many bugs can be

caught by each method from a test system that has been seeded using mutation testing;

and what kind of bugs are caught by each approach. However, these evaluations would

are at present left as future work.

6.2 Future Work

There are many directions in which LEET and rule-based GUI testing can be taken.

These directions could not be explored within the scope of this thesis, and so they remain

work for the future.

The first step that needs to be taken is the completion of the implementation of LEET.

Currently, events from only a handful of AutomationPatterns are being recorded. LEET

can interact with widgets that expose InvokePattern, ValuePattern,

102

ExpandCollapsePattern, TransformPattern, TogglePattern, TextPattern, SelectionPattern,

SelectionItemPattern, and WindowPattern AutomationPatterns. However, this still leaves

DockPattern, GridPattern, GridItemPattern, MultipleViewPattern, RangeValuePattern,

ScrollPattern, ScrollItemPattern, TablePattern, and TableItemPattern, to be implemented.

Doing so will expand the range of applications that can be tested with LEET

The next enhancement to LEET to make is multi-window recording. When LEET

records an event, this event is given a timestamp. This makes it is possible to

simultaneously record interactions occurring in several windows at once and to replay the

entire test procedure in order. However, LEET currently focuses on recording a single

window at a time, and enabling multi-window recording is left for future work.

Third, much work remains to be done with test-driven development (TDD) of GUIs-

based applications. While two publications [37] [38] have featured the use of LEET in

conjunction with ActiveStory: Enhanced [88] to enable TDD, but these publications

focus on the use of LEET as a CRT, and rule-based TDD of GUI-based applications

remains an unexplored topic.

Fourth, there is a possibility that rule-based testing could be used to increase the code

coverage of a base test suite. In this approach, pre-existing tests could be paired with

rules that take actions in order to move the GUI-based application into new states to

increase code coverage. While various attempts have been made in the past to

automatically increase code coverage these approaches tend to drive state expansion

using test procedures alone. Using rule-based testing to perform state expansion keeps a

test oracle at the center of the testing process, and could help keep the focus of testing on

catching bugs rather than on running code. Fourth, while the original application that

103

LEET was constructed to test, APDT, featured a tangible user interface (TUI), the main

focus of LEET’s development has been on testing general GUI-based applications. It

would be possible at this point to modify LEET to be useful for applications with TUIs,

and very few contributions have been made to this area of research.

As for rule-based exploratory testing in general, experimental and industrial evaluations

need to be performed based on the recommendations made above. Several pilot

evaluations were conducted during the course of this thesis that indicate where rule-

based exploratory testing could be useful and what steps can be taken to make it more

useful. User studies should be performed based on these recommendations in order to

determine how useful rule-based exploratory testing of GUI-based applications can be.

104

References

[1] A. M. Memon, "A Comprehensive Framework for Testing Graphical User

Interfaces," University of Pittsburgh, PhD Thesis 2001.

[2] IEEE. (2004) SWEBOK Guide - Chapter 5. [Online].

http://www.computer.org/portal/web/swebok/html/ch5#Ref3.1.2

[3] Juha Itkonen and Kristian Rautiainen, "Exploratory Testing: A Multiple Case

Study," in International Symposium on Empirical Software Engineering, Noosa

Heads, Australia, 2005, pp. 84-92.

[4] Juha Itkonon, Mika V. Mäntylä, and Casper Lassenius, "Defect Detection

Efficiency: Test Case Based vs. Exploratory Testing," in First International

Symposium on Empirical Software Engineering and Measurement, Madrid, Spain,

2007, pp. 61-70.

[5] James Bach. (2000) James Bach - Satisfice, Inc. [Online].

http://www.satisfice.com/presentations/gtmooet.pdf

[6] The Wikimedia Foundation, Inc. (2010, June) Rete algorithm - Wikipedia, the free

encyclopedia. [Online]. http://en.wikipedia.org/wiki/Rete_algorithm

[7] Qing Xie and Atif M. Memon, "Using a Pilot Study to Derive a GUI Model for

Automated Testing," ACM Transactions on Software Engineering and

Methodology, vol. 18, no. 2, pp. 1-35, October 2008.

[8] Q. Xie and A. M. Memon, "Studying the Characteristics of a "Good" GUI Test

Suite," in Proceedings of the 17th International Symposium on Software Reliability

105

Engineering, Raleigh, NC, 2006, pp. 159-168.

[9] Scott McMaster and Atif Memon, "Call Stack Coverage for GUI Test-Suite

Reduction," in International Symposium on Software Reliability Engineering,

Raleigh, 2006, pp. 33-44.

[10] C. Kaner and J. Bach. (2005, Fall) Center for Software Testing Education and

Research. [Online].

www.testingeducation.org/k04/documents/BBSTOverviewPartC.pdf

[11] A. Memon, I. Benerjee, and A. Nagarajan, "What Test Oracle Should I Use for

Effective GUI Testing," in 18th IEEE International Conference on Automated

Software Engineering, Montreal, 2003, pp. 164-173.

[12] Microsoft Corporation. (2010, June) MSDN Canada. [Online].

http://msdn.microsoft.com/en-us/library/ms697707.aspx

[13] Microsoft Corporation. (2010, June) MSDN Canada. [Online].

http://msdn.microsoft.com/en-us/library/ms726294(VS.85).aspx

[14] A. M. Memon and M. L. Soffa, "Regression Testing of GUIs," in ACM SIGSOFT

International Symposium on Foundations of Software Engineering, 2003, pp. 118-

127.

[15] Atif M. Memon, "Automatically Repairing Event Sequence-Based GUI Test Suites

for Regression Testing," ACM Transactions on Software Engineering and

Methodology, vol. 18, no. 2, pp. 1-36, October 2008.

[16] A. Holmes and M. Kellogg, "Automating Functional Tests Using Selenium," in

106

AGILE 2006, 2006, pp. 270-275.

[17] B. Robinson and P. Brooks, "An Initial Study of Customer-Reported GUI Defects,"

in Proceedings of the IEEE International Conference on Software Testing,

Verification, and Validation Workshops, 2009, pp. 267-274.

[18] Brian Marick, "Bypasing the GUI," Software Testing and Quality Engineering

Magazine, pp. 41-47, September/October 2002.

[19] Brian Marick, "When Should a Test Be Automated?," in Proceedings of the 11th

International Software Quality Week, vol. 11, San Francisco, May 1998.

[20] Wirold Wysota, "Testing User Interfaces in Applications," in 1st International

Conference on Information Technology, Gdansk, Poland, 2008.

[21] Steve Burbeck. (1987, 1992) How to Use Model-View-Controller (MVC).

[Online]. http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

[22] Svetoslav Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E. Perry, "Test

Generation for Graphical User Interfaces Based on Symbolic Execution," in

International Conference on Software Engineering, Leipzig, 2008, pp. 33-40.

[23] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa, "Hierarchical GUI Test

Case Generation Using Automated Planning," IEEE Transactions on Software

Engineering, vol. 27, no. 2, pp. 144-155, February 2001.

[24] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa, "Using a Goal-Driven

Approach to Generate Test Cases for GUIs," in International Conference on

Software Engineering, Los Angeles, 1999, pp. 257-266.

107

[25] Xun Yuan, Myra B. Cohen, and Atif M. Memon, "Towards Dynamic Adaptive

Automated Test Generation for Graphical User Interfaces," in International

Conference on Software Testing, Verification, and Validation Workshops,

Washington D.C., 2009, pp. 263-266.

[26] Xun Yuan and Atif M. Memon, "Alternating GUI Test Generation and Execution,"

in Testing: Academic and Industrial Conference - Practice and Research

Techniques, 2008, pp. 23-32.

[27] Kai-Yuan Cai, Lei Zhao, and Feng Wang, "A Dynamic Partitioning Approach for

GUI Testing," in 30th Annual International Computer Software and Applications

Conference, Chicago, 2006, pp. 223-228.

[28] Antti Jääskeläinen et al., "Automatic GUI Testing for Smartphone Applications -

An Evaluation," in International Conference on Software Engineering, Vancouver,

2009, pp. 112-122.

[29] Tamás Dabóczi, István Kollár, Gyula Simon, and Tamás Megyeri, "How to Test

Graphical User Interfaces," IEEE Instrumentation and Measurement Magazine,

vol. 6, no. 3, pp. 27-33, September 2003.

[30] Hassan Reza, Sandeep Endapally, and Emanuel Grant, "A Model-Based Approach

for Testing GUI Using Hierarchical Predicate Transition Nets," in International

Conference on Information Technology, Las Vegas, 2007, pp. 1-5.

[31] Richard K. Shehady and Daniel P. Siewiorek, "A Method to Automate User

Interface Testing Using Variable Finite State Machines," in 27th International

108

Symposium on Fault-Tolerant Computing, Seattle, 1997, pp. 80-88.

[32] Christof J. Budnik, Fevzi Belli, and Axel Hollmann, "Structural Feature Extraction

for GUI Test Enhancement," in IEEE International Conference on Software

Testing, Verification, and Validation Workshops, Denver, 2009, pp. 255-262.

[33] Lee Whilte, Husain Almezen, and Shivakumar Sastry, "Firewall Regression Testing

of GUI Sequences and their Interactions," in International Conference on Software

Maintenance, Amsterdam, 2003, pp. 398-410.

[34] Atif M. Memon and Qing Xie, "Studying the Fault-Detection Effectiveness of GUI

Test Cases for Rapidly Evolving Software," IEEE Transactions on Software

Engineering, vol. 31, no. 10, pp. 884-896, October 2005.

[35] Atif Memon, Ishan Benerjee, and Adithya Nagarajan, "GUI Ripping: Reverse

Engineering of Graphical User Interfaces for Testing," in Proceedings of the 10th

Working Conference on Reverse Engineering, Victoria, B.C., Canada, 2003, pp.

260-270.

[36] Yongzhong Lu, Danping Yan, Songlin Nie, and Chun Wang, "Development of an

Improved GUI Automation Test System Based on Event-Flow Graph," in

International Conference on Computer Science and Software Engineering,

Washington D.C., 2008, pp. 712-715.

[37] Theodore D. Hellmann, Ali Hosseini-Khayat, and Frank Maurer, "Agile Interaction

Design and Test-Driven Development of User Interfaces - A Literature Review," in

Agile Software Development: Current Research and Future Directions, Torgeir

109

Dingsøyr, Tore Dybå, and Nils Brede Moe, Eds. Trondheim, Norway: Springer,

2010, ch. 9.

[38] Theodore D. Hellmann, Ali Hosseini-Khayat, and Frank Maurer, "Supporting Test-

Driven Development of Graphical User Interfaces Using Agile Interaction Design,"

in Third International Conference on Software Testing, Verification, and

Validation Workshops, Paris, 2010, pp. 444-447.

[39] Mark Grechanik, Qing Xie, and Chen Fu, "Creating GUI Testing Tools Using

Accessibility Technologies," in International Conference on Software Testing,

Verification, and Validation Workshops, Denver, 2009, pp. 243-250.

[40] M. Grechanik, Q. Xie, and F. Chen, "Maintaining and Evolving GUI-Directed Test

Scripts," in IEEE 31st International Conference on Software Engineering, 2009,

pp. 408-418.

[41] C. Fu, M. Grechanik, and Q. Xie, "Inferring Types of References to GUI Objects in

Test Scripts," in International Conference on Software Testing, Verification, and

Validation, 2009, pp. 1-10.

[42] Z. Yin, C. Miao, Z. Shen, and Y. Miao, "Actionable Knowledge Model for GUI

Regression Testing," in IEEE/WIC/ACM International Conference on Intelligent

Agent Technology, 2005, pp. 165-168.

[43] Woei-Kae Chen, Sheng-Wen Shen, and Che-Ming Chang, "GUI Test Script

Organization with Component Abstraction," in Second International Conference on

Secure System Integration and Reliability Improvement, Yokohama, 2008, pp. 128-

110

134.

[44] Qing Xie and Atif M. Memon, "Designing and Comparing Automated Test Oracles

for GUI-Based Software Applications," ACM Transactions on Software

Engineering and Methodology, vol. 16, no. 1, pp. 1-36, February 2007.

[45] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa, "Automated Test Oracles

for GUIs," in ACM Special Interest Group on Software Engineering, San Diego,

2000, pp. 30-39.

[46] Ali Mesbah and Arie van Deursen, "Invariant-Based Automatic Testing of AJAX

User Interfaces," in International Conference on Software Engineering, Vancouver,

2009, pp. 210-220.

[47] GNOSO. (2010, June) NCover - Code Coverage for.NET Developers. [Online].

http://www.ncover.com/

[48] Mutant Design Limited. (2010, June) TestDriven.Net > Home. [Online].

http://www.testdriven.net/

[49] (2010, June) Selenium Web Application Testing System. [Online].

http://seleniumhq.org/

[50] ThoughtWorks. (2010, June) white. [Online]. http://white.codeplex.com/

[51] International Business Machines Corporation. (2010, June) IBM - IBM Rational

Functional Tester - Functional Testing - Rational Functional Tester - Software.

[Online]. http://www-01.ibm.com/software/awdtools/tester/functional/

[52] Timothy Wall. (2005, May) Abbot Framework for Automated Testing of Java GUI

111

Components and Programs. [Online]. http://abbot.sourceforge.net

[53] Jonathan Bennett. (2004, February) AutoIt Script Home Page. [Online].

http://www.autoitscript.com/

[54] (2010, June) Automation Anywhere - Leader in Automation Software, Automated

Testing. Automate with Ease. [Online]. http://www.automationanywhere.com/

[55] Edgewell Software. (2010, June) dogtail - Trac. [Online].

https://fedorahosted.org/dogtail/

[56] TestPlant Limited. (2009, December) Automated Software Testing for teh User

Interface | TestPlant. [Online]. http://www.testplant.com/

[57] Bredex GmbH. (2010, May) Bredex GUIdancer. [Online].

http://www.bredex.de/en/guidancer

[58] NXS-7 Software Incorporated. (2009, December) IcuTest | Automated GUI Unit

Testing for WPF. [Online]. http://www.icutest.com

[59] (2010, February) Home - Linux Desktop Testing Project. [Online].

http://ldtp.freedesktop.org

[60] Phantom Automated Solutions, Incorporated. (2009, December) Phantom

Automated Solutions - Phantom Test Driver GUI Test Automation. [Online].

http://phantomtest.com/PTDInfo.htm

[61] Seapine Software, Incorporated. (2010, June) Automated testing, Software Testing,

Application Testing - QA Wizard Pro - Seapine Software. [Online].

http://www.seapine.com/qawizard.html

112

[62] Qalibers. (2010, March) Qalibers. [Online]. http://www.qaliber.net/

[63] Quality First Software GmbH. (2010, June) Quality First Software GmbH & GF-

Test - The Java GUI Test Tool. [Online]. http://www.qfs.de/en/

[64] Hewlett-Packard Development Company, L.P. (2010, June) HP QuickTest

Professional Software - HP - BTO Software. [Online].

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&c

p=1-11-127-24^1352_4000_100__

[65] Ranorex GmbH. (2010, May) Test Automation Tools - Ranorex Automation

Framework. [Online]. http://www.ranorex.com/

[66] Cogitek Incorporated. (2010, June) Flex Test Automation Tool - RIA Test.

[Online]. http://www.riatest.com/

[67] MicroFocus Limited. (2009, December) DATA SHEET | SilkTest. [Online].

http://www.microfocus.com/assets/silktest-data-sheet_tcm6-6802.pdf

[68] The Eclipse Foundation. (2010, June) SWTBot - UI Testing for SWT and Eclipse.

[Online]. http://www.eclipse.org/swtbot/

[69] Test Automation FX. (2008, December) Test Automation Fx - UI Testing with

Visual Studio. [Online]. http://www.testautomationfx.com/

[70] AutomatedQA Corporation. (2010, June) Automated Testing Tools -

TestComplete. [Online]. http://www.automatedqa.com/products/testcomplete/

[71] Micro Focus Limited. (2009, December) DATA SHEET | TestPartner. [Online].

http://www.automatedqa.com/products/testcomplete/

113

[72] Instantiations, Incorporated. (2010, June) WindowTester Pro. [Online].

http://www.windowtester.com/

[73] Microsoft Corporation. (2010, March) LEET (LEET Enhances Exploratory

Testing). [Online]. http://leet.codeplex.com/

[74] Microsoft Corporation. (2008, March) UI Automation Verify (UIA Verify) Test

Automation Framework. [Online]. http://uiautomationverify.codeplex.com/

[75] Vertigo Software. (2009, Feb) Family.Show. [Online].

http://familyshow.codeplex.com/

[76] Capcom, Inc. (2010, May) Capcom: Resident Evil Portal. [Online].

www.residentevil.com

[77] (2010, April) CWE - Common Weakness Enumeration. [Online].

http://cwe.mitre.org/data/definitions/358.html

[78] Tobias Glemser and Reto Lorenz. (2005, July) Tele-Consulting security |

networking | training GmbH. [Online]. http://pentest.tele-

consulting.com/advisories/05_07_06_voip-phones.txt

[79] Rockstar Games. (2010, May) Rockstar Games Presents Max Payne 3. [Online].

www.rockstargames.com/maxpayne3

[80] (2010, May) List of Xbox 360 games - Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/wiki/List_of_Xbox_360_games

[81] (2010, May) List of Xbox 360 games - Wikipedia, the free encyclopedia. [Online].

http://en.wikipedia.org/wiki/List_of_PlayStation_3_games

114

[82] Square Enix Ltd. (2010, May) Deus Ex : Human Revolution. [Online].

www.deusex3.com

[83] Bethesda Softworks LLC. (2010, May) Fallout: Welcome to the Official Site.

[Online]. www.fallout.bethsoft.com

[84] Electronic Arts Inc. (2010, May) Bulletstorm | Epic Games | EA. [Online].

www.bulletstorm.com

[85] Take-Two Interactive Software. (2009) BioShock 2. [Online].

www.bioshock2game.com

[86] BioWare Corp. (2010) BioWare | Dragon Age: Origins. [Online].

dragonage.bioware.com

[87] Microsoft Corporation. (2005, June) Download Details: Microsoft Calculator Plus.

[Online]. http://www.microsoft.com/downloads/details.aspx?familyid=32b0d059-

b53a-4dc9-8265-da47f157c091&displaylang=en

[88] Ali Hosseini-Khayat, Yaser Ghanam, Shelly Park, and Frank Maurer, "ActiveStory

Enhanced: Low-Fidelity Prototyping and Wizard of Oz Usability Tool," in Agile

Processes in Software Engineering and Extreme Programming, 2009, pp. 257-258.

[89] A. Ruiz and Price Y. W., "Test-Driven GUI Development with TestNG and

Abbot," in IEEE Software, 2007, pp. 51-57.

[90] A. Ruiz. (2007, July) Test-Driven GUI Development with FEST. From Test-driven

GUI development with FEST- JavaWorld. [Online].

Http://www.javaworld.com/javaworld/jw-07-2007/jw-07-fest.html

115

[91] A. Ruiz and Y. W. Price, "GUI Testing Made Easy," in Testing: Academic and

Industrial Conference - Practice and Research Techniques, 2008, pp. 99-103.

[92] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, "Realizing Quality

Improvement through Test Driven Development: Results and Experiences of Four

Industrial Teams," in Empirical Software Engineering, 2008, pp. 289-302.

[93] R Jeffries and G. Melnik, "Guest Editors' Introduction: TDD - The Art of Fearless

Programming," IEEE Software, pp. 24-30, 2007.

[94] Theodore D. Hellmann. (2010) LEET (LEET Enhances Exploratory Testing) -

CodePlex. [Online]. http://leet.codeplex.com/

[95] W. Chen, T. Tsai, and H. Chao, "Integration of Specification-Based and CR-Based

Approaches for GUI Testing," in 19th International Conference on Advanced

Information Networking and Applications, 2005, pp. 967-972.

[96] MITRE Corporation. (2010, May) CWE - Common Weakness Enumeration.

[Online]. http://cwe.mitre.org/

[97] (2010, May) CodePlex - Open Source Project Hosting. [Online].

http://www.codeplex.com/

[98] (2010, June) Wikipedia. [Online].

http://en.wikipedia.org/wiki/List_of_GUI_testing_tools

[99] (2009, May) Agile Software Engineering - University of Calgary | AgilePlanning /

Agile Planner For Digital Tabletop. [Online].

ase.cpsc.ucalgary.ca/index.php/AgilePlanning/AgilePlannerForDigitalTabletop

