
Requirements Attributes to Predict Requirements Related

Defects

Shelly Park
Department of Computer Science

University of Calgary
2500 University Drive NW

Calgary, AB, Canada

Frank Maurer
Department of Computer Science

University of Calgary
2500 University Drive NW

Calgary, AB, Canada

Armin Eberlein
Dept. of Computer Science & Engineering

American University of Sharjah
PO Box 26666

Sharjah, United Arab Emirates

Tak-Shing Fung
Information Technologies
University of Calgary

2500 University Drive NW
Calgary, AB, Canada

Abstract

Literature suggests that requirements defects
are a very costly problem to fix. Understanding
how requirements changes influence the overall
quality of software is important. Having some
defect predictors at the requirements stage may
help the stakeholders avoid making choices that
could bring about catastrophic defect numbers
at the end or at least be prepared for it. In
this paper, six requirements-related attributes
are analyzed to discover if they can be used for
determining the occurrences of requirements-
related defects. We measured two types of at-
tributes: point and aggregate. The point at-
tributes include time estimates, priority and
ownership. The aggregate attributes include
the number of indirect stakeholders, the num-
ber of related stories and the story creation
time. Our analysis is based on data from the
development of the IBM Jazz system. Our re-
sult shows that the number of indirect stake-
holders and the number of related stories are
good predictors for the number of defects, but
other attributes show no or little correlation
with the defects.

Copyright c© 2010 Shelly Park, Frank Maurer,
Armin Eberlein, Tak-Shing Fung. Permission to copy
is hereby granted provided the original copyright notice
is reproduced in copies made.

1 Introduction

The aim of our research is to data mine a struc-
ture, particularly on the relationships among
requirements, people and software defects in
large software development data. Literature
suggests that requirements-related defects are
a very costly problem to fix. According to Fair-
leys estimation, the cost of fixing requirements
defects may rise by 20 to 50 times if the defects
are fixed in the later stage of the development
[7]. Boehm and Basili put that number as high
as 100 times [2]. Up to 85% of the defects are
estimated to come from the requirements [11].
Literature states that requirements changes or
introducing new requirements increase the de-
fect rate to about 50% [14]. Software is devel-
oped by people, which means that much of the
software development processes and their re-
sults are influenced by people. We want to find
out how these numbers hold in an iterative de-
velopment environment that used stories and a
Jazz software collaboration tool to communi-
cate the requirements.

The discipline of statistics and data mining
are both concerned with discovering structures
in data [10]. A large body of data may con-
tain some valuable structures which may pro-
vide more interesting or useful insights into a
phenomenon under study. Statistics is gener-



ally concerned with how to make statements
about a population by examining a sample of
the population. On the other hand, data min-
ing is concerned with an entire population. In
such situations, statistical model building is
used to find significance of the model fit rather
than the probabilistic statement about the gen-
eralization ability from a sample [10]. Data
mining deals with searching for variables that
may have some good predictive abilities and
try to find potential explanatory variables. In
data mining, we are more interested in the ex-
ploratory aspect of discovering potentially in-
teresting relationships between many variables
[10].

In this paper, we report the results of data
mining a software repository of a team that
uses stories for communicating requirements.
We data mined their development repository
for over a year to find out if any interesting
structures or patterns exist on the relationships
among requirements, people and defects. Sto-
ries are requirements that are broken down into
smaller features, the implementation effort of
which can be easily estimated. We are inter-
ested in whether defects can be linked to one
or more stories and explore the variables that
are related in these two artifacts. To the best of
our knowledge, this is the first defect prediction
research that looked at requirements attributes
from stories.

Defect prediction is a research area with a
long tradition that aims to find metrics that
are available in the early phase of software de-
velopment and that are good defect predictors
[19]. However, defect prediction research tends
to evaluate defects from the coding stage on-
wards using attributes that are available at
the coding stage, such as code churn, lines of
code or the number of file changes [21]. Even
though analyzing defects using the code will
likely yield better prediction accuracy, being
able to predict defects, even with less accuracy,
already during requirements specification may
allow teams to make better implementation de-
cisions. Our goal was to find out whether there
are lightweight requirements definitions that
can be used for predicting defects or at least
find out if such patterns are available at the
requirements level.

Based on the Jazz systems change history

and the people who work on the project, we hy-
pothesized that easily attainable requirements-
related attributes could exist in our data for
predicting the estimated defects count. Our
reasoning is that stakeholders may hold tacit
knowledge about a projects health, which may
manifest itself in some human-based attributes
that can be measured at the time of the require-
ments specification. Therefore, our hypothesis
is that there are measurable story attributes
that can provide reasonable defect prediction.
Our analysis was exploratory in nature and set
out to discover whether such variables exist in
our data. The benefit of being able to predict
defects using requirements expressed as stories
is to help prepare better for negotiations, es-
timations and planning for the risks of a high
number of defects.

We performed a case study on a large soft-
ware development project the IBM Jazz de-
velopment project - that used stories for com-
municating requirements. More details about
the data will be presented in Section 3. We
performed a statistical analysis on six variables
that we data mined from our repository. From
those variables, we found that two variables
had high correlations with the number of de-
fects: the Number of Indirect stakeholders and
the Number of Related Stories. And then we
performed a network analysis on our data based
on these two variables to find out what kind of
patterns exists.

The pattern analysis is performed using net-
work analysis. Network analysis is a popular
analysis technique for understanding the social
relationships between humans and their inter-
actions. Each actor (human) is tied to other
actors through dependency ties. In our study,
ties between stakeholders are made if the stake-
holder reports a defect that is dependent on an-
other defect created by a different person. We
then find out if there is a pattern in the clus-
tering of people and defect types. Thus, we
determine whether the two variables we discov-
ered through the statistical analysis had some
interesting network patterns that can further
explain their ability to predict the number of
defects.

The organization of the paper is as follows.
Section 2 motivates our research. Section 3 de-
scribes the development project, the data of



which we analyzed. Section 4 describes the re-
search design. Section 5 describes our results.
In Section 6, we discuss our findings. Section
7 describes the threats to the validity of our
research. Section 8 concludes the paper.

2 Literature Survey

2.1 Association between Require-
ments and Defects

The literature currently provides many num-
bers for the magnitude of requirements defects
[7, 2, 11]. According to Mogyorodi, 56% of all
the bugs in software projects are inserted in
the requirements phase. From them, half of
these bugs are due to incomplete and ambigu-
ous requirements and the other half are due to
requirements omissions [18]. However, we still
do not know whether there were already some
good measurable attributes at the time of the
requirements that could be used to predict de-
fects.

Jones state that the defect rates increase to
about 50% if the requirements are changed in
mid-development [14]. The surveys suggest
that about half of the respondents said the
major cause of defects was poor requirements
[12]. Javed et al. performed a study that
compared the defect rate for pre-release and
post-release requirements changes [13]. Their
analysis showed that 81% of change requests
came after the project was shipped to the client
and that these requests have caused 67% of
the most severe defects. Zowghi and Nur-
muliani found that requirements volatility can
contribute to a schedule overrun, but frequent
communications and usage of a methodology
can help stabilize the schedule [28].

Although the literature suggests that re-
quirements changes are dangerous and should
be avoided, requirements changes are often
an unavoidable part of software development.
What software engineers require is a way to
make informed decisions about the tradeoff
between the benefit of requirements changes
against the potential defects that the changes
may produce at the end. An estimated de-
fect count (and maybe the severity of the de-
fect) could provide a better foresight required

to plan more effectively.

2.2 Defect Prediction

A defect is a common terminology for a fault
in a program [17]. Common terminologies such
as defects or bugs refer to faults in a program
that lead to failures [17]. For example, misun-
derstanding requirements specifications intro-
duces faults into a program, but these faults
are only observed when a failure occurs.

Defect prediction is a research area that aims
to answer the following questions [20]: 1) Find
metrics that are available in the early phase of
software development that are good defect pre-
dictors; 2) Develop models that can be used
for defect prediction; 3) Evaluate the accuracy
of the model; 4) Calculate the cost of utilizing
the model in a software organization. Defect
prediction requires various kinds of knowledge
repositories that can be easily mined for obtain-
ing the status of the project at a given point in
time.People have used faults databases, code
repositories and feature requests databases for
their defect prediction analysis based on code
[20]. Manual inspection of finding errors in
code is currently at around 60% [20].

Nagappan and Ball [21] and Munson and El-
baum [20] used code churn to predict the defect
density in software systems. There are other
predictors such as debug churn [16], code churn
analysis using neutral networks [15], file status
[22] and network analysis [27]. Currently, the
estimation for these code-based predictors for
defects has reported accuracies of up to 70%
to 89% [21, 20], although it needs further evi-
dences.

Our aim is to find out whether there are at-
tributes present in the requirements specifica-
tion, particularly stories, that may be used to
predict the occurrence of defects before code
has been developed. Our aim is not about de-
riving a defect prediction model that can pre-
dict better than code-based models. Inher-
ently, prediction becomes much more concrete
once we have code. Getting an indication of
potential defects using requirements specifica-
tions allows a development team to focus effort
and collaboration on avoiding po-tential fail-
ures. As far as we know, defect prediction using
requirements specification attributes available



Figure 1:
The ego network consists of the nodes

immediately connecting the ego nodes. The
global network refers to all nodes.

in stories has not yet been attempted.

2.3 Network Analysis

The purpose of the network analysis in our re-
search is to provide explanatory patterns as to
how attributes are related to each other. The
motivation behind network analysis is to un-
derstand the structure and evolution of the re-
lationship between entities. Many natural net-
works have a few nodes that have many more
connections than the average node has. There-
fore, most real world networks emerge using the
Power Law [1]. It means the community has
a strongly connected core. Network analysis
shows if there are multiple communities within
a network and determines how segregated or
unified group members are. It can also show
how the actors in the network influence each
other. For software engineering application of
network analysis, refer to [27, ?, ?] In network
analysis, an ego network is concerned with its
immediate neighbors. Each node in the net-
work has an ego network. A node is often called
“ego” in network analysis [24]. The global net-
work looks at the entire nodes.

3 Case Study

In this section, we present the data that we
used for our case study. We used the IBM Jazz
development project data for our analysis [9,
26, 25]. The repository has many variables that
can be explored, which provides an interesting
case study for data mining. As mentioned, data

mining is an exploratory analysis. Our aim was
to find out whether any interesting structures
or patterns exist in the given data that may
provide insights into the relationship between
requirements (stories) and defects and whether
such information is embedded in the repository
produced by the Jazz team.

Jazz is a development environment produced
by IBM to support collaboration on software
development. The Jazz system includes an in-
tegrated programming environment as well as
communication and project management tools
[9]. The Jazz development team used Jazz as
their collaboration and programming environ-
ment. As a result, a substantial repository of
development data was created. We data mined
this Jazz development repository for our study.
The data we extracted includes data from De-
cember 8, 2006 to June 26, 2008. 151 contribu-
tors (user accounts) exist in our data, but only
93 unique users were relevant to our study be-
cause others did not participate in the project
during our time frame in terms of work items
that can be traced from stories. The teams are
distributed over 16 different sites, including the
United States, Canada and Europe. Seven of
these sites were active in the development and
testing. The development project had 90 com-
ponents.

The team used the “Eclipse Way” method-
ology for their development. Their develop-
ment methodology is reported in [9, 26, 25].
Each iteration consists of six weeks. A project
management committee sets up a goal for each
iteration and breaks down the goal into fea-
tures, called work items. A work item repre-
sents an assignable and traceable task that can
be categorized into different subtypes, such as
defect work items, story work items, enhance-
ment work items or retrospective work items.
Each work item was then assigned to a develop-
ment team. In addition, each work item had a
specific owner who tracked the work item from
the beginning to the end. However, many peo-
ple could contribute to the work item, such as
contributing to its implementation, joining dis-
cussions and subscribing to the work item to
keep an eye on its progress.

One of these work item types is Story. This
is the work item that specifies a goal (or a re-
quirement). Another type of work item is En-



hancement. In this paper, when we mention a
story, we mean both Story and Enhancement
work items. If a defect is found, a work item
of type Defect is created. Here is an example
story.

Provide an integration option for
the Visual Studio client: Our current
option for writing an SCM client is
to use a combination of server REST
and command line tools. It turns out
that the command line (CLI) is both
too slow and far from feature com-
plete. In addition, calling the CLI and
parsing stdout isn’t an option for pro-
viding a rich integration into another
IDE. This story is about enhancing
the client side integration to allow:

• a rich and feature complete vi-
sual studio client or any other
client written in Java or another
language.

• an integration which is as fast as
the current RTC UI client.

• an integration architecture
which ensures that feature X
added in the RTC UI can easily
be leveraged in client Y.

• a CLI with feature parity with
the RTC UI for improved com-
mand line usage and scripting.

In the case of a defect, the team goes through
a short discussion phase to make sure the work
item is indeed a defect before it is assigned to
a team member who will fix the defect. If the
work item is vague, the team members can ask
questions for clarification. The Jazz system al-
lows work items to be linked to each other if
they are conceptually related. For instance, if
a defect can be traced to a requirement, these
two work items can be linked. We use these
links to determine if a defect is a requirements-
related defect. i.e., for each individual require-
ment (work item), we measure the number of
linked defects.

In our research with Jazz development data,
defect refers to any work items that are labeled
as defects in IBM Jazzs data by the Jazz de-
velopers. Requirements-related defects are de-
fect work items that can be traced to a story

work item. We noticed that 94% of the de-
fects can be traced to one or more of the story
work items. The rest of the defects appeared
without any relationship to stories. In the Jazz
repository, a story work item can be and often
is linked to several defect work items. The
process of linking can lead to very complex
links of defect fixes. The Jazz system main-
tains these links as a part of the tools func-
tionality. What we are interested in is whether
there are some overarching structures or pat-
terns that arise from these individual links be-
tween work items. Developers report the re-
lationship between work items because they
think that knowledge about the existence of
other work items may help solve the prob-
lem. In other words, the links between story
work items and defect work items are based on
human understanding of the problem, not an
automatic association generated by the code.
In this sense, the linking between defects and
story work items is different from linking of the
change sets to the bug reports or linking of bug
reports to failed tests, which are automatically
generated by Jazz through code submissions.
Because the linking of stories to defect work
items represents a human understanding of the
problem, there is no absolutely right or wrong
way to interpret what the linking may mean
other than that the developers who were as-
signed to the task thought that they were rel-
evant and important. When individual devel-
opers make these links to help solve ones own
problem, it may eventually emerge into a net-
work of linked work items that may together
have greater meaning. In addition, there is no
valid instrument to check whether these links
are right or wrong. These networks are dif-
ferent from networks that you would generate
from code dependencies or other code-based
metrics, because the links are inherently based
on qualitative reasoning that came from each
developer.

The entire data, including work items, any
file attachments, code base, all of their his-
tory, is about 21.3 GB. The code base consists
of 2.34 GB of data. Our extracted data in-
cludes data from December 8, 2006 to June 26,
2008 with a total of 2,860 story and enhance-
ment work items and their 215,099 related de-
fect work items.



4 Research Design

The literature survey on code-based defect pre-
dictions suggests that code churn is a good de-
fect predictor at the coding level with accuracy
of about 70% to 89% [21, 20]. However, we
want to find out if there are attributes that are
available at the requirements stage that can be
used to predict defects. We modeled our re-
search similar to [21, 27]. However, we looked
specifically at non-code attributes and consid-
ered the types of information that are avail-
able at the requirements level. We used the
Jazz web interface as well as Jazz Team Con-
cert (which are tools within Jazz) to extract
data relevant for our analysis. Then we built
a script that calculates the metrics used in our
investigation.

We present all the variables that we explored
whether they had correlations or not. Data
mining is about exploration; thus, negative cor-
relations are as interesting as positive corre-
lations. We categorized our variables for the
purpose of obtaining explanatory powers, but
the results were originally obtained from an ex-
ploratory process.

For the purpose of presentation, we catego-
rized the attributes into point and aggregate
variables. The point variables are attributes
whose values are determined in the beginning
of the story specification and can be obtained
from a single story. For example, a time esti-
mation to implement a story will be done in the
beginning and is available from a single story.
The team may decide to change the time esti-
mate at a later time if new information becomes
available and if the story is not implemented.

On the contrary, aggregate variables are val-
ues that are accumulated across multiple work
items. Therefore, it is not possible to obtain
these values using only one value from one
story. For example, the number of related sto-
ries may change over time as new requirements
are added to the project. Therefore, a story
with only one related story may have two or
more related stories at a later point in time
as additional requirements are added to the
project.

In our study, the dependent variable is the
number of defects and the independent vari-
ables are the point/aggregate variables that we

are going to present below. We are trying to
map one-to-one relationships between each of
these variables to the number of defects. In
other words, we are measuring whether these
independent variables have an influence over
our dependent variable, the number of defects.

4.1 Point Variables

For the point variables, we have the following
attributes for each story:

1. Time Estimates: The time estimates are
developers’ estimation of how long a story
will take him/her to implement. Not all of
the stories had time estimate information
available. Our assumption for data min-
ing the time estimates is that some tacit
knowledge about the difficulty of the im-
plementation may be reflected in the time
estimates. For example, stories that are
expected to take longer to implement may
be more difficult (e.g. more complex or
simply more comprehensive), thus could
be prone to more defects. Since we do not
have code complexity information at the
requirements stage (as we stated that we
designed our research to only consider in-
formation available prior to coding), time
estimates may provide an alternate way of
predicting the developers projection of the
possible code complexity.

2. Priority: Priority is measured as “Unas-
signed”,“Low”, “Medium” or “High”.
This measurement is the stakeholders view
of when the story should be implemented
in comparison to other stories. A story
that is assigned a high priority should be
implemented before a story that is as-
signed a low priority.

3. Ownership: Each work item usually has
an owner who makes sure that the work
item is finished. This is usually the person
who finally signs off the work item as re-
solved, although not always. We can inter-
pret the correlation to mean that someone
who owns many work items may have bet-
ter knowledge about the projects health
because he/she has an understanding of
how different work items are integrated to-
gether. On the contrary, a person may



get overwhelmed by many work items and
then make mistakes. Either a positive cor-
relation or a negative correlation would
confirm that prediction can be made based
on this variable. No correlation means the
ownership is a poor predictor for the pos-
sible number of defects.

4.2 Aggregate Variables

1. Number of Indirect Stakeholders for the
Story: We define a stakeholder as any user
who had an account in the Jazz project
repository. This includes developers, user
interface designers, requirements analysts,
testers, project managers, etc. We define
indirect stakeholders as people who report
defects or additional related enhancements
but have not been involved in the initial
definition of the story. If there is a pos-
itive correlation, it suggests that defects
arise due to not recognizing the true ex-
tent of the indirect stakeholders. A nega-
tive correlation would suggest that having
more indirect stakeholders actually leads
to less number of defects. No correlation
would mean that this variable is not a good
indicator for obtaining defect predictions.

2. Number of Related Stories Based On
Shared Defects: In Jazz data, we identi-
fied those defect work items that are linked
to two or more story work items. We in-
terpreted these defects to mean that there
were unexpected interactions between re-
quirements. If there is a positive correla-
tion, there is strong support that defects
arise due to unexpected interactions be-
tween requirements or a larger network of
interactions between work items. If de-
fect fixes require knowledge about other
story work items, the person who imple-
ments the fixes needs to consult with other
team members. The need to be aware of
many work items could mean that there is
more potential to change the behavior of
requirements that someone else wrote in
an unintended way. If there is no correla-
tion, it suggests that story interactions do
not provide a predictable trend that can
be used for defect prediction.

3. Story Creation Time: We decided to test
whether introducing a story at a later time
(after some iterative code implementa-
tions) leads to more defects. We measured
the time when a story was introduced to
the project and measured the subsequent
number of related defects. While introduc-
ing new stories later in the development
stage does not directly measure require-
ments change, it does represent a lack of
such requirements information before they
were introduced. Since some implemen-
tation had already happened before these
new stories are introduced to the team, the
developers may have designed code with-
out the knowledge that such requirements
may be coming up in the future.

4.3 Null Hypothesis

The null hypothesis states that there is no cor-
relation between any of the six attributes sug-
gested above and requirements-related defects.
Literature suggests that a p-value below 0.05
is considered to have high statistical signifi-
cance [8]. If the statistical significance is be-
low 5% [8], we are going to suggest that the
alternative hypothesis, which is that there is a
correlation between the selected attribute and
the occurrence of requirements-related defects,
is supported. Based on our data, we cannot
absolutely prove the relationship between the
attributes and the occurrence of requirements-
related defects, but it may suggest that there
may be a strong relationship.

4.4 Network Analysis

For part two of our analyses, we look at the
network patterns in our data based on the
attributes that show the highest correlations.
These associations between work items and
people are drawn up into a network graph,
where the nodes represent people and edges
represent the related defects on the stories they
worked on. The purpose of the network analy-
sis is to provide explanatory patterns as to how
attributes are related to each other.

• Size: The size is the number of nodes in
the ego network. It includes nodes that
are one step away from the node, ni.



• Two-step reach: The two-step reach mea-
sures the percentage of nodes that can
be reached in two directed steps from the
node.

• Brokerage: The brokerage is the number of
times the node appears in other nodes con-
nection paths. The brokerage value would
be high for a node that is connected to
many nodes, because it can play the role
of a broker in connecting two unconnected
pairs.

• Effective Size: The effective size is mea-
sured by the number of its neighbors mi-
nus the average number of directed ties be-
tween these nodes. Lets suppose there are
three nodes, n1, n2, n3, and n2 and n3

have a directed connection and n1 has a
directed connection to n2. The effective
size for n1 is 2-1=1.

• Degree Centrality: The degree centrality
measures the number of dependencies for
each stakeholder. We measured In-Degree,
Out-Degree and InOut-Degree of a node.
In-Degree measures the number of incom-
ing connections to the node. Out-Degree
measures the number of outgoing connec-
tions to the other nodes. The InOut-
Degree is the sum of In-Degree and Out-
Degree.

• Betweenness Centrality: The betweenness
centrality measures how many times the
node appears in the other nodes shortest
paths calculations. First, we need to cal-
culate the probability index of communica-
tion paths between two nodes. If the net-
work offers more than one shortest paths
between two nodes, nj and nk, then all of
them have the same probability to be cho-
sen. Suppose one of these shortest paths
contain the node, ni and let gjk(ni) be the
number of shortest paths linking nj and
nk, then the probability that ni is beween
nj and nk is gjk(ci)/gjk. Then the be-
tweenness centrality is measured using the
following formula:

CB(ci) =

∑
j<k

gjk(ni)/gjk

(g−1)(g−2) , where

CB is the degree centrality and g is the
number of nodes in the network.

Finally, instead of categorizing developers in-
dividually, we put them into teams. There are
90 project components. Each component is
assigned to a team. Each team has its own
stream. A stream is a workspace with a sepa-
rate branch in the source repository. Each team
commits their code into their stream only. We
wanted to see if dependent defects are found
by the members inside the team or members
outside of the team.

• Percentage of People Outside of the Team:
In the ego network, we want to find out
how many of these connections are with
people outside of their team. If this
value is high, it denotes that requirements-
related defects are mostly found when
there is an interaction with outside teams.

• Associated Team Areas: A person is as-
signed to many team areas or none at all
depending on their job description. We
want to know if a person assigned to many
teams and overseeing many projects could
detect more requirements-related defects.

5 Result

In this section, we describe the results of the
case study performed on Jazz development
data. Section 5.1 presents the correlation anal-
ysis between the requirements attributes and
the code attributes. Section 5.2 presents the
regression analysis and section 5.3 presents the
data splitting in order to measure the ability to
predict system defect density.

5.1 Correlation Analysis

We used Pearson correlation coefficient [4] to
verify the correlation between the specified at-
tributes and defect occurrences. The closer
a correlation value is to -1 or +1, the higher
the correlation between the two attributes: +1
means they are perfectly positive correlated
and -1 means they are perfectly negative cor-
related. A value of 0 indicates that the two
measures are uncorrelated. The Pearson corre-
lation values are shown in Table 1. We based
our threshold on Coltons rule of thumb for in-
terpreting the size of correlations, which is fol-
lows [6]:



Correlations from 0 to 0.25(or -
0.25) indicate little or no relationship;
those from .025 to .50 (or -0.25 to -0.5)
indicate a fair degree of relationship;
those from 0.50 to 0.75 (or -0.50 to -
0.75) a moderate to good relationship;
and those greater than 0.75 (or -0.75)
a very good to excellent relationship.

While the correlation coefficient measures
the strength of the relationship, the significance
measures the probability of an event occur-
ring by chance only. The significance is mea-
sured using a probability level denoted as p.
A smaller p means that the result is unlikely
to be caused by pure chance. As defined in
the research design section, a p value that is
smaller than 5% is considered significant for
our research and we will reject the null hypoth-
esis [3]. The result is presented in Table 1. To
summarize, we observe that there is a strong
correlation relationship between the number of
defects and the

• Number of Indirect stakeholders

• Number of Related Stories

The significance value for Story Creation
Time is higher than our threshold of 0.05;
therefore, we cannot make any general conclu-
sion about this variable and it is eliminated
from the candidate variable. However, the
other variables provide high significance val-
ues. In terms of Time Estimates, Priority and
Ownership, our data shows that there is clearly
no relationship between these variables and the
defects count. They all show high statistical
significance to support our observation. See
table 1. Based on our result, the two variables
in the aggregate variables category, the Num-
ber of Indirect Stakeholders and the Number
of Related Stories, both show high correlations
with the number of defects. The point vari-
ables all show no correlations with the number
of defects.

5.2 Regression Analysis

The purpose of a regression analysis is to de-
velop an equation of a line that best fits most
of the data points. The Standard Error of Esti-
mate is calculated to check for the discrepancy

between the data and the regression model [8].
This is the distance between the actual data
points and the regression line.

At this point, we have narrowed down our
analysis to the two variables that have shown
high correlation coefficients: the Number of In-
direct Stakeholders and the Number of Related
Stories. Therefore, we performed the regres-
sion analysis for the two attributes that show
statistical significance and strong correlation.
The model generated from the regression anal-
ysis and Standard Error of Estimate provides
a way to identify how closely we can fit our
data on a line. In our study, the dependent
variable is the number of defects and the in-
dependent variables are the number of indirect
stakeholders and the number of related stories,
each measured separately. In Table 2, x rep-
resents the number of defects and y represents
the attribute being examined.

Our analysis shows that a power regression
and a polynomial regression fit our data best as
seen in Table 2. The number of indirect stake-
holders has a good regression model with a rel-
atively small Standard Error of Estimate. The
correlation analysis and the regression analy-
sis both confirm that there are indeed positive
trends in the relationship between these two
variables and the number of defects that are be-
yond a random occurrence of events. MMRE of
<0.25 and PRED (0.3) of >0.75 are considered
to be highly acceptable model of accuracy [23].
The MMRE and PRED(0.3) in our analyses
are both in the range of highly acceptable num-
bers, which suggests that our regression model
can fit our data with good accuracy.

5.3 Cross Validation

Based on our analyses, the variables that show
consistently high correlation with the defects
are the Number of Indirect Stakeholders and
the Number of Related Stories. Therefore, we
used the data splitting technique on the Num-
ber of Indirect Stakeholders and the Number of
Related Stories. Data splitting [21] is a tech-
nique to independently assess the ability to pre-
dict from a population sample. We randomly
select two thirds of the stories (1906 stories)
from a population to build the prediction model
and then use the remaining one third (954 sto-



Table 1: Correlation coefficient between the specified story attributes and the number of defects

Attributes Pearson R2 Signific. Mean Variance Std. Dev. Std.Err.

Coeffc.(r)

Time Estimates -0.0222 0.001 <0.01a 1119.83 1,463,879.2 1209.91 110.91
Priority 0.0602 0.004 <0.01a 2.04 0.07 0.27 <0.01

Ownership -0.0316 0.001 0.04a 772.86 1,302,499.28 1141.27 21.31
Number of

Indirect
Stakeholders 0.9048 0.819 <0.01a 5.36 37.56 6.13 0.11
Number of

Related Stories 0.7591 0.576 <0.01a 17.01 1417.89 37.6 0.70
Story Creation

Time 0.0144 0.001 0.22 332.41 22,465.18 149.88 2.8

Table 2: Regression Analysis

Attributes Regression Model Standard Error MMRE PRED (0.3)

of Estimate

Number of Indirect

Stakeholders y = x1.56

3.55 0.30 0.27 0.76
Number of

Related Stories y = (0.009x + 1.244)6 0.37 0.20 0.87

Table 3: Data Splitting Regression and Correlation Analysis for Number of Indirect Stakeholders

Trial# R2 Significance

Random 1 0.8248 <0.01a

Random 2 0.8102 <0.01a

Random 3 0.8199 <0.01a

Table 4: Data Splitting Regression and Correlation Analysis for Number of Related Stories

Trial# R2 Significance

Random 1 0.5432 <0.01a

Random 2 0.5628 <0.01a

Random 3 0.6294 <0.01a

Table 5: Correlation Analysis on the Network Measures for Stakeholders and Related Stories

Measures Pearson Sig. (p)

Coefficient(r)
Size 0.9182 <0.01 a

Two-Step Reach 0.9367 <0.01 a

Brokerage 0.9096 <0.01a

In Degree Cent. 0.4356 <0.01a

Out Degree Cent. 0.26625 <0.01a

InOut Degree C. 0.2617 <0.01a

Betweenness 0.5130 <0.01a

Effective Size 0.9182 <0.01a

%Outside Team 0.6775 <0.01a

Associated Team 0.5475 <0.01a

aSignificant at alpha=0.05 level



ries) to verify the prediction accuracy. Then
we find out whether our variables still hold the
prediction ability even with different training
and evaluation values.

Using the regression equation, we estimate
the defect density for the remaining third of
the stories. Then we compare the estimated
values with the actual values for the remaining
one third of the stories that were used for the
evaluation. We ran the correlation analysis be-
tween the estimated and actual values. A high
positive correlation coefficient means there is
a positive relationship in the attributes being
measured and the estimated defect density.

All trials show consistent positive correlation
and statistical significance as shown in Table
3 and 4. The magnitude of the correlation
provides the sensitivity of the predictions. A
higher correlation means the prediction has a
higher sensitivity. The result shows that the
Number of Indirect Stakeholders is a very good
predictor of defect density and the Number of
Related Stories is a moderate to good predic-
tor.

5.4 Networks of People and Sto-
ries

The result so far suggests that the two vari-
ables, the number of indirect stakeholders and
the number of related stories, can predict the
number of defects very well. From a statistical
perspective, it suggests that these two variables
are good predictors of the number of defects.
The next question is how these two variables
relate to the number of defects and provide
some characteristics about their relationships.
To evaluate the nature of their relationships be-
tween the stakeholders and stories, we analyzed
how each person (stakeholder) is linked to sto-
ries. Two people are linked on a network if they
both share some work for the same story. Ta-
ble 5 shows the statistical analysis of how these
values relate in terms of the network measures,
which were defined in Section 4.

As shown in Table 5, size, two-step reach,
brokerage and effective size are showing high
correlation. It means the person who is linked
with many people also has many related stories,
which is not a surprising observation. Table 5
also shows that the betweenness measure shows

very high correlation, but the degree centrality
measure does not. What this means is that
the person who can explain the most number
of related stories using the smallest number of
related stories (in other words, shortest path
between stories networks) is the most impor-
tant person, not the person who is linked to
the most number of stories. Finally, the Per-
centage of People Outside of the Team and As-
sociated Team Area show moderately positive
correlations. It means that there are some rea-
sonable trends that defects are discovered by
people outside of the immediate core team and
more likely to be detected by people who are
working on multiple teams.

6 Discussion

In this section, we discuss the results of our
analyses. Our aim of the research project was
to data mine a large development project to
find out whether there are requirements-related
attributes that can predict the number of de-
fects. We have shown through our analyses
that the Number of Indirect Stakeholders and
the Number of Related Stories can predict the
trends in the number of defects. In addition,
we have shown that stakeholders and stories
are related in terms of size, two-step reach, bro-
kerage, effective size and betweenness central-
ity. In addition, we have also discovered that
people outside of the core team may find more
defects as well as people who participate in the
development of more than one component.

The other attributes, such as time estima-
tion, priority and ownership, did not show that
they were good predictors for the number of de-
fects. The story creation time did not meet the
significance threshold; thus, this value is incon-
clusive. However, what is important from our
findings is that trends for the number of defects
can be predicted from requirements attributes.
In this section, we are going to discuss the im-
plication of our findings in terms of what this
could mean for defect prevention.



6.1 Indirect Stakeholders and
Related Stories

The two attributes that show very high correla-
tions with the number of defects are the Num-
ber of Indirect Stakeholders and the Number
of Related Stories. Both of these numbers are
quantitative; therefore, they can be measured
at any given point in time. However, both of
these are aggregate variables, which mean these
values cannot be measured alone or only at one
point in time. Rather, they grow and change
as more stories and people are added to the
project.

The findings can be interpreted in many
ways. It is unlikely to predict who or how many
people will report the defects at the time of the
specification. However, if more of different peo-
ple report the defects as time progresses for a
story, the chance of having more defects be-
ing reported in the future will only likely to in-
crease. Our result suggests that the interaction
of people really matter in explaining the num-
ber of defects. The result is suggesting that a
tool that can make these increasing numbers of
indirect stakeholders and related stories obvi-
ous may be important in detecting what are
the defect-prone areas of the software devel-
opment project. There is no doubt that peo-
ple are important in requirements engineering.
Cheng and Atlee states that “successful RE in-
volves understanding the needs of users, cus-
tomers and other stakeholders; understanding
the context in which the to-be-developed soft-
ware will be used; negotiating and documenting
stakeholders requirements and validating that
the documented requirements match the nego-
tiated requirements” [5]. This definition em-
phasizes that there are a lot of human social
activities involved in RE, such as identifying
the needs and negotiating for agreements.

Our analysis suggests that we need more
studies in identifying and understanding stake-
holders better if we want to prevent defects.
We could possibly interpret our result to mean
that if more people are involved in a fea-
ture, more careful the team will have to look
at the requirements and the more collabora-
tion/communication should be spent on it.

6.2 Network Analysis

The second part of the analyses is to find out
how these two variables, the Number of Indi-
rect Stakeholders and the Number of Related
Stories relate to each other. To understand the
characteristics of their relationship, we mea-
sured 10 network attributes. As shown in Table
5, four attributes show very high positive cor-
relations and three attributes show moderately
positive correlations. Other attributes do not
show any correlation.

First, the ego network values all show very
high correlation values. This suggests that ones
own knowledge about the people who are work-
ing on the related stories is very important in
predicting the number of defects. If a person
is working on a story that associates a lot of
people, then it is likely that this story is also
related to many defects. It shows the need for
developers to find people who are working on
similar or related stories in the team as early
in the development as possible.

A person may be assigned to multiple team
areas depending on their functional specializa-
tions or their breadth of knowledge. Our result
suggests that most of the defects are discov-
ered by people who did not belong to the same
team as the person who created the story. A
moderately positive trend shows that defects
are sometimes discovered by people outside of
the team. Finally, we measured the total num-
ber of teams represented per stories. Our result
moderately supports the proposal that a com-
ponent with people from many different teams
do end up with more defects.

6.3 Predictability

The result does confirm our hypothesis. There
are requirements attributes that have strong
correlations with the number of defects. Even
at the requirements stage, the number of indi-
rect stakeholders plays a crucial role in the de-
fects count. Making sure that everyone knows
how changes will impact their part of the work
may be important. A tool that can help show
how ones story is related to other peoples story
may be helpful in discovering these unexpected
defects before they are implemented into the
system.



7 Threats to Validity

In this section, we discuss the validity of our
findings with respect to internal and external
validity.

For conclusion validity, we have shown that
our result has very high statistical correlations.
Each attribute is measured independently from
other attributes. We are only working with one
project, so there is no risk of random hetero-
geneity of subjects. We believe that the data is
sufficiently large enough to warrant statistical
significance of our result. We also assume that
everyone in the team consistently used the Jazz
repository to communicate and record their de-
velopment progress.

For construct validity, we have made effort
to discuss the limitations of our attributes and
any assumptions we made to obtain the mea-
surement. We measured multiple attributes in
both point and aggregate categories. There is
no participants bias toward the research, be-
cause the data represents their normal devel-
opment progress, rather than a response to a
research study. The selection of measurements
was based on a literature survey as well as on
what was available in the data set.

The Jazz development team is using Jazz in
order to build Jazz. Therefore, depending on
when a feature was developed, some data might
not be available. Before the concept of Story
work item was introduced, Jazz was already
keeping track of some defects. We ignored these
defects from our analysis if they did not relate
back to one of the Stories or Enhancements.
However, 94% of the defects are accounted for
through the relationship between Stories and
Enhancements. In terms of the population se-
lection, our data had 93 unique contributors,
which is large enough to account for any natu-
ral variation in human performance.

One of the threats to internal validity is the
interpretation of the causal influence. Based
on our analysis, we can state that there is a
strong correlation between the Number of In-
direct Stakeholders and the Number of Related
Stories to the number of defects, but we cannot
suggest that these attributes can cause defects.
In addition, defect prediction using knowledge,
code, or defect repository does not show any so-
cial dynamics that may exist in the team under

study.

For the external validity, the study was per-
formed on a single, large development project.
Therefore, there is a risk of single group
threats, which applies when the result looks
at a single group. More empirical studies are
needed to generalize our result. The size of
the code base and the development organiza-
tion are at a much larger scale than many com-
mercial products. Therefore, it may be that
smaller projects may not show similar trends.
We also cannot generalize our results to soft-
ware using other languages or platforms. More
replication studies are needed for other types
of development projects.

Our data spans almost 1.5 years of develop-
ment work. The time scale is large enough to
compensate for any unusual events that may
skew the result. If there were any special events
that may have influenced the result, it is un-
likely to have contributed to a significant devi-
ation of our data.

8 Conclusion

For our evaluation, we divided the story at-
tributes into two categories: point and aggre-
gate. The point variables include the time es-
timate, priority and ownership. For aggregate
variables, the number of indirect stakeholders,
related stories and story creation time are an-
alyzed. Our analysis shows that the number
of indirect stakeholders and the number of re-
lated stories are good predictors for the num-
ber of defects that can be obtained from the
requirements specification, such as story, for es-
timating the number of defects. Our research
was exploratory in nature. Our intention was
to identify the requirements attributes that can
also be used as a defect predictor, because be-
ing able to predict, even with a limited accu-
racy rate, using the requirements specification
may provide the team with a better plan of at-
tack for their implementation decisions.

A correlation analysis cannot define the
causality of the relationship without further
experiments. Therefore, we invite other re-
searchers to validate our results with additional
project data. Our empirical study can con-
tribute towards a better understanding about



collecting measurable attributes for controlling
and monitoring requirements-related defects.
We also discovered that data collected by tools,
such as Jazz, can provide a good basis to point
to potential requirements defects and can ratio-
nalize decisions on where to spend inspection
and testing effort.

Acknowledgements

The study is supported by NSERC PGS,
AIF/iCore and IBM JAZZ grant.

About the Author

Shelly Park is currently pursuing her Ph.D.
in Computer Science at the University of Cal-
gary. She was an instructor for human-aspects
of software engineering course at the Univer-
sity of Calgary. Her research interests include
agile software engineering and human aspects
of software engineering.

Dr. Frank Maurer is a Full Professor at
the University of Calgary. His research inter-
ests are agile software methodologies, engineer-
ing digital table applications, executable accep-
tance test driven development, integrating ag-
ile methods and interaction design, framework
and API usability and tools for agile teams.
He is a member of the Agile Alliance, a Certi-
fied Scrum Master, a founding member of the
Canadian Agile Network (CAN) Le Rseau Ag-
ile Canadien (RAC) and Associate Editor of
IEEE Software responsible for the Process and
Practices area.

Dr. Armin Eberlein is currently an Asso-
ciate Professor and the Head of the Computer
Engineering Department at the American Uni-
versity of Sharjah in the United Arab Emirates.
His research interests focus on the improvement
of requirements engineering practices and tech-
niques. He worked previously as a hardware
and software developer at Siemens in Munich,
Germany, and has consulted for various com-
panies in Germany, the UK, and Canada.

Dr. Tak-Shing Fung is currently a statistical
consultant at Research Consulting Services at
the University of Calgary. He received Ph.D.
in Statistics at the University of Calgary. He
worked in the industry for many years as a

statistics consultant. He also teaches statistics
at the University of Calgary.

References

[1] A. Barabasi. Linked: How Everything is
Connected to Everything Else. Perseus
Publishing, Cambridge, MA,, 2002.

[2] B. Boehm and V. Basili. Software defect
reduction top 10 list. IEEE Computer,
34(1):2–6, January 2001.

[3] B.Winer. Statistical Principles in Experi-
mental Design. McGraw-Hill, 1971.

[4] CHAOS. Standish group report. Standish,
.:., 1994.

[5] B. Cheng and J. Atlee. Research direc-
tions in requirements engineering. Future
of Software Engineering, IEEE Computer
Society, .(May):., 2007.

[6] T. Colton. Statistics in Medicine. Little,
Brown, 1974.

[7] R. Fairley. Software Engineering Con-
cepts. McGraw-Hill, New York, 1985.

[8] D. Freedman, R. Pisani, and R. Purves.
Statistics, 3rd Ed. Norton & Company,
1998.

[9] R. Frost. Jazz and eclipse way of collab-
oration. IEEE Software, 24(6):581–603,
2007.

[10] D. Hand. Statistics and data mining: In-
tersection disciplines. ACM SIGKDD Ex-
ploration, 1(1):16–19, June 1999.

[11] I. Hooks and K. Farry. Customer-centered
products: Creating successful products
through smart requirements management.
American Management Association, New
York, NY, 2001.

[12] European Software Institute. European
user survey analysis. Report USV EUR
ESPITI Project, 2.1:., 1996.

[13] T. Javed, M. Maqsood, and Q. Durrani.
A study to investigate the impact of re-
quirements instability on software defects.



ACM Software Engineering Notes, 29(4):.,
May 2004.

[14] C. Jones. Software Quality: Analysis
and Guidelines for Success. International
Thomson Computer Press, 1997.

[15] N. Karunanithi. A neural network ap-
proach for software reliability growth mod-
eling in the presence of code churm. In
Proc. of International Symposium on Soft-
ware Reliability Engineering, pages 310–
317, 1993.

[16] T. Khoshgoftaar, E. Allen, N. Goel,
A. Nandi, and J. McMullan. Detection
of software modules with high debug code
churn in a very large legacy system. In
Proc. of International Symposium on Soft-
ware Reliability Engineering, pages 364–
371, 1996.

[17] A. Mathur. Foundations of Software Test-
ing. Pearson Education, 2002.

[18] G. Mogyorodi. What is requirements-
based testing? CROSS TALK, The Jour-
nal of Defense Software Engineering, .:.,
March 2003.

[19] R. Moser, W. Pedrycz, and G. Succi. A
comparative analysis of the efficiency of
change metrics and point code attributes
for defect prediction. In Proc. of 30th In-
ternational Conference on Software Engi-
neering,Leipzig, Germany, pages 191–190,
2008.

[20] J. Munson and S. Elbaum. Code churn:
A measure for estimating the impact of
code change. In Proc. of IEEE Inter-
national Conference on Software Mainte-
nance,r, pages 24–31, 1998.

[21] N. Nagappan and T. Ball. Use of rela-
tive code churn measures to predict sys-
tem defect density. In Proc. of the 27th
International Conference on Software En-
gineering, St. Louis, USA, pages 284–292,
2005.

[22] T.J. Ostrand, E.J. Weyuker, and E.M.
Bell. Where the bugs are. In Proc. of the

2004 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis
(ISSTA), pages 86–96, 2004.

[23] D. Port and M. Korte. Comparative stud-
ies of the model evaluation criterions mrre
and pred in software cost estimation re-
search. In Proc. of International Sympo-
sium on Empirical Software Engineering
and Measurement (ESEM), Kaiserlautern,
Germany, 2008.

[24] G. Sabidusi. The centrality index of a
graph. Psychometrika, 31:581–603, 1966.

[25] L. t. Cheng, C. de Souza, S. Hupfer,
J. Patterson, and S. Ross. Building col-
laboration into ides. Queue, 1(9):40–50,
2003.

[26] L. t. Cheng, S. Hupfer, S. Ross, and J. Pat-
terson. Jazzing up eclipse wit collaborative
tools. In OOPSLA workshop on eclipse
technology eXchange, Proc. of the 2003
OOPSLA workshop on eclipse technology
eXchange,, pages 45–49, Anaheim, Cali-
fornia,, 2003.

[27] T. Zimmermann and N. Nagappan. Pre-
dicting defects using network analysis on
dependency graphs. In Proc. of 30th In-
ternational Conference on Software Engi-
neering, Leipzig, Germany,, pages 531–
540, 2008.

[28] D. Zowghi and N. Nurmuliani. A study
of the impact of requirements volatility on
software project performance. In In Proc
of the 9th Asia-Pacific Software engineer-
ing Conference, Washington, DC, USA.
IEEE Computer Society, 2002.

Copyright c© 2010 Shelly Park, Frank
Maurer, Armin Eberlein, Tak-Shing
Fung. Permission to copy is hereby
granted provided the original copy-
right notice is reproduced in copies
made.


