
Diplomarbeit

Studiengang Informatik (Technik)

Fakultät für Informatik
Hochschule Mannheim

Autor: Denis Elbert
Matrikelnummer: 510243

Zeitraum: 16.11.2009 – 16.03.2010

Erstgutachterin: Prof. Dr. Astrid Schmücker-Schend

Zweitgutachterin Prof. Dr. Miriam Föller-Nord

Praktischer Teil angefertigt bei: Prof. Dr. Frank Maurer
Agile Software Engineering Group

University of Calgary
Department of Computer Science
2500 University Dr NW
Calgary, Alberta T2N 1N4
Canada

Refactoring of Acceptance Tests in
Visual Studio

Denis Elbert

Refactoring of Acceptance Tests in Visual Studio

STATUTORY DECLARATION (GERMAN)
Ich versichere, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als

der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus

veröffentlichten und nicht veröffentlichten Schriften entnommen wurden, sind als solche

kenntlich gemacht. Die Arbeit hat in dieser oder ähnlicher Form keiner anderen

Prüfungsbehörde vorgelegen.

Mannheim, 16.03.2010 ________________________

Unterschrift

I

Refactoring of Acceptance Tests in Visual Studio

ABSTRACT

Executable Acceptance Test Driven Development (EATDD) is an extension of Test Driven

Development (TDD). TDD requires that unit tests are written before any code. EATDD pushes

this TDD paradigm to the customer level by using Acceptance Tests to specify the requirements

and features of a system. The Acceptance Tests are mapped to a Fixture that permits the

automated execution of the tests.

With ongoing development the requirements of the system can change. Thus, the Acceptance

Tests must be adjusted in order to reflect the new requirements. Since the tests and the

corresponding Fixtures must remain consistent, the manual modification of these tests is time

consuming and error-prone. Hence comes the need for Acceptance Test refactoring.

This thesis describes the implementation of Acceptance Test refactoring support for the Visual

Studio IDE.

GERMAN ABSTRACT

Executable Acceptance Test Driven Development (EATDD) ist eine Erweiterung des Test Driven

Development (TDD). TDD schreibt vor, dass das Schreiben von Code erst nach Definition eines

dafür vorgesehen Modultests durchgeführt wird. EATDD wendet dieses Prinzip bis auf

Kundenebene an, indem Acceptance Tests verwendet werden, die die Anforderungen und

Leistungsmerkmale des zu entwickelten Systems definieren. Diese Acceptance Tests sind mit

einem Fixture verknüpft, das die automatisierte Ausführung dieser Tests ermöglicht.

Mit fortschreitender Entwicklung können sich die Anforderungen des Systems ändern. Als Folge

dessen müssen die Acceptance Tests angepasst werden, um den geänderten Anforderungen

Rechnung zu tragen. Da die Tests gegenüber den zugehörigen Fixtures konsistent bleiben

müssen, ist eine manuelle Anpassung der Tests zeitaufwendig und fehleranfällig. Daraus

resultiert die Notwendigkeit von Acceptance Test Refactoring.

Diese Arbeit beschreibt die Erweiterung von Visual Studio um Acceptance Test Refactoring -

Funktionen.

II

Refactoring of Acceptance Tests in Visual Studio

ACKNOWLEDGEMENTS

First of all I would like to thank everyone, who supported me during this work and especially in

the course of my whole studies.

In particular I would like to thank these people:

 Prof. Dr. Schmücker Schend for supervising my thesis.

 Prof. Dr. Maurer for giving me the opportunity to be part of his great team in Calgary.

 All members of the ASE group, who always helped me out when I got questions;

especially Felix, Sabine and Steffen.

 My friend Sebastian for his great support

III

Refactoring of Acceptance Tests in Visual Studio

DEDICATION

I dedicate this work to my parents who always supported me whenever

they could and let me choose my own way in life.

IV

Refactoring of Acceptance Tests in Visual Studio

TABLE OF CONTENTS

STATUTORY DECLARATION (GERMAN)...I

ABSTRACT...II

GERMAN ABSTRACT...II

ACKNOWLEDGEMENTS..III

DEDICATION..IV

TABLE OF CONTENTS..V

LIST OF FIGURES..VIII

LIST OF TABLES...X

LIST OF ABBREVIATIONS..XI

1 INTRODUCTION..1
1.1 Motivation...1
1.2 Thesis Goals...1
1.3 Thesis Structure...2

2 RELATED WORK..4
2.1 FitClipse...4
2.2 GreenPepe 2010..4

3 FUNDAMENTALS...7
3.1 Agile Software Development And Agile Methods...7
3.2 Extreme Programming (XP)...8
3.3 Test Driven Development (TDD)..12

3.3.1 Unit Tests..15
3.3.2 Acceptance Tests..16
3.3.3 Executable Acceptance Test Driven Development..16

3.4 Refactoring Of Acceptance Tests...19
3.5 GreenPepper Acceptance Tests...20

3.5.1 Notation And Layout..21
3.5.1.1 RuleFor Interpreter..24
3.5.1.2 Scenario Interpreter...26
3.5.1.3 Import Interpreter..27
3.5.1.4 Info And Comment Interpreter...28
3.5.1.5 Other Interpreters..29

3.5.2 Fixtures...30
3.5.2.1 RuleFor Interpreter..33
3.5.2.2 Scenario Interpreter...36

3.5.3 Test Results...39
3.6 .NET Framework..40

3.6.1 C#...41

V

Refactoring of Acceptance Tests in Visual Studio

3.6.1.1 Namespaces...42
3.6.1.2 Attributes...42
3.6.1.3 Regular Expressions..43

3.6.2 Visual Studio...44
3.6.2.1 Development Tools Extensibility (DTE) ..45
3.6.2.2 VSCT Files...46

3.6.3 Windows Presentation Foundation (WPF)...47

4 CONCEPT..48
4.1 Extending Visual Studio 2010..48
4.2 Refactoring Workflow..49
4.3 Parser For GreenPepper Acceptance Tests..51
4.4 C# parser...51
4.5 Refactorings...53

4.5.1 Rename Test...54
4.5.2 Refactorings For RuleFor Tests..56

4.5.2.1 Add Given / Expected Value Column..56
4.5.2.2 Remove Given / Expected Value Column...59
4.5.2.3 Rename Given / Expected Value Column...62

4.5.3 Refactorings For Scenario Tests..64
4.5.3.1 Add Action..64
4.5.3.2 Remove Action...68
4.5.3.3 Edit / Rename Action...69

4.6 Graphical User Interface (GUI)..72

5 IMPLEMENTATION...74
5.1 GreenPepper Acceptance Test Parser..74

5.1.1 Parser Layer 1...75
5.1.2 Parser Layer 2...77
5.1.3 Parser Layer 3...79
5.1.4 Parser Usage...83

5.2 Refactoring Commands...84
5.3 Document Interaction In Visual Studio..86
5.4 Graphical User Interface (GUI)..87
5.5 Core Classes And Interfaces...91

5.5.1 IClassCodeManipulator Interface...91
5.5.2 Fixture Class...92
5.5.3 TestDocument Class...93
5.5.4 RefactoringExecuter Class..94
5.5.5 ISettings Interface..95

6 CONCLUSION AND FUTURE WORK..96
6.1 Problems...96
6.2 Summary And Evaluation..96
6.3 Future Work..97

VI

Refactoring of Acceptance Tests in Visual Studio

REFERENCES..XCVIII

VII

Refactoring of Acceptance Tests in Visual Studio

LIST OF FIGURES

Figure 1: Screenshot of the GreenPepe 2010 extension...6

Figure 2: Correlation between Values, Principles and Practices [Beck et al., p. 15]......................9

Figure 3: TDD steps [Ambler 2009b]...14

Figure 4: EATDD workflow in XP [Ordelt 2008, p. 18]...18

Figure 5: Example of a GreenPepper acceptance test file...24

Figure 6: RuleFor test for a calculator...25

Figure 7: Structure of a RuleFor test [GP Doc]..25

Figure 8: Scenario test for a bank application...26

Figure 9: Structure of a Scenario test [GP Doc]...27

Figure 10: Structure of an Import interpreter [GP Doc]..28

Figure 11: Usage of the Info interpreter [GP Doc]..28

Figure 12: Usage of the Comment interpreter [GP Doc]...29

Figure 13: Fixture as mediator between test specification and SUT...31

Figure 14: Usage of the Import interpreter..33

Figure 15: Example for a RuleFor test...34

Figure 16: Corresponding Fixture...35

Figure 17: Example for a Scenario test...36

Figure 18: Corresponding Fixture to the Scenario test...37

Figure 19: Exemplary GreenPepper test result...40

Figure 20: Example for a .NET attribute..43

Figure 21: RuleFor test example before "Rename Test" refactoring...55

Figure 22: RuleFor test example after "Rename Test" refactoring..56

Figure 23: RuleFor test before "Add expected column" refactoring...58

Figure 24: RuleFor test after "Add expected column" refactoring..59

Figure 25: RuleFor test before "Remove expected column" refactoring.....................................61

Figure 26: RuleFor test after "Remove expected column" refactoring..61

Figure 27: RuleFor test before "Rename expected column" refactoring.....................................63

Figure 28: RuleFor test after "Rename expected column" refactoring.......................................64

Figure 29: Scenario test before "Add action" refactoring...67

VIII

Refactoring of Acceptance Tests in Visual Studio

Figure 30: Scenario test after "Add action" refactoring..68

Figure 31: Scenario test before "Rename action" refactoring...71

Figure 32: Scenario test after "Rename action" refactoring...72

Figure 33: Layers of the GreenPepper acceptance parser..74

Figure 34: Class diagram for the first parser layer..76

Figure 35: Class diagram for the second parser layer...77

Figure 36: Interfaces of layer 3 representing GreenPepper acceptance tests.............................80

Figure 37: IRenameable interface...82

Figure 38: ILocatable interface...83

Figure 39: Code for retrieving the test object model..84

Figure 40: Definition of the "Rename" command in the VSCT file..85

Figure 41: Access to the VS context menu..85

Figure 42: Example of the refactoring context menu..86

Figure 43: Code to retrieve the opened document in VS..87

Figure 44: GUI for "Add column" refactoring..88

Figure 45: GUI for the "Add action" refactoring...89

Figure 46: GUI for the "Rename action" refactoring...90

Figure 47: Preview dialogue...91

IX

Refactoring of Acceptance Tests in Visual Studio

LIST OF TABLES

Table 1: TDD frameworks in different environments..15

Table 2: Mapping of test name and Fixture name..32

Table 3: Different attribute types for a Scenario action..38

Table 4: Test result colouring for different interpreter types [GP Doc].......................................40

Table 5: Comparison of different third-party C# parsers...53

Table 6: Element types identified by the first level parser..75

Table 7: Identification of different types of HTML tags...76

X

Refactoring of Acceptance Tests in Visual Studio

LIST OF ABBREVIATIONS

CIL Common Intermediate Language

CLR Common Language Runtime

DTE Development Tools Extensibility

EATDD Executable Acceptance Test Driven Development

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

JITter Just-In-Time Compiler

MSDN Microsoft Developer Network

RDM Requirements Definition Management

SDK Software Development Kit

SUD System Under Development

SUT System Under Test

TDD Test Driven Development

VS Visual Studio

VSCT Visual Studio Command Table

WPF Windows Presentation Foundation

XAML eXtensible Application Markup Language

XML Extensible Markup Language

XP Extreme Programming

XI

Refactoring of Acceptance Tests in Visual Studio - Chapter 1: Introduction

1 Introduction

1.1 Motivation

During the last years, Agile Software Development gained more and more recognition as it is a

qualified alternative to the traditional heavyweight software development processes. It focuses

on team development and communication between the team members as well as between the

customer and the developers.

Extreme Programming (XP) is one of the most agile software development processes [Astels

2003]. Its major practice is the application of Test Driven Development (TDD), which requires to

write a test before any code is written. As part of XP, story cards are used to specify the

requirements of a system from the customer's perspective. These story cards are translated

into Acceptance Tests which represent the specification of the system.

In order to facilitate the creation of a safety net of tests, these Acceptance Tests must be

executed in an automated process. The Automation requires the definition of a so called

Fixture, which is used to intermediate between the test specification and the System Under

Test (SUT).

Since requirements change with time, it is necessary to adjust the Acceptance Tests so they

reflect exactly the customer's needs. Refactoring of Acceptance Tests supports this process of

test modification because it keeps test specification and Fixture consistent. So far, Acceptance

Tests refactoring support is only available for the Java environment with the FitClipse tool.

Although Acceptance Tests frameworks such as GreenPepper exist for .NET, there is no tool yet

which incorporates Acceptance Test refactoring in the development process of .NET

applications.

1.2 Thesis Goals

The goal of this thesis is to implement refactoring functionality for GreenPepper acceptance

tests in Visual Studio.

GreenPepper specifies different types of acceptance tests. Among them are the RuleFor and

-1-

Refactoring of Acceptance Tests in Visual Studio - Chapter 1: Introduction

the Scenario test (see chapter 3.5). Refactoring shall be supported only for these two

acceptance test types. All refactoring actions that must be implemented in the course of this

work are listed below:

 Rename test (both Scenario and RuleFor test)

 Add given / expected parameter column to RuleFor test

 Delete given / expected parameter column from RuleFor test

 Rename given / expected parameter column of RuleFor test

 Add action to Scenario test

 Delete action from Scenario test

 Edit / Rename action of Scenario test

There are some restrictions or general conditions that apply to these goals:

 The refactoring support must be implemented for the newest version of the .NET

framework (version 4.0) and Visual Studio (version 2010).

 The programming language C# must be supported by the refactoring.

1.3 Thesis Structure

This thesis is organized in five major remaining parts.

Chapter 2 gives information about two projects which are related to the topic of this thesis.

It is followed by chapter 3, which explains Agile Methods, Extreme Programming (XP) and Test

Driven Development as part of XP in order to clarify the relevance of acceptance test

refactoring. In the same chapter, all fundamentals of GreenPepper acceptance tests are

explained as well as any technology that is used in the course of this thesis.

Chapter 4 explains the approach that was taken in order to achieve the goals defined above,

whereas chapter 5 provides detailed information about the final results and the actual

-2-

Refactoring of Acceptance Tests in Visual Studio - Chapter 1: Introduction

implementation.

The last chapter summarizes the entire work and describes possible future work.

-3-

Refactoring of Acceptance Tests in Visual Studio - Chapter 2: Related Work

2 Related Work

2.1 FitClipse

FitClipse is an Eclipse plug-in for facilitating Executable Acceptance Test Driven Development

(EATDD) (see chapter 3.3.3) and was developed at the University of Calgary. The tool allows

users to “edit acceptance tests, automatically generate fixtures, execute tests and represent

the tests graphically including an option to view the test results history [Maurer et al. 2009a]”.

It supports both Fit and GreenPepper, which represent frameworks for acceptance tests.

2.2 GreenPepe 2010

GreenPepe 2010 is an extension for the integrated development environment (IDE) Visual

Studio 2010 and was developed by Felix Riegger and Denis Elbert at the University of Calgary in

September 2009.

The extension makes it possible to execute GreenPepper acceptance tests (see chapter 3.5)

within the IDE and to view the test results in a JUnit-like manner. The detailed features of

GreenPepe 2010 are listed and described below:

 Marking files as GreenPepper acceptance tests

GreenPepper acceptance tests are specified within common HTML files. Since a project

may not only contain HTML files that represent GreenPepper acceptance tests,

GreenPepe 2010 allows for marking those in order to distinguish them from other

HTML files. When it comes to the execution of acceptance tests, GreenPepe 2010 will

skip all files which are not marked as GreenPepper acceptance tests.

 Execution of multiple GreenPepper acceptance tests

GreenPepe 2010 offers the possibility to simply select GreenPepper acceptance tests

through the context menu of the Visual Studio solution explorer and to execute them

at once. If a folder or the root entry of the entire project is selected, GreenPepe 2010

will find all containing GreenPepper acceptance test files and execute them.

 Graphical overview over test results

-4-

Refactoring of Acceptance Tests in Visual Studio - Chapter 2: Related Work

After GreenPepper acceptance tests have been executed, an additional window is

displayed which gives an overview over all test results (number of successful or failed

tests, exceptions, ignored tests). Furthermore, each executed test is listed and

coloured depending on its result. A green colour represents a passed test while a red

colour stands for a test that failed.

 Display of GreenPepper acceptance test output

When a double click is performed on one of the tests listed in the test result view

mentioned above, the associated test result (output from the GreenPepper engine, see

chapter 3.5.3) is automatically opened and displayed in the IDE.

 Rerun tests

In the test result window, it is also possible to select one or more acceptance tests in

order to execute them again. This is useful when changes are applied to the system

and the tests need to be run multiple times to check if they pass.

Figure 1 shows a screenshot of GreenPepe 2010 taken after a number of acceptance tests have

been executed. The test result window can be seen on the right side. A red bar indicates that at

least one test failed whereas coloured circles in front of each listed test give information about

their exclusive result. Through double click on the “Division Test”, the test result output

produced by the GreenPepper engine is displayed on the left side.

-5-

Refactoring of Acceptance Tests in Visual Studio - Chapter 2: Related Work

GreenPepe 2010 is implemented as a VSPackage. VSPackages represent one of three possible

ways to extend Visual Studio (besides Macros and Add-Ins) [MSDN 2010b]. In order to execute

GreenPepper acceptance tests, GreenPepe 2010 references a library from the GreenPepper

framework.

-6-

Figure 1: Screenshot of the GreenPepe 2010 extension

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

3 Fundamentals

3.1 Agile Software Development And Agile Methods

On February 11-13, 2001, seventeen representatives of various software development

methodologies (such as Extreme Programming (XP), SCRUM, DSDM, Adaptive Software

Development, Crystal, Feature-Driven Development, Pragmatic Programming) convened in the

mountains of Utah to discuss alternatives to the traditional heavyweight methodologies. The

result of their meeting was a draft of the Agile Manifesto, which defines the criteria for agile

software development processes in four fundamental values and twelve principles.

The four values are stated as follows [Manifesto]:

 Individuals and interactions over processes and tools:

Like the old adage “A fool with a tool is still a fool” implies, the most important factors

to consider are the people writing the software and how they work together. The best

processes and tools are not of any value as long as people are not able to

communicate with each other.

 Working software over comprehensive documentation:

When it comes to maintaining software, documents are very helpful as they give a

detailed description of the final system. However, since the primary goal of software

development is to create software, more time and effort should be spent on frequently

building working product releases, which can be demonstrated to the customer.

 Customer collaboration over contract negotiation:

In order to build the right software, it is important to communicate with your customer

and integrate him into the software development process because he is the only one

who knows the requirements of the system. That is why it is more important to stay in

touch with the customer and respond to his requests than insist on the contract that

was negotiated before.

 Responding to change over following a plan:

Having a project plan is indispensable for a successful software development project,

-7-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

especially for large projects. But requirements change over time, which makes it

necessary to adapt to those changes and redefine the project plan as soon as possible

in order to satisfy the customer's wishes.

Each of the four statements consists of a left (emphasized) and a right side, which is explained

by the authors of the Manifesto by saying: “[...] while there is value in the items on the right,

we value the items on the left more [Manifesto]”. In other words, the Manifesto does not

question the importance of the traditional values on the right, but defines other values (on the

left) that are considered to be even more important. It therefore does not specify alternatives

but defines preferences [Ambler 2009a].

All software development processes that follow the idea of the Manifesto are known as Agile

Methods. Examples for Agile Methods are: Extreme Programming (XP), SCRUM, Feature-Driven

Development, Crystal, Dynamic Systems Development, Adaptive Software Development

[Ordelt 2008, p.8].

Chapter 3.2 will provide detailed information about XP because this agile software

development process leads to the application of Executable Acceptance Test Driven

Development (EATDD) (see chapter 3.3.3) and refactoring of acceptance tests.

3.2 Extreme Programming (XP)

Extreme Programming (XP) is “[...] a style of software development focusing on excellent

application of programming techniques, clear communication and teamwork [...] [Beck et al., p.

2]” and is “one of the most agile of the agile processes [Astels 2003]”. The foundation pillars of

XP are the definition of values, practices and principles.

Practices, values and principles

Practices are concrete techniques or a set of repeatable actions. The technique of always

writing a test before changing the code is a good example for a practice. Practices are clear and

objective and define the way in which tasks should be carried out.

Values are the ideals a team or group agrees on in order to achieve an objective and represent

what people like or dislike. While for practices it can be easily decided whether or not they

-8-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

were respected properly, it is not possible for values in the same way. Considering

communication as a good example for a value or ideal of a software development process, it

can hardly be said that a person not attending a meeting does not value communication. The

practice of attending the meeting, however, is obviously not respected by this person.

Furthermore, practices are evidence of values because they produce effects that support them.

In this example, regular meetings would support communication between the team members

of the project [Power 2006].

The way in which values and practices are combined - that is to identify which practices have to

be applied in order to achieve the goals and support the values - is called a Principle. Principles

therefore are “[...] domain-specific guidelines for life [Beck et al., p. 15]” and bridge the gap

between values and practices (see figure 2).

XP values

XP specifies a total of five values [Wells 2009]:

 Communication

When working in a team, communication between all team members is indispensable.

Communication helps to share knowledge gathered during the entire development

process with all team members and improves the efficiency of the whole team.

 Simplicity

XP achieves maximum value by focusing on what is needed and does not implement

features that are not required.

 Feedback

Every software development process has to face many changes in requirements,

-9-

Figure 2: Correlation between Values, Principles and Practices
[Beck et al., p. 15]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

design and architecture over the time. This makes it necessary to react as soon as

possible to those changes in order to minimize the consequent overhead. Feedback is

a very good way to do so and should therefore happen as frequently as possible.

 Courage

It requires courage from each team member to confront all problems that may rise

during the software development process. Courage is expressed in multiple ways such

as patience (e.g., when the reason for a bug needs to be found) and honesty (e.g.,

when mistakes are made).

 Respect

A team can only be successful, if the members respect each other as emancipated

human beings and also care about the project they are working on.

XP principles

As mentioned before, principles bridge the gap between values and practices. The following list

describes a chosen subset of XP principles that have an influence on the variety of practices

that are used in XP [Beck et al., chapter 5]:

 Humanity

Software is written by people. Keeping that simple fact in mind, it is not only important

for a software development process to satisfy the business needs, but also to respect

the personal needs of each human team member.

 Failure

Not everything that is done will succeed. There will always be failures, especially when

trying different approaches to find a solution. Failures do not necessarily need to be

something bad. On the contrary, they can also impart knowledge and improve later

steps by avoiding doing the same mistakes again.

 Flow

“The practices of XP are biased towards a continuous flow of activities rather than

discrete phases [Beck et al., p. 30]”. A good example of a flow-oriented approach is the

daily build of the software. It makes sure that the final product works correctly and

-10-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

reduces the risk of huge defects, which occur more likely the more time is in between

the current and the last software build.

 Small steps

When applying changes in small steps, the resulting overhead is much smaller

compared to a momentous change taken all at once. Defects can be found more easily

and fixed much faster and more cost-effectively. The test-first programming practice

(test driven development) supports the principle of applying changes in small steps

and will be explained in greater detail in chapter 3.3.

XP practices

Both values and principles decide on the practices applied in XP. The following list describes

some primary practices of XP:

 Sit together as a team

The whole team should be located in one room, where all team members can

communicate with each other easily. Since people also need some privacy, private

rooms should be provided where they can back out for a while.

 Informative workspace

The workspace should be organized in a way that everyone involved in the project can

easily catch up the current progress. A good example to achieve this, is to put story

cards on a designated area of a wall, which provide information about the work that

has already been done as well as upcoming work units.

 Pair programming

“Pair programming is a dialogue between two people simultaneously programming

(and analyzing and designing and testing) and trying to program better [Beck et al., p.

42]”. The partners sit in front of one machine and alternate with typing and examining

the source code.

 User stories

User stories are short descriptions of “units of customer-visible functionality [Beck et

al., p. 44]”. Besides a short prose or graphical description, a user story includes an

-11-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

estimation about the development effort necessary to implement it. Usually, user

stories are noted down on index cards and attached to a wall, where every team

member can see them.

 Continuous integration

A major goal of XP is to integrate changes as fast as possible. “The longer you wait to

integrate, the more it costs and the more unpredictable the costs become [Beck et al.,

p. 49-50]”. XP therefore requires to automate the process of integrating and testing

code changes as well as to notify the development team immediately upon resulting

errors.

 Test-first programming

Another basic concept in XP is to “[...] write a failing automated test before changing

any code [Beck et al., p. 50]”. This approach helps to make sure that the system does

what it is expected to do and reduces the error-proneness because the new code is

already covered by a test that can be run automatically.

3.3 Test Driven Development (TDD)

Test-Driven Development (TDD) or Unit Test-Driven Development (UTDD) is one of the main

design tools (practices) in XP (see chapter 3.2) and therefore a core part of this agile process. It

is not just another way of testing software, but a new style of software development. The basic

concepts are [Astels 2003, chapter 1]:

 Tests are written first before any code:

Whenever new functionality has to be added to the system, the respective code is not

written immediately. Instead, a test is written in advance which will test if the new

functionality meets the requirements and works as expected. Upon completion of the

test, the functionality itself is implemented, until the test passes.

 Tests determine what code needs to be written:

The first concept explained above leads to the result that no more code is written

unless a test fails or a new test is added (which also fails initially since it is not

implemented yet). In other words, as soon as all tests pass, no more code is written.

-12-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

 No code goes into production unless it has associated tests:

Due to the approach of writing tests first before the actual functionality is

implemented and writing only code required to make the tests pass, tests can be

deemed as representatives of the system's features. By implication, it can be said that

“a feature does not exist until there is a suite of tests to go with it [Astels 2003, p. 7]“.

 TDD creates an exhaustive test suite

Following the above mentioned concepts, TDD creates – in theory – an exhaustive test

suite because code is always written in connection with a test.

The activity diagram in figure 3 shows the typical steps when following the TDD approach.

-13-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

The steps are as follows:

(1) Add a test

A new test is created to specify and describe the functionality that has to be

incorporated into the system.

(2) Run the tests

The newly added test is run for the first time and should fail because no code has

been written yet to implement the new functionality.

-14-

Figure 3: TDD steps [Ambler 2009b]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

(3) Make a little change

Code is implemented to make the newly added failing test pass.

(4) Run the tests

After applying the code changes, the test is run again to make sure that it passes. All

other tests of the entire test suite are also run to make sure that the newly applied

changes did not break already existing functionality. If one of the tests fails, it is

started over with step 3. If all tests pass, the cycle can start from the beginning with

adding a new test.

There are different types of tests that can be used along with TDD. In the traditional definition

of TDD, so called Unit Tests are used, which are described in chapter 3.3.1. A higher abstraction

of the system is achieved by using Acceptance Tests (see chapter 3.3.2). Applying TDD with

Acceptance Tests is also known as Executable Acceptance Test-Driven Development (EATDD)

and will be explained in chapter 3.3.3.

Regardless of which kind of tests are used to apply TDD, it requires to have a framework which

allows for executing the tests automatically. Table 2 lists possible testing frameworks (list is not

exhaustive) for each Unit Tests and Acceptance Tests that are available for the .NET or Java

environment.

Kind of test Platform / Programming
language

Testing Framework

Unit test .NET / C# NUnit

Unit test Java JUnit

Acceptance test .NET / C# GreenPepper

Acceptance test Java FIT / GreenPepper

Table 1: TDD frameworks in different environments

As far as Microsoft's .NET environment is concerned, GreenPepper represents a framework to

specify and execute Acceptance Tests and is explained in greater detail throughout this thesis

(see also chapter 3.5).

3.3.1 Unit Tests

-15-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Unit Tests serve to test software on its lowest level of implementation from the developer's

perspective. As their name implies, they are used to test the behaviour of a small unit of code

and therefore test technical details of the system. In object oriented programming languages

(like C# or Java), for instance, the smallest unit is represented by a method.

The goal of Unit Testing is to ensure that these units of an application are working as expected

and meet the requirements. In the example above, each Unit Test is related to a method and

verifies its functionality.

Unit Testing frameworks such as NUnit for the C# .NET programming language and JUnit for

Java provide support for the execution of Unit Tests as well as the management of several test

runs and test results [Koehler 2007, chapter 4.1].

3.3.2 Acceptance Tests

In contrast to Unit Tests, which test technical details of the system, Acceptance Tests are used

to perform black box testing, i.e., they test the system as a whole from the customer's

perspective. The objective of Acceptance Testing is to “[...] verify whether the functionalities of

the system meet the requirements of the customer [Maurer et al. 2009]”, whereas the

motivation is to “[...] demonstrate working functionality rather than to find faults (although

faults may be found as a result of acceptance testing) [Maurer et al. 2005]”.

In Extreme Programming (XP), where Acceptance Tests are part of the TDD practice (see

chapter 3.2), user stories are translated into Acceptance Tests. These tests are written by the

customer and contain scenarios that test when the user story is considered to be correctly

implemented and the system meets the customer's requirements [Wells 2009].

Since the manual execution of Acceptance Tests is very time consuming and error-prone,

executable Acceptance Tests have been introduced, which allow for executing tests more

frequently in an automated process. More details about executable Acceptance Tests can be

found in chapter 3.3.3.

3.3.3 Executable Acceptance Test Driven Development

-16-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Executable Acceptance Test Driven Development (EATDD), also known as Customer Test Driven

Development or Story Test Driven Development, is an extension of TDD (see chapter 3.3). It

pushes the TDD paradigm to the customer level by using Acceptance Tests (instead of Unit

Tests) to specify the requirements and features of a system. The purpose of EATDD is to

improve the communication between the customer and the developers and “[...] to help

developers better understand the requirements and validate their development with the

customer's requirements [Maurer et al. 2007]”.

In the world of Agile Methods, especially for Extreme Programming (XP) (see chapter 3.2), “[...]

the iterative nature of the processes dictates automation of the acceptance tests (i.e.

producing 'executable acceptance tests') as manual regression testing at the customer level is

too time consuming to be practical and feasible given the short time frames of agile iterations

[Maurer et al. 2007]”.

In order to provide automation, EATDD mandates to write the requirements for a feature down

in form of tests (Executable Acceptance Tests) rather than in natural language. Once the tests

are written by the customer, the developers start to write the test code that tests whether or

not the current state of the system, also called System Under Test (SUT) or System Under

Development (SUD), meets the requirements [Maurer et al. 2008]. Since these tests can be

executed, they are also called Executable Specifications.

Similar to TDD, but located on a higher abstraction level, EATDD requires “[...] that no code is

written for a new feature unless an automated acceptance test fails. That means at least one

customer acceptance test for a feature (also called story tests) needs to be developed before

the development team starts tackling that feature [ASE 2009]”. Figure 4 shows the typical

EATDD workflow applied in XP.

-17-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

The steps are as follows [Ordelt 2008]:

(1) Creating Acceptance tests

Based on the User Stories, Acceptance Tests are created by customers and developers,

which specify the requirements of a new feature.

(2) Creating fixtures

Fixtures represent the test code that is written by the developers to verify the SUT

against the specification expressed by the Acceptance Tests. Based on these tests, the

Fixtures are implemented by the developers in order to execute the Acceptance Tests.

(3) Make acceptance tests fail

According to the traditional TDD approach, the tests are written before the actual

code. This causes the new Acceptance Tests to fail when they are executed for the

first time.

(4) Make acceptance tests pass

The development of the new feature starts following the traditional Unit Test Driven

Development (UTDD) approach until all Acceptance Tests pass.

(5) Refactor

-18-

Figure 4: EATDD workflow in XP [Ordelt 2008, p. 18]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Once all Acceptance Tests pass, the code is refactored to improve the design and

structure of the code. This helps to get rid of duplicate code as well as to improve

comprehensibility.

(6) Customer accepting system

The customer reviews the system and reruns the Acceptance Tests in order to verify if

it meets his expectations. If changes have to be made to the system, the Acceptance

Tests are adjusted accordingly and the cycle starts from the beginning.

Refactoring has been mentioned in conjunction with EATDD and represents a very important

technique in TDD in general. Chapter 3.4 gives more information about the definition of

Refactoring and explains how Refactorings are related to Acceptance Tests.

3.4 Refactoring Of Acceptance Tests

Refactoring in general is a special software development technique used to change the internal

structure of a software system without changing its external behaviour. Fowler defined

refactoring as “a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable behaviour [Fowler et al.

2000]”.

Refactoring has the following purposes [Fowler et al. 2000]:

 Improving the design of software

With proceeding development of a system, more code will be added and changed

which, most notably, causes the code to lose its structure. Thus, the design of the

system will decay if the code is not refactored.

 Making software easier to understand

In bigger software projects where different people participate in the development of a

software system, the same piece of code is written and modified by more than one

person. In order to make changes to another programmer's code, it is important to

fully understand the structure and meaning of the code before it is modified. That is

why it is important to keep the code as simple as possible, so other project members

-19-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

or future developers will be able to understand it. Refactoring can help to keep code

readable and understandable if it is executed regularly after implementing new

functionality.

 Finding bugs

Refactoring requires having an understanding of what the code does; otherwise, code

could not be restructured. Since the refactoring process helps to understand the code

better, it can also help to find bugs.

As mentioned in chapter 3.3, refactoring is an integral part of the development process of TDD.

It is typically executed after the simplest thing is done to make a newly added test pass. Since

TDD requires having a safety net of tests that covers the entire functionality of the system,

confidence can be achieved that no defects were introduced in the course of the refactoring

[Astels 2003].

In conjunction with acceptance tests, refactoring is used to apply changes to the test

specification in such a way that the test and the corresponding Fixture remain consistent and

the acceptance test can still be executed. More precisely, “acceptance test refactoring is the

process of changing an acceptance test definition and the corresponding fixture class so that

the fixture class compiles successfully and the test execution results in either success, [...] or

fail [...] [Ordelt 2008]”.

Through acceptance test refactoring, the effort needed to maintain acceptance tests can be

reduced as well as the error-proneness that goes along with manual modification of

acceptance tests because the test specification and the Fixture are kept consistent

automatically.

3.5 GreenPepper Acceptance Tests

GreenPepper is an “Agile Requirements Definition and Management (RDM) tool. In addition to

a conventional RDM, it also allows for verifying that the system accurately satisfies the

requirements [Pyxis Paper]”. More precisely, it is a tool that helps integrating executable

acceptance tests – also known as executable specifications – into software development

processes.

-20-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

The tool is developed by Pyxis Technologies whose headquarters is located in Montreal,

Canada. Founded in 2000, the company focuses on providing tool support, coaching and

training services for software developers, who like to apply an agile software development

approach [Pyxis].

GreenPepper is described by Pyxis as “[...] the tool in which you implement the concept of

executable specification” [GP FAQ]. It consists of a set of tools that help to design and maintain

executable acceptance tests during the development of a system or application. One part of

GreenPepper is an engine (GreenPepper Runner) to execute acceptance tests under different

environments such as .NET and Java.

The engine requires the acceptance tests to have a specific standardized format, so that the

content of the acceptance tests can be interpreted and mapped to the System Under Test (SUT)

accordingly. The following chapters will explain the layout and structure of acceptance tests

which are used by GreenPepper [GP Home].

3.5.1 Notation And Layout

Since this thesis deals with refactoring of GreenPepper acceptance tests, it is important to fully

know and understand the structure and meaning of them. Therefore, this chapter will explain

how test documents containing GreenPepper acceptance tests look like and how these tests

are related or mapped to the SUT.

Two different notation formats

GreenPepper acceptance tests are noted down within common HTML files. There are two

different ways of expressing them:

 in HTML table format

 in HTML bullet list format or HTML number list format

In the first case, a GreenPepper acceptance test is identified by enclosing HTML table tags. All

text that is enclosed between a starting and closing table tag is considered to be part of an

acceptance test. In other words, a starting table tag (written as <table>) designates the

-21-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

beginning of a new acceptance test whereas an ending table tag (written as </table>)

designates the end of the acceptance test. Nested HTML tables do not represent multiple

acceptance tests, but are simply treated as plain content of just one acceptance test. How this

content is interpreted will be explained in the following chapters.

Similar to the table format, GreenPepper acceptance tests can also be noted down as bullet

lists or number lists. Instead of being enclosed by table tags, the acceptance test is surrounded

by opening and closing HTML list tags. This can either be the “unordered list” tag (written as

 or) or the “ordered list” tag (written as or). As for table tags, nested HTML

list tags do not represent multiple acceptance tests, but will also be interpreted as content of

just one acceptance test.

All text within the HTML file that is located outside the above described special HTML tags is

ignored and therefore not treated as an acceptance test. This makes it possible to add

comments or other useful information to the GreenPepper acceptance test files.

Equivalent notation

Compared to the table format, the bullet list or number list notation is an equivalent way of

writing GreenPepper acceptance tests down. Having said that, it makes no difference whether

an acceptance test is noted down in list format or table format and it will not change the

meaning or interpretation of the test. That is why the following chapters will explain the

structure of GreenPepper acceptance tests using the example of the table format.

Interpreter types

As mentioned before, a GreenPepper acceptance test is expressed as a common HTML table.

The table must have a special format in order to represent a valid GreenPepper acceptance

test.

The first cell in the first row of the table always specifies the so-called interpreter type. The

interpreter defines how the remaining cells of the table are interpreted and what kind of

acceptance test is represented by the table. The following list shows all available interpreters:

 Import interpreter

-22-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

 RuleFor interpreter

 Scenario interpreter

 Info interpreter

 Comment interpreter

 DoWith interpreter

 List interpreters (ListOf, SetOf, SubsetOf, SupersetOf)

 SetUp interpreter [GP Doc]

Figure 5 demonstrates a typical GreenPepper acceptance test file. The file contains three tables

in total, whereas each of them represents an acceptance test which is indicated by the

interpreter name in the first cell of the first row. The descriptive text between these tables is

not interpreted since it is not contained within a HTML table.

-23-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

The example comprises the Import interpreter, RuleFor interpreter and Scenario interpreter.

These, as well as the Comment and Info interpreters, are explained in greater detail in the

following chapters, whereas the other interpreter types are described only roughly. The reason

is that this thesis focuses only on refactoring of RuleFor acceptance tests as well as Scenario

acceptance tests, which makes it more important to fully understand them rather than the

remaining interpreter types. The Import interpreter also plays a major role when it comes to

refactoring of acceptance tests, which is why it is also explained in greater detail.

3.5.1.1 RuleFor Interpreter

Usage

The RuleFor interpreter is “[...] used to express concrete and measurable business rules” [GP

Doc]. It allows for specifying a number of given values and expected values. When the RuleFor

acceptance test is run by the GreenPepper engine, the engine calculates the results based on

-24-

Figure 5: Example of a GreenPepper acceptance test file

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

the given values by calling the SUT and compares them to the expected values specified in the

test.

A good example might be a Calculator, which calculates the quotient of two numbers. Given

values would be the dividend and the divisor, the expected value would be the quotient. Figure

6 shows an example of how a RuleFor test would look like in order to test the correct behaviour

of the calculator in operating a division.

Structure

Figure 7 shows the general structure of a RuleFor test. As described earlier, the first cell of the

first row specifies the interpreter type, which is “rule for” in case of a RuleFor test. It is

followed by the name of the test that identifies the set of rules. The name can be chosen

randomly by the business man writing the test, but should describe the objective of the test in

a meaningful way. Furthermore, the name of the test is mapped to the Fixture, which is

explained in chapter 3.5.2.

The second row is called the header row and serves to distinguish between given and expected

values. If a header name ends with either “?” or “()”, it denotes an expected value. The given

values serve as input values for the calculation that is taking part within the SUT, whereas the

expected values serve as comparison values against those returned by the SUT [GP Doc].

-25-

Figure 6: RuleFor test for a
calculator

Figure 7: Structure of a RuleFor test [GP Doc]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

All following rows contain concrete examples for the given and expected values. As for the

calculator example shown in Figure 6, the third table row applies a value of “6.0” and “2.0” to

the given values named “dividend” and “divisor”. The expected value “quotient” is assigned a

value of “3.0” since this is the expected result of the division operation.

3.5.1.2 Scenario Interpreter

Usage

The Scenario interpreter “[...] is used to express interactions with the system under

development that must be performed in a particular order [GP Doc]”. Therefore, it makes it

possible to test the dynamic behaviour of the SUT for a sequence of actions. A big advantage of

the Scenario interpreter is that the actions can be written down in natural language.

An example of a Scenario test for a simple bank application can be seen in figure 8. The

notional system supports standard bank account functions such as the opening of a checking

account and the deposit and withdrawal of money. The test describes possible interactions

with the system in a particular order: A new checking account is opened before money is

deposited and withdrawn.

Structure

In order to indicate a Scenario test, the first cell of the first row must be labeled with

“Scenario”. Similar to the RuleFor interpreter type, the next cell contains the name of the test.

-26-

Figure 8: Scenario test for a bank application

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

As can be seen in figure 9, the test layout continues with an arbitrary number of rows. Each

row consists of only one cell, which holds the text of an action that should be performed on

the SUT when the test is executed. There is no need for additional formatting of the actions. As

mentioned before, the actions can be written down in natural language, which is illustrated by

the example in figure 8.

3.5.1.3 Import Interpreter

Each acceptance test is mapped to a so called Fixture, which intermediates between the

acceptance test and the SUT. Detailed information about Fixtures can be found in chapter

3.5.2.

The mapping to a Fixture requires having full qualified class names that consist not only of the

class name itself but also of the namespace. This mechanism is used by the .NET framework to

include two different classes with equal names into the same project.

As far as GreenPepper acceptance tests are concerned, the namespace is used to identify the

exact location of a Fixture within a project. Since namespaces can have very long, not easy to

read names, it is possible to define an Import interpreter within a GreenPepper acceptance test

file. It works similar to the “using” statement of the C# programming language (see chapter

3.6.1.1). As can be seen in figure 10, it simply allows for noting down a list of different

namespaces that are automatically used for the Fixture mapping process. As a result, these

namespaces do not have to be noted down again anywhere in the same acceptance test file.

-27-

Figure 9: Structure of a Scenario test [GP Doc]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

More information about the Import interpreter can be found in chapter 3.5.2.

3.5.1.4 Info And Comment Interpreter

As explained at the beginning of chapter 3.5.1, common HTML tables represent GreenPepper

acceptance tests. That means, the GreenPepper engine tries to interpret each HTML table

within a test file as an acceptance test. This behaviour can cause problems when additional

information (comments) needs to be provided in the form of HTML tables.

To solve this problem, both the Info and Comment interpreter can be used. The use of these

interpreters prevents HTML tables from being interpreted as acceptance tests.

Info interpreter

As can be seen in figure 11, the Info interpreter consists of two parts. Each part is a HTML table

with just one cell holding one of two possible Info interpreter keywords: “Begin Info” and “End

Info”.

“Begin Info” tells the GreenPepper engine to skip all HTML tables for execution until the “End

Info” interpreter keyword is read. That means, all content (tables) between the “Begin Info”

and “End Info” table will be ignored and not interpreted as GreenPepper acceptance tests. If

the “End Info” table is omitted, all content of the entire file after the “Begin Info” table is

-28-

Figure 10: Structure of an Import
interpreter [GP Doc]

Figure 11: Usage of the Info interpreter [GP Doc]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

skipped [GP Doc].

Comment interpreter

The Comment interpreter is used to comment existing GreenPepper acceptance tests out, so

that they are not interpreted anymore. Figure 12 shows how this is done: The old table

representing an acceptance test (labeled as “My table” in the figure) needs to be wrapped by

another table with four cells. In doing so, the third cell contains the whole acceptance test. The

first cell is marked with the keyword “Comment” whereas the wrapping table ends with the

keyword “to skip” in the fourth and last cell.

3.5.1.5 Other Interpreters

For the sake of completeness, this chapter will give an overview of all remaining interpreter

types that have not been described yet. As mentioned before, these interpreter types are not

essential for the work described in this thesis, but will help better understand GreenPepper

acceptance tests. For detailed information about these interpreter types, the documentation

homepage can be consulted (see [GP Doc]).

DoWith interpreter

The DoWith interpreter is very similar to the Scenario interpreter (see chapter 3.5.1.2). In fact,

it can be regarded as its ancestor. It also allows for specifying a sequence of actions that is

executed in a particular order on the SUT. A DoWith test is denoted with the “do with” keyword

in the first cell of a table [GP Doc].

List interpreters

List interpreters are used to “express any kind of group, list or set of values [GP Doc]“. They are

very helpful to check if a collection within the SUT corresponds to an expected collection of

values. In other words, it is possible to compare two different collections or lists of values. The

-29-

Figure 12: Usage of the Comment
interpreter [GP Doc]

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

difference between a collection and a list is that the order of elements does not matter in case

of a collection. A list, on the contrary, respects the order of its elements.

There are four different List interpreter types:

 ListOf interpreter

 SetOf interpreter

 SubsetOf interpreter

 SupersetOf interpreter

The ListOf interpreter makes sure that the list provided in the test specification matches the

content and the order of the list returned by the SUT, whereas the SetOf interpreter only

matches the content. The SubsetOf interpreter verifies that the list provided in the test

specification represents a subset of the list returned by the SUT, whereas the SupersetOf

interpreter operates exactly in the opposite way.

As for all other interpreter types, the List interpreters are denoted with their respective

keywords in the first cell of a table [GP Doc].

SetUp interpreter

The SetUp interpreter is used to “simplify the creation of a particular state for the system under

development [GP Doc]“. Starting with the “Set Up” keyword in the first cell of a table, a SetUp

test provides data that is inserted in the SUT and which is needed to conduct subsequent tests.

Thinking of the bank example introduced in chapter 3.5.1.2, there must already exist two

accounts in order to test a transfer action between these accounts. In this example, the SetUp

interpreter could be used to initialize the state of two existing accounts.

3.5.2 Fixtures

Like chapter 3.5.1 explained, GreenPepper acceptance tests are noted down within common

HTML tables that provide a clear and human readable way of specifying test scenarios for a

system. The Scenario interpreter, in particular, allows for using natural language to describe an

-30-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

action that is performed on the SUT. The SUT, on the other hand, is implemented in a

programming language such as C#, which differs a lot from natural language and is used by the

developers of the system.

Fixtures are used to intermediate between these two languages or the test specification and

the SUT respectively (see figure 13). They are written by the developers in the same

programming language as the system, whereas the developers are responsible for making the

Fixture call the appropriate functions of the SUT as intended by the acceptance test. In other

words, a Fixture represents the interpretation of an acceptance test and performs all actions on

the SUT which are expressed by the test.

In the following, the correlation between GreenPepper acceptance tests and Fixtures is

explained on the basis of the C# programming language. The explanation focuses on two

interpreter types:

 RuleFor interpreter (see chapter 3.5.2.1)

 Scenario interpreter (see chapter 3.5.2.2)

Fixture class

Each GreenPepper acceptance test or interpreter (RuleFor or Scenario) is mapped to one

Fixture. Since C# is an object-oriented programming language, a Fixture is represented by a

class. That means that each acceptance test is mapped to a C# class. The name of the

corresponding class or Fixture is determined by the name of the test.

Camel-Casing

There are several naming conventions for C# class names. For example, the class name should

-31-

Figure 13: Fixture as mediator between test
specification and SUT

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

start with a capital letter and must not contain spaces. Since these conventions lead to less

readable names (especially those which consist of more than one word), GreenPepper uses a

so called Camel-Casing mechanism, which makes it possible to provide more comprehensible

names within the test specification. Instead of using the exact test name for the mapping, this

mechanism is applied to find the correct matching Fixture class.

In order to clearly distinguish between classes that belong to the system and classes that serve

as Fixture, it is possible to add the suffix “Fixture” to the Fixture class names. GreenPepper will

implicitly add the suffix to the test name if necessary. Table 2 gives some examples of possible

mappings of test names and Fixture names.

Test name Corresponding
Fixture name

a very long name AVeryLongName

a very long name AVeryLongNameFixture

bank Bank

bank BankFixture

Bank Bank

Table 2: Mapping of test name and Fixture name

Namespaces and Import interpreter

The name of a class is not sufficient for referencing the class clearly. C# uses a logical structure

called namespaces to solve the problem of ambiguity that is caused by multiple classes which

have the same name. Each class belongs to a namespace whereas classes with equal names

must be within different namespaces.

In order to locate a Fixture class explicitly, the respective namespace must also be specified in

the test specification. There are two possible ways to do so:

(1) Provide the corresponding namespace with the test name. The test name represents

the full qualified name of the Fixture class.

(2) Use the Import interpreter to import namespaces and implicitly attach them to the

Fixture class name. If that approach is taken, the test name does not have to contain

-32-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

the namespace, which increases readability. In the example shown in figure 14, the

RuleFor test with the name “Limit of Withdrawal” would be mapped to the Fixture

class “LimitOfWithdrawal” within the namespace “Samples.Application.Bank”.

Fixture instantiation

Whenever a GreenPepper acceptance test is executed, the GreenPepper engine applies the

above mentioned mapping mechanism to find the corresponding Fixture. Once it is found, the

Fixture class is instantiated with the standard constructor by the GreenPepper engine using

reflection. The created instance is used subsequently to perform the actions on the SUT as

specified in the acceptance test.

Summary

This chapter explained how the Fixture class is determined that corresponds to a GreenPepper

acceptance test and that is responsible for carrying out the actions specified in the test

specification.

The following two chapters will focus on how the contents of the RuleFor and Scenario tests are

mapped to the Fixture class and how the test specification interacts with the instantiated

Fixture class.

3.5.2.1 RuleFor Interpreter

-33-

Figure 14: Usage of the Import
interpreter

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

As described in chapter 3.5.1.1, a RuleFor test consists of columns for given values and

expected values. The expected values represent the expected result of the calculation that is

performed on the SUT using the given values as input parameters for the calculation. Figure 15

shows an example of a RuleFor test for the division operation of a calculator.

Mapping of given values

Each given value is mapped to a public field in the Fixture class (see figure 16). The name of the

field corresponds to the header name of the given value in the test specification (dividend and

divisor). As part of the name mapping, the Camel-Casing mechanism (see chapter 3.5.2) is

applied to satisfy the naming conventions of C# fields.

The type of the field is not explicitly defined and can be chosen randomly by the developer

based on the domain of the given value. The GreenPepper engine will automatically convert

between different types. In case of the example above, a type of double would be reasonable,

since the given values represent real numbers.

Mapping of expected values

Expected values imply a calculation being performed, so their value can be compared to the

result calculated by the SUT. This is why each expected value is mapped to a public method

(see figure 16). The method does not have any parameters. In fact, the input parameters or

given values that are needed to perform the calculation are provided by the public fields and

will be referenced within the method.

The name of the method is related to the header name of the expected value in the test

specification (quotient). As for given values, the Camel-Casing mechanism is also used to apply

the mapping.

-34-

Figure 15: Example for a
RuleFor test

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

The return type of the method depends on the domain of the expected value and is not

defined explicitly. In the previous example, a type of double would be reasonable, since a

division operation of two real numbers results in a real number.

Interactions between Fixture and test specification

Figure 16 shows the Fixture class that corresponds to the above mentioned RuleFor test

example.

The execution of the test is carried out by the GreenPepper engine in the following steps:

(1) The RuleFor interpreter is identified

(2) The Fixture class “DivisionFixture” is identified through the test name and

instantiated with the default constructor.

(3) The columns for given values and expected values are identified.

(4) The value 6.0 is assigned to the field variable dividend.

(5) The value 2.0 is assigned to the field variable divisor.

(6) The method Quotient() is called to get the value calculated by the SUT.

(7) The value 3.0 is compared against the value returned by the Fixture. The cell is

coloured appropriately (see chapter 3.5.3).

-35-

Figure 16: Corresponding Fixture

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

(8) Steps 4-7 are repeated accordingly for the remaining two rows.

3.5.2.2 Scenario Interpreter

A Scenario test consists of one or more actions that are performed on the SUT in a particular

order (see chapter 3.5.1.2). The actions are noted down in natural language. Figure 17 shows

an exemplary Scenario test, which specifies actions for a notional bank application.

Each action is mapped to a public method within the Fixture class (see figure 18), whereas the

mapping is not carried out based on the name of the method, as it is done in case of an

expected value of a RuleFor test.

Mapping through regular expressions

Instead, each method is annotated with a special C# attribute that comes with the

GreenPepper framework (see chapter 3.6.1.2 to learn more about C# attributes). The attributes

have one parameter expecting a regular expression. The regular expression (see chapter

3.6.1.3) is used to relate the method to the action specified in the test specification. In order to

find the corresponding method to an action, the GreenPepper engine searches for a regular

expression within the Fixture that matches the text of an action. If a regular expression

matches, the method that was annotated with this regular expression will be mapped to the

action and executed by the GreenPepper engine.

-36-

Figure 17: Example for a Scenario test

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Method parameter mapping

Parameters are identified by regular expression grouping constructs, which are marked with

left and right parentheses within the regular expression (see chapter 3.6.1.3). The captured

sub-expression of each group is mapped sequentially to the parameters of the respective

method. That means, the method must have as many parameters as the regular expression has

group constructs, otherwise the mapping will fail.

The type of the method parameters can be chosen randomly by the developer based on the

domain they belong to. In the antecedent example, it is reasonable to use a type of double for

the parameter holding the amount of money.

-37-

Figure 18: Corresponding Fixture to the Scenario test

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Five attributes

There are several attributes (a total of five) used to annotate a method within the Fixture. They

express different kinds of actions that can be performed on the SUT and have an influence on

the signature of the corresponding method. Table 3 gives an overview of these attributes [GP

Doc] and their influence on the method signature (method return type and parameters).

Attribute Usage Method
return type

Additional method
parameters

Given To put the system in a known state before
subsequent actions are performed.

void none

Then To verify the result of interactions with the
system by comparing it to an expected value.

void Expectation object

When To bring the system to another state. void none

Check To verify the result of an action. boolean none

Display To show the result of an action. Only for
informational purpose.

any type none

Table 3: Different attribute types for a Scenario action

Expectation object

The Then attribute sets itself apart by requiring an Expectation object as a method parameter.

The Expectation object is provided by the GreenPepper framework and is used to store the

expected value as well as the actual result returned by the SUT. The GreenPepper engine uses

this object to compare these values against each other. Whenever the Then attribute is used,

the last sub-expression of the regular expression is mapped to this Expectation method

parameter.

Standard interaction process

Disregarding the attribute, the execution of a Scenario test is carried out in the following basic

steps by the GreenPepper engine:

(1) The Scenario interpreter is identified

(2) The corresponding Fixture class is identified through the test name and instantiated

with the default constructor.

-38-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

(3) Steps 4-5 are repeated for each action specified in the test.

(4) The GreenPepper attributes are identified and the regular expression is determined

that matches the text of the actual action.

(5) The group constructs of the matching regular expression are retrieved and assigned

sequentially to the parameters of the corresponding method. The method is called

with these parameters.

3.5.3 Test Results

As described in the previous chapters, the GreenPepper engine combines each acceptance test

with a Fixture that intermediates between the test specification and the SUT. The Fixture is

written by the developers and carries out the actions on the SUT that are specified by the

acceptance test.

After a test is run, the customer or developer needs to be notified whether the test was

successful, i.e. the system met the requirements specified by the acceptance test, or not. The

GreenPepper engine therefore compares the results returned by the Fixture with the expected

values provided in the test specification. Then, it creates a copy of the original test specification

document and marks the appropriate table cells of the respective part of the test with different

colours. Four different colours are consistently used to indicate the test result. Based on the

interpreter type that is used for an acceptance test, the interpretation of the colours may differ.

Table 4 explains the meaning of each colour in case of a Scenario test and a RuleFor test.

-39-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Colour Interpretation for Scenario test Interpretation for RuleFor test

Green The scenario action has been executed
successfully.

The test has been executed successfully
and the result returned by the SUT is in
accordance with the expected value.

Red The scenario action could not have
been executed.

The test has been executed successfully,
but the result returned by the SUT
differs from the expected value.

Yellow An exception occurred while running
the test.

An exception occurred while running
the test.

Gray The scenario action has been executed
successfully and the result returned by
the SUT is displayed (the Display
attribute must have been used, see
chapter 3.5.2.2).

The test has been executed successfully
and the result returned by the SUT is
displayed (only when no expected value
is specified in the test).

Table 4: Test result colouring for different interpreter types [GP Doc]

Figure 19 shows an exemplary test result as it is generated by the GreenPepper engine after the

execution of a GreenPepper acceptance test.

3.6 .NET Framework

.NET is a software framework developed by Microsoft. It consists of a comprehensive class

library and a runtime environment and is used to develop, compile and execute applications on

the Microsoft Windows platform. Some of the basic characteristics of the Microsoft .NET

framework are listed and described below [Kuehnel 2008]:

 Common Language Runtime

The Common Language Runtime (CLR) represents a virtual machine (similar to the Java

virtual machine) for the .NET framework. All .NET applications are compiled to a byte

-40-

Figure 19: Exemplary GreenPepper test
result

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

code called Common Intermediate Language (CIL), which is converted to native

machine code during execution time by the CLR's Just-In-Time compiler (also referred

as JITter).

 Language independence

Through the definition of the Common Language Specification (CLS), .NET applications

can be written in any .NET compliant language (such as C#, J#, C++, VB.NET). The CLS

defines policies, which have to be observed by each language to ensure

interoperability between these different languages. This is also supported by the

Common Type System (CTS), which specifies all data types recognized by the CLR. As a

result, all .NET compliant languages produce compatible CIL-code, which is

independent from the programming language used.

 Object-oriented

.NET is fully object-oriented and offers a consistent, logical infrastructure for

developing applications. It also encapsulates functions of the Win32-API in classes to

provide access to the Windows operating system.

 Memory management

Through the introduction of the Garbage Collector (GC), not referenced memory is

freed automatically in the background, so developers do not have to take care about

this problem.

3.6.1 C#

C# is a programming language that was specifically designed for the .NET Common Language

Runtime (CLR). Although it is possible to write .NET applications in other .NET compliant

languages (such as C++ or VB.NET), the use of C# is more appropriate in most cases because it

perfectly integrates into the .NET environment.

Furthermore, C# shares the same roots as C++ and Java and there are several syntactical

elements which conform to each other. Thus, developers who are familiar with C++ or Java can

still make use of their potential when using C# [Gunnerson 2000].

-41-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

This chapter will describe some of the features of C#, which are relevant for this thesis.

3.6.1.1 Namespaces

A namespace is a logical, organizational structure which is used to assign a class to an

appropriate subject area. This helps locating a class with specific functionality within a class

library.

In addition to that, namespaces are necessary to solve ambiguities between class identifiers,

which are represented by unique class names. The name is used to instantiate a new object

and to access its functionality. Through the concept of namespaces, the class name has to be

unique only within the same namespace. In other words, by identifying classes by their

assigned namespace and their class name (also called full qualified identifier), two equally

named classes can be assigned to different namespaces and therefore clearly referenced

[Kuehnel 2008].

Instead of always providing the full qualified identifier when referencing a class in the source

code, C# allows for the import of namespaces at the beginning of the source code file with the

using keyword. This will cause the compiler to search for the classes within these namespaces.

3.6.1.2 Attributes

Attributes are a special feature of the .NET framework and can be compared with annotations

in Java. They are used to provide additional information to code elements (e.g. a class, field or

method) during runtime [Kuehnel 2008].

Figure 20 shows an example, in which the Obsolete attribute was used to mark a method as

obsolete, which expresses that this method is still available only for compatibility reasons but

should not be used in future time.

-42-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

As can be seen in this example, an attribute is noted down within squared brackets right before

the respective code element and may contain one or more parameters separated by commas.

In this case, the first parameter defines an error message that shall be displayed when the first

method is used whereas the second parameter tells the compiler to create an error rather than

a warning.

Attributes are used in connection with Scenario acceptance tests (see chapter 3.5.2.2).

3.6.1.3 Regular Expressions

Regular expressions are used to process text. More precisely, they allow to “[...] quickly parse

large amounts of text to find specific character patterns; to extract, edit, replace, or delete text

substrings [...] [MSDN 2010a]”.

They are processed by a regular expression engine which usually requires at least two inputs

[MSDN 2010a]:

 A regular expression pattern that is to identify in the text. The pattern is written in a

formal language that comes with a special syntax. The syntax is interpreted by the

engine in order to match the pattern to the appropriate text substring.

 A text to parse for the regular expression pattern. The engine searches the text for the

specified regular expression pattern and returns all matches of text substrings. These

text substrings are also referred to as captures.

The .NET class library offers classes within the System.Text.RegularExpressions namespace to

-43-

Figure 20: Example for a .NET attribute

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

process regular expressions. Due to the complexity of the regular expression implementation,

this chapter describes only the concept of grouping constructs, which plays a major role when

it comes to GreenPepper Scenario tests (see chapter 3.5.2.2). Detailed information about .NET

regular expressions can be found in the Microsoft Developer Network (MSDN) at [MSDN

2010a].

Grouping constructs

Grouping constructs “[...] delineate sub-expressions of a regular expression and capture the

substrings of an input string [MSDN 2010a]”. Each group is enclosed by a left and right

parenthesis and can thereby be distinguished from the residual part of the regular expression

pattern. The regular expression pattern as a whole is also treated as a group. This special group

captures the text that is matched to the whole regular expression pattern.

When the regular expression is processed, the regular expression engine numbers each group

automatically based on the order of the opening parenthesis, starting from one. Group number

zero is the special group representing the whole regular expression pattern. The group

numbers are used to access the captures of the matched substrings of each group.

Regular expressions and grouping constructs play a major role when it comes to Scenario

acceptance tests (see chapter 3.5.2.2).

3.6.2 Visual Studio

Visual Studio is an Integrated Development Environment (IDE) from Microsoft. It supports

several high level programming languages such as C#, C++ and VB.NET and allows for the

development of different kinds of applications for the Windows platform. The following

application can be built with Visual Studio [Avery 2005]: Console applications, Windows forms

applications, Windows services, dynamic web applications, web services, Windows mobile

applications and Win32 applications.

It is also possible to extend Visual Studio by new functionality. Visual Studio offers three

different methods to add new functionality to the IDE:

 Macros

-44-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Macros are used to automate a sequence of tasks within the IDE, so that the developer

does not have to execute them manually. They are especially useful when the same

sequence of tasks has to be executed frequently and in short time iterations. Since

macros only afford automating recurring tasks, they represent the least powerful

method to extend Visual Studio.

 Add-ins

Add-Ins use high level APIs from Visual Studio such as the Development Tools

Extensibility (DTE) object-model in order to manipulate default IDE windows (e.g. tasks

list, output list, error list) or code displayed with the Visual Studio editor. Due to the

use of high level APIs, Add-ins have some limitations and are less powerful than

VSPackages, [Nayyeri 2009b], [Nayyeri 2009d].

 VSPackages

VSPackages use low level APIs from Visual Studio and integrate into Visual Studio like a

built-in part of the IDE. Thus, they are not limited in scope like Add-ins and allow for

manipulating all kinds of user interface elements of the IDE such as menu bars, context

menus, solution explorer, class view and more [Nayyeri 2009c], [Nayyeri 2009d].

All three methods are provided by the Visual Studio SDK, which is a framework used for

extending the Visual Studio. The following chapters describe selective tools provided by the

Visual Studio SDK, which are used to extend the IDE in the course of this thesis.

The most recent version of Visual Studio is the release candidate of Visual Studio 2010 and was

published on February, 6th 2010.

3.6.2.1 Development Tools Extensibility (DTE)

Along with the Visual Studio SDK, which was mentioned above, Visual Studio features a

programming model for extending and automating the IDE known as the automation model.

The highest level object in the automation model hierarchy is the DTE object. It represents the

Visual Studio IDE and allows for programmatically controlling and extending the IDE [MSDN

2010d], [MSDN 2010e].

-45-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

The DTE object was used to interact with the Visual Studio editor (see chapter 5.3).

3.6.2.2 VSCT Files

A Visual Studio Command Table (VSCT) file is a special XML-file that describes the set of

commands a VSPackage (see chapter 3.6.2) contains. The file is compiled by the VSCT compiler

into a binary file whenever the VSPackage is loaded into Visual Studio for the first time [MSDN

2010f].

VSCT files distinguish between four different command types:

 Buttons and Combos

Buttons and combos are the commands that a user can see and interact with. They are

assigned to a group.

 Groups

Multiple buttons and combos can be grouped together. A group always belongs to a

menu.

 Menus

Menus contain one or more groups.

The VSCT file is divided into four different sections:

 Commands section

In this section the different menus, groups, buttons and combos are specified along

with their properties (visibility, icons, ...).

 CommandPlacements section

This section specifies the relation between the commands defined in the commands

sections, that is, how to arrange and place the commands.

 Bitmaps section

This section defines the bitmaps that are used for the commands.

 Symbols section

-46-

Refactoring of Acceptance Tests in Visual Studio - Chapter 3: Fundamentals

Each command is identified through an unique ID. This sections specifies all Ids that

are used within the VSCT file.

As part of this work, a VSCT-file was used to incorporate the required refactoring commands

within Visual Studio (see chapter 5.2).

3.6.3 Windows Presentation Foundation (WPF)

Windows Presentation Foundation (WPF) is a framework for developing graphical user

interfaces for applications running on Windows platforms. It is part of Microsoft's .NET

framework since it was introduced with version 3.0.

WPF represents an alternative to the “traditional” Windows Forms application programming

interface (API) and is characterized by the following features [Kuehnel 2008]:

 The specification of the design and layout of the user interface can be completely

separated from the code implementing the logic. This is established by describing the

layout with XAML (eXtensible Application Markup Language), a language that is

derived from the Extensible Markup Language (XML).

 Graphical user interfaces (GUI) that have been implemented using WPF, can be

displayed within a common application window as well as in a web browser.

 WPF supports 2D- and 3D-graphics as well as animations, videos, images and audio

files.

 WPF supports data binding.

WPF was used to implement the graphical user interface for the refactorings (see chapter 5.4).

-47-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

4 Concept

This chapter describes the general idea of how the thesis goals defined in chapter 1.2 were

accomplished. In summary, the overall objective was to implement refactoring functionality for

GreenPepper acceptance tests within Visual Studio 2010.

Before the implementation could take part, several major decisions had to be made in order to

plan each step that is necessary to achieve all the objectives. The preliminary considerations

were focused on the following questions:

 How to extend Visual Studio 2010 by refactoring commands?

 How to refactor RuleFor and Scenario acceptance tests, i.e. which changes have to be

applied to the acceptance test file and the Fixture?

 How to apply changes to an acceptance test?

 How to apply changes to a Fixture?

 Which user inputs are needed for each kind of acceptance test refactoring and how to

obtain them?

Answers to all these basic questions are given throughout this chapter.

4.1 Extending Visual Studio 2010

Context menu

The thesis goals (see chapter 1.2) define a total number of seven diverse refactorings which

were to perform on GreenPepper acceptance tests. These refactorings had to be incorporated

into the Visual Studio 2010 IDE.

The Visual Studio SDK (see chapter 3.6.2) allows for the modification of several user controls of

Visual Studio 2010 such as context menus, menu bars, command bars, tool bars, modification

of windows such as the solution explorer view or class view or creating and integrating of own

views. However, it was necessary to identify the most appropriate way of integrating the new

-48-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

refactoring functionality.

Since Visual Studio 2010 comes with several source code refactoring functions (e.g. rename,

extract method, encapsulate field and more) that are available through the context menu of its

inbuilt editor, it was most appropriate to provide all acceptance test related refactoring

functions within the same context menu (but in another submenu). One advantage of this

approach is that a user who is already familiar with source code refactorings in Visual Studio

2010 will be able to use acceptance test refactorings in the same manner, thus, the workflow is

identical.

GreenPepe2010

As mentioned before, context menus in Visual Studio 2010 can be modified by the use of the

Visual Studio SDK. The SDK offers three different ways of extending Visual Studio (Macros, Add-

Ins, VSPackages), whereas VSPackages (also referred to as Integration Packages) represent the

most powerful way since they also allow for accessing low level APIs of the Visual Studio IDE

[MSDN 2010b][Nayyeri 2009c].

There already existed an extension for Visual Studio 2010 called GreenPepe2010, which was

developed in advance to this work. It is closely related to the topic of this thesis because it

allows for the execution of GreenPepper acceptance tests and to display and manage test

results within Visual Studio 2010. More details about GreenPepe2010 can be found in chapter

2.2.

Since GreenPepe2010 is implemented as a VSPackage and is also related to GreenPepper

acceptance tests, this project was extended to incorporate the new acceptance test refactoring

functionality into Visual Studio 2010 rather than implementing a new VSPackage from scratch.

The given infrastructure of the GreenPepe2010 extension was utilized to modify the context

menu of the Visual Studio 2010 editor for the new refactoring commands, which is explained in

chapter 5.2.

4.2 Refactoring Workflow

As mentioned above, the refactoring commands were made available to the user in the context

-49-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

menu of the inbuilt editor of Visual Studio 2010. Since GreenPepper acceptance tests are noted

down within common HTML files, they can be opened in either the code or the design view of

the editor. The code view simply displays the HTML code whereas the HTML code is interpreted

in the design view and visualized just like in a web browser. The context menu appears

whenever the user performs a right-click on the editor and provides context-sensitive features.

That means, the context menu contains different menu items depending on what element was

right-clicked on. The current location of the cursor could be determined with the Visual Studio

SDK, which is explained in greater detail in chapter 5.3.

With respect to the context-sensitive nature of the editor's context menu, a refactoring action

is typically run in the following sequence of steps:

(1) The user opens the test specification in the Visual Studio 2010 design or code view.

(2) The user right-clicks on the acceptance test element he would like to refactor (e.g.

the test name). In the opening context menu, the user selects the preferred

refactoring action.

(3) Depending on the selected refactoring action, an accordant graphical user interface

pops up where the user can provide inputs that are required to perform the

refactoring (e.g. the new test name in case of a “Rename test” refactoring).

(4) A preview over all the changes in the test specification and the corresponding Fixture

class (if available) is displayed.

(5) The refactoring is executed and all changes are applied to the acceptance test and the

Fixture.

In order to find out which GreenPepper acceptance test element was selected and to populate

the context menu with the appropriate refactoring commands, the current position of the

cursor must be determined when the user right-clicks on the editor. How this was done is

explained in chapter 5.3.

-50-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

4.3 Parser For GreenPepper Acceptance Tests

The refactoring of GreenPepper acceptance tests required reading and modifying the test

specifications. As mentioned in chapter 3.5, the acceptance tests are specified as HTML tables

in common HTML files. This necessitated the implementation of a parser, which creates an

object-model to abstract from the internal HTML structure and allows for easily accessing and

modifying the test information stored within the HTML file.

As far as refactoring of acceptance tests is concerned, there were some requirements for the

parser or rather the object-model created by the parser:

 The parser must support reading, modifying and adding of test data.

 The parser should not reformat the HTML code when modifying the test or adding new

test data.

 The parser must support retrieving particular test elements based on their location

within the file. This requires the parser to store position data along with the object-

model.

In the course of this thesis, a parser for GreenPepper acceptance tests was developed that

meets the requirements above. Its implementation is explained in chapter 5.1.

4.4 C# parser

As part of acceptance test refactoring, not only the test specification must be manipulated but

also the Fixture code in order to keep the test specification and Fixture consistent. The Fixture

is written in the C# programming language. Since C# - or programming languages in general -

are structured following complex grammar rules, a parser is needed to wrap the code into an

(code) object-model that allows for accessing and modifying the code in a comfortable and

easy way.

Due to the complexity of such a parser it could impossibly be implemented by on one's own in

the course of this work. As a result, a parser for C# had to be found which was implemented by

a third party. With respect to the actions that had to be performed on the Fixture class for each

-51-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

refactoring (see chapter 4.5), the following requirements had been identified for the parser:

 The parser must be capable of identifying all C# language constructs.

 The parser must be compliant with the official C# language specification named ECMA

– 334.

 Code elements such as method declarations and field declarations must be explorable

using the code object-model. That means, the parser must allow for discovering code

declarations within a class.

 The parser library must be open source and should not require a license.

Table 5 gives an overview of all C# parsers that were found and examined during the research

and juxtaposes their features. As can be seen in the table, only one C# parser met all of the

specified requirements above: The “NRefactory” parser is part of the open source IDE

SharpDevelop, which is developed as an alternative to Microsoft's Visual Studio. In order to

make use of its functionality, the parser was extracted from the SharpDevelop project,

compiled to a separate .NET class library and imported to the refactoring project part of this

work.

-52-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

Pa
rs

er

O
pe

n
so

ur
ce

?

ex
ha

us
tiv

e
ob

je
ct

-m
od

el
?

EC
M

A
–

33
4

co
m

pl
ia

nt
?

Co
de

 d
is

co
ve

ry

an
d

ed
iti

ng

ca
pa

bi
lit

ie
s?

Re
m

ar
ks

Visual Studio Code Model (yes) no yes yes Does not parse content of
method bodies.

.NET CodeDOM
yes (yes) yes no

Can only be used to
generate code, not for
parsing existing code .

CS CODEDOM Parser yes no unknown yes Does not parse content of
method bodies.

Metapec C# Parser
no yes yes yes

Parser library does not
respect C# naming
conventions.

SharpDevelop: NRefactory
Parser yes yes yes yes object-model uses visitor

pattern.

Table 5: Comparison of different third-party C# parsers

4.5 Refactorings

This chapter explains in detail what actions had to be performed for each kind of GreenPepper

acceptance test refactoring. Each refactoring is described uniformly in four steps:

(1) Motivation

The motivation describes in which situations the particular refactoring can be

applied.

(2) Required inputs

Each refactoring requires specific user input. This part describes all user inputs that

are required for a particular refactoring to be executed.

(3) Input validation

The data entered by the user must be verified to ensure that the refactoring can be

executed without any errors. This section describes what kind of validations have to

be performed on the input data and identifies possible error cases.

-53-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

(4) Workflow

Since a refactoring causes changes to the test specification and the Fixture, this part

explains systematically each step that is performed during the refactoring.

(5) Example(s)

At least one example is given to demonstrate the effects of a particular refactoring.

Remarks

As mentioned earlier in chapter 3.5.2, the GreenPepper engine applies a so-called Camel-

Casing mechanism in order to transform a name within the test specification into a name used

in the Fixture that follows the nomenclature of C# identifiers. Whenever the equality of names

is considered throughout this chapter, the application of the Camel-Casing mechanism is

assumed. For example, the name “bank account” is considered to be equal to “BankAccount”

because of the Camel-Casing mechanism.

4.5.1 Rename Test

Motivation

Each GreenPepper acceptance test is assigned a name to distinguish it from others. The name is

also used to find the corresponding Fixture, which usually has the same name as the

acceptance test.

Whenever a test needs to be renamed, the corresponding Fixture must be renamed as well.

Otherwise the test cannot be associated with a Fixture anymore and subsequent executions of

the test will fail. The “Rename Test” refactoring can be used to change the name of an

acceptance test and ensure that the associated Fixture is also renamed appropriately.

Required inputs

The “Rename Test” refactoring requires only the new name to be entered.

Input validation

Since the test name is mapped to the Fixture class name, the name must be a valid C# class

identifier. Furthermore, the refactoring cannot be executed if a class with that new name

-54-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

already exists. This has to be verified before the refactoring is executed.

Workflow

The following sequence of steps is executed when carrying out the “Rename Test” refactoring:

(1) Rename acceptance test to the new name.

(2) Rename Fixture class to the new name.

(3) If present, change the name of the constructor(s) of the Fixture to the new name.

(4) Change the file name of the Fixture to the new name.

Example

Figure 21 shows an example for a RuleFor test where both the test specification and the Fixture

can be seen. The test as well as the corresponding Fixture class is named “Division”.

rule for Division
dividend divisor quotient?
6.0 2.0 3.0
7 2 3.5

Figure 21: RuleFor test example before "Rename Test" refactoring

In this example, the “Rename Test” refactoring is performed to change the test name to

Calculator Division”. The result of the refactoring is shown in figure 22.

-55-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

rule for Calculator Division
dividend divisor quotient?
6.0 2.0 3.0
7 2 3.5

Figure 22: RuleFor test example after "Rename Test" refactoring

As can be seen in the figure above, the test has been renamed to “Calculator Division” and the

Fixture name has been updated appropriately, too.

4.5.2 Refactorings For RuleFor Tests

4.5.2.1 Add Given / Expected Value Column

Motivation

As explained in chapter 3.5.1.1, a RuleFor test is intended to check if computations are

performed correctly by the SUT. Based on various input parameters, the result returned by the

SUT is compared against an expected value.

Changing requirements during development may make it necessary to adjust input parameters

or to introduce new calculations; thus, the test specification must be adjusted appropriately (in

TDD the test specification is changed before any modifications to the code) by adding new

columns for input parameters or expected values.

The “Add column” refactoring can be used to include new given or expected value columns in a

RuleFor test.

Required inputs

In order to perform an “Add column” refactoring, the user has to provide three inputs:

-56-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

(1) Column type

The column type decides whether to add a given value column or an expected value

column to the test specification.

(2) Insertion position

The order of given and expected value columns in a RuleFor test is significant. All

given parameters which serve as an input for the calculation that is triggered by an

expected value must be specified before the expected value columns. Therefore, the

user must specify where to insert the new given or expected value column.

(3) Column name

The header name of each given or expected value column indicates its interpretation

and is also used to map the values to the Fixture (see chapter 3.5.2.1).

Input validation

The insertion position must be within a valid range. For example, if a RuleFor test contains

three columns, the position must be in the range from “0” (first position) to “3” (last position).

As mentioned earlier in chapter 3.5.2.1, given values are mapped to a class field whereas

expected values are mapped to a method within the corresponding Fixture. This is why the

column name must represent a valid C# identifier. Furthermore, it must be verified that the

Fixture does not contain a field (in case of a given value column to be added) or a method (in

case of an expected value column to be added) with the same name as the new column.

Workflow

The “Add column” refactoring is carried out in the following sequence of steps:

(1) Add a new column at the specified position in the test specification. Name the header

of the new column accordant to the specified column name.

(2) If the new column is a given value column, add a public field with a return type of

“string” to the Fixture class. Add a TODO-comment connected to the new field.

(3) If the new column is an expected value column, add a public method with no

parameters and the return type “object” to the Fixture class. Add a TODO-comment

-57-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

and a “NotImplemented”-exception throw clause to the body of the method.

Example: Add expected value column

The following example shows a RuleFor acceptance test before and after an “Add expected

column” refactoring has been performed.

Initially, the test contains only one expected value column to test the calculation of the

quotient of two numbers (see figure 23).

rule for Calculator
a b quotient?
6.0 3.0 2.0

Figure 23: RuleFor test before "Add expected column" refactoring

In order to test the calculation of the product of two numbers as well, the “Add expected

column” refactoring is applied. The new expected value column is named “product”.

As can be seen in figure 24, the new expected value column was created in the test

specification and a new method “Product” was added to the Fixture class during the

refactoring process.

-58-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

rule for Calculator
a b quotient? product?
6.0 3.0 2.0

Figure 24: RuleFor test after "Add expected column" refactoring

The TODO-comment within the newly generated method serves as a reminder for the

developers that this method has not been implemented yet. When executing the test, the

exception thrown in the generated method will cause the test to fail, so that the customer is

notified about the missing implementation, too.

4.5.2.2 Remove Given / Expected Value Column

Motivation

In the same way as calculation parameters have to be added because of changed

requirements, parameters can also become obsolete during the development and need to be

removed from the test specification.

The “Remove column” refactoring is used to remove an obsolete given or expected value

column from the test specification.

Required inputs

There are no further user inputs required in order to perform a “Remove column” refactoring.

-59-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

Input validation

Since no additional user input is required, this kind of refactoring does not perform any special

input validation.

Workflow

The “Remove column” refactoring is carried out in the following sequence of steps:

(1) Remove the entire selected column from the test specification including all example

values of this column.

(2) If the selected column is a given value column, carry out the following steps:

(2.1) Remove the corresponding public field from the Fixture class.

(2.2) Find all methods (including constructors) within the Fixture class that have a

reference to this field. Comment the entire body of all found methods out.

Additionally, add a TODO-comment and a “NotImplemented”-exception throw

clause to each of those method bodies.

(3) If the selected column is an expected value column, carry out the following steps:

(3.1) Remove the corresponding public method from the Fixture class.

(3.2) Find all methods (including constructors) within the Fixture class that have a

reference to the lately removed method. Comment the entire body of all found

methods out. Additionally, add a TODO-comment and a “NotImplemented”-

exception throw clause to each of those method bodies.

Example: Remove expected value column

The following example deals with a test specification intended to test the correct behaviour of

a web hosting server. The fictional server blocks users who attempt to connect more than three

times and allows access only for persons over 18 years of age and those who have not been

blocked yet. Both the test specification and its corresponding Fixture can be seen in figure 25.

-60-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

rule for web access
age connection attempts blocked? admission?
14 1 false false
22 1 false true
23 4 true false

Figure 25: RuleFor test before "Remove expected column" refactoring

In this scenario, the expected value column named “blocked” is removed through the “Remove

column” refactoring. The changes which were applied to the test specification as well as to the

Fixture during the refactoring process are shown in figure 26.

rule for web access
age connection attempts admission?
14 1 false
22 1 true
23 4 false

Figure 26: RuleFor test after "Remove expected column" refactoring

The “blocked” column was completely removed from the test definition as well as the

-61-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

corresponding method in the Fixture. Since the “Admission” method references the deleted

“Blocked” method, its body must be commented out to avoid compilation errors. A TODO

comment and a “NotImplemented” exception throw clause are added to the body of the

method in order to inform developers and customers about the modifications.

4.5.2.3 Rename Given / Expected Value Column

Motivation

With continuous software development, the context in which input parameters or methods

conducting calculations are used, can change. This causes their names to become inaccurate or

misleading. In such a case it is necessary to give them more reasonable names.

The “Rename column” refactoring can be used to easily change the name of a given or

expected value column.

Required inputs

For the “Rename column” refactoring, the user must provide a new name for the given or

expected value column.

Input validation

Similar to the “Add column” refactoring, the new name must be a valid C# identifier because it

is mapped to a public field or a public method respectively within the Fixture. Moreover, it

must be verified that the Fixture does not contain a field (in case of a given value column being

renamed) or a method (in case of an expected value column being renamed) with the same

name as the new column.

Workflow

The “Rename column” refactoring is carried out in the following sequence of steps:

(1) Rename the selected column by changing the column's header field to the new

name.

(2) If the selected column represents given values, carry out the following steps:

-62-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

(2.1) Rename the corresponding public field in the Fixture class.

(2.2) Find all references of this field and rename all field references, too.

(3) If the selected column represents expected values, carry out the following steps:

(3.1) Rename the corresponding public method in the Fixture class.

(3.2) Find all references of this method and rename all method references, too.

Example: Rename expected value column

The following example uses the same test specification and Fixture as in the antecedent

example (see figure 27).

rule for web access
age connection attempts blocked? admission?
14 1 false false
22 1 false true
23 4 true false

Figure 27: RuleFor test before "Rename expected column" refactoring

In this example, the “blocked” expected value column is renamed to “user is blocked” by

applying the “Rename expected column” refactoring. Figure 28 shows the resulting test

specification and Fixture.

-63-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

rule for web access
age connection attempts user is blocked? admission?
14 1 false false
22 1 false true
23 4 true false

Figure 28: RuleFor test after "Rename expected column" refactoring

The expected value column in the test specification was renamed as well as the corresponding

method in the Fixture. The “Admission” method contained a reference of the renamed method

(line 10), so this reference was renamed, too.

4.5.3 Refactorings For Scenario Tests

4.5.3.1 Add Action

Motivation

As explained in chapter 3.5.1.2, Scenario tests are used to test the dynamic behaviour of a

system. They allow for specifying actions that are executed sequentially on the SUT.

When requirements change during development, it might be necessary to include new actions

to the Scenario test to cover the new functionality. Whenever actions have to be added to an

existing Scenario test, the “Add action” refactoring can be used.

Required inputs

The “Add column” refactoring requires five inputs from the user:

-64-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

(1) Action text

The action which is to be executed on the SUT is expressed in natural language and

must be specified by the user.

(2) Action type

There are five different action types (Given, Then, When, Display, and Check). They

differ in the way the GreenPepper engine carries them out and in the way the engine

handles the results of the execution of each action (see chapter 3.5.2.2). The action

type also has an influence on the corresponding method signature and must

therefore be specified by the user.

(3) Regular expression

Since each Scenario action is mapped to a method through a regular expression (see

chapter 3.5.2.2), a regular expression must also be provided by the user.

(4) Method name

Although the name of the corresponding method in the Fixture does not play any

important role for the refactoring of Scenario tests, the user should provide a

reasonable method name to keep the Fixture as clear and comprehensible as

possible.

(5) Insertion position

Since the order in which the Scenario actions are executed can have an influence on

the result returned by the SUT, the user must specify the position at which the new

action shall be inserted within the test specification.

Input validation

Following restrictions apply to the input data provided by the user for the refactoring to

succeed:

 The action text must match the provided regular expression, so that the mapping

process from the Scenario action to the corresponding method in the Fixture can be

conducted successfully after applying the refactoring.

 The method name must be a valid C# identifier.

-65-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

 The insertion position must be within the valid range.

Workflow

The “Add action” refactoring is conducted as follows:

(1) Add a new action to the Scenario test specification at the specified position and with

the provided action text.

(2) If the corresponding Fixture class contains a method that already “matches” the new

action text, do not apply any changes to the Fixture. In that case, ignore the provided

action type, regular expression and method name.

(3) If the corresponding Fixture class does not contain a “matching” method, conduct the

following steps:

(3.1) Add a public method with the specified name to the Fixture class.

(3.2) Adjust the method signature depending on the action type selected by the user

(see table 3 of chapter 3.5.2.2).

(3.3) Search the regular expression for grouping constructs (see chapter 3.5.2.2) and

add an “object”-typed parameter to the method's parameter list for each

grouping construct.

(3.4) Annotate the newly created method with the appropriate GreenPepper

attribute and the provided regular expression.

Example: Add scenario action

Figure 29 shows an example of a Scenario test for a simple fictional bank application. The test

contains two actions that are to verify that there is no balance in a newly opened bank

account.

-66-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

scenario Bank
open account 12345 under the name of Denis Elbert
verify that balance of account 12345 is $0

Figure 29: Scenario test before "Add action" refactoring

As can be seen in the Fixture below the test specification, each action is mapped to a method

that is annotated with a regular expression that matches one of these action texts.

When the customer decides to add more actions to the Scenario test, he can do that through

the “Add action” refactoring. As an example, it is assumed that the customer adds another

action for depositing a hundred dollars to the newly opened bank account and that he provides

following input data:

 The action is describes by the text “deposit $100 in account 12345”.

 Since the action is assumed to bring the SUT in another state, the When action type is

selected.

 The regular expression “deposit \$(\d+) in account (\d{5})” is provided in order to

match a random amount of money and any five digit account number.

 The method name is chosen to be “Deposit”.

Figure 30 shows the resulting changes to the test specification and its corresponding Fixture

that were applied by the “Add action” refactoring based on the provided input data.

-67-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

scenario Bank
open account 12345 under the name of Denis Elbert
verify that balance of account 12345 is $0
deposit $100 in account 12345

Figure 30: Scenario test after "Add action" refactoring

Since the user provided regular expression contained two grouping constructs, two method

parameters (param1 and param2) were automatically generated for the new method.

4.5.3.2 Remove Action

Motivation

For the same reason that actions have to be added to a Scenario test, they need to be removed

in certain circumstances, too. A good example in this context is when system features are

discarded due to changed requirements. Hence, actions that are related to these features must

be removed from the test specification.

In order to remove actions from a Scenario acceptance test, the “Remove action” refactoring

can be applied.

Required inputs

The “Remove action” refactoring does not require any input data.

-68-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

Input validation

Since no additional user input is required, this kind of refactoring does not perform any special

input validation.

Workflow

The “Remove action” refactoring is conducted as follows:

(1) Remove the selected action from the Scenario test specification.

(2) Find all methods in the corresponding Fixture that match the selected action. For

each of those methods carry out step 3.

(3) Find all remaining Scenario actions from the (modified!) test specification that match

the current method. If no action could be found, execute the following steps with the

current method:

(3.1) Delete the current method from the Fixture class

(3.2) Find all methods (including constructors) within the Fixture class that have an

reference to the lately deleted method. Comment the entire body of all found

methods out. Additionally, add a TODO-comment and a “NotImplemented”-

exception throw clause to each of those method bodies.

Example

The previous chapter introduced an example of a Scenario test specification for a fictional bank

application. In this example a new Scenario action was added through the “Add action”

refactoring. Figure 30 shows the changes that were applied to the test specification and the

corresponding Fixture in the course of this refactoring.

When the “Remove action” refactoring is applied to the lastly added action, the original state

shown in figure 29 is restored. The refactoring deletes the action from the test specification as

well as the corresponding method in the Fixture.

4.5.3.3 Edit / Rename Action

-69-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

Motivation

During the ongoing development of a system, it can happen that the nomenclature changes

after the acceptance tests have been written. Furthermore, Scenario actions are written in

natural language, so they are especially prone to typing errors. In order to keep the test

specification consistent and comprehensible it is necessary to rename the Scenario actions. To

do so, the “Rename action” refactoring can be used.

Required inputs

The new action text is required for the “Rename action” refactoring along with its associated

regular expression.

Input validation

The original action text contains sections that are interpreted as parameters during the

mapping process of the Scenario action to the corresponding Fixture method (see chapter

3.5.2.2). These sections are identified with the help of the regular expression associated with

this action. More precisely, the grouping constructs within the regular expression distinguish

the parameters from the descriptive text.

However, only the descriptive text is allowed to be modified and the sections representing

parameters must remain the same. Moreover, it must be ensured that the new action text

matches its associated regular expression.

Workflow

The “Rename action” refactoring is executed in the following steps:

(1) Rename the selected Scenario action to the specified new text.

(2) Find the method within the corresponding Fixture class that matches the old action

name.

(3) For each Scenario action that matches this method, rename the current action to the

new text.

(4) Change the regular expression associated with this method to the new regular

-70-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

expression.

Example

Below, the bank example from the previous chapters is used again to demonstrate the

“Rename action” refactoring. The exemplary test specification defines actions to verify that the

system computes the balance of a bank account correctly after opening and depositing money

in the account. The Scenario acceptance test and the corresponding Fixture can be seen in

figure 31.

scenario bank
open account 12345 under the name of Denis Elbert
verify that balance of account 12345 is $0
deposit $100 in account 12345
verify that balance of account 12345 is $100

Figure 31: Scenario test before "Rename action" refactoring

In this example, the “verify”-action located in the third line of the test shall be renamed to

“verify that current balance of account 12345 is $0” in order to emphasize that the current

balance of the account is being tested by this action. Therefore, the “Rename action”

refactoring is applied. The results of the refactoring are shown in figure 32.

-71-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

scenario bank
open account 12345 under the name of Denis Elbert
verify that current balance of account 12345 is $0
deposit $100 in account 12345
verify that current balance of account 12345 is $100

Figure 32: Scenario test after "Rename action" refactoring

As can be seen above, both “verify”-actions of the test specification have been affected by the

refactoring, and renamed appropriately.

In the Fixture class, the “BalanceOfAccount” method was mapped to the “verify”-action

because the action matched the regular expression associated with the method. As a result of

the refactoring mechanism, this regular expression was changed in such a way as to match the

new “verify”-action text.

4.6 Graphical User Interface (GUI)

As explained in the previous chapters, each refactoring requires user inputs in order to be

carried out. The “Rename test” refactoring, for example, requires the user to enter a new

name. Thus, the refactoring extension developed as part of this thesis must provide a graphical

user interface (GUI) that enables the user to enter the required information.

The goals of this thesis stipulate that the refactoring extension must be implemented for the

latest version of Visual Studio, which is Visual Studio 2010. One of the major differences

between this version and older versions of Visual Studio is that its entire graphical user

interface was rewritten using the Windows Presentation Foundation (WPF) framework (see

-72-

Refactoring of Acceptance Tests in Visual Studio - Chapter 4: Concept

chapter 3.6.3). That is why WPF was used for the implementation of the refactoring GUI, too.

The following list discloses all GUI elements that were needed for the refactoring extension:

 “Rename test” refactoring dialogue

 “Add column” refactoring dialogue

 “Rename column” refactoring dialogue

 “Add action” refactoring dialogue

 “Rename action” refactoring dialogue

 Preview dialogue

Chapter 5.4 explains how these GUI elements were implemented using WPF.

-73-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

5 Implementation

5.1 GreenPepper Acceptance Test Parser

This chapter explains the design of the GreenPepper acceptance test parser that is needed to

access the information stored in the test specification and to modify this information whenever

a test refactoring is carried out.

As figure 33 shows, the GreenPepper acceptance test parser is subdivided into three layers.

Each layer has its own sub-parser and produces an object-model based on its input data. The

created object-model wraps the information that is extracted by the respective sub-parser and

serves as input for the overlying layer.

-74-

Figure 33: Layers of the
GreenPepper acceptance parser

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

In the following chapters, the purpose and design of each layer is explained in greater detail.

5.1.1 Parser Layer 1

The first layer expects a GreenPepper acceptance test file - which is a HTML file - as input. The

purpose of this layer is to discover all HTML tags that are contained in the file and to provide an

object-model that allows for accessing the identified tags in the same order as they appear

within the file.

HTML elements

The sub-parser which is responsible for creating the object-model distinguishes between three

HTML elements and represents each of them by an own class in the object-model. In order to

identify the distinctive elements within the HTML file, the sub-parser uses regular expressions.

The table below gives an overview of all three elements and shows the specified regular

expression used to identify each of them.

Element Interpretation Regular expression
Comment Represents text that is specified between

HTML comment tags. Comment tags start
with “<!--” and end with “-->”.

\<\!--([^-]|-[^-]|--
[^>])*--\>

Tag Represents all tags that are no comment tags.
In general, HTML tags start with “<” and end
with”>”.

</?\w+((\s+\w+
(\s*=\s*(?:\".*?\"|'.*?'
|[^'\">\s]+))?)
+\s*|\s*)/?>

Other Represents all file content that is neither a
comment nor another HTML tag.

No regular expression is needed.
The “Other” element is identified
when none of the above regular
expression matched.

Table 6: Element types identified by the first level parser

Different types of tags

Since GreenPepper acceptance tests are expressed in HTML tables, the generated object-model

must support to check what kind of tag is represented by a “Tag”-element, especially table tags

such as <table>, <tr>, <th>, and <td>. Therefore, regular expressions were also used (see table

7).

-75-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

Type of tag HTML tag Regular expression

Table <table> </?table(\s.*|/?>)
Table row <tr> </?td(\s.*|/?>)
Table cell <td> </?td(\s.*|/?>)
Table header cell <th> </?th(\s.*|/?>)

Table 7: Identification of different types of HTML tags

Object-model design

Regarding the implementation of the object-model, all three HTML element classes are derived

from a common base class named TextElement as can be seen in the class diagram of figure 34.

The diagram shows the entire structure of the first parser layer.

The TextElement class implements basic properties which can be accessed through the

ITextElement interface. These properties are used to save the positional information of each

HTML element within the file as well as the represented text itself. More precisely, the exact

character index of where the corresponding text part begins and ends in the file is stored in

these properties.

The ElementParser class represents the actual sub-parser and creates the object-model for this

layer. It therefor parses through the input file by applying the regular expressions and adds the

-76-

Figure 34: Class diagram for the first parser layer

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

identified HTML elements sequentially to a list in the object-model. In doing so, the parser

appends the position data to each HTML element.

5.1.2 Parser Layer 2

The second layer is responsible for identifying HTML tables and their logical structure, based on

the list of HTML tags identified by the first layer's parser. The object-model created by layer

one is therefore used as an input for this layer, whose output is an object-model reflecting the

logical structure and content of HTML tables.

Table representation

Figure 35 shows the internal structure of the second parser layer.

As can be seen in the class diagram, three classes were introduced to reflect the logical

structure of a HTML table. The classes are linked to each other using the concept of object

composition and are briefly described below:

 Table

-77-

Figure 35: Class diagram for the second parser layer

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

The Table-class represents an entire HTML table, i.e. all text that is noted down

between a starting end an ending table tag (<table> and </table>). It contains a list of

TableRow objects (object composition).

 TableRow

The TableRow-class represents one single table row, i.e. all text that is noted down

between the respective starting and an ending table row tag (<tr> and </tr>). The class

contains a list of TableCell objects (object composition) and a reference to the parental

Table object.

 TableCell

The TableCell-class represents one single table cell, i.e. all text that is noted down

between the respective starting and an end ending table cell tag (<td> and </td>, <th>

and </th>). It contains a reference to the parental TableRow object.

Ignored data

One requirement of the test specification parser was to preserve the content and format of the

input file. Therefore, it was not only necessary to save the table-related data, but also to

include the remaining content into the object model such as HTML comments or untagged

text.

To achieve that, each of the three classes described above also contains a list so called Ignored

Data list. During the parsing process, all “Comment”- and “Other”-elements as well as “Tag”-

elements not representing table tags are assigned to that list.

Parsing

The objective of layer two is to generate an object model that contains a list of Table-objects

and abstracts from the actual structure of the HTML file. As mentioned before, the layer two

sub-parser parses through the output from layer one in order to generate the object model.

The sub-parser therefor operates in four major steps, which are explained below. In each of

those steps, the input list of HTML elements (the list belongs to the output of the layer one

parser) is traversed whereas elements that have already been processed are disregarded.

-78-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

(1) Generate object model

(1.1) Add all HTML elements to the Ignored Data list of the object model until a

starting table tag is discovered.

(1.2) Check if a table can be retrieved by searching for an ending table tag. If so,

execute step 2 and add the table to the object model. If not, add the starting

table tag to the Ignored Data list of the object model.

(1.3) Repeat steps 1.1 to 1.2 until all HTML elements have been processed. Return

the object model.

(2) Gather table

(2.1) Add all HTML elements to the Ignored Data list of the table object until a

starting row tag is discovered.

(2.2) Check if a row can be retrieved by searching for an ending row tag. If so,

execute step 3 and add the row to the table object. If not, add the starting row

tag to the Ignored Data list of the table object.

(2.3) Repeat steps 2.1 to 2.2 until all HTML elements have been processed. Return

the table object.

(3) Gather row

Execute steps accordingly to (2).

(4) Gather cell

(4.1) Assign all HTML elements as content to the cell until the ending cell tag is

discovered.

(4.2) Return the cell object.

5.1.3 Parser Layer 3

As described in the previous chapter, the second parser layer generates an object model that

-79-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

allows for easily accessing tables including containing rows and cells which are specified within

a GreenPepper acceptance test file. The purpose of the third layer is to abstract from these

tables and to provide an object model for accessing and modifying the information specified in

GreenPepper tests.

GreenPepper test interfaces

The figure below shows the definition of the object model interfaces for both the RuleFor- and

the Scenario acceptance test. The interfaces define properties used to access particular test

parts (e.g. the list of actions in case of a Scenario test) and methods used to modify the tests

(e.g. to add an action to a Scenario test).

In the following, some selective properties are described:

-80-

Figure 36: Interfaces of layer 3 representing GreenPepper
acceptance tests

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

 FixtureNames

As explained in chapter 3.5.2, GreenPepper test names are linked to the corresponding

Fixture class name. Since the mapping can be ambiguous (e.g. the test name “bank”

can both be mapped to “Bank” and “BankFixture”), this property provides a list of all

possible Fixture names.

 ImportedNamespaces

If an Import interpreter (see chapters 3.5.2 and 3.5.1.3) is specified before a test,

namespaces have to be included in the test name mapping process. This property

provides a list of all imported namespaces.

 FullFixtureNames

This property provides a list of all possible full qualified Fixture names by combining

the list of namespaces with the Fixture names.

Next to the major test interfaces there are two special interfaces that are implemented by

several special classes: The IRenameable interface and the ILocatable interface. Both are

explained below in greater detail.

IRenameable interface

There are three GreenPepper acceptance test elements that can be renamed: Test names,

expected and given RuleFor columns, and Scenario actions. The IRenameable interface is

implemented by the respective classes that represent these GreenPepper parts. As can be seen

in figure 37, the interface provides two properties and one method.

-81-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

The Name property simply returns the name of whatever element needs to be renamed,

whereas the Rename method can be used to change the name. The RenameableType property

specifies the current GreenPepper element which is to be renamed.

Whenever new elements that need to be renamed have to be included to the object model,

the IRenameable interface can be implemented to support that functionality.

ILocatable interface

As mentioned in chapter 4.2, a refactoring is initiated by right-clicking on the particular

acceptance test part intended to being refactored in the editor of Visual Studio. After the right-

click position within the test file has been retrieved (see chapter 5.3), the GreenPepper

acceptance test element that corresponds to this location must be identified automatically in

order to carry out the respective refactoring actions.

For this purpose, the ILocatable interface was introduced (see figure 38) which is implemented

by each class representing a GreenPepper test element that needs to be located. It provides

two methods which are described below:

-82-

Figure 37: IRenameable
interface

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

 “IsAtPosition” method

This method returns true if the current object model element is located at the

specified character offset. It therefor uses the start and end position data from the

ITextElement interface mentioned earlier that comes with every object model element.

 “GetCoveredElementsAtPos” method

This method returns all child elements that are located at the specified character

offset. In order to identify these, the method itself calls the IsAtPosition method of all

child elements that implement the ILocatable interface.

5.1.4 Parser Usage

The previous chapters explained the design of each of the three test parser layers. The highest

abstraction level is achieved by the last layer – layer three – which creates an object model that

can be used to access and modify the information within a GreenPepper acceptance test.

In order to get a reference to that object model within the refactoring extension application,

the sub-parsers corresponding to each layer have to be called sequentially, passing the results

to the next higher layer. Figure 39 demonstrates the code necessary to get a test object model

reference. It is assumed, that the path to the GreenPepper acceptance test file that is be parsed

was assigned to the “documentPath” variable in precursory steps.

-83-

Figure 38: ILocatable interface

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

5.2 Refactoring Commands

As mentioned in chapter 4.1, the decision was made to place the refactoring commands in the

context menu of the design and code view of the Visual Studio IDE. There are a total of seven

refactoring commands that had to be added to the context menu:

 Rename test command

 Add / Rename / Remove column command

 Add / Rename / Remove action command

Context menu layout

In order to incorporate the new refactoring commands into the context menu, the VSCT-file

(see chapter 3.6.2.2), which came along with the GreenPepe2010 VSPackage, was utilized.

First of all, the different commands were defined in the Commands section of the VSCT-file.

Figure 40 shows how this was done using the example of the “Rename” command.

-84-

Figure 39: Code for retrieving the test object model

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

As can be seen in the figure above, all major properties (icon, text, type) of a command can be

specified within the VSCT file. The ID is used to identify each defined command throughout the

VSCT file. With the help of that ID, the relationship between other command elements such as

groups and menus can be configured within the CommandPlacements section of the VSCT file.

In order to place commands in the context menu of the Visual Studio editor, the IDs of the

respective context menus - which are defined as constants in the Visual Studio SDK – had to be

assigned to the custom commands. Figure 41 shows the respective code to reference these IDs

(“49” and “51”).

Dynamic behaviour

Based on what kind of acceptance test (Scenario test or RuleFor test) was selected during a

right click in the design or code view, only a subset of all commands must be displayed. For

example, if the cursor is positioned over the name of a Scenario acceptance test when right-

clicking, the context menu should contain only the “Rename test” command and “Add action”

command.

In order to achieve this behaviour, the visibility of the commands must be manipulated during

-85-

Figure 40: Definition of the "Rename" command in the VSCT file

Figure 41: Access to the VS context menu

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

runtime. Therefore, two special CommandFlags have to be defined in the Commands section

for each command: DynamicVisibility and TextChanges (see figure 40). Once these flags are

defined, a command can be represented in code by an OleMenuCommand object, which is

provided as part of the Visual Studio SDK. This object offers two properties Enabled and Visible,

which can simply be set to either true or false in order to activate and deactivate or to show

and hide a command.

Figure 42 shows an example of the final implementation of the context menu that popped up

after the user right-clicked on the test name of a Scenario test.

5.3 Document Interaction In Visual Studio

As explained in chapter 4.2, it was necessary to determine the position - or more precisely the

exact character offset – where the user right-clicked on in the test specification file.

The DTE (see chapter 3.6.2.1) object, which comes with the Visual Studio SDK, provides a

property named ActiveDocument that represents the currently opened document in the Visual

Studio IDE. Figure 43 shows how to obtain a reference to this object.

-86-

Figure 42: Example of the refactoring context menu

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

The Document object allows for accessing all relevant information about the opened document

such as the file name, the full file path, the status whether the document is write protected

and more. It also contains a property called Selection which – amongst others - holds

information about the current cursor position within the document. Since the cursor is

automatically set to the position where the user right-clicked, this property could be used to

determine the required absolute character offset within the document.

5.4 Graphical User Interface (GUI)

As mentioned earlier, all graphical user interface (GUI) elements were implemented using WPF

(see chapter 3.6.3).

One of the big advantages of WPF is the potential to separate the design specification from the

logic implementation. This was done by specifying all design related information in XAML-files.

The complete layout for the GUI including all required buttons, text boxes, combo boxes, check

boxes and so on was specified using XAML.

The logic was put into so called User Controls. These are re-usable graphical components that

can be included and re-used on other controls just like a text box can be positioned on a

custom user control. The user controls were implemented by deriving from the UserControl

class which is part of the WPF library.

Since user controls cannot be displayed by themselves, each user control was put in a Window

container class. The Window class is the base class for creating and displaying custom windows.

In the following, a subset of the GUI elements that were created in the course of this work are

-87-

Figure 43: Code to retrieve the opened document in VS

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

described. The input controls provided in each implemented window are closely related to the

inputs that were considered to be essential in the course of chapter 4.5.

“Add column” dialogue

Figure 44 shows the window that is displayed whenever an “Add column” refactoring is

executed.

As can be seen in the screenshot of the “Add column” window, it is possible to select whether a

given or expected column shall be added. Depending on the selection and the provided column

name, the GUI control automatically generates the corresponding Fixture method name (in

case of an expected column) or field name (in case of a given column) which is linked to the

column name. The GUI control also displays the Fixture class name that is connected with the

respective acceptance test.

“Add Scenario action” dialogue

Whenever an “Add action” refactoring is performed, the following window will be displayed

(see figure 45):

-88-

Figure 44: GUI for "Add column" refactoring

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

This dialogue allows for entering the new Scenario action name and the selection of the

Scenario action type (e.g. “When”).

Based on the provided action name, the GUI control automatically generates a regular

expression, which can be edited manually if necessary. If the action name does not match the

regular expression, the GUI controls displays an error message and deactivates the OK-button

until the error has been corrected by the user.

The method name is also generated automatically, but can be edited by the user. The typed

method name must be a valid C# identifier, otherwise an error message is shown.

“Rename Scenario action” dialogue

Figure 46 shows the typical window for a “Rename action” refactoring.

-89-

Figure 45: GUI for the "Add action" refactoring

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

Based on the regular expression connected to the Scenario action that is to be renamed, the

original Scenario action text is split into different parts. This splitting algorithm sets the

Scenario action parameters apart from the descriptive text surrounding them (see chapter

4.5.3.3). Only the “descriptive text” parts are allowed to be edited. Based on the user input,

the GUI controls generates the regular expression linked to the new action name.

“Preview” dialogue

The “Preview” dialogue, which is displayed before the changes of a refactoring are applied to

the test specification and the corresponding Fixture, can be seen in figure 47.

-90-

Figure 46: GUI for the "Rename action" refactoring

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

In the current implementation, the “Preview” dialogue simply displays the content of either

the test specification or the Fixture before (left side) or after (right side) a particular

refactoring. So far, no syntax highlighting is supported, but this could be incorporated in future

time.

5.5 Core Classes And Interfaces

This chapter explains some of the major interfaces and classes that build the foundation pillar

of the refactoring extension application implemented in the course of this work.

5.5.1 IClassCodeManipulator Interface

As mentioned earlier in this thesis, the refactoring of acceptance tests requires to manipulate

the source code of the Fixtures. Therefore, the IClassCodeManipulator interface was created. It

defines all methods that are needed to retrieve information from a Fixture class as well as to

-91-

Figure 47: Preview dialogue

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

modify it.

Amongst others, the interface includes methods to ...

 check for defined fields, methods and constructors within a class.

 remove public fields and methods from a class.

 rename fields, methods and constructors within a class including their references.

Through the definition and usage of this interface throughout the refactoring application

whenever the code of a Fixture needed to be accessed, it was possible to abstract from the

current implementation of the source code parser. Chapter 4.4 gives reasons for the usage of a

third party library called NRefactory. This library comes along with a C# source code parser that

was used to implement the IClassCodeManipulator interface. However, whenever another C#

parser must be used, it can easily be exchanged by creating a new implementation of the

IClassCodeManipulator interface.

5.5.2 Fixture Class

As the name may already imply, the Fixture class is the runtime representation of the actual

Fixture that is linked to an acceptance test during the refactoring process. It specifies methods

that are called by the RefactoringExecuter object (see chapter 5.5.4) in order to make all

necessary modifications to the class connected to a Fixture. The modifications are performed

by calling the methods of the IClassCodeManipulator interface which is described in chapter

5.5.1.

Beyond that, calling the methods of this Fixture class does not have an immediate impact on

the actual Fixture file. Instead, all actions are performed internally within the Fixture

representation object without modifying the original Fixture source code file. This makes it

possible to provide a preview of the changes that a refactoring action would cause. In

conjunction with this preview ability, the Fixture class provides two properties and two

methods which are described below:

 “ApplyChanges()“ method

-92-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

The ApplyChanges() method is called to apply all modifications to the actual original

class file connected to a Fixture.

 “DiscardChanges()” method

The DiscardChanges() method will cause the Fixture class to discard all lately

performed modifications and to reload the actual Fixture class file.

 “Preview” property

The Preview property returns the modified Fixture class source that resulted from

calling the Fixture editing methods. It contains all changes that have been applied

internally after the last call of the ApplyChanges() method.

 “Code” property

The Code property returns the source code of the actual original Fixture class file. It

represents the original status of the Fixture class before changes had been applied to it

using the Fixture representation class.

5.5.3 TestDocument Class

The TestDocument class is similar to the Fixture class described above. Instead of representing

a Fixture that is connected to a GreenPepper acceptance test, it represents the test

specification itself. It also specifies methods that are called by an instance of the

RefactoringExecuter class. The methods reflect all actions that can possibly be performed on a

GreenPepper acceptance test in the course of a refactoring. More precisely, the specified

methods are used to manipulate a test specification.

Also similar to the Fixture class, the TestDocument class does not apply the changes

immediately to the actual acceptance test file, but possesses the same preview abilities as the

Fixture class (see chapter 5.5.2). It therefor also offers the ApplyChanges() and

DiscardChanges() methods as well as the Preview property. Its specified Content property is

related to the Code property and is used to retrieve the original test specification before any

changes have been applied to the acceptance test.

Beyond that, a TestDocument object instance is connected to the currently opened document

-93-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

in the Visual Studio editor. In other words, it always represents that particular acceptance test

file, which is currently opened in Visual Studio and which the user right-clicked on in order to

invoke a refactoring command. How the connection was established is explained in greater

detail in chapter 5.3.

5.5.4 RefactoringExecuter Class

The RefactoringExecuter class is the core element of the refactoring extension application that

combines all the functionality together. It implements the refactoring workflow described in

chapter 4.2 by carrying out the required steps for each kind of refactoring.

In the following, the general sequence of actions that is carried out by the RefactoringExecuter

class is described:

(1) Obtain a reference to the TestDocument object, which represents the GreenPepper

acceptance test that is currently opened in the editor of Visual Studio (see chapter

5.5.3).

(2) Obtain a reference to the Fixture object, which represents the Fixture connected to

the GreenPepper acceptance test (see chapter 5.5.2).

(3) Initialize and show the graphical user interface depending on what kind of refactoring

command was selected to retrieve the input data from the user.

(4) Call the methods of the TestDocument object to modify the test specification

appropriate to the kind of refactoring that was selected.

(5) Call the methods of the Fixture object to modify the Fixture, based on what kind of

refactoring was selected.

(6) Initialize and show the preview dialogue, which displays all changes that will be

performed in the course of the selected kind of refactoring.

(7) Apply the changes by using the TestDocument and Fixture objects if the user

confirmed the changes in the preview dialogue.

-94-

Refactoring of Acceptance Tests in Visual Studio - Chapter 5: Implementation

The RefactoringExecuter class is instantiated as soon as a refactoring command was selected by

the user in the context menu of the Visual Studio editor.

5.5.5 ISettings Interface

Like most other applications, the refactoring extension implemented in the course of this work

involves a collection of settings that have an influence on certain functionality of the system.

For example, it comprises a setting to adjust the TODO-comment string that is added to the

body of a newly generated method when a particular refactoring is executed.

All settings of the refactoring extension are specified at a central place within one class, the

Settings class. An external storage location – a configuration file for example – was not required

at that time. However, since it is possible that further development will require to manage the

settings differently, the ISettings interface was introduced. All application settings are loaded

through this interface. Whenever the settings need to be stored in a different way, this

interface can be implemented to incorporate the changes.

-95-

Refactoring of Acceptance Tests in Visual Studio - Chapter 6: Conclusion And Future Work

6 Conclusion And Future Work

6.1 Problems

Several problems arose in the course of this work and are described below:

 C# parser

As explained in chapter 4.4, a third party C# parser was needed in order to be able to

parse the Fixture code. It was very time consuming to find an appropriate parser that

met all the requirements and that made it possible to implement the refactoring

functionality.

 Beta versions

One of the goals of this thesis was to develop the refactoring extension for the latest

version of the Visual Studio IDE. At that time, the first beta version of Visual Studio

2010 (VS 2010) was released including the new .NET version 4.0. Thus, the

development of the refactoring extension took place using the VS 2010 IDE beta

version. When bugs occurred during the development, it was sometimes hard to find

out whether these were caused by the own implementation or by a bug within the IDE.

6.2 Summary And Evaluation

As described in the motivation part of this thesis, there has not been acceptance test

refactoring support for the .NET environment yet.

In the course of this work, a Visual Studio extension was developed, which allows developers to

manage and refactor GreenPepper acceptance tests from within the IDE. This supports the

application of the Executable Acceptance Test Driven Development (EATDD) approach, in which

all features of the system are specified by Acceptance Tests. So far, the extension only supports

the refactoring of only a subset of the test specifications that the GreenPepper framework

offers. With further development, these limitations could be eliminated.

-96-

Refactoring of Acceptance Tests in Visual Studio - Chapter 6: Conclusion And Future Work

6.3 Future Work

The following list mentions limitations of the current implementation as well as possible

improvements that could be done in future work in order to eliminate these limitations.

 Support for more GreenPepper tests

This thesis focused on implementing refactoring support for two different

GreenPepper acceptance test types: The RuleFor test and the Scenario test. However,

the GreenPepper framework offers a bigger set of test types. Future work could focus

on extending the refactoring support by these test types.

 Support for list notation

GreenPepper acceptance tests can not only be expressed in HTML tables, but also in

bullet list form. Since the current implementation does only support HTML tables, it

could be extended by also supporting the bullet list notation.

-97-

Refactoring of Acceptance Tests in Visual Studio

REFERENCES

[Ambler 2009a] Ambler, Scott W. ; Examining the Agile Manifesto, 2009, Online (Last

cited: 18/02/2010),

http://www.ambysoft.com/essays/agileManifesto.html

[ASE 2009] Agile Software Engineering Group, University of Calgary; Executable

Acceptance Test Driven Development, 2009, Online (Last cited:

01/03/2010),

http://ase.cpsc.ucalgary.ca/ase/index.php/EATDD/Home

[Astels 2003] Astels, David; Test-driven development - A Practical Guide, Prentice

Hall, 2003, , ISBN: 0-13-101649-0

[Avery 2005] Avery, James; What Is Visual Studio, 2005, Online (Last cited:

10/03/2010),

http://windowsdevcenter.com/pub/a/windows/2005/08/22/whatisVi

sualStudio.html?page=1

[Beck et al.] Beck, Kent; Andres, Cynthia; Extreme Programming Explained,

Embrace Change, Addison-Wesley, 2004, Second Edition, ISBN: 0-321-

27865-8

[Fowler et al. 2000] Fowler, Martin; Beck, Kent; Brant, John; Opdyke, William; Roberts,

Don; Refactoring: Improving the Design of Existing Code, Addison

Wesley, 2000, , ISBN: 0-201-48567-2

[GP Doc] Pyxis Technologies; GreenPepper Documentation, , Online (Last cited:

10/02/2010),

http://www.greenpeppersoftware.com/confluence/display/GPWODO

C/Documentation

[GP FAQ] Pyxis Technologies; GreenPepper FAQ, , Online (Last cited:

05/01/2010),

http://www.greenpeppersoftware.com/confluence/display/GPW/FA

Q

XCVIII

Refactoring of Acceptance Tests in Visual Studio

[GP Home] Pyxis Technologies; GreenPepper Homepage, , Online (Last cited:

06/01/2010),

http://www.greenpeppersoftware.com/confluence/display/GPW/Ho

me

[Gunnerson 2000] Gunnerson, Eric; C#: Die neue Sprache für Microsofts .NET-Plattform,

Galileo Computing, 2000, 1st Edition, ISBN: 978-3898421072

[Koehler 2007] Koehler, Achim; C/C++ Projektbegleiter: C/C++ Projekte planen,

dokumentieren, bauen und testen, DPunkt, 2007, 1. Edition, ISBN:

978-3-89864-470-9

[Kuehnel 2008] Kühnel, Andreas; Visual C# 2008: Das umfassende Handbuch, Galileo

Computing, 2008, 4th Edition, ISBN: 978-3-8362-1172-7

[Manifesto] ; Manifesto for Agile Software Development, 2001, Online (Last cited:

18/02/2010), http://agilemanifesto.org/

[Maurer et al. 2005] Maurer, Frank; Read, Kris; Melnik, Grigori; Student Experiences with

Executable Acceptance Testing, 2005, Proc. Agile 2005 Conference,

IEEE Press, 2005

[Maurer et al. 2007] Maurer, Frank; Melnik, Grigori; Multiple Perspectives on Executable

Acceptance Test-Driven Development, 2007, Proceedings of the 8th

International Conference on Agile Processes in Software Engineering

and eXtreme Programming (XP 2007), Como, Italy 2007

[Maurer et al. 2008] Maurer, Frank; Park, Shelly; The Requirements Abstraction in User

Stories and Executable Acceptance Tests, 2008, Agile Conference 2008

(Research-in-Progress Workshop), Toronto

[Maurer et al. 2009] Maurer, Frank; Khandkar, Huq Shahedul; Park, Shelly: Ghanam, Yaser;

FitClipse: A Tool for Executable Acceptance Test Driven Development,

2009, In Proc. of 10th International Conference on Agile Processes

and eXtreme Programming (XP 2009), Demo Abstract, Pula, Italy,

2009

[Maurer et al. 2009a] Maurer, Frank; Park, Shelly; Ghanam, Yaser; Khandkar, Shahedul Huq;

XCIX

Refactoring of Acceptance Tests in Visual Studio

FitClipse: A Tool for Executable Acceptance Test DrivenDevelopment,

2009, In Proc. of 10th International Conference on Agile Processes

and eXtreme Programming (XP 2009)

[MSDN 2010a] Microsoft Corporation; NET Framework Regular Expressions, 2010,

Online (Last cited: 09/03/2010), http://msdn.microsoft.com/en-

us/library/hs600312%28VS.100%29.aspx

[MSDN 2010b] Microsoft Corporation; Introducing the Visual Studio SDK, 2010,

Online (Last cited: 09/03/2010), http://msdn.microsoft.com/en-

us/library/bb286983%28VS.100%29.aspx

[MSDN 2010d] Microsoft Corporation; Automation and Extensibility Overview, 2010,

Online (Last cited: 07/03/2010), http://msdn.microsoft.com/en-

us/library/aa290342%28VS.71%29.aspx

[MSDN 2010e] Microsoft Corporation; How to: Get References to the DTE and DTE2

Objects , 2010, Online (Last cited: 07/03/2010),

http://msdn.microsoft.com/en-us/library/68shb4dw

%28VS.80%29.aspx

[MSDN 2010f] Microsoft Corporation; Visual Studio Command Table (.Vsct) Files,

2010, Online (Last cited: 07/03/2010),

http://msdn.microsoft.com/en-

us/library/bb164699%28VS.100%29.aspx

[Nayyeri 2009b] Nayyeri, Keyvan ; Visual Studio Add-In vs. Integration Package - Part

2, 2009, Online (Last cited: 09/03/2010), http://nayyeri.net/visual-

studio-addin-vs-integration-package-part-2

[Nayyeri 2009c] Nayyeri, Keyvan ; Visual Studio Add-In vs. Integration Package - Part

3, 2009, Online (Last cited: 09/03/2010), http://nayyeri.net/visual-

studio-addin-vs-integration-package-part-3

[Nayyeri 2009d] Nayyeri, Keyvan ; Visual Studio Add-In vs. Integration Package - Part

4, 2009, Online (Last cited: 09/03/2010), http://nayyeri.net/visual-

studio-addin-vs-integration-package-part-4

C

Refactoring of Acceptance Tests in Visual Studio

[Ordelt 2008] Ordelt, Heiko; Refactoring of Acceptance Tests, Hochschule

Mannheim, 2008

[Power 2006] Power, Gus; Values, Practices & Principles, 2006, Online (Last cited:

24/02/2010), http://blog.energizedwork.com/2006/12/values-

practices-principles.html

[Pyxis] Pyxis Technologies; Pyxis Technologies Homepage, , Online (Last cited:

11/02/2010), http://www.pyxis-tech.com/en/

[Pyxis Paper] Andre Brissette, Francois Beauregard; Build the right software, 2007,

Online (Last cited: 04/02/2010),

http://www.greenpeppersoftware.com/confluence/download/attach

ments/5/accurate_developement_wp_en.pdf

[Wells 2009] Wells, James Donovan; Extreme Programming, 2009, Online (Last

cited: 24/02/2010), http://www.extremeprogramming.org/

CI

	Statutory Declaration (German)
	Abstract
	German Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goals
	1.3 Thesis Structure

	2 Related Work
	2.1 FitClipse
	2.2 GreenPepe 2010

	3 Fundamentals
	3.1 Agile Software Development And Agile Methods
	3.2 Extreme Programming (XP)
	3.3 Test Driven Development (TDD)
	3.3.1 Unit Tests
	3.3.2 Acceptance Tests
	3.3.3 Executable Acceptance Test Driven Development

	3.4 Refactoring Of Acceptance Tests
	3.5 GreenPepper Acceptance Tests
	3.5.1 Notation And Layout
	3.5.1.1 RuleFor Interpreter
	3.5.1.2 Scenario Interpreter
	3.5.1.3 Import Interpreter
	3.5.1.4 Info And Comment Interpreter
	3.5.1.5 Other Interpreters

	3.5.2 Fixtures
	3.5.2.1 RuleFor Interpreter
	3.5.2.2 Scenario Interpreter

	3.5.3 Test Results

	3.6 .NET Framework
	3.6.1 C#
	3.6.1.1 Namespaces
	3.6.1.2 Attributes
	3.6.1.3 Regular Expressions

	3.6.2 Visual Studio
	3.6.2.1 Development Tools Extensibility (DTE)	
	3.6.2.2 VSCT Files

	3.6.3 Windows Presentation Foundation (WPF)

	4 Concept
	4.1 Extending Visual Studio 2010
	4.2 Refactoring Workflow
	4.3 Parser For GreenPepper Acceptance Tests
	4.4 C# parser
	4.5 Refactorings
	4.5.1 Rename Test
	4.5.2 Refactorings For RuleFor Tests
	4.5.2.1 Add Given / Expected Value Column
	4.5.2.2 Remove Given / Expected Value Column
	4.5.2.3 Rename Given / Expected Value Column

	4.5.3 Refactorings For Scenario Tests
	4.5.3.1 Add Action
	4.5.3.2 Remove Action
	4.5.3.3 Edit / Rename Action

	4.6 Graphical User Interface (GUI)

	5 Implementation
	5.1 GreenPepper Acceptance Test Parser
	5.1.1 Parser Layer 1
	5.1.2 Parser Layer 2
	5.1.3 Parser Layer 3
	5.1.4 Parser Usage

	5.2 Refactoring Commands
	5.3 Document Interaction In Visual Studio
	5.4 Graphical User Interface (GUI)
	5.5 Core Classes And Interfaces
	5.5.1 IClassCodeManipulator Interface
	5.5.2 Fixture Class
	5.5.3 TestDocument Class
	5.5.4 RefactoringExecuter Class
	5.5.5 ISettings Interface

	6 Conclusion And Future Work
	6.1 Problems
	6.2 Summary And Evaluation
	6.3 Future Work

	References

