
Reactive Variability Management

In Agile Software Development

Yaser Ghanam, Darren Andreychuk, and Frank Maurer

Department of Computer Science

University of Calgary

Calgary, AB, Canada

{yghanam, djandrey, fmaurer}@ucalgary.ca

Abstract — Agile organizations focus on developing software

systems that satisfy their current customer base, without

worrying about best practices to handle variations of

requirements in the system. Scaling agile methods up to adopt

variability management practices in their traditional form is

challenging. In this paper, we discuss the challenges and we

contribute a lightweight, iterative approach that enables agile

organizations to manage variability on demand in a reactive

manner. The approach relies on agile practices like iterative

development, refactoring, and continuous integration and testing.

We present a case study to show how the approach was used to

handle variability arising from technical and usability issues, and

we provide a discussion of the advantages and limitations of the

approach.

I. INTRODUCTION

A. Variability Management

Variability management plays an important role in defining
and handling the parts of the system that may vary. This is
often needed when a number of similar – yet not identical –
systems are to be derived from a common platform to satisfy
different needs. This software paradigm is called Software
Product Line (SPL) engineering [5]. Companies consistently
report that SPLs yield significant improvements. Some
reported reductions in the number of defects in their products
and cuts in costs and time-to-market by a factor of 10 or more
[15]. Commonality between systems is what makes SPLs
economically effective; whereas variability is what makes mass
customization possible. SPLs deal with similar systems as a
family of products sharing a library of core assets. But since
customer requirements are rarely exactly the same, shared
assets have to accommodate a certain degree of variability. For
instance, the customer of an intelligent home system should be
able to choose a subset of components that fulfills his wants. It
should also be possible for customers to tailor certain aspects of
these components to meet their specific needs. A security
module, for example, offers different techniques to secure
access control such as PIN protected locks, access by magnet
cards and finger print authentication. When choosing to have a
security system component, customers may select one or more
of these options.

B. Problem Statement

Traditionally in SPL engineering, variability analysis is
conducted upfront during a phase called domain engineering. A
comprehensive analysis is conducted to specify the
commonalities and variations in the prospective SPL.
Commonality and variability analysis is concerned with
determining the requirements of the members of the software
family, and defining how these requirements may vary. This
includes determining all sources of variation (i.e. variation
points) as well as the allowed values (i.e. variants). After the
domain engineering phase comes the application engineering
phase. As a starting point, application engineers use the
reference architecture, the reusable artifacts, and the variability
profile – that were all defined in the domain engineering phase.
Based on the specific requirements of a certain product,
application engineers make decisions on what variants should
be selected for each variation point. The outcome of this phase
is an instance of the system that represents a specific product.
Ideally, application engineers should provide feedback to
domain engineers pertaining to problems and limitations of the
current architecture or variability definition.

For agile organizations, the focus has been to develop
software systems that satisfy their current customer base,
without worrying about best practices to handle variations of
requirements in the system. Recently, the agile community has
been investigating ways to scale agile up to the enterprise level
rather than the team level like in [12] and [16]. This will
eventually require that agile organizations find a way to adopt
SPL practices to manage variability in customer requirements
in a more effective way. However, adopting SPL practices in
their traditional form is challenging. For one, agile
organizations foster a culture of minimalism in upfront
investment and process overhead including documentation.
This is in direct conflict with traditional approaches to SPL
engineering where a whole phase, namely domain engineering,
is dedicated for domain and requirement analysis upfront.
Moreover, especially during domain engineering,
documentation is deemed essential to communicate knowledge
to application engineers. Secondly, agile organizations depend
heavily on fast delivery as a mechanism for quick customer
satisfaction and feedback, which is too difficult to achieve
when a domain engineering phase is to occur before delivering
any products. Thirdly, the flexibility to accommodate changes

in requirements and new customer requests is an important
characteristic of agile teams. This characteristic will be
compromised if two separate processes – namely domain
engineering and application engineering – are introduced,
because it may slow down the feedback loops between teams.

C. Goal and Contribution

Our goal is to reconcile conflicts between traditional SPL
engineering and agile software development. We argue that for
agile organizations to adopt a SPL approach, a reactive – as
opposed to proactive – framework is more befitting. This paper
contributes a framework that shall allow agile organizations to
incrementally and reactively construct variability profiles for
existing and new systems. The framework leverages common
agile practices such as iterative software development,
refactoring, continuous integration and testing to introduce
variability into systems only when it is needed.

The rest of this paper will be structure as follows. First we
review the literature around the topic of this paper in Section II.
Section III describes the proposed approach. In Section IV we
evaluate our approach using a case study of a real experience.
Finally, Section V discusses the advantages and limitations of
our approach.

II. LITERATURE REVIEW

A. Incremental and Reactive Variability Management

In our research we stress that for an approach to fit well
with agile principles and practices, being incremental and
reactive is key. By “incremental”, we exclude big-bang
transitional approaches. And by “reactive”, we exclude
proactive approaches in which a great amount of upfront
speculation is required. The quest for an incremental and
reactive approach to establishing and managing product lines is
a relatively new phenomenon. For one, organizations did not
want to throw away their investments in legacy systems and
start all over again. Also, for many organizations the transition
to systematically managed variability in their systems was too
big a change if they were to follow the strict domain-then-
application engineering model.

Kruger [11] contributed ideas and commercialized a tool to
ease the transition to software mass customization. The main
idea is that domain engineering and application engineering
should not be separate. Their tool utilizes the concept of
separation of concerns to realize variability in software
systems. The tool is closed source and not available for
academic evaluation. Reactive approaches, with the support of
tools like the one in [11] has been reported to require orders of
magnitude less effort compared to proactive approaches [2].
Clegg et al. [4] proposed a method to incrementally build a
SPL architecture in an object-orientated environment. The
method provides useful insight into realizing variability in an
incremental manner, but does not discuss how to communicate
variability from the requirement engineering phase to the
realization phase. The aim of our work is somewhat similar to
the abovementioned efforts. However, we differ in that we are
not only concerned with realizing variability in a system.

Rather, we are interested in the process of managing variability
as it evolves in an agile context, as will be detailed later.

B. Agile Product Line Engineering

Agility in product lines is a fairly new area of research. In
2006, the 1st workshop on agile product line engineering was
held as part of the 10th international SPL conference [6]. The
workshop aimed at bringing practitioners from the agile
community and the SPL community to discuss commonalities
and points of variation between the two practices. The theme of
the discussions in that workshop was around how feasible it is
to integrate the two approaches. One of the presented efforts
was the iterative approach proposed by Carbon et al. [3]. This
approach is based on PuLSE-I [1] which is a reuse-centric
application engineering process. The proposed approach gives
agile methods the role of tailoring a product for a specific
customer during the application engineering process. The
approach does not discuss the role of agile methods in the
domain engineering phase. In a different venue, Hanssen et al.
[9] described how SPL techniques can be used at the strategic
level of the organization, while agile software development can
be used at the medium-term project level. Also, Paige et al.
[14] proposed building SPLs using Feature Driven
Development. They assert the method worked well when
giving special considerations for the product line architectural
and component design. While these efforts are interesting
attempts to combine concepts from agile software development
and SPL engineering, their goal is different from that of our
research. While their goal is to find ways to introduce or
enhance agility in existing SPLs, our goal is to enable agile
organizations to incrementally and reactively build and manage
SPLs by adopting frameworks that align well with agile
principles and practices. Our goal goes hand in hand with the
recommendations of McGregor [13] who presented an
interesting theoretical attempt to reconstruct a hybrid method.
He concluded that competing philosophies of the two software
paradigms make their integration difficult. But he asserts that
the two can be tailored under the condition that both should
retain their basic characteristics. In our research, we try to tailor
variability management to fit within an agile context such that
the advantageous characteristics of SPL practices are attained
and the agility of software development is not deteriorated.

III. THE PROPOSED APPROACH

This section will present the proposed approach to manage
variability in a reactive manner using agile practices. The
recommended process involves a number of steps, namely:
eliciting new requirements, conducting a variability analysis,
updating the variability profile, refactoring the architecture,
running the tests, realizing the new requirements, and finally
running the tests once again. This is an iterative process that
repeats whenever new requirements are available. Each one of
the steps is discussed in detail in the following subsections.

A. Eliciting New Requirements

This is the first natural step in any software development
process. Traditionally – and especially in the case of SPL
engineering – this is a fairly heavyweight process, because it
involves domain analyses to predict what requirements may be

needed in the future. In agile software development, it is
sufficient to get only the available set of requirements and
divide them into work items that can be achieved in 2- to 4-
week iterations. Speculation is to be avoided as much as
possible. In our approach, we adopt the agile way of
requirement elicitation. We also use a customer-driven
elicitation process. This means that unless something is
actually requested (or needed) by a known customer, we do not
invest into incorporating it in the development process.

B. Variability Analysis

Variability analysis is traditionally conducted upfront in the
domain engineering phase. Elicited requirements are analyzed
in terms of what they share in common, and in what aspects
they may vary. Sources of variations are determined, and they
are called variation points. The allowed values for these
variation points are also determined, and they are called
variants. In our approach, we avoid a one-shot upfront
variability analysis, simply because it does not fit within the
iterative nature of requirement elicitation in agile methods.
Rather, we conduct a variability analysis every iteration
between the current requirements in the system and the newly
elicited requirements.

During variability analysis, we use lightweight techniques
to determine the commonalities and variations between the new
requirements and the existing ones. Although we do not specify
a certain technique to conduct this analysis, we recommend the
use of a simple issue-implication table that lists all the issues
that may cause variability in the system, and their implications
in terms of variability. In each iteration, the expected outcome
of this step is a list of changes to the variability profile. This
includes new variation points, new variants for existing
variation points, and new abstraction of common aspects. In
Section IV, we use a case study to illustrate in detail how this is
done in a real setting.

C. Updating the Variability Profile

By variability profile we refer to the list of all variation
points in the system and their variants. They are usually
expressed in a formal representation or using a feature model
[10]. In this paper, we use this simple notation to illustrate the
idea:

Variation Point X = {Variant A, Variant B}
Variant A = [feature1,feature2, feature3]
Variant B = [feature1`,feature2`,feature3`]
Where: {} implies OR grouping; [] implies AND grouping.

After the variability analysis step in each iteration, we
update the variability profile with any new variation points or
variants arising due to the new requirements (in cases where
there are no changes to the variability in the system, we may
not need to do that). It is important to keep a variability profile
for the system to ensure that all aspects of variability are
traceable to code artifacts and that they are communicated well
to all stakeholders through and after the development process.
Variability profiles are also used to explicate any dependencies
and constraints between variation points and variants. In [8],
we explain in great detail how to maintain variability profiles
using feature models and executable acceptance tests.

D. Refactoring the Architecture

Using the refactoring techniques described in [13], the
architecture has to be refactored in order to accommodate the
new variability. For example, new architecture layers can be
introduced to abstract common aspects, and other layers can be
specialized to handle variable aspects. It is important to note
that the goal of this step is to refactor the architecture to be
ready to accommodate the new version of the variability
profile, and not to realize this variability. The actual realization
of that variability happens at a later step. For example, suppose
a feature x existed in the system before the current iteration. If
feature y in the new requirements is just another variation of
feature x, then a new variation point is defined. Although we
have two different variants x and y, at this point we only
consider the existing, not the new, variant. Thus, the
architecture is refactored to accommodate a variation point
with the variant x. This is important because we would like to
separate the side effects of refactoring from those of adding
new functionality.

E. Running the Tests

To make sure the refactoring process in the previous step
did not have any side effects, we run all the tests in the system.
This includes executing automated unit tests and acceptance
tests as well as running all manual regression tests (usually
used to test user interfaces and hardware related functionality).
If a test fails, this means the refactoring process needs to be
fixed, undone or redone to make this test pass again. We should
not proceed to the next step until all tests are in a passing state.

F. Realizing the New Requirements

Having refactored the architecture to be able to realize the
new variability (if any), in this step developers implement the
new functionality. The developers should produce test artifacts
either before (using test-driven development) or after writing
the production code.

G. Running the Tests (again)

This step is similar to step E. All tests for the new

functionalities as well as the older ones have to be run in order

to make sure the new changes are actually verified and

validated, and that the old functionality is not impacted by

these changes. When all tests pass, a new iteration of the

process can take place when needed.

IV. A CASE STUDY

A. Experience Context

System Overview:
The application we will discuss throughout this paper is

called eHome. It is a software system to monitor and control
smart homes. Generally, the interface of the application
consists of a floor plan representing the smart environment to
be controlled, a number of items that can be dragged and
dropped on the floor plan, and a set of graphical user interface
(GUI) controls. A screenshot is shown in Figure 1.

Figure 1. eHome application

Interacting with eHome occurs in two modes, namely:

(a) user mode which allows the dwellers to obtain information

about climate variables in the home such as temperature,

humidity, CO2 levels and other sensory information, check the

current status of certain devices in the home such as lights

being on or off, change the status of devices such as turning

lights on and off, keep track of items in containers such as a

fridge or a medicine cabinet using RFID.

(b) designer mode which allows the users to add devices to be

monitored and controlled, drop an icon of the device onto the

floor plan and attach it to the actual device, add sensors to get

climate information, add containers (e.g. medicine cabinet)

and add items to the containers (e.g. pill bottles).

Initial Development:

The abovementioned features were all requested by an
industrial partner we have been working with for the past year.
The initial request was to deploy eHome on an HP TouchSmart
PC

1
 which has a single-touch vertical display. However, actual

development of eHome was done on normal PCs with different
screen dimensions and no touch capabilities. When we
deployed eHome on the HP machine (which happened
frequently because we had a testing HP PC onsite), we often
needed to adjust certain scaling factors to fit the HP wide
screen. We also realized that some decisions that had been
made during development on the normal PCs needed to be
revisited. Examples are:

- The size and design of some GUI elements made it
challenging to interact with eHome using a finger touch
because the latter is much thicker and less accurate than a
mouse pointer.

- One event in eHome was triggered by a right-click which,
on a touch-screen, did not make sense.

New Technologies:

As we went along, we wanted to deploy eHome on a large-
scale SMART DViT Table

2
 with an older version of the

SMART SDK. A later request from our partner was to deploy

1
 HP TouchSmart IQ770 PC datasheet, available at:

http://www.hp.com/hpinfo/newsroom/press_kits/2007/ces/ds_pc_touchsmart.p

df, last accessed June 18, 2009.
2
 DViT Technology, available at: http://smarttech.com/DViT, last accessed

June 18, 2009.

eHome on a digital tabletop they had recently purchased.
Specifically, it was the New SMART Table

3
 which supported

multi-touch input and had a newer version of the SMART
SDK. Later on, we obtained a Microsoft Surface and we
decided to include it within the hardware platforms that we
should support. As more platforms were supported, more
decisions were revisited and the software design underwent
drastic yet incremental changes. These changes were mainly
driven by the two factors we mentioned in Section 1: technical
issues and usability issues. Examples of such issues include:

- Three different SDKs that dealt with touch point input, one

for each hardware platform.

- Conventional GUI elements like menus and tabs assumed a

single orientation (vertical).

Sources of Variability in eHome:

The technical and usability issues were not the only sources
of variability in eHome. In fact, the first source of variability
was business-driven. Smart homes vary widely with regards to
what smart devices exist in the home, and what kind of
monitoring and controlling is requested by a given customer.
This variation in requirements often results in delivering a
different application for each smart home. However, in spite of
the differences between these applications, they share a lot of
underlying functionality and business logic. Therefore, it is
better to think of these applications as a family of systems that
are somewhat similar yet not identical – which is the general
understanding of what a Software Product Line (SPL) is. In this
paper, we will not discuss SPLs in terms of business-driven
variability – but we will focus on technical- and usability-
driven variability due to the utilization of vertical and
horizontal displays.

B. Using the Approach

When dealing with a new and fast-changing technology like
digital tabletops, uncertainty about the future can be too high.
This in turn might render useless any efforts to speculate these
needs. In the development of eHome, we avoided huge
investments in upfront work. Instead, we followed a bottom-up,
evolutionary approach to develop and maintain the SPL. We
incrementally embraced new variations as needed, and allowed
our common platform to evolve gradually. The following
sections will discuss this matter in more detail.

In the discussion to follow, each section talks about one
variability aspect. For each aspect, we analyze the issues we
encountered and their implications on our system, and then we
describe our approach to contain them. Although the examples
we provide are specific to our system, this does not deteriorate
the generality of the analysis or the proposed approach –
because we believe that researchers and practitioners in this
field will encounter similar issues and implications that can
generally be resolved using the same approach.

3
 SMART Table datasheet, available at: www2.smarttech.com/st/en-

US/Products/SMART+Table, last accessed June 12, 2009.

Variability within Vertical Displays:

By vertical displays, we refer to the normal PCs that were
used by developers to develop eHome as well as the HP
TouchSmart PC on which eHome was initially deployed. The
differences between these two groups were issues related to the
mouse-versus-touch input. Table 1 describes these issues and
their implications.

TABLE 1. VARIABILITY BETWEEN A NORMAL PC AND AN HP TOUCHSMART PC

Issue Implication

Right-click events do not make
sense on a touch screen.

An alternate way (provided by the HP
machine) to capture the right-click event

on the touch screen was „press-&-hold‟.

The tip of the mouse cursor is
tiny and accurate compared to

the tip of a finger.

All GUI objects have to be larger to
accommodate the finger touch more

precisely.

When applying a touch on the

vertical surface, the body of the

finger covers some content on

the screen (Figure 2a).

A vertical slider that was used to control

the intensity of a light was changed into

a horizontal slider (Figure 2b).

(a) (b)

Figure 2. (a) part of the vertical slider is blocked by the body of the finger.
(b) the horizontal slider solves this issue.

As mentioned earlier, the development for normal PCs and
HP TouchSmart PCs was the initial stage in the evolution of
eHome. At that stage, the architecture of eHome looked like the
one in Figure 3a. The Presentation layer included all the view-
related elements, whereas the UI Controller managed the
communication between the Presentation layer and the Data
Object Model. The Hardware Controller was responsible for
communication between the actual hardware devices with the
Model or the UI Controller. External Resources included the
hardware devices, XML configuration files, and web services.

(a) (b)
Figure 3. eHome architecture (a) before and (b) after considering variability at

the Input Manager layer.

At first when we only considered the first issue (right-click
vs. press-&-hold) as a source of variability, a conceptual layer
was added to reflect this variability as shown in Figure 3b
(previously, input was managed within the Presentation layer).
The common platform included everything but the Input
Manager where variability occurred. One variation point was
defined as “input mechanism” with the two variants “mouse”
and “touch.” Later, when the other two issues were to be
managed, variability penetrated down to the Presentation layer
as shown in Figure 4. That is, the variability profile we had so
far could be described as:

Input Mechanism = {mouse, touch}

Mouse = [scale factor x, vertical slider, right-click]

Touch = [scale factor y, horizontal slider, press-&-hold]

Variability between Vertical & Horizontal Displays

To migrate eHome from a vertical surface to a horizontal
one, we initially deployed eHome on a horizontal display
without any modification to understand the differences. After a
number of usability observations and going back and forth
between the vertical and horizontal settings, we realized a raft
of issues. Table 2 (on page 7) lists these issues and their
implications on the migration process. In this paper, we do not
argue that these implications improved usability as this is yet to
be appraised. The point, however, is that usability issues
introduced new sources of variability. At this stage, we realized
new variability occurring at the same two layers of the
architecture. Not only did we have to go back and modify the
variability we had previously defined in the Input Manager, but
we also needed to explicate more variability in the Presentation
layer. All the other layers were left intact. The updated
variability profile included the following:

Input mechanism = {mouse, single touch, multi-touch}

Mouse = [right-click], Single-touch = [press-&-hold],

Multi-touch = [press-&-hold, two-touch-zooming, gesture support]

Layout = {normal PC, TouchSmart PC, digital tabletop}

Normal PC = [scale factor x, vertical slider, conventional GUI

controls, textual feedback]

TouchSmart PC = [scale factor y, horizontal slider, conventional

GUI controls, textual feedback]

Digital tabletop = [scale factor z, circular slider, redundant GUI

controls, text-less feedback]

Figure 4. Architecture after considering variability at the Presentation layer.

Variability within Horizontal Displays

In the previous sections, we discussed variability due to
differences between vertical displays. We then discussed
variability due to the migration of eHome from a vertical
display into a horizontal one. This section will discuss
variability that was due to differences between horizontal
displays. By horizontal displays, we namely refer to three
hardware platforms: SMART DViT Table, New SMART
Table, and Microsoft Surface. As illustrated in Table 3 (on
page 7), we dealt with three different SDKs, two of which were
different versions from the same vendor. The first tabletop on
which eHome was deployed was the SMART DViT Table. We
utilized the dual-touch capability of this table by adding a
feature that allowed the user to place two touch points on the
floor plan to zoom in and out. This kind of interaction required
the hardware platform to support at least two simultaneous
touches, which made the interaction irrelevant to the previous
hardware platforms. For this reason, we chose not to include

this interaction with the rest of the interactions in eHome that
were common to all platforms.

Rather, a specialized controller was introduced in the UI
Controller layer to manage all communication between eHome
and the touch handlers in the SMART SDK, as shown in
Figure 7 – A. By this separation, it was easier to plug this
feature in and out. The new controller was responsible for
managing three events, namely: TouchDown, TouchUp and
TouchMove. In case the touch events were part of a zooming
interaction, the specialized controller will handle the zooming.
Otherwise, the touch events were rerouted to mouse events we
had previously defined in the UI Controller for the previous
platforms in order to maximize code reuse and avoid code
redundancy.

Figure 5. eHome on a horizontal display has redundant GUI elements to

support multiple orientations.

Figure 6. Circular slider to control light intensity

Figure 7. The evolution of variability due to differences in the SDKs

The second step was deploying eHome on the New
SMART Table. The New SMART Table came with its own
SDK, and the technology was different from the older table.
Therefore, a new specialized hardware controller was also
created to manage communication between eHome and the
touch handlers in the new SMART SDK. At this stage, we had
two different controllers one for each table. These controllers,
however, shared common aspects such as the main triggering
events and the zooming interaction. These common aspects
were abstracted in a new layer we called “Multi-Touch
Library” as shown in Figure 7 – B. The new layer was
abstracted in a way so that it was completely agnostic to the
target hardware platform – all specificities were kept in the
specialized controllers.

Later on, this abstraction served well in accommodating the
new digital tabletop – MS Surface. That is, it only took about
one day worth of work to deploy eHome on MS Surface,
because all we needed to do was create a new specialized
controller to communicate with the Surface SDK, while all
other aspects were managed by the Multi-Touch Library.
Figure 7 – C shows the final organization. As was done before,
variability was evolved to include a new layer, namely the UI
Controller layer. The following variation point was added to
the variability profile:

Multi-Touch SDK = {SMART DViT Table, New SMART Table, MS
Surface}

SMART DViT Table = [old SMART SDK], New SMART Table = [new
SMART SDK], MS Surface = [Surface SDK]

V. DISCUSSION

In the previous sections, we discussed an approach to
reactively manage variability in systems using agile practices.
We also reported a case study where we used the approach to
manage variability in an application that was to be deployed on
a number of different hardware platforms. In this section, we
discuss the advantages and limitations of our approach as
learned from the case study.

A. Opportunistic Reuse of Code and Test Artifacts

In the case of eHome, about 60% of the code (production
and testing) is reused amongst all platforms. This figure could
even be higher for systems that have a thinner presentation
layer than the one in eHome. Maximizing reuse is desirable
because it lessens the time and effort to produce new products
and maintain existing ones. For instance, if the underlying
technology for a certain feature (e.g. item tracking) changes,
we need to make the proper modification in the common
platform only once. Then we re-instantiate different products
for the five different platforms we support. Also, say a vendor
produced a new digital tabletop technology. All the work we
need to do is at the UI Controller layer. The common platform
can be used as is without any changes. However, this flexibility
to change, adapt and reuse is achieved through a good
understanding of the variability profile of the product line –
which makes explicating and managing variability essential.

B. Explicating and Managing Variability

Adopting a SPL practice provides a systematic approach to
think about and handle variations in the family. That is, before
deciding to support a new digital tabletop platform, we need to
know what is different about the new platform that cannot be
supported by the existing product line. If there is any
difference, then decisions need to be taken on where in the
architecture this variation should be accommodated and what
impact it will have on other platforms in the family. Without
having an explicit variability profile of the SPL, taking such
decisions becomes more difficult and is accompanied with
higher risks. More importantly, with the variability profile the
instantiation process of different products can be formalized by
looking at each product in the product line as a function of the
variation points. That is, any product P in the family is
formalized as:

P = f (vpa,vpb,…) = f ({v1a,v2a,…}, {v1b,v2b,…}, …)

Where vp: variation point, v: variant, {}: OR operator

For instance, let‟s consider the variability profile of eHome.
To produce a product that is specific to the HP TouchSmart

PC, we need to specify the variants as: Input mechanism > Single-
touch = [press-&-hold]

Layout > TouchSmart PC = [scale factor y, horizontal slider,
conventional GUI controls, textual feedback]

TABLE 2. ISSUES LEADING TO VARIABILITY BETWEEN VERTICAL AND HORIZONTAL DISPLAYS

Issue Implications

Horizontal displays are, typically, physically larger than vertical ones. A new scaling adjustment factor is defined for UI objects to make them bigger,

and hence easier to interact with, on larger displays.

Horizontal displays deal with multiple touch points not only single touch points
or mouse clicks.

This new input mechanism needs to be incorporated into the Input Manager
layer as a new variant.

Conventional GUI elements like buttons, menus and tabs were oriented in a

top-down fashion, which for a horizontal surface did not seem natural because

people sit on different sides of the table.

The conventional GUI elements were replaced by panels available on each of

the four sides of the tabletop, as shown in Figure 5.

Instead of one Exit button on the top left corner of the screen, an Exit button
was added on each corner of the tabletop.

The “change mode” button (user/designer) was removed. Instead, the change of

mode on the digital tabletop happens automatically.

Feedback to the user was provided using a status bar at the bottom of the

screen, which was not suitable for a multi-oriented surface (i.e. horizontal

display).

Alternative ways to provide feedback were used. For example, when a certain

operation executes successfully, the corresponding icon on the surface glows.

When using a slider control, vertical and horizontal sliders seemed
counterintuitive if there were people sitting around the table (e.g. if you go up

in a vertical slider, it seems as if you are going down for a person sitting

opposite to you).

A circular slider was used with clearly flagged ON/OFF positions, as shown in
Figure 6. Regardless of where you sit around the table, if the handle of the

slider is moving towards the ON button, then the intensity is increasing and

vice versa.

Some features were not readily easy to use for everybody around the table

because the UI controls were closer to a certain part of the screen.

For deleting an object, instead of a single trash can on the bottom right corner

of the screen, if the user touches an object while in the designer mode, the user

has the option to drag it to any of the trash cans distributed on the corners of the
screen.

Readability of text on the horizontal display was limited because of the

presumed top-down orientation.

The horizontal interface includes far less text than the vertical one. Descriptive

icons and UI controls, animations, as well as visual cues like pulsation or

glowing are used to replace text.

With multi-touch capabilities, horizontal displays provided new interactions

that were not possible on vertical displays (This was specific to our case – new

versions of the HP TouchSmart PCs support dual-touch interactions).

On horizontal displays, it was made possible to zoom in and out of the floor

plan using two finger touches.

On a big scale tabletop, drag-and-drop became difficult due to the physical

limitations on the reach of an arm.

Gestures were made available as additional (not substitutional) ways of

executing certain features. For example, to delete an object, one can use a

scratch gesture.

TABLE 3. DIFFERENCES BETWEEN THE SMAR DVIT TABLE, NEW SMART TABLE, AND MS SURFACE

 Picture Issues Implications

Dimensions

L x W cm

Touch

Points

SDK

SMART

DViT

Table

240 x 100 2 SMART

SDK

old version

- The aspect ratio of the SMART DViT Table is 2.4

(compared to 1.33 for the New SMART Table and 1.56 for

MS Surface). This introduced challenges in treating all four

sides of the table equally. For example, instead of four
panels, we only put two panels, one on each long side of

the SMART DViT Table, because the floor plan could not

rotate with its full size except for a full 180 degrees.
- An abstraction layer was introduced to embrace the

different ways the SDKs deal with touch points.

- Although we did not encounter this problem, we
anticipated that when we add features that should support

collaborative work, the limitation of 2 touch points might

be a source of variability.

New

SMART

Table

55.9 x 41.9 40 SMART

SDK

new
version

MS

Surface

108 x 69.0 Large

number -

exact
number

unknown

Surface

SDK

Or: PTouchSmart PC = f (input mechanism, layout)

 = f (single-touch, TouchSmart PC)

This formal representation is then fed to the SPL through a
configuration file or any other mechanism in order to start the
instantiation of a specific product.

C. The Ability to Form Combinations

One more advantage of the systematic treatment of
variability is the ability to combine different variants to come
up with diverse products. For example, suppose we want to
support the new HP TouchSmart PC that enables two
simultaneous touches. We can come up with a new
combination of variants to add the zooming behavior:

Input mechanism > Multi-touch = [press-&-hold, two-touch-zooming,

gesture support]

Layout > TouchSmart PC = [scale factor y, horizontal slider,

conventional GUI controls, textual feedback]

Or: PNew TouchSmart PC = f (multi-touch, TouchSmart PC)

That is, by choosing a different variant for a given variation

point, we ended up with a different product for the new
platform. Constraints are usually defined to filter out invalid
combinations.

We understand that some of these advantages are inherited
from the SPL practice itself. However, it is imperative to point
out that using our iterative approach allows organizations to
realize the same advantages in a way that is more cost effective
(because it is lightweight) and less risky (because it minimizes
speculation), and with a faster return on investment (because
systems are continuously delivered as opposed to waiting until
the application engineering phase).

D. Limitations

The main limitation of our approach is that there is no clear
definition of the roles needed in the different steps. For
example, who in a typical agile organization should conduct the
variability analysis? Can developers assume the responsibility
of updating the variability profile? This is vital because
variability analysis and profiling require a wide knowledge of
existing requirements in the system. Therefore, a developer
who only worked on a certain aspect of the system may not be
qualified for this role. A second concern we had about the
proposed approach is the amount of discipline needed to
implement the approach successfully. For example, the
approach relies on the premise that tests are written for all
features in the system and that sufficient test coverage is
available. In our case, eHome had an automated testing
coverage as high as 90% of the model code. We also defined a
suite of regression tests to be conducted manually to test UI
and hardware related issues. We are not sure what the
consequences are if good testing practices are not present in the
organization. We intend to conduct a more systematic
evaluation in the fall of 2010 in order to draw more reliable
conclusions on the advantages of our approach as well as its
limitations.

VI. CONCLUSION

The general goal of our research is to reconcile conflicts
between traditional SPL engineering and agile software
development. This paper contributes a framework that allows
agile organizations to reactively construct variability profiles
for existing and new systems. The framework leverages
common agile practices such as iterative software
development, refactoring, continuous integration and testing to
introduce variability into systems only when it is needed. We
showed, by example, how to use the proposed approach, and
we discussed the advantages that can be realized, and the
limitations that may hinder successful adoption of the
approach. Future work includes evaluating the approach in an
agile organization to form a better understanding of the
practicality and feasibility of the approach.

REFERENCES

[1] Bayer, J., Gacek, C., Muthig, D., and Widen, T., “PuLSE-I: Deriving
Instances from a Product Line Infrastructure”, Proceedings of the 7th
IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, 2000, pp. 237 - 245.

[2] Buhrdorf, R., Churchett, D., and Krueger, C., Salion‟s Experience with
a Reactive Software Product Line Approach, Revised Papers of the 5th
International Workshop, PFE 2003, Siena, Italy, November 4-6, 2003.

[3] Carbon, R., Lindvall, M., Muthig, D., and Costa, P., Integrating PLE and
agile methods: flexible design up-front vs. incremental design”, The 1st
International Workshop on APLE, 2006 - SPLC.

[4] Clegg, K., Kelly, T., McDermid, J., Incremental Product-Line
Development, International Workshop on PLE, Seattle, 2002.

[5] Clements, P., and Northrop, L., Software Product Lines: Practice and
Patterns, Addison-Wesley, 2001.

[6] Cooper, K., and Franch, X., "APLE 1st International Workshop on Agile
Product Line Engineering", SPLC, 2006.

[7] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts D.,
Refactoring: improving the design of existing code. Addison-Wesley,
1990.

[8] Ghanam, Y., and Maurer, F., Linking Feature Models to Code Artifacts
using Executable Acceptance Tests, to appear in the proceedings of the
14th International Software Product Line Conference (SPLC 2010),
South Korea, September 2010.

[9] Hanssen, G., and Fægri, T., Process Fusion: An Industrial Case Study on
Agile Software Product Line Engineering, special Issue of Journal of
Systems and Software (JSS), 2008.

[10] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A., FODA
Feasibility Study, SEI Technical Report, 1990.

[11] Kruger, C., Easing the Transition to Software Mass Customization, in
Proceedings of the 4th International Workshop on Product Family
Engineering, Germany, 2002.

[12] Leffingwell, D., Scaling Software Agility: Best Practices for Large
Enterprises, Addison-Wesley Professional, 1st edition, 2007.

[13] McGregor, J. Agile Software Product Lines, Deconstructed, Journal of
Object Technology, 7(8), 2008

[14] Paige, R., Xiaochen, W., Stephenson, Z., and Phillip J., Towards an
Agile Process for Building Software Product Lines, XP 2006, 198 – 199.

[15] Schmid, K., and Verlage, M., The Economic Impact of Product Line
Adoption and Evolution, IEEE Software, 19 (4), pp. 50-57, 2002.

[16] Shalloway, A., Beaver, G., and Trott, J., Lean-Agile Software
Development: Achieving Enterprise Agility, Addison-Wesley
Professional, 1st edition, 2009.

http://www.netobjectives.com/bio-alan-shalloway
http://www.netobjectives.com/bio-guy-beaver

