
Information and Software Technology 54 (2012) 968–984
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Making the leap to a software platform strategy: Issues and challenges

Yaser Ghanam a,⇑, Frank Maurer a, Pekka Abrahamsson b

a Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada T2N 1N4
b Department of Computer Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 March 2011
Received in revised form 1 March 2012
Accepted 2 March 2012
Available online 30 March 2012

Keywords:
Software platform
Software reuse
Platform challenges
Ethnographic study
Grounded Theory
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.03.005

⇑ Corresponding author. Tel.: +1 403 220 6317.
E-mail addresses: yghanam@gmail.com (Y. Ghanam

(F. Maurer), pekka.abrahamsson@cs.helsinki.fi (P. Abr
Context: While there are many success stories of achieving high reuse and improved quality using soft-
ware platforms, there is a need to investigate the issues and challenges organizations face when transi-
tioning to a software platform strategy.
Objective: This case study provides a comprehensive taxonomy of the challenges faced when a medium-
scale organization decided to adopt software platforms. The study also reveals how new trends in
software engineering (i.e. agile methods, distributed development, and flat management structures)
interplayed with the chosen platform strategy.
Method: We used an ethnographic approach to collect data by spending time at a medium-scale company
in Scandinavia. We conducted 16 in-depth interviews with representatives of eight different teams, three
of which were working on three separate platforms. The collected data was analyzed using Grounded
Theory.
Results: The findings identify four classes of challenges, namely: business challenges, organizational chal-
lenges, technical challenges, and people challenges. The article explains how these findings can be used to
help researchers and practitioners identify practical solutions and required tool support.
Conclusion: The organization’s decision to adopt a software platform strategy introduced a number of
challenges. These challenges need to be understood and addressed in order to reap the benefits of reuse.
Researchers need to further investigate issues such as supportive organizational structures for platform
development, the role of agile methods in software platforms, tool support for testing and continuous
integration in the platform context, and reuse recommendation systems.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the areas that has contributed to the advancement of the
software engineering field is software reuse. Simply put, software
reuse is the notion of building software products using artifacts
that were used in building other software products [50]. This
definition has grown in complexity as the research area expanded.
What is to be reused has also changed overtime. Initially, code
reuse was the main objective. Nowadays, reuse includes other arti-
facts such as design documents, use cases, test cases as well as pro-
cesses and procedures [44]. Some estimates suggest that 60% of the
design of all business applications is reusable [53], and only 15% of
software code is unique in a given domain or organization [12].
Many advantages of software reuse have been reported in the lit-
erature [19,12,16,25], namely: fast delivery of products as less
development and testing is required, reduced development and
ll rights reserved.

), frank.maurer@ucalgary.ca
ahamsson).
maintenance costs, improved quality of reused artifacts, reduced
risks by reusing a previously proved solution, and better project
estimates for time and cost.

One strategic way to achieve reuse is to adopt a software
platform approach. We use the term platform to refer to a set of
sub-systems and interfaces that form a common infrastructure from
which a set of related products (aka. a product family) can be devel-
oped [36]. This involves reusing relevant artifacts in the platform,
and then a customization process to produce unique products [25].

The decision to adopt software platforms is a strategic one that
is taken at the organizational level [37]. While literature is abun-
dant on success stories of adopting a software platform strategy
(e.g. [31,49]), there is a need to investigate the issues and chal-
lenges that organizations face when making the leap to software
platforms.

The goal of this study is to provide an understanding of the
issues and challenges that may hinder the adoption of platforms
as a reuse strategy. To achieve this goal, we studied an organization
that underwent a transition to a platform strategy. The study was
conducted in light of the following research questions:

http://dx.doi.org/10.1016/j.infsof.2012.03.005
mailto:yghanam@gmail.com
mailto:frank.maurer@ucalgary.ca
mailto:pekka.abrahamsson@cs.helsinki.fi
http://dx.doi.org/10.1016/j.infsof.2012.03.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 969
RQ1. What were the general issues and challenges that the
organization faced when making the transition to a software
platform strategy?
RQ2. What were the specific issues and challenges imposed by
recent trends in modern software engineering such as agile
methods [47], distributed development, and flat management
structures within the context of the new platform?

The main motivation for conducting this study is that the notion
of reuse in general has many advantages to offer, but it has not yet
been utilized in its full potential due to a number of unsolved
issues. As Frakes and Kang [51] suggest, ‘‘reuse research has been
ongoing since the late 1960s and domain engineering research
since the 1980s. Much has been accomplished, but there is still
much to do before the vision of better system building via reuse
and domain engineering is completely achieved.’’ Also, according
to Garlan et al. [7], between 1995 and 2009 (the year of their pub-
lication), the nature of software systems has changed dramatically;
yet software reuse remains a challenge. Therefore, in this study, we
aim to reach a better understanding of the impediments that stand
in the way of adopting platforms as a reuse paradigm.

The significance of our investigation is twofold. For one, it offers
practitioners a detailed case study of the expected challenges when
adopting software platforms and the abovementioned approaches.
The resulting understanding allows business and technical leads to
have more reasonable expectations, set more realistic goals, and
make better informed decisions when planning changes and allo-
cating resources for transitioning to a platform strategy. Secondly,
this investigation opens new directions of research by revealing
the organizational and engineering problems associated with plat-
form development that need to be tackled to ensure a smoother
transition to software platforms. Discussing remedies for the iden-
tified challenges is beyond the scope of this article. However, we
dedicate a full section in this article to show – by example – how
to use the findings to propose remedies and identify needs for tool
support.

The remaining of this article will be structured as follows: Sec-
tion 2 provides an overview of relevant work in the literature. Sec-
tion 3 provides an elaborate description of our research
methodology. Section 4 describes the issues and challenges identi-
fied in this research. Section 5 provides a discussion of how the
results of this research can be used to find solutions and build tool
support if needed. Section 6 talks about the generality of the find-
ings and possible threats to their validity. Section 7 provides a
comparison between this work and other work in the literature.
And finally, we draw some conclusions in Section 8.

2. Literature review

The transition to a software platform strategy in its different
forms (e.g. software product lines) has increasingly become a
noticeable trend in the software industry. Literature is available
on success stories as well as challenging transitions, although the
latter is less abundant. For example, Romberg [49] analyzed a
number of successful attempts to adopt software platforms. He
listed – as examples – video game consoles, IBM Lotus Notes
(which has recently been integrated with IBM’s Websphere), and
the Apache Server. The author mentioned that one challenge com-
mon to all these cases was the need to redefine the platform archi-
tecture as the demands of the market kept evolving. Also, Hetrick
et al. [52] reported on their experience of transitioning to software
product lines – which was carried out in an incremental manner in
order to avoid the typical up-front adoption barrier. They asserted
that the transition required tackling a number of issues including
technical issues (e.g. consolidating core assets, quality assurance),
and non-technical issues (e.g. team organization, processes). More-
over, a report on Motorola’s experience with transitioning to a
reuse strategy [45] identified a number of issues that somehow
hindered the transition such as political agendas, substantial time
investment up-front, and resistance of senior executives and mid-
dle managers in the company. Furthermore, Garlan et al. [7] dis-
cussed their experience in trying to adopt reuse as an economical
strategy to build software systems. The authors stated that they
had understood what components they needed, they had engi-
neered these components for reuse, they had had the skills to
implement these components, and they had used these compo-
nents as prescribed. Nonetheless, their transition to the reuse
strategy still failed ‘‘miserably’’ due to what they called architec-
tural mismatch. The authors also mentioned a number of other
challenges such as building trust in the reusable assets, and coping
with the evolution of the architecture.

In an attempt to understand common challenges that face orga-
nizations when adopting reuse in its different forms, Schmidt [9]
outlined a number of challenges that could drive software reuse in
general towards failure if not addressed properly. The author put
organizational impediments on top of his list and mentioned other
types of challenges including economic challenges, administrative
challenges, political challenges, and psychological challenges. Fur-
thermore, in the discussion of the status of software reuse research,
Frakes and Kang [51] identified a number of unsolved issues such as
scalability issues, large up-front investments needed to adopt a cen-
tralized reuse strategy, and safety and reliability concerns. Also, Kul-
andai et al. [46] discussed challenges in developing a software
platform from the perspective of a platform architect. They listed
a number of – mainly technical – impediments such as design chal-
lenges (e.g. segregation of the presentation layer), integration chal-
lenges between components developed by multiple teams, and
testing challenges. Griss [32] identified a number of factors that
need to be taken into consideration in order to enable the success
of software platforms such as the business drive, the architecture,
the process, and the organization.

In engineering domains other than the software domain,
researchers have reported numerous challenges that stand in the
way of a smooth transition to platforms. For example, Muffatto
and Roveda [38] analyzed three industrial studies in the electro-
mechanical industry and suggested that some key issues need to
be addressed to achieve a successful platform practice such as
team management, co-location, and standardization.

Compared to research on reuse challenges, a smaller body of re-
search is available on the impact of modern trends in the software
industry such as agile methods and flat management structures on
reuse. Some work in the literature focused on integrating reuse and
agile methods like the work by Hummel and Atkinson [42], Raati-
kainen et al. [39], and Ghanam and Maurer [55]. Another realm of
research focused on distributed development in the context of re-
use such as Dhungana et al. [6] and Schmid [27].

Looking at the literature review above, we believe our research
as presented in this article fills a number of gaps. First, the reuse
issues and challenges available in the literature are mostly scat-
tered in different areas of research (e.g. management, architecture,
component-based software). Therefore, for researchers and practi-
tioners who have an interest in this field, populating a comprehen-
sive list of challenges in a single article would be of a great value.
Also, to get an idea of how much progress the reuse community has
made in the past decade or so, it is imperative that we take a fresh
look at reuse and determine whether the issues and challenges re-
ported in older research endeavors still exist. Furthermore, the lit-
erature in the field of software reuse is missing a more in-depth
analysis of the impact of modern practices in software engineering
on reuse. In this article, we highlight practices like agile methods



970 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
and distributed development, and we show their effect on the re-
use process.

Moreover, the general pattern of the research efforts in this area
tends to follow a single–angle exploration in which the researchers
study the challenges from a technical perspective, a management
perspective, or any other interesting perspective. This kind of
investigation has its own advantages, but it may result in an
incomplete understanding of the observed phenomena. In this arti-
cle, we try to fill this gap by allowing a number of perspectives to
freely emerge from the collected data – which in turn provides a
holistic view of the issues and challenges found. That is, in the arti-
cle, we see how technical challenges and non-technical challenges
interplay in the same organization. Also, the literature in the soft-
ware engineering domain can benefit from an analysis as to how
the issues and challenges of reuse found in other domains (e.g.
manufacturing) generalize to software engineering. Identifying this
overlap will enable researchers and practitioners in the software
engineering field to learn and maybe ‘‘reuse’’ some of the solutions
implemented elsewhere.

At the end of this article (Section 7), we revisit relevant work in
the literature in order to conduct an in-depth comparison between
the findings of this research and those of other research endeavors.

3. Research method

3.1. Research context

Our research was conducted in a software company in Scandi-
navia. To comply with the non-disclosure agreement signed with
the company, we use the pseudonym ‘‘Scandin’’ to refer to the
company thereafter. In its domain, Scandin is considered one of
the most influential players in Europe, and it has a significant im-
pact on the market in North America and other parts of the world.
The company provides solution packages to individuals as well as
corporations and third-party service providers. Scandin has over
800 employees – about half of them work in software develop-
ment. We describe Scandin as a medium-scale organization (com-
pared to larger organizations in Scandinavia like Nokia). In addition
to its headquarters in Scandinavia, the company has four other
locations (aka. business units) in other parts of Europe and Asia.
The company uses outsourcing for some software projects. Scandin
has a flat management structure in the sense that they have cut
middle-management layers and provided a less-authoritative
organizational structure to ensure the direct involvement of
employees in the decision making process. About 8 years ago,
Scandin took its first steps to adopt agile software development.
Software projects were mainly centered on the development and
maintenance of a single solution that required high responsiveness
to market needs in order to be able to compete globally. Recently,
the company – driven by its new business strategy – decided to
build a portfolio of products to target new markets and provide a
range of service packages to online customers. For that purpose,
the technical strategy was to implement a software reuse ap-
proach, where all products in the portfolio are to be built using a
common infrastructure consisting of a number of software plat-
forms built in-house, where parts of the platforms are derived from
existing products, and other parts are to be built from scratch. That
is, the company needed to build platforms on top of which teams
across the company should build products and services. For any gi-
ven product, there is a backend side and a client side. Products in
the portfolio have common aspects in both the backend (e.g.
licensing, updating) as well as the client (e.g. user interface li-
brary). Therefore, platforms were needed on both sides. At the time
of our study, the company was in the transitional phase – some
parts of the platform have already been built and used while some
other parts were still being constructed.
Using platforms as a reuse strategy is a common technique in
software product line (SPL) engineering. An SPL is a family of clo-
sely related products that share a common set of features, but they
are unique in certain aspects [43]. SPLs offer many advantages such
as shortened time-to-market, increased product quality and de-
creased cost [26]. Most SPL engineering approaches are proactive
in nature since they perform a two-phase development process
[25]. The first phase is domain engineering in which the domain
artifacts (i.e. platform) are built. The second phase is application
engineering in which the actual building of individual products oc-
cur. Managing commonality and variability between different
products is conducted using systematic variability management
techniques [25]. Such techniques help achieve a number of benefits
including defining the sources of variability and the different vari-
ants, tracing variability from the model to the code and vice versa,
and communicating variability to the different stakeholders [29].
At the time of our study, although Scandin was aiming for a
platform strategy, they did not have any variability management
practices in place. Secondly, Scandin did not want to follow the
two-phase approach. Rather, they opted for a more reactive ap-
proach for reasons that will be discussed later in this article.

3.2. Data collection and analysis

3.2.1. Data collection
In our research, data was collected using an ethnographic ap-

proach [33]. Ethnography is a data collection approach that
involves spending time in the field to make first-hand observa-
tions. The researcher interacts with the subjects of interest in a
natural (as opposed to controlled) setting in order to obtain a holis-
tic view of the context pertaining to the problem under investiga-
tion. The rich data collected over the course of the study –
including observations, questionnaires and interviews – requires
a methodical qualitative approach to analyze [54].

In our research, the study involved the first author conducting
3–4 full-day visits in the company every week, over a period of
6-weeks. During these visits, we adopted non-participant observa-
tion by attending presentations, demos, planning meetings and
status-update meetings (aka. scrum meetings). Furthermore, in or-
der to get a first-hand impression of the interactions and commu-
nication channels, we arranged with the company to stay in close
proximity to people of different roles in the organization, namely:
senior managers, architects, team leads, and developers. Over the
course of the study, we conducted 16 in-depth interviews with
individuals of different teams and roles. The interviews lasted be-
tween 25 and 72 min each. The interviews were audio-taped and
transcribed (around 200 pages of transcripts – using Times, 12 pts).

In the selection process of interviewees, our goal was to get a
sample of individuals that covered the different aspects related to
our research interest. Namely, we were interested in the following
aspects: management (directors influencing platform-related deci-
sions), platform development (teams developing the platforms),
and product development (teams building on top of the platform).
The initial group of interviewees was selected collaboratively by
the researcher and a liaison in the company. During this initial
phase, we used snowball sampling to prepare for the second round
of interviews. That is, we used the collected data as well as sugges-
tions from the interviewees to guide the selection process of other
interviewees. We interviewed representatives of eight different
teams, three of which were working on three separate platforms
as part of the common infrastructure. The interviews were semi-
structured and took various directions based on the interviewee’s
responses. The role of the interviewee was also vital in determining
the direction and focus of the interview (i.e. managers focused on
high level issues, whereas team leads and architects focused on
technical details). Generally, interviewees were asked questions to



Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 971
describe their role and team responsibilities, how they relate to
other teams, what issues or blockers they have been facing when
building or using the platforms, and what things they thought were
missing but would be beneficial to have. The interviewees were also
asked to explain certain aspects of the platform and sometimes to
draw diagrams and figures to illustrate their understanding of the
overall architecture. The artifacts produced by the interviewees
helped the researchers understand the problem and the context bet-
ter and revealed important issues underlying communication with-
in and across teams. These artifacts also helped in the interpretation
of the data collected during the interviews. We were also granted
access to documented material communicated among the upper
management to obtain a better understanding of the company’s vi-
sion and strategy. Data from the interviews, the documents, as well
as the researcher’s observations and diaries (consisting of hundreds
of field notes) were all used to complete this study. The data collec-
tion phase stopped when we started to get no new insights from
new rounds of interviews.

3.2.2. Data analysis
The collected data was analyzed using Grounded Theory [3].

Grounded Theory is a qualitative research method in which gener-
ation of a theory occurs by looking into the collected data for pat-
terns and concepts. We started by iterating over the collected data
to assign codes, and we refined these codes as more data was
coded. This involved renaming, merging, or splitting some codes
multiple times. The codes were grouped into larger representative
concepts and categories that evolved through multiple iterations
by going back and forth between different interviews and the other
data sources. The data that was collected and analyzed during the
initial phase of the study was used to conduct selective sampling
(as opposed to random sampling) when recruiting participants
for the interviews that followed. The taxonomy of issues started
to saturate after having analyzed about 70% of the data. Having this
Fig. 1. Tree of c
taxonomy developed, we compared our findings to the existing
body of literature in relevant research areas in order to identify
similarities and differences.

4. Issues and challenges

This study revealed a set of issues and challenges that medium
sized, distributed, agile organizations are likely to face when reuse
becomes a strategic objective – especially when their context is
similar to the context of Scandin as described earlier. The chal-
lenges we encountered in the data are captured in the tree shown
in Fig. 1 (next page). In our analysis, we kept this tree at a manage-
able size by merging similar concepts and limiting the depth of the
tree to three levels. We classified the challenges under four main
categories, namely: business challenges, organizational challenges,
technical challenges, and people challenges. In the following sub-
sections, we discuss each of the four categories in more detail.

4.1. Business challenges

By ‘‘business’’ we refer to the many aspects involved in running
a profitable organization including the organization’s vision and
strategy, sales and marketing, and competition. Our findings show
that there are two main issues that can introduce major challenges
to introducing a platform strategy, namely: the business strategy,
and product-driven platform development.

4.1.1. Business strategy
Scandin’s new business strategy to target a new segment of cus-

tomers in their market had a huge impact on platform develop-
ment. The services that had been previously provided to products
by the common platforms needed to be adjusted in order to accom-
modate the new scenarios those products were required to support
(e.g. by the marketing department). This resulted in considerable
hallenges.



972 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
reengineering of some existing components. When we asked about
the reason why a specific component of the platform was undergo-
ing major reformation, one of the platform architects responded
that it was due to:

‘‘. . . the new way [Scandin] wants to make business with customers
on the retail and OEM level but also with operators. . .’’

Although this issue is not specific to platform-centric develop-
ment, the experience of Scandin shows that when adopting a plat-
form-centric approach, the amount of rework and testing that
needs to be done is usually multiplied because changing a platform
component has consequences on all products that rely on that
component.

4.1.2. Product-driven platform development
In traditional models of building platforms, a platform-then-

product philosophy is dominant as evident in practices like soft-
ware product line engineering, where there is an emphasis on
developing domain artifacts and then application artifacts
[25].This succession means that an organization does not start
building products until development of the platforms underlying
these products has made considerable progress. On the other hand,
in Scandin, we noticed that platform development was product-
driven in the sense that some platforms were derived from a num-
ber of existing products as well as from the requirements of an
ongoing project that was considered the first adopter of the plat-
form. In that project, the product that relied on the platform was
being developed at the same time as the platform.

As explained by technical leads, product-driven platform devel-
opment was their strategy to: (a) reduce the conceived risk of lost
investments due to over-engineering aspects of the platform that
cannot be reused later – either because they turn out to be unnec-
essary or too complex to reuse and (b) achieve a faster return-on-
investment by delivering products to end-customers more quickly
than they would have been delivered if a sequential approach had
been used. However, our findings show that the latter approach
introduces its own risks and challenges, such as:

– Instability: Some components in the platform may not be
mature enough when they are used in products which causes
products depending on them to be unstable. As one of the man-
agers put it:

‘‘[Some products]break every second build. . . the platform is not
stable enough in which they are building their architectures.’’

– The dominance of a mainstream product: If the platform devel-
opment is driven by one product that is considered a main rev-
enue stream, which is the case in Scandin, then the priorities in
the platform development are likely to be coupled tightly to the
needs of such a product:

‘‘. . . we tightly plan our sprints only based on the [mainstream]
project priorities. . . Now it’s about the [mainstream] product but

then we know that we need to be able to serve the [other] products
later on.’’

This may cause the platform to become under-engineered –
meaning that the components may become too specific to the
needs of the mainstream product (e.g. a specific operating system)
rendering component reuse challenging across other products. In
Scandin, some components – that were supposed to be cross-plat-
form1 – became specific to the operating system that was required
by the mainstream product:
1 The term ‘‘cross-platform’’ in the context of this study means that the
implementation is agnostic to the operating system.
‘‘. . . to further develop [the platform] we have to take it to cross-
platform and operating-system platforms... That’s not there.’’

Furthermore, focusing too much on the needs of the main-
stream product causes other teams who have dependencies on
the platform-to-be to become ignored and uninvolved.

‘‘. . . because we [platform team] are fully allocated in the [main-
stream] project, it is tough to get the time to actually take the other
parties into consideration.’’

In Scandin, this issue had strong effects on some teams who
chose to start implementing their own components resulting in
redundant code.

– Competing goals: Product teams are pressured by their techni-
cal leads to start using the platform as soon as possible (to avoid
any redundancy). One of the technical leads explains that:

‘‘. . . the roadmap and goal [set for the product teams] would be to
[reuse] all the [platforms] that have been built for the [mainstream]
project.’’

On the other hand, other product-specific goals such as fast
delivery are pushed by the business leads. Considering the over-
head associated with making the transition to the platform (e.g.
learning, asking for changes, customizations), some teams in Scan-
din perceived that it was faster (or less burdening) to use their own
artifacts than to reuse somebody else’s.

4.2. Organizational challenges

A wide range of issues and challenges arise due to the nature of
platform development that requires participation and involvement
at the organizational level as opposed to the team or business unit
level. In the following subsections, we discuss the organizational
issues we encountered in the data.

4.2.1. Communication
Platform development introduces more dependencies in the

organization than what would normally exist without such a strat-
egy. In Scandin, these dependencies exist between the platform
teams themselves, the platform teams and the product teams,
and the different business units in the organization. Distributed
development exacerbates this communication challenge as will
be explained.

– Communication among platform teams: Our findings show that
platform teams need to communicate for a number of reasons
such as: (1) assigning responsibilities to components, (2) resolv-
ing dependencies between components, (3) agreeing on proto-
cols and internal interfaces, (4) synchronizing releases, and (5)
arranging for resources that need to be shared. In the case of
Scandin, one of the main challenges is to motivate the individ-
ual teams to talk to each other beyond formal meetings (if any),
where things might have been overlooked or misunderstood,
and beyond reading documents (if any) that might be outdated.
When this motivation is not there, developers resort to their
hunches to resolve a dependency or may integrate with other
components in a less than ideal way.

‘‘The biggest challenge [is] to get people motivated when they have

a dependency for outside . . . to get the communication started. And
even though we have things like scrum of scrums.. but it still does
not mean that everything will be brought up there.’’

Also, in cases, where this communication is not effective, teams
may work on overlapping areas of the platform causing redun-
dancy and rework as we observed in company.



Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 973
– Communication between platform teams and product teams:
Teams in Scandin need to communicate at this level because
platform teams provide services that are consumed by product
teams. For one, product teams need to know how to access and
integrate with the platform. Also, product teams provide feed-
back to platform teams on existing features and report missing
ones. As one of the platform developers pointed out:

‘‘. . . for various reasons there might be a product level feature
[requested of the platform teams]. There have been a few [cases]
where something is needed [from the platform teams] by [the prod-
uct teams.]’’

Achieving this communication, however, can sometimes be
tricky. As we noticed in the company, when an issue arose in prod-
uct development, some developers found it easier and quicker to
find workarounds which might be redundant to what already ex-
isted in the platform. This not only caused a lot of rework and
redundancy in the code, but it also made testing and maintenance
cumbersome in the future. Therefore, for this communication to be
effective, product teams need to understand the value of keeping
communication channels active at all times (i.e., realize the techni-
cal problems associated with redundancy).

– Communication in distributed development: In addition to the
inherent challenges of communication in collocated develop-
ment, distribution of teams over the world introduces further
challenges. When some distributed teams in Scandin used tools
like instant messaging and shared desktop to hold meetings, the
communication did not always serve its purpose:

‘‘. . . [name of a unit in the company] seems not to have too much

problem using this communicator and shared desktop and so forth.
Some other units have serious problems with that.’’

In addition to discussing this issue with individuals in the
organization, we also attended an online meeting to have a better
understanding of the problem. One of the factors that made this
communication a challenge was the different time zones which
made arranging meetings more difficult, and sometimes resulted
in the meeting time being inconvenient to one party. Other fac-
tors included the absence of non-verbal cues such as body ges-
tures and facial expressions especially during screen sharing,
and the cultural differences between Scandinavia and other parts
of the world, where the language or social protocols were a bar-
rier. For instance, in Scandinavia, where the management struc-
ture is mostly flat, a verbal agreement on the phone was
sufficient for developers to start executing a plan. On the other
hand, in other parts of the world, where authority is very hierar-
chical, the teams could not execute their plans until they got ap-
proval from the relevant line of management in their business
unit.

– Communication between business units: Because business
units shared common platforms, they needed to communicate.
We will talk about this aspect of communication when discuss-
ing ‘‘silos’’ in the next subsection.

4.2.2. Organizational structure
In this section, we discuss the impact of how the organization is

structured in terms of business units, teams, and management on
platform development. We focus on three main issues that we
found evident in our data as follows.

– Silos: The analogy to a silo is often used to describe the state of a
certain part of the organization that seems to stand alone and
not interact enough with the other parts. As we illustrate in this
study, silo thinking is a result of an organizational structure,
where business units or teams act as independent entities with
their own local management and no motivation to adhere to a
centralized decision-making body or to share information with
other units. In the context we studied, the silo could be a single
team or a whole business unit. Our findings show that the silo
problem is by far the most serious challenge that faces the orga-
nization’s transition to a global reuse strategy. Individuals of
both management roles and technical roles repeatedly men-
tioned the term ‘‘silo’’ and complained about the matter almost
equally, for instance:

‘‘we have business units. . . How do they communicate today.. not
too well. These silos they don’t talk too much [to each other].’’

Our data revealed a number of reasons for silo thinking, and a
raft of consequences they have on platform development as cap-
tured in Table 1 (next page). The reasons mentioned in Table 1
can possibly be traced back to the misalignment between the
organizational structure (as described earlier in terms of business
units, teams, etc.) and the new platform architecture. As sug-
gested by Sosa et al. [40], such misalignment might have been
the reason behind some communication problems as described
in the previous section, and this in turn created reasons for silos
to appear.

– Decision-making: This issue is partially related to the silos
problem, but it encompasses other aspects as well. When the
teams and business units have a sense of federalism (which is
very evident in our data), making decisions related to the plat-
form becomes a challenge. One case we came across in Scandin
involved decisions that needed to be taken on whether to reuse
an existing platform or take a different direction such as build-
ing an independent variant to satisfy a certain business concern.
On the one hand, the corporate had economic reasons to push
reuse, but at the corporate level it was often hard to see all
the intricate details of the specific business concerns, hence
making such decisions challenging. On the other hand, when
these decisions were left to the concerned teams and business
units, a number of issues caused the decision making process
to go astray. For one, the individual units tended to choose
the direction, where they saw short-term gains as opposed to
thinking about the long-term goals (e.g. sustaining the plat-
form). And there was also the ‘‘not-invented-here’’ mentality
that biased business units to develop their own components
as opposed to reusing others’.

An attempt by the company to have a centralized decision-
making body did not solve this problem. Business units were
likely to assume ownership of products and therefore they deemed
such decisions an internal matter. As a corporate manager
explained:

‘‘And then if [the business unit’s decisions] don’t get approved [by
the centralized body], they kind of tend to think that well.. this is
our internal decision. . .’’

Moreover, when the corporate made a decision to invest into
building a platform, political challenges arose when trying to kill
ongoing projects that might have been redundant to the services
provided by the platform. Or even more challenging was the at-
tempt to get a business unit to retire their old systems and migrate
to the new platform:

‘‘This is of course an organizational issue to say to somebody that
this thing that you have been building for five years is actually
going to be discontinued.’’



Table 1
Reasons and consequences of silo thinking.

Reasons for silo thinking in the organization

Resource allocation Business units would rather allocate their limited resources to
meet their local deadlines unless they are forced to participate in a
corporate level project

‘‘And the business units are not forced unless there is a big project
that forces them to put their resources aside for this kind of activity.’’

Specialization Specialization in a certain domain makes it difficult to understand
the benefits of communicating platform related issues to others
(e.g. promoting reusable components)

‘‘. . . if it’s a business-specific platform there is no communication
outside of that business unit.’’

Lack of motivation Unless the business unit sees a direct value of sharing a platform
at the corporate level, they are not willing to do so

‘‘They don’t have any interest whatsoever in taking this [platform] to
corporate level unless they have a cost saving reason.’’

Competing targets Focusing on meeting unit targets and disregarding corporate
targets makes platforms too specific to the business unit

‘‘[the business units] will just build for business target, and when
business units disassemble, the assets might be useless.’’

Apathy Some component teams are indifferent about anything outside
the locality of their team. The quote is the response of a senior
software engineer in a component team when asked who drives
the requirements of their component

‘‘I really haven’t spent that much time to really figure out how this
thing goes from up to down.’’

Evaluation apprehension The fear of being criticized, supervised or controlled inhibits
sharing and communication

‘‘[the business units] feel unease when they have to come and present
their plans to the [corporate].’’

Consequences of silo thinking

Missing the big picture This results in not having a common understanding of the
platform architecture which in turn causes other problems such
as redundancy and false assumptions

‘‘they’re working in their silos and the changes are so, that only the
projects [they] have been working on lately have good common
view.’’

Redundancy Business units and component teams run the risk of duplicating
an existing component that has been developed somewhere else.
Sometimes the duplication is a result of not being aware of assets
outside the silo, or not willing to reuse something that was
invented somewhere else

‘‘We also have three systems for that, [and] two systems to update the
databases, that’s awful.. and this is because of the business unit
silos.’’‘‘. . . because somebody thinks they can’t use it because it
doesn’t have their business unit label on it. . .’’

No long-term thinking The challenge here is to strike a balance between meeting the
short-term goals of the business unit and the long-term
sustainability goals of the platform

‘‘Business units have to balance their business drive [with] the long-
term sustainable architectural base. There is no decision on that.’’

No visibility of reusable
assets

Platform assets get buried within the business unit or a certain
component team which results in a lot of duplication and missed
reuse opportunities

‘‘we have been digging the assets of the company here for the last
year trying to hire and elaborate those platforms, get them on the
map...’’

False assumptions Poor communication with other business units or teams results in
false assumptions about assets. In this case, an internal decision
could have cost the company a fortune

‘‘Later, [a business unit] wanted to do [a service] and proposed doing
a new system... The reason was because mobile protocol cannot work
the same as Win protocol... which wasn’t true. It was an assumption.’’

Platform divergence A given platform can initially be used by different business units
but then internal decisions result in different branches of that
platform. After a while, the branches diverge so much causing the
platform to become too specific to a certain operating system or
product, or even causing the loss of a common underlying model

‘‘in the common library there are OS adaptations in the code
branching which is not too healthy... when they have been building
this current architectural base, they have been building it in silos.’’
‘‘there was actually separate business units that worked
independently and resourced independently. . . So we have kind of the
same base model but there is added [parts]. Many flavors from the
same model.’’

974 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
– Stakeholder involvement: Due to the fact that platforms are an
enterprise-level concern as opposed to product or team level
concerns, it seems to be a challenging matter to get all stake-
holders involved from the business side and the technical side.
For a medium-scale organization like Scandin with hundreds of
engineers and other personnel in sales and marketing, the chal-
lenge was to first identify who had a stake in a given platform.
That is, who should actually be involved in planning, building or
using the platform? This became more difficult when the plat-
form was to serve different business units with various con-
cerns and competing goals. Distributed development and
outsourcing were other factors that added to the complexity
of this issue.

For example, in order to build a platform for licensing in a uni-
fied way across all products in a given portfolio, the company first
needed to involve all the parties responsible for the older licensing
models, and the parties responsible for merging these models into
a single unified licensing component in the platform. This meant
getting on-board the technical leads and architects representing
products using the older models, products that will use the new
model, and products that are specific to certain operating systems.
From the business side, solution managers and business analysts
were also involved to make sure the technical solution did not af-
fect a business case in a negative way (e.g. affecting a revenue
stream or an agreement with a third-party).
One way the company tried to overcome this issue was by hold-
ing workshops to allow teams to discuss common issues and
understand their different needs from the platform:

‘‘we have had several workshops with [business unit name] guys
and the [another business unit name] guys and we have mapped
all the differences.’’

Unfortunately, in some cases involving all stakeholders at once
was infeasible due to scalability issues. In such cases, the company
chose to postpone the involvement of some parties to a later stage:

‘‘we have [team’s name], I don’t think [they are] going to be [invol-
ved]in the project... at least not right now.’’
4.2.3. Agile culture
During the past decade, agile software development [47] has

gained great momentum and found its way to an overwhelming
number of organizations of different scales [48]. Agile methods
preach a raft of principles and provide a wide range of practices
to achieve these principles. Although the initial focus of agile
methods was centered on the efficiency of the team as a unit of
operation, recently there has been a movement towards scaling
agile methods up to the enterprise level [8]. In the data, we found
that there is a need to adjust agile principles and practices before
they can be employed in a software platform context. In this sec-
tion, we list some of the challenges imposed by the agile culture



Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 975
in the organization. Discussing how agile methods can contribute
positively to platform development is beyond the scope of this
article.

– Feature versus component teams: Feature teams usually
assume end-to-end responsibilities in a given system by orient-
ing their work around features (aka. stories); whereas compo-
nent teams focus more on delivering a sub-system (aka.
component) that interacts with other sub-systems in order to
be useful [5]. Due to the focus on delivering tangible value to
the end-customer, agile advocates promote the idea of building
teams around features rather than components [5]. For some
people in Scandin, this idea created the perception that compo-
nent teams are always disadvantageous. As one of the technical
leads denotes:

‘‘It’s been told to me that it’s bad to have component teams in the
agile world which cannot be end-to-end responsible.’’

However, in the context of platform development in this com-
pany, there seemed to be a need for a combination of both. The
interviewee here explains that certain services are so fundamental
and expensive that they may require a dedicated component team
as opposed to being maintained by a feature team as part of an
ongoing project:

‘‘End-to-end responsibility, very tough to implement... One thing
we need to accept as an agile organization is that there are certain
services that are too expensive to develop [as part of] the project.’’
– Team autonomy: The other issue that was evident in the data is
high team autonomy. When members of highly autonomous
teams stayed together for a long time, those teams gradually
turned into silos. This phenomenon often resulted in the conse-
quences of silo thinking as discussed previously. Moreover, in
some teams, high autonomy had an impact on decision-making,
where the team considered certain issues internal without pay-
ing much attention to the consequences of their decisions on
the underlying platform. The decision-making aspect has
already been discussed in more detail in a previous section.

– Business-value thinking: In agile organizations, there is a strong
emphasis on delivering business value [28]. The challenge, how-
ever, is that business value is not always immediately visible or
may not influence the customer directly as we saw in Scandin.
That is, the transition to a platform strategy might provide for
many advantages for Scandin as a business, but from an end-
customer’s perspective, nothing has changed. Our findings show
that in an environment, where there is strong business-value
thinking, it is a challenge to motivate certain teams and individ-
uals to invest into adopting the platform. In this quote, a lead
architect explains why some teams could not see the business
value in transitioning to the platform strategy:

‘‘[The platform strategy] is new for us, but it’s not producing any
new stuff for the customers... The whole stuff is invisible for them.’’
– Product ownership thinking: Some interviewees in our study
raised the issue that some teams and product owners in different
business units had been very protective of their assets and prod-
ucts making the transition to a platform strategy more difficult.
This is mainly because teams owning a certain component pre-
ferred dealing with that component rather than retire it and
maintain a shared component in the platform. A technical exec-
utive explains his strategy in dealing with duplicate
components:
‘‘before [platforms] become de facto, it requires killing duplicate
systems and preventing them from coming up again.’’

Another issue was that when it came to some platform compo-
nents, product ownership was not as explicit and clear as it was in
individual products. That is, in many cases it was not clear who
owned a component in the platform that was shared across differ-
ent teams and products.

– Agility versus stability: As described earlier, in Scandin’s case,
the platform is product-driven which means that some plat-
forms were derived from a number of existing products as well
as from the requirements of an ongoing project. We noticed that
this notion introduced the challenge of striking a balance
between the stability of the platform and the ability to change
often and add features. On the one hand, platform stability
was key, because many products relied on the platform as a
common foundation and therefore it had to be trusted and
not changed very often. Especially for some critical components
that are relatively expensive to develop and maintain, being
part of an ongoing product development, where a certain
degree of instability is inevitable imposes higher risks:

‘‘. . . One thing we need to accept as an agile organization is that
there are certain services that are too expensive to develop [as part
of] the project.’’

On the other hand, it was also important for the company to re-
spond to the need of the products in an agile manner in order to be
able to compete in their specific market.

Another issue under this category was raised by some partici-
pants. When a specific product requests a change in the platform
that involves a cross-cutting concern such as usability, it will be
challenging to make a choice from the two possible options. The
first is to honor the change request to satisfy the customer at hand
(following agility principles), in which case all products relying on
that aspect would be affected (i.e. causing instability). The other
option is to ignore the request until it proves to be an issue in other
products too, but that may come at the expense of the satisfaction
of the customer at hand. This challenge, however, was not sup-
ported by a specific example, so we consider it more of a concern
than an actual problem.

4.2.4. Standardization
Some of the challenges we came across in the data were related

to the lack of standardization in the organization which affected
communication and made reuse more difficult.

– Standardization of documents: Some documents are circulated
among platform teams, and between platform teams and prod-
uct teams. When the documentation practices were not consis-
tent, individuals were less likely to refer to these documents. As
one of the interviewees stated, standardizing the retrieval pro-
cess of documents plays an important role:

‘‘if I have to find how this works, I know where to go find the infor-
mation and everything is in one place.’’

Other interviewees pointed out that the inconsistency across
teams in the format of their documents and the level of details
made finding information more difficult.

– Standardization of practices: When different teams and busi-
ness units contributed to a shared platform, the lack of standard
practices such as code conventions and testing practices
appeared to have a detrimental effect on collaboration and



976 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
made reuse difficult. One of the interviewees asserted that the
lack of code conventions was one of the reasons it was difficult
for his team to reuse others’ code:

‘‘there is actually nothing really that would be [considered] pro-
gram wide like code conventions.’’

– Standardization of tools and technical solutions: When each
team in the organization makes their own decisions on what
tools and technical solutions they want to use in a given project,
as the case in Scandin, platform development and use seems to
become more challenging. For example, developers in Scandin
need to deal with a number of version control systems and a
wide range of testing and continues integration tools before
they could contribute to the platform:

‘‘I wouldn’t know where to find all of these guys’ code. . . It’s still not
company-wide that there would be even like a nice recommenda-
tion that everybody [should] use SVN not GIT or CVS.’’

– Standardization of acceptance criteria: Teams in Scandin often
defined a list of criteria that needed to be met before a feature
or a task was considered done. We noticed a range of things that
were considered in different teams such as: successful compila-
tion, passing regression tests, having a predefined bare mini-
mum amount of test coverage, and updating relevant
documents. The fact that these criteria were not standardized
across the organization caused some teams to lose confidence
and trust when reusing components developed by others or
when referring to documents written by different business
units. For example, one team that put a significant emphasis
on reliability in their engines refrained from using other code
that did not adhere to the same quality standard.

4.3. Technical challenges

As shown in the previous sections, developing software plat-
forms is a business and organizational problem. But it is also an
engineering problem that imposes many technical challenges.
The data we have collected shows that many of these challenges
are due to the fact that a platform needs to satisfy a range of vary-
ing requirements in a certain domain, and that many products rely
on the platform as the foundation of their functionality. The major
challenges that we have identified under this category include:
commonality and variability, architectural complexity, code contri-
bution, and practices.

4.3.1. Commonality and variability
As a reuse strategy, platforms provide a common infrastructure

on top of which different products can be built. However, compo-
nents in the platform need to accommodate possible variants so
that customization is possible for different business and technical
needs [35]. Managing commonality and variability is not always
straightforward, and that is why commonality and variability man-
agement is a topic by itself in fields like software product line engi-
neering [23]. We discuss commonality and variability challenges
around three axes: reuse, variation sources, and cross-cutting
concerns.

– Reuse: Managing reuse in the organization is essential for a suc-
cessful platform development. In our study, we found that this
entails not only finding opportunities for reuse in new products,
but also dealing with existing redundancy. One of the main
challenges we came across in this regard was to detect redun-
dancies in legacy code. Developers often use ad hoc techniques
to reuse code such as copy-and-paste (i.e. code cloning); and
research has shown that code clones are difficult to trace and
often introduce bugs in the system [57]. In Scandin, a particular
problem with clones was that if a critical change was made to
the original code, the duplicates did not get the update, and
when they did, they had to be maintained separately. One of
the platform teams explained the problem as follows:

‘‘we kept having these pieces of code that were copied [from our
platform] and pasted somewhere else [in different products]... then
we optimized [the code] and nobody gets to use [the optimized ver-
sion] because it wasn’t in any common place and there was no pro-
cess [to trace reuse instances].’’

As we noticed, redundancy also resulted from poor communica-
tion between teams, which yielded multiple implementations of
similar services at times.

After detecting redundancy, the next challenge in managing re-
use is actually dealing with redundant solutions. As one of the
technical leads explained, the process of retiring redundant com-
ponents and replacing them with a common foundation requires
meticulous care to ensure a smooth and stable transition:

‘‘first you need to unify [the solutions]... If we cannot make those
[duplicate solutions] coexist, then one of those need to take the
whole responsibility, but it means one of those systems continues
in production and others are retired and taken to maintenance
only.’’

After the duplicate solutions have been abstracted into a reus-
able component in the platform, there is one more challenge of
making the new asset visible for future projects. In Scandin, visibil-
ity was an issue:

‘‘we are not sharing all the code we could, because it wasn’t under
[business unit name] before this. So I am not sure if they would
even know as well what we already would have available.’’
– Variation sources: Assets in Scandin’s platforms had to deal
with multiple dimensions of variability in the product portfolio,
which imposed a real challenge. Some variations were due to
business needs which required different models for different
types of customers:

‘‘we have different license models depending on the business case.
We have one model that goes into the stores. Then we have the
[third-party] model where we actually sell through the [third-
party]. . . Then for corporate, we have a couple of different models.’’

Operating systems were another dimension of variation:

‘‘. . .you have Androids, iPod, iPad, Mac, Mobile Win . . . if each OS
has a different client code, you might have a different backend.. it
becomes very tedious to maintain, it becomes a burden.’’

In Scandin, variation also occurred due to the concept of combi-
nations of services, where every product team (or sometimes every
customer) should be able to package their own combination of ser-
vices from the platform.

– Cross-cutting concerns: Things that cut across different prod-
ucts that use the platform (e.g. usability in the case of Scandin)
become a challenge in scenarios, where a change is needed only
in a subset of the products but not all. This may require treating
this concern as a new variation point which adds to the com-
plexity of variability in the platform.



Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 977
4.3.2. Design complexity
This issue has been brought up by lead architects as one of the

main technical challenges in platform design. We investigated this
issue further by looking at design artifacts to identify the reasons of
added complexity, namely:

– Different actors: When variability in the platform was driven by
the business trying to target different markets or customer
bases, this yielded multiple actors, each with their own needs
of the platform.

– The requirement of combinations: Due to the requirement of
being able to combine Scandin’s components and services to
build unique products (aka. suites), ensuring a smooth integra-
tion between these components and resolving their dependen-
cies in the different combinations was not straightforward.
Therefore, when a software platform strategy was adopted in
Scandin, stronger emphasis was given to modularity and clean
interface definitions during the design process.

– The requirement of maximizing reuse: In the design of the
architecture, architects also needed to consider the requirement
of being agnostic to the hardware platform, operating system,
and other sources of variation as much as possible. As described
by one interviewee:

‘‘[the components] are not related to any operating system. And we
chose them in a way that whatever language on the client side is
used there is always the possibility to create clients for the
services.’’
4.3.3. Code contribution
This became a real challenge when Scandin decided to not com-

pletely separate platform development from product development.
That is, in the product-driven platform development model that
was adopted, both platform teams and product teams needed to
contribute to the platform. This was especially the case in situa-
tions, where the platform teams could not keep up with the in-
creased number of feature requests by product teams. In the
context of our study, the company had adopted an internal open-
source model, where product teams could assume the responsibil-
ity of building features into certain parts of the platform in order to
support their products if they did not want to wait in the queue.
Other parts that were considered too risky to be open were kept
closed within the platform teams. Some of the challenges associ-
ated with the internal open-source model were as follows:

– Retrievability: Depending on the organizational boundaries
between business units, component teams and distributed
teams, the platform code were less or more difficult to find.
Our participants attributed this to poor visibility of the assets,
poor communication between teams and business units, and
the lack of standardization in source code control solutions.

– Platform quality: Because the quality of the platform could be
significantly affected when different teams change different
parts of the platform on regular basis, Scandin had put an audit-
ing program in place, where changes were audited by a code
guardian before they could take effect. One of the technical
leads explains the process:

‘‘Projects delivering the features [product teams] can go and modify
[the platform] as long as the [platform team] audits that and makes
the release based on that [audit].’’

An issue was raised by some participants regarding this model
which is that with a lack of standardization of acceptance criteria,
the auditing process might become a bottleneck at certain times.
– Platform stability: Ideally, the impact of any change to the plat-
form ought to be tested against all products and combinations
that use the platform before it could be released. As a technical
lead in Scandin explained, in order to assign this responsibility
to product teams, it required a technical solution that duplicated
the build environment of the platform locally on their machines
so they could see its impact before submitting it for an audit.

4.3.4. Technical practices
Some technical practices that had been successfully imple-

mented in the previously single-product-centered culture in Scan-
din did not scale well when the transition was being made to
platform-development. Our data revealed some challenges in such
areas as testing, automation, continuous integration, and releases.

– Testing: To ensure the stability of the platform in the liberal
environment of Scandin with their open-source model, rigorous
testing practices were needed. One of the challenges associated
with that was to be able to populate the different product
instances that had been built on top of a given platform, and
test the impact of a certain change set on these instances. When
this process was in place, it needed to be highly and efficiently
automated in order to be effective:

‘‘[teams needed to] test the functionality of the [platform] in all
supported product contexts. . . they can automatically - before
releasing products - repeat testing on all supported products and
platforms.’’

Another challenge that often arises when testing products that
share a common platform is identifying what should be tested in
the platform and what should be tested in the separate products
[10]. Scandin was not any different in this regard. One of the prob-
lems we noticed was the diffusion of responsibility among plat-
form teams and product teams. Some product teams assumed
that platform teams should be the ones taking care of testing
changes in the platform, while some platform teams made similar
assumptions about product teams. When we asked a platform
team member about the comprehensiveness of the test suites in
a certain engine, he noted:

‘‘We are partly relying on that common base of code being linked
into other engines that are then again tested, and that code [in
the platform] is tested in that [reuse] process.’’

– Continuous integration: Teams contributing to the platform
needed to ensure that changes – in the most part – are agnostic
to the operating system or hardware platform. Therefore, a
practical build process needed to be setup in such a way so that
the changes were automatically propagated to all the different
relevant build environments in the organization. This required
a lot of sharing and effective communication among teams
and business units, and at the time of our study, it was still
not achieved.

– Release synchronization: One of the challenges raised by some
architects had to do with managing the versions and synchro-
nizing the releases of different components in the platform to
ensure a trouble-free integration at the product level. As for dif-
ferent versions, sometime the company needed to maintain
older versions of components that were still in use by some of
their customers. And at any given point of time, it had to be
clear to the maintenance and support teams which versions of
component A were supported by which versions of component
B. This had to be clear also to product teams to ensure they
made the transition to newer versions in time for their new
product releases. One of the team lead explains why these
vesions existed:



978 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
‘‘If we change the logic it shouldn’t break the integration. And if we
are going to break the integration, then it’s a new version here that
should be in sync. . . there will be several [versions] to be able to
give time to the client . . . to migrate and to take the latest version.’’
4.4. People challenges

Software engineering is one of the fields, where the human as-
pect plays an essential role in the success of any practice. As evi-
dent in the data we collected, making the transition to a
software platform strategy is challenged by a number of factors re-
lated to individuals in the organization, namely:

4.4.1. Resisting change
As we saw in Scandin, making the leap to a software platform

strategy required major changes in the organizational culture.
While some people found it easier to adapt and take the ride, oth-
ers seemed to struggle for different reasons as reported by our par-
ticipants such as: not seeing the value of the change, perceiving the
change as inconvenient, and having to make adjustments for the
new work environment:

‘‘Some people are very set in their ways and these might be reluc-
tant to change the way they work.’’

There were also political factors that inhibited adopting changes
proposed by others. For example, some business unit managers re-
sisted the decision to join forces with other units to develop a cer-
tain component because for them that meant letting go of their
own existing components:

‘‘Convincing business unit heads to let go of their own asset which
they control fully to one joint module is challenge number one.’’
4.4.2. Technical competency
The importance of the technical experience, knowledge and

skills that usually play an important role in software teams is exac-
erbated in the context of platform development. Developers in
Scandin needed to be able to cope with the complexity of the plat-
form architecture, write cross-platform code, and contribute sound
technical solutions to testing and continuous integration problems.
When we asked one of the technical leads about some components
that were specific to certain operating systems, he attributed that
to missing skills such as writing cross-platform code:

‘‘We don’t really have a large experience - at least in this site office
- of writing cross-platform code.’’
4.4.3. Domain knowledge
We noticed in the case of Scandin that a good understanding of

the domain is vital in developing a useful and reusable platform.
Without sufficient domain knowledge, engineers could not make
decisions as to what was common and what was variable in a given
component. This also affected decisions pertaining to the discon-
tinuation of certain components if the impact of such decisions
on the customer base was not understood.

5. Implications of the findings

The findings of this study stimulate numerous research ques-
tions that are too difficult to populate and address within the scope
of one article. Nonetheless, in this section we show how the find-
ings can be used by researchers and practitioners to inform deci-
sion makers about changes to the development process or/and
the organizational structure. We illustrate this using an example
of one of the issues mentioned previously. This section also shows
– by example – how the findings can inform the design of new
tools.

5.1. Research questions and practical implications

In this section, we present a discussion of one of the issues men-
tioned previously; namely, feature teams versus component teams,
as an example of how the findings can be used to propose solu-
tions. The goal of this section is not to discuss the solution in elab-
orate details, but rather to give directions to researchers and
practitioners on how to go about using the findings at hand. We
breakdown the process into four main activities: determine focal
point, find interrelations, identify research questions, and then
identify solutions.

5.1.1. Determine focal point
The focal point is the main issue under investigation. In this

example, we are interested in investigating the issue of the coexis-
tence of feature teams and component teams to support reuse. The
dotted box in Fig. 3 highlights this focal point.

5.1.2. Find interrelations
We find it imperative to point out that providing a list of action

items that address each of the identified issues and challenges may
not be meaningful if not accompanied with an understanding of
how these challenges interplay. Therefore, after specifying the fo-
cal point, we specify the other issues and challenges that are di-
rectly relevant to the main issue. Such issues need to be taken
into consideration in order to be able to resolve the main issue at
hand.

In this scenario, the three issues that are directly relevant are
connected with a solid line to the focal point as shown in Fig. 2.
One issue is the communication that is needed between the teams.
Another issue is the reuse framework within which both types of
teams operate after having identified commonalities and varia-
tions. And the third issue is how each type of teams could contrib-
ute to the code base.

Some other issues may be relevant to the focal point but in an
indirect manner (i.e. through another issue) such as the one con-
nected with a dotted line in Fig. 2. Indirect relevance implies that
addressing such issues can play a supportive role to address the
main issue. In this example, in order to ensure a more stable plat-
form, tool support is needed to provide a better testing and contin-
uous integration process.

We can also look at the diagram in Fig. 2 from another perspec-
tive to determine the course of action that needs to be taken.
Namely, this can be either process and structural changes or tool
support.

5.1.3. Identify research questions
By looking at the focal point and considering the interconnec-

tions between the focal point and the other relevant issues, we
can formulate a number of research questions. In this example,
some of the research questions are:

� Organizational/Agile Culture: How can we provide a hybrid
team structure that makes use of component teams and feature
teams?
� Organizational/Communication: How can these teams com-

municate effectively?
� Technical/Code Contribution: Who can make code contribu-

tions to components and how can this process be moderated?
� Technical/Technical Practices: What tools are needed to sup-

port the integration and testing of the code contributed by the
different teams?



Fig. 3. A feature model to make common and variable aspects more visible.

Fig. 2. The main issue of interest and its interrelations with other issues.

Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 979
5.1.4. Identify solution or/and required tool support
The research questions that were determined above will help

devise a research methodology and evaluation metric for the pro-
posed solution. Considering the context of the company we have
been working with, the following recommendations have been
made, and are yet to be implemented:

– A hybrid of feature teams and component teams working
together is important. Some component teams are needed to
build and maintain certain core services that affect a wide range
of products or/and require specific domain knowledge or exper-
tise. Other component teams that have a closer interaction with
the application layer may need to collaborate with feature
teams.

– Feature teams usually assume end-to-end responsibilities to
deliver application level features. To do so, feature teams will
use services provided in the platform and may need to modify
certain aspects to satisfy their requirements. Modifications
can take two forms:
A. Direct modifications to the core code: feature teams should

be able to fill in the missing parts in the platform and pos-
sibly add new parts when needed. It is recommended
though that this be done under two conditions:
1. All changes by feature teams need to be audited by the

component team owning the part that needs to be chan-
ged or extended. This is to ensure that the change is tech-
nically sound and does not violate any design or
architectural constraints or guidelines. Auditing should
also ensure that the code is cross-platform when it needs
to be.
2. Feature teams should have access to the regression tests
of the platform components so that they can build locally
against different configurations before they commit their
changes. Otherwise, the platform may become unstable
and may be perceived by its users as unreliable.

B. Branching from the core code: only if the change that needs
to happen is in conflict with other products using the plat-
form and this conflict cannot be resolved should the devel-
opers from the component and feature teams collaborate to
abstract the common layer and explicate the variable
aspects to enable a systematic branching process.

– If a certain requirement from the application level involves a
change in the platform, it is beneficial to have at least one mem-
ber of the component team join temporarily the feature team
that is conducting the change. This member will inform the
decisions in the feature team before they take place which also
makes the auditing process faster. This participation will
improve knowledge transfer in the organization because it is
an opportunity for developers in the feature team to have a
better understanding of the domain and learn about cross-plat-
form issues. In a regular scrum meeting, the member from the
component team will then discuss the changes with other
members of the component team who may also be reporting
about changes from other feature teams (or maybe working
on delivering end-to-end features within the scope of their
platform).

– Feature teams and component teams need to have a mechanism
to communicate how their features interact with other features
in the platform. Also, they need to be explicit about variability
in the implementation.

– Variability is defined as the capacity of the platform to support a
range of products that differ across one or more dimensions. In
the case of the company we worked with, the main variability
dimension was the operating system. That is, the produced code
assets in the platform should be able to support a number of
operating systems (e.g. Windows, Mac, Android, etc.). If not sup-
ported well, variability may result in some teams not producing
cross-platform code, or not testing exhaustively against the dif-
ferent operating systems. Therefore, this dimension of variabil-
ity should be made more visible by using and communicating a
simple model that reflects the common as well as the variable



Fig. 4. The tool allows the user to model the common and variable aspects of the platform.

980 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
aspects of a given component. Fig. 3 shows an example of how
this may be used:

– The above diagram is called a feature model [24]. It can be read
as follows: the component consists of three main stories. While
Story A and Story B are common across all operating systems
(i.e. the implementation needs to be cross-platform), the imple-
mentation of Story C may vary based on the operating system
(i.e. a different implementation for each operating system).
The grouping arch between the Win and Linux options indicates
that the options are mutually exclusive. Maintaining such a
model increases the visibility of what is common and what is
variable in a given component of the platform.

– When feature teams are allowed or even expected to contribute
to components in the platform, extra caution should be taken to
verify that none of the introduced changes have a cascading
negative effect on any products. The following section illus-
trates how tool support can provide great value in this aspect.

5.2. Tool support

Determining the focal point and the relevant issues helps edu-
cate the choice of the required tool support and the design of
new tools if needed. Although tool support is not always needed
to solve a particular issue, in the scenario we describe above, it
seemed to be necessary. That is, when feature teams are allowed
to contribute to core components, there is a need to make sure that
the contributed code does not break other applications that depend
on it. Therefore, the build environment required for this context
should be capable of ensuring a reliable continuous integration
process for multiple products, operating systems, or target ma-
chines. This can be done by setting up the build environment so
that the builds are done on different target machines automatically
and remotely. Current build tools such as Hudson [17] can be
extended to work in such a way, but it will require an initial effort
to setup.

Moreover, providing direct links between the feature model (as
in Fig. 3) and the code artifacts implementing this model is benefi-
cial, because it allows immediate traceability between the different
variants (e.g. Win, Android) and the related code artifacts (e.g. clas-
ses, methods, etc.). The advantage of doing so is twofold. For one, it
enhances maintainability – when a build fails on a Win machine but
not on an Android machine, developers will have an easy way to
identify those stories specific to the Android machine. If the cause
of the failure is not an OS-specific story, then the code that was sup-
posed to be cross-platform is in fact not cross-platform and will
need to be modified. Secondly, this traceability provides for easier
extensibility because knowledge about how to add support for
one more operating system will be accessible to all teams.

To support this notion, we developed a tool called Agile Soft-
ware Product line Engineering (ASPEN) as an extension to an open
source modeling tool available online [13]. ASPEN maintains the
links between the model and the code through test artifacts. ASPEN
allows the user to model the common and variable aspects of the
platform as shown in Fig. 4.

The tool then allows the developers to attach tests to each node
in the model (the theoretical foundation of this step and the advan-
tages it provides are explained in detail in [56]). When committing
the code changes to the build system, the tool extracts from the
provided feature model a profile of tests that need to be run against
each operating system. The tool then feeds this information into
Hudson that performs a number of builds against different target
environments and summarizes the results in a report as shown
in Fig. 5. The excerpt of the report in this example shows that
the Motion Detector feature is broken on the Windows target ma-
chine (highlighted by red). The white cells indicate that a certain
feature is irrelevant for a specific target machine. The scope of this
article does not allow for an elaborate discussion of the design and



Fig. 5. An excerpt of the report showing the results of executing the features against multiple targets.

Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 981
implementation of this tool. The goal, however, is to show –
through a concrete example – how the findings could be used to
determine the required tool support. For more details on this work,
we refer the reader to the report available at [14].
6. Generality and threats to validity

As in other studies in the literature that rely on data collected
from a single company, we cannot claim that the findings of this
case study are generalizable to all other companies transitioning
to a platform strategy. The study will have to be replicated in a
number of other companies in order to confirm generality. In our
case study, we considered three different platforms and inter-
viewed individuals of a wide range of roles in the company to
get a holistic view of the subject matter and expand the generality
of the findings across different roles, teams and technologies.

Moreover, some reported issues may be specific to the cultural
context of Scandinavian companies or the domain of the studied
company. Another factor that may affect generality is the fact that
Scandin did not implement the common domain-then-engineering
process to build their platforms, but rather they opted for a more
novel approach as discussed previously. In our research, we were
not interested in determining whether Scandin made the right
choice. Instead, we focused on understanding the obstacles they
came across during their transition.

Furthermore, although we assumed that the participants were
truthful and honest in their responses and narrations, we noticed
that at times the participants were reporting their personal con-
cerns with what might happen as opposed to what was actually
happening. We mitigated this issue: (1) by trying to ask for exam-
ples and specific incidents whenever an issue was raised, and in
the article we make it clear when such examples were not pro-
vided and (2) by attending meetings and talking to people from
other teams to verify certain claims.

Moreover, the validity of the findings might have been biased
by our interpretations. This bias usually comes with all qualitative
studies. While qualitative studies typically do not strive for statis-
tical significance, they depend on crosschecking and triangulation
of different data sources to verify the findings and draw conclu-
sions. In our case, to mitigate this bias as much as possible, we re-
lied on different sources of data in our analysis such as interview
transcriptions, field notes taken during meetings and field visits,
and other artifacts provided by the company. We also verified
our findings and interpretations with a number of people in the
company to check for any misunderstandings.
7. Comparison with the literature

In this section, we compare our work with the literature in two
steps. First, we discuss the results of our research that are consis-
tent with what is available in the literature. Then, we discuss the
new results that add to the existing body of knowledge.
7.1. Confirmatory results

In the broader context of the topic, there is a large body of
research on platform development in fields other than software
engineering. The results of our research confirm many of the find-
ings of such research. For instance, Muffatto [37] analyzed the
introduction of a platform strategy in the automobile industry
and identified a raft of issues. Some issues are related to the orga-
nizational structure, namely: the need for an effective communica-
tion structure among platform teams as well as between platform
teams and product innovation teams, and the issue of the colloca-
tion of platform teams. This goes hand in hand with our findings
under the organizational challenges category. Another identified
challenge was in regard to the derivation process of platforms from
existing products which we also visited in multiple occasions in
the article. Moreover, in the manufacturing context, Sundgren
[41] points out that the architectural reconfiguration of elements
in platform development imposes a real challenge. Our article
provided empirical evidence to confirm the existence of similar
challenges in the software context.

Moving closer to the software field, Lynex and Layzell [2] iden-
tified nontechnical inhibitors of reuse adoption and suggested pos-
sible solutions. The authors mention issues similar to the ones we
found in our study such as competition amongst business units,
unwillingness to share, overlapping responsibilities, quality of
components, and other issues. Our findings also support the risks
and challenges discussed by Halman et al. [21], namely: integrat-
ing existing assets into the platform, the challenge of meeting
the needs of all target markets, added complexity in the develop-
ment process, the need to have a good understanding of the
market, and the issue of the flexibility in responding to the market
needs versus platform stability. Furthermore, in the context of
Hewlett–Packard, Jandourek [11] recognizes teams-structure as a
key challenge by affirming that one of the main factors in platform
development is an organizational structure that supports interde-
pendencies between platform teams and product teams. The
author also addresses concerns similar to ours regarding quality
criteria and test procedures, and regarding common development
environments and processes which we discussed under standardi-
zation. Mili et al. [16] visits the issue of teams-structure in the
organization and asserts that a combination of feature and compo-
nent teams may be necessary.

In the discussion of component-based software engineering,
Crnkovic [18] addresses the issue of the sensitivity of platforms
to changes. Cusumano and Yoffie [30] offers a thorough discussion
on issues similar the ones we found in our study pertaining to
cross-platform code such as: synchronizing code bases, keeping
track of all variations, and exhaustively testing all versions. More-
over, Greenfield and Short [20] addresses issues such as standard-
ization and automation in production processes. Barnes et al. [4]
provided an economic foundation for software reuse in which they
mention two source control models: a pure producer–consumer
model, and an open source model. In the context of our study, both



982 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
models were part of the discussion under the code contribution
subsection.

Furthermore, at a high level, our classification of issues and
challenges provides empirical support to the assertion of Griss
[32] that in order for software reuse to succeed, it has to be busi-
ness-driven, architected, process-oriented, and organized. The
unintentional overlap between our work and Griss’ is interesting.
For one, it underscores the importance of non-technical factors in
software reuse compared to technical issues. And secondly, it sug-
gests that over the past decade, the software community has not
been satisfactorily successful in finding effective solutions to the
obstacles that hinder reuse.

To summarize, in this category of results, our main contribution
is seen in confirming the occurrence of the issues and challenges
found by other colleagues but in the context of software reuse,
and especially during the transitional phase to a software platform
strategy. We also found interesting overlap between our findings
and the observations made by previous researchers – which clearly
indicates that many of the ‘‘traditional’’ challenges against soft-
ware reuse still exist and require further investigation.

7.2. New results

This research has exposed a number of points that have not
been discussed enough in the literature. From the business per-
spective, we showed the immediate effect of the business strategy
on platform development and how changes in the strategy might
hinder progress in building the platform. In our discussion of the
organizational structure and decision making, our findings clearly
showed that that centralization by itself is not an effective solution,
especially in flat organizations. This goes against what was sug-
gested by other work in the literature such as [2] which proposed
introducing central coordination of development as a solution to
many organizational issues. Moreover, in [21], Halman et al. argue
that product families (which are based on platforms) make com-
munication easier. In our findings, on the other hand, communica-
tion was found to be a major challenge introduced by platform
thinking.

Our discussion of the reasons behind the emergence of silos in a
software organization is novel. Furthermore, the thorough under-
standing of the direct consequences of silos on platform develop-
ment adds a major contribution to the existing body of
knowledge. The article also contributes a new perspective on the
role of agile methods in platform development. There has been a
number of works in the literature (e.g. [56,15]) that talked about
combining agile methods and software product lines (as a platform
strategy). But to the best of our knowledge, our work is the first
empirical attempt to understand how agile principles and practices
might hinder the transition to a software platform strategy if taken
as is without serious reconsideration to fit the needs of platform
development. For example, we found that the definition of busi-
ness value, as seen in typical agile circles, may demotivate individ-
uals who work on backend issues that do not have visible effects on
the end user. Moreover, the concept of product ownership needs to
be revisited in the platform context to define who owns a shared
asset, and how different owners should coordinate their needs.
Additionally, we discussed team autonomy as another key concept
in agile methods, and we showed how it can have a negative im-
pact on the decision making process and might reinforce silo
formation.

From a technical perspective, the results of this research may
have been touched on by previous work in the literature (e.g.
redundancy detection [1], release planning [34]). Nevertheless,
our research added more concrete details and specific issues that
developers and technical leads encountered in their context. For
example, the elaborate description of the internal open-source
style and its implications as well as the different issues related to
continuous integration and testing provided a solid ground for tool
development to support reuse and variability.

In spite of the overlap between our work and the work by Griss’
[32] (as discussed in the previous subsection), our work is different
in a number of ways. For one, the findings of our research are
grounded in a rich set of data that was collected and analyzed fol-
lowing a systematic research approach. Moreover, the lower levels
of our categorization provide concrete details about each of the
challenges as perceived by the different stakeholders. For example,
our discussion of the different organizational and technical issues
is considerably richer than the discussion in [32]. Also, our catego-
rization more clearly identifies the human aspect as a key issue in
software reuse.

Some of the challenges found in the literature that we did not
stumble upon include: finding a balance between the goal of max-
imizing reuse at one end and the goal of delivering distinctly
unique products to the market to drive innovation at the other
end [41], customer integration in platform development, and eco-
nomic justification of platforms [22].

All in all, compared to the existing body of literature, the work
presented in this article – to the best of our knowledge – provides a
comprehensive list of issues and challenges, both technical and
nontechnical. While parts of this research contribute new findings,
other parts carry a value in confirming previous findings within the
context of software reuse and in elaborating on existing knowledge
about certain aspects.
8. Conclusion

In this article, we presented an ethnographic case study that
aimed to uncover the issues and challenges associated with the
transition of a medium-scale organization to a software platform
strategy. Throughout the study, we answered the first research
question by highlighting the four main categories of issues and
challenges. We also tackled the second research question by inves-
tigating the impact of the agile culture on this transition, and high-
lighting the challenges imposed by distributed development. We
also discussed how a flat organizational structure affected the
decision-making process and imposed challenges related to
standardization.

Our findings indicate that the adoption barrier of software
platforms in the studied organization was mainly due to non-
technical issues including business issues, organizational issues
and people issues. There were many technical issues at play as
well, but they did not seem to have the same magnitude as
non-technical issues. As seen in our findings, organizational issues
seemed to have the most visible impact on the smoothness of the
transition. One of the most important issues under this category
was the emergence of silos. There is an urgent need for further
investigation of how silos could be prevented from emerging in
the first place. And in case they do emerge, we need to understand
how to eliminate them or at least mitigate their negative influ-
ence. Furthermore, the organization structure was a key factor
in determining the effectiveness of the communication between
platform development and product development. The notion that
many of the organizational challenges are related to the organiza-
tion’s structure was not particularly surprising given the strong
connection that usually exists between the organization’s struc-
ture and the type of architecture it can support. For examples, is-
sues such as silos and code contribution may exist in any software
organization. In platform-centered organizations, however, the
special architectural considerations exacerbate the impact of such
issues. Therefore, when the transition is being made to software
platforms, misalignments between the current organization’s



Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984 983
structure and the new needs of the architecture need to be iden-
tified and addressed.

The results of this research also suggest that with the increasing
adoption of agile methods in industry, researchers need to look
more into how agile principles can be leveraged to enable reuse
and variability. At the same time, researchers should study the det-
rimental effects some agile principles might have if not tailored to
the specific context of software platforms.

Focusing on organizational issues should not result in neglect-
ing technical issues. On the contrary, technical issues should be
given their fair share of research, but only in light of the organiza-
tional context. Issues related to integration, testing, code redun-
dancy, and code contribution seem to have a strong impact on
platform development, especially in iterative and reactive ap-
proaches. Tool support is available and it does eliminate some
impediments but it is still limited in its ability to provide full sup-
port to the different processes in a platform context.

This study provides practitioners with an understanding of the
expected challenges surrounding the adoption of software plat-
forms. This understanding will hopefully lead practitioners to make
more educated decisions and set more realistic expectations in con-
texts similar to the one we have analyzed. The study also offers new
insights for researchers to further investigate issues such as sup-
portive organizational structures in platform-centered software
enterprises, the role of agile methods in software platforms, tool
support for testing and continuous integration in the platform con-
text, reuse recommendation systems and many other areas. Future
work includes constructing a roadmap for the transition to software
platforms in light of the challenges that are well-understood. For
other challenges that need further investigation, a root-cause anal-
ysis is to be carried out before solutions can be proposed.

Acknowledgements

We would like to thank the company for allowing us to spend
time in their facilities to conduct this research. Also, we would like
to extend our gratitude to the individuals who dedicated their time
and effort to coordinate or participate in the interviews. Special
thanks go to Dr. Jonathan Sillito and the reviewers for their valu-
able feedback on the content of this article.

This work is part of a broader research funded by Alberta Inno-
vates Technology Futures.

References

[1] A. Leitão, Detection of redundant code using R2D2, Software Quality Control 12
(4) (2004) 361–382.

[2] A. Lynex, P. Layzell, Organisational considerations for software reuse, Annals of
Software Engineering 5 (1998) 105–124.

[3] A. Strauss, J. Corbin, Grounded Theory in Practice, London, 1997.
[4] B. Barnes, T. Durek, J. Gaffney, A. Pyster, A framework and economic foundation

for software reuse, Software Reuse: Emerging Technology (1988) 77–88.
[5] C. Larman, B. Vodde, Scaling Lean and Agile Development: Thinking and

Organizational Tools for Large-Scale Scrum, Addison-Wesley, 2009.
[6] D. Dhungana, T. Neumayer, P. Grünbacher, R. Rabiser, Supporting the evolution

of product line architectures with variability model fragments, in: Proceedings
of the Seventh Working IEEE/IFIP Conference on Software Architecture, 2008,
pp. 327–330.

[7] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch: why reuse is still so
hard, IEEE Software 26 (4) (2009) 66–69.

[8] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises,
Addison-Wesley, 2007.

[9] D. Schmidt, Why Software Reuse has Failed and How to Make it Work for You,
Last Modified in 2006, Earlier Version Available in the C++ Report Magazine,
1999. <http://www.cse.wustl.edu/~schmidt/reuse-lessons.html>.

[10] E. Engstrom, P. Runeson, Software product line testing – a systematic mapping
study, Information and Software Technology 53 (1) (2011) 2–13.

[11] E. Jandourek, A model for platform development – HP’s software development
strategy – Company Operations, Hewlett-Packard Journal (1996). <http://
www.hpl.hp.com/hpjournal/96aug/aug96a6.pdf> (accessed 2.03.11).

[12] E. Joyce, Reusable software: passage to productivity, Datamation 34 (18)
(1988) 97–102.
[13] F. André, Feature Model DSL Homepage. <http://www.featuremodeldsl.
codeplex.com> (accessed 25.02.11).

[14] F. Riegger, Test-based Feature Management for Agile Product Lines, Diploma
Thesis (conducted at ASE Group – University of Calgary), HS Mannheim,
February 2010.

[15] G. Hanssen, T. Fígri, Process fusion: an industrial case study on agile software
product line engineering, Journal of Systems and Software 81 (6) (2008) 843–
854.

[16] H. Mili, F. Mili, A. Mili, Reusing software: issues and research directions, IEEE
Transactions on Software Engineering 21 (6) (1995) 528–562.

[17] Hudson: Extensible Continuous Integration Server. <http://hudson-ci.org/>
(accessed 2.03.11).

[18] I. Crnkovic, Component-based software engineering – new challenges in
software development, Software Focus 2 (4) (2001) 127–133.

[19] I. Sommerville, Software Engineering, Addison-Wesley, 1985.
[20] J. Greenfield, K. Short, Software factories: assembling applications with

patterns, models, frameworks and tools, Companion of OOPSLA (2003).
[21] J. Halman, A. Hofer, W. Van Vuuren, Platform-driven development of product

families: linking theory with practice, Journal of Product Innovation
Management 20 (2) (2003) 149–162.

[22] J. Jiao, T. Simpson, Z. Siddique, Product family design and platform-based
product development: a state-of-the-art review, Journal of Intelligent
Manufacturing 18 (1) (2007) 5–29.

[23] J. van Gurp, J. Bosch, M. Svahnberg, On the notion of variability in software
product lines, in: The Working IEEE/IFIP Conference on Software Architecture,
2001, pp. 45–54.

[24] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
1990.

[25] K. Pohl, G. Böckle, F. Linden, Software Product Line Engineering: Foundations,
Principles and Techniques, Springer, 2005.

[26] K. Schmid, M. Verlage, The economic impact of product line adoption and
evolution, IEEE Software 19 (4) (2002) 50–57.

[27] K. Schmid, Variability modeling for distributed development – a comparison
with established practice, in: LNCS for the 14th International Conference on
Software Product Lines: Going beyond, SPLC 2010, pp. 151–165.

[28] K. Schwaber, Agile Project Management with Scrum, Microsoft Press –
Redmond, 2004.

[29] L. Chen, M. Babar, Variability management in software product lines: a
systematic review. in: The 13th International Software Product Line
Conference, San Francisco, CA, USA, 2009.

[30] M. Cusumano, D. Yoffie, What Netscape learned from cross-platform software
development, Communications of the ACM 42 (10) (1999) 72–78.

[31] M. Cusumano, R. Selby, Microsoft Secrets: How the World’s Most Powerful
Software Company Creates Technology, Shapes Markets, and Manages People,
Free Press, New York, 1995.

[32] M. Griss, Software reuse architecture, process, and organization for business
success. in: Proceedings of the Eighth Conference on Computer Systems and
Software Engineering, 1997, pp. 86–98.

[33] M. Hammersley, P. Atkinson, Ethnography: Principles in Practice, Tavistock,
London, 1983.

[34] M. IrfanUllah, G. Ruhe, Towards comprehensive release planning for software
product lines, in: Proceedings of the International Workshop on Software
Product Management (IWSPM ‘06), IEEE Computer Society, Washington, DC,
USA, 2006, pp. 51–56.

[35] M. Jianhong, T. Runhua, Handling variability in mass customization of software
family product, knowledge enterprise: intelligent strategies in product design,
Manufacturing and Management 207 (2006) 996–1001.

[36] M. McGrath, Product Strategy for High-Technology Companies, IL, Irwin, 1995.
[37] M. Muffatto, Introducing a platform strategy in product development,

International Journal of Production Economics (1999) 145–153.
[38] M. Muffatto, M. Roveda, Developing product platforms: analysis of the

development process, Technovation 20 (11) (2000) 617–630.
[39] M. Raatikainen, K. Rautiainen, V. Myllärniemi, T. Männistö, Integrating product

family modeling with development management in agile methods, in:
Proceedings of the First International Workshop on Software Development
Governance, SDG 2008, pp. 17–20.

[40] M. Sosa, S. Eppinger, C. Rowles, The misalignment of product architecture and
organizational structure in complex product development, Management
Science 50 (12) (2004) 1674–1689.

[41] N. Sundgren, Product Platform Development, Managerial Issues in
Manufacturing Firms, Chalmers University of Technology, 1998.

[42] O. Hummel, C. Atkinson. Supporting agile reuse through extreme harvesting,
in: LNCS for the 8th International Conference on Agile Processes in Software
Engineering and Extreme Programming, XP 2007, pp. 28–37.

[43] P. Clements, L. Northrop, Software Product Lines: Practice and Patterns,
Addison-Wesley, US, 2001.

[44] P. Mohagheghi, The impact of software reuse and incremental development
on the quality of large systems, Doctoral thesis, Department of Computer
and Information Science, Norwegian University of Science and Technology,
2004.

[45] R. Joos, Software reuse at Motorola, IEEE Software 11 (5) (1994) 42–47.
[46] R. Kulandai, Ravichandran, V. Ramakrishnan, Challenges in software

platformization, European Journal of Scientific Research 54 (3) (2011)
458–464.

http://www.cse.wustl.edu/~schmidt/reuse-lessons.html
http://www.hpl.hp.com/hpjournal/96aug/aug96a6.pdf
http://www.hpl.hp.com/hpjournal/96aug/aug96a6.pdf
http://www.featuremodeldsl.codeplex.com
http://www.featuremodeldsl.codeplex.com
http://hudson-ci.org/


984 Y. Ghanam et al. / Information and Software Technology 54 (2012) 968–984
[47] R. Martin, Agile Software Development, Principles, Patterns and Practices,
Prentice Hall, 2002.

[48] S. Ambler, Agile Adoption Rate Survey Results, 2008. <http://www.ambysoft.
com/surveys/agileFebruary2008.html> (accessed 2.03.11).

[49] T. Romberg, Software platforms – How to win the peace, in: 40th Annual
Hawaii International Conference on System Sciences, 2007.

[50] W. Frakes, C. Fox, Sixteen questions about software reuse, Communications of
the ACM 38 (6) (1995) 75–87.

[51] W. Frakes, K. Kang, Software reuse research: status and future, IEEE
Transactions on Software Engineering 31 (7) (2005) 529–536.

[52] W. Hetrick, C. Krueger, J. Moore, Incremental return on incremental
investment: Engenio’s transition to software product line practice, in:
Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA 2006, New
York, pp. 798–804.
[53] W. Tracz, Software reuse: motivators and inhibitors, Software Reuse:
Emerging Technology (1988) 62–67.

[54] Y. Dittrich, M. John, J. Singer, B. Tessem, For the special issue on qualitative
software engineering research, Information and Software Technology 49 (6)
(2007) 531–539.

[55] Y. Ghanam, F. Maurer, Extreme product line engineering refactoring for
variability: a test-driven approach, in: LNBIP for the 11th International
Conference on Agile Processes in Software Engineering and Extreme
Programming, XP 2010, pp. 43–57.

[56] Y. Ghanam, F. Maurer, Linking feature models to code artifacts using
executable specifications, in: Proceedings of the 14th International Software
Product Line Conference, Jeju Island, South Korea, 2010.

[57] Z. Li, S. Lu, S. Myagmar, Y. Zhou, CP-Miner: finding copy-paste and related bugs
in large-scale software code, IEEE Transactions on Software Engineering 32 (3)
(2006) 176–192.

http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/agileFebruary2008.html

	Making the leap to a software platform strategy: Issues and challenges
	1 Introduction
	2 Literature review
	3 Research method
	3.1 Research context
	3.2 Data collection and analysis
	3.2.1 Data collection
	3.2.2 Data analysis


	4 Issues and challenges
	4.1 Business challenges
	4.1.1 Business strategy
	4.1.2 Product-driven platform development

	4.2 Organizational challenges
	4.2.1 Communication
	4.2.2 Organizational structure
	4.2.3 Agile culture
	4.2.4 Standardization

	4.3 Technical challenges
	4.3.1 Commonality and variability
	4.3.2 Design complexity
	4.3.3 Code contribution
	4.3.4 Technical practices

	4.4 People challenges
	4.4.1 Resisting change
	4.4.2 Technical competency
	4.4.3 Domain knowledge


	5 Implications of the findings
	5.1 Research questions and practical implications
	5.1.1 Determine focal point
	5.1.2 Find interrelations
	5.1.3 Identify research questions
	5.1.4 Identify solution or/and required tool support

	5.2 Tool support

	6 Generality and threats to validity
	7 Comparison with the literature
	7.1 Confirmatory results
	7.2 New results

	8 Conclusion
	Acknowledgements
	References


