
Literature Survey on Combining Digital Tables and
Augmented Reality for Interacting with a Model of the

Human Body
Jishuo Yang

University of Calgary, Canada

jisyang@ucalgary.ca

ABSTRACT

In this paper, we present a survey of existing augmented reality

implementations to determine a software and hardware approach

in implementing an augmented reality API. The API seeks to

combine augmented reality on a mobile device with a 3D model

of the human body on a digital table. We address the advantages

and shortcomings of existing augmented reality APIs and examine

their compatibility with current mobile devices.

1. INTRODUCTION
In medical schools, human dissection is a fundamental part of a

physician’s education and an important rite of passage. However,

the number of body donors frequently fall short of the huge

demand of cadavers for research and teaching [1]. This causes a

mounting shortage that is detrimental to physician training and is

difficult to address in a social and moral context.

Modern computing advances may shed light on a technological

answer to the problem, in the form of an interactive, 3D model of

the human body. While it is impossible to replace the experience

of a physical cadaver, it is hoped that the system can supplement

physician education while reducing the need for cadavers.

The motivation for this project arises from a convergence of

several new technologies: the digital tabletop, powerful and

affordable handheld devices, and augmented reality platforms.

Augmented reality (AR) is the real-time integration of virtual 3D

environments and the real world [2]. The real environment is

analyzed through a computer camera, and the computer then

renders a virtual 3D model at a designated location. Often the use

of fiducial markers, in the form of non-symmetrical pictures, is

used to indicate the location of a 3D object. The computer

calculates the distance and location of the 3D models in relation to

these markers. This technology makes it possible for us to see a

projected 3D model as it would appear in the real world.

The use of AR involves heavy use of visual recognition and

tracking, and is understandably computationally expensive. Many

prior experiments with augmented reality were conducted with

AR head-mounted-displays (HMD), where the lenses are LCD

displays inches away from the viewer’s eyes [2]. These displays

are expensive, and must be used in conjunction with a computer,

limiting its mobility. The introduction of powerful handheld

technologies, such as smartphones means that it is now possible

for AR calculations to be done on a mobile device.

Finally, for AR and the 3D model to be effective as a teaching

device, a digital tabletop is necessary to simulate a dissection

environment. The digital tabletop allows for the real-time display

of markers, and offers interaction through multi-touch

capabilities. This gives the system a degree of flexibility that is

not possible with physical markers in traditional AR

implementations.

Figure 1. Augmented reality as seen through a head-mounted

display, using traditional physical markers [9].

With a wide range of devices and software libraries to choose

from, a literature survey is necessary to find the appropriate tools

for such an implementation. This project focuses on the

construction of an API that allows the display and interaction with

a 3D model of a human body. In such a system, the tabletop is

responsible for displaying the human body and AR markers, while

the handheld device uses the markers as reference and overlays

medical information on the 3D model.

This project aims to evaluate current handheld devices and AR

tools to determine which is most suitable for such an API that

integrates all three components.

2. EXISTING WORKS
The advent of powerful smartphones made AR applications

possible on a handheld device. In contrast to the cumbersome

backpack-and-HMD implementations, the portability and

affordability of smartphones makes widespread adoption of AR

possible. Today we are seeing some of the first AR applications

released for commercial use. Examining these existing

applications can give us insight into the strengths and limitations

of current AR implementations and mobile hardware.

2.1 Limitations of AR on Mobile Devices
In spite of the power of modern mobile devices, we should keep

in mind that traditional AR applications are implemented on the

PC. Designing a mobile AR API means we have to deal with

weaknesses inherent in a mobile platform.

Performance problems are a major concern in mobile devices.

Visual-recognition is computationally expensive even for

relatively simple markers [6]. The port for ARToolkit Plus, an AR

API for the iPhone, had problems rendering more than 10 frames

per second on an iPhone 3G [8]. This performance issue is further

compounded with more complex algorithms used in feature-

tracking, where no fiduciary markers are used. In addition, the

graphics processing units (GPU) present in many smartphones are

unable to render complex 3D models, either because they are not

fast enough or simply do not have enough memory. Therefore any

3D models used for a mobile implementation should have its

complexity reduced to achieve an acceptable memory footprint

[7].

In addition to performance concerns, a handheld device also has

usability problems compared to a PC. Since visual-tracking

requires sight of the markers to render the models, awkward

placement of markers can cause arm fatigue. Furthermore, a

handheld’s small screen results in a low field of view for the user.

This can not only cause eye-strain after long periods of use, but

might also make the users stand unacceptably far from the digital

tabletop in order to see the entire table.

2.2 GPS-Tracked Mobile Implementations
Considering that visual tracking is the dominant area of AR

research since its inception, perhaps it is ironic that the first

commercial AR applications predominantly make use of GPS

tracking. As of this writing, a cursory search of “Augmented

Reality” on Apple’s App Store reveals that out of a collection of

28 results, there are none that use any form of visual tracking, and

2 simply overlay graphics on top of the phone’s camera feed

without any tracking [4]. The remaining 26 applications use the

iPhone’s built-in global positioning system (GPS), accelerometer,

and magnetometer to determine the user’s current location and

direction.

One of the most iconic applications using this tracking method is

Layar, developed by the company of the same name [5]. The

application determines the user’s location and direction using the

aforementioned method, and overlays user-desired information

from the internet to the camera feed. This combined footage is

rendered on the phone’s screen, which may include directions to

nearest attractions, real estate pricing and location, and public

transit information.

One major benefit of GPS-tracking is that it is not very

computationally expensive: the program needs only to read the

coordinates given by the instruments to determine the device’s

location in space. This eliminates the heavy demand placed on the

CPU for visual recognition and noise-filtering expected in visual-

tracking. In addition, the use of GPS-based tracking enables these

applications to track themselves and locations in a 3D

environment that is global in scope, whereas visual-tracking

applications are only limited to the device’s immediate

environment. However, these benefits come at the cost of

accuracy. Visual-tracking is accurate to millimeters, depending on

the size of the marker and the quality of the camera, while the

error in GPS-tracking may vary as much as meters. This means

that GPS-tracking, while less computationally-demanding, is not

nearly accurate enough to satisfy the requirements for this project.

2.3 Visually-Tracked Implementations
Visually-tracked augmented reality applications use a variety of

visual computing algorithms to search for pre-defined markers or

features. These are divided into marker-tracking and feature

tracking.

In marker-tracking, the marker used is usually in the form of a

square monochrome symbol with highly defined borders. Feature-

tracking, sometimes known as markerless-tracking, does away

with these possibly intrusive symbols, and instead utilizes more

sophisticated visual-recognition algorithms to look for a given

image instead of a symbol. Unlike the monochrome symbol, the

image may be of any shape or color.

2.3.1 Art of Defense
The Art of Defense is a tower-defense style AR game

implemented for the Nokia N95 [18]. Two players must construct

offensive towers to defend a central tower from attacking

enemies. The towers are assigned to markers represented by

arrows, and are placed on top of an assembled game board

assembled from hexagonal tiles. Enemies attack the tower from

predefined routes. The player must place offensive towers on

optimal tiles to prevent enemies from reaching the central tower.

This game uses the closed-source library Studierstube ES, an AR

implementation designed for mobile devices [27].

The Nokia N95 has hardware specifications similar to that of the

original iPhone. While it did not run into any limitations using the

AR library, it did suffer on the graphics rendering front. The

phone was unable to render sophisticated 3D models quickly, a

performance ceiling likely also present in other mobile devices.

Figure 2. The Nokia N95 is unable to render complex models

in Art of Defense due to hardware limitations [31].

The game is an effective proof-of-concept of running a visually-

tracked AR application on a mobile device. However, there are

limitations in the system arising from the lack of a tabletop

component.

Each piece of the gaming area is represented by a board with a

printed marker. This makes the game harder to manage as players

need to find the correct board piece to play, which is distracting in

an application conducted in real-time. Furthermore, adding a

board piece to the existing play area risks moving the pieces

already in play, possibly upsetting the location of existing AR

models. By contrast, a digital table is able to dynamically generate

markers on its screen through a touch interface, and the user is not

put at risk of upsetting the existing markers on screen. This can

give this game the possibility of computer-generated maps,

enlivening the play experience.

2.3.2 ARhrrrr!
ARhrrr is an AR shooting game implemented for the Nvidia Tegra

platform through the Studierstube ES library [19]. The game uses

feature-tracking techniques to render a zombie-infested city block

on top of a map. The player plays as a helicopter pilot tasked to

rescue civilians by shooting the zombies by tapping the

touchscreen on the mobile device.

Figure 3. Feature-tracking enables ARhrrr to track and

display 3D models on top of terrain features of an image [19].

This AR implementation uses noticeably more complex models

than those from Art of Defense, and demonstrates the Tegra

platform’s superior hardware capabilities. The entire game,

combined with feature tracking, runs well on the platform,

showing that perhaps other open-source libraries can also run well

on the Tegra.

The game could still be improved by a dynamically-rendered map,

however. The integration of a digital surface has the capability to

render and scroll existing defined-features, thereby simulating a

changing field of view. This allows for extensionality and variety

that are the main strengths of an AR application when integrated

with a digital tabletop.

2.4 Existing AR Libraries and Toolkits
There exist a number of commercial and open-source AR toolkits

for developers. Since short implementation time and code-reuse

are a priority for the project, each major AR library is evaluated

for compatibility, functionality, and efficiency.

It should be noted that since the majority of these APIs are used

for PC development, there are performance concerns when run on

a mobile device.

2.4.1 ARToolkit and Derivatives
ARToolkit is one of the first open-source visual-tracking libraries

available [9]. First introduced in 1999, its strength is its out-of-

the-box approach by integrating a simple graphics library and

real-time marker tracking.

Since it is written in C, it is compatible with the iPhone. It also

has a Java port in the form of NyARToolkit [22] and Android

with AndAR [23]. While it is no longer being actively developed,

its popularity means that it is well-documented and is used by a

large community.

However, due to its age, it does have a number of limitations. The

performance of its tracking algorithm is not as good as those of

the more modern libraries [8]. Its tracking is also less accurate and

has a higher chance of error. In particular, it is more prone to

finding false positives in cases where lighting makes one marker

resemble another [30].

Finally, ARToolkit only features marker-tracking, in the form of a

black square with a non-symmetric symbol in the center. One of

the weaknesses of this implementation is the need of the marker to

be always visible. This means that any user interaction with the

markers will cause the models to vanish, which is not ideal for a

tabletop that is centered on touch-based interaction. A

workaround might include the use of multiple markers or tracking

based on the environment. In order to make use of feature-

tracking, a visual-recognition algorithm such as SIFT needs to be

integrated in the API, which takes additional time to implement.

2.4.2 ARTag
ARTag is a more recent library that uses digital encoding instead

of binary correlation to identify markers [21]. Its improved

detection algorithms enable more accurate tracking compared to

ARToolkit in cases where there is lighting variation in the

markers [30]. It includes a library of 2002 unique markers.

In addition, while ARToolkit uses the square marker boundary to

distinguish the marker, ARTag offers a limited ability to

hypothesize about broken borders so that markers remain

identified even when a part of the border is obscured.

Despite its advantages, however, there does not currently exist a

mobile implementation of ARTag, and any mobile

implementations would have to be ported from C++ to work with

a mobile platform. ARTag is also no longer in active

development, and does not benefit from support of a large

community like ARToolkit.

2.4.3 Studierstube ES
Studierstube ES is one of the only libraries designed ground-up

with mobile devices in mind [27]. It provides support for

Windows CE, Symbian, and iPhone platforms. It supports

rendering through OpenGL, and boasts a small memory footprint

to compensate for the poor memory bandwidth in mobile systems

[7]. It is in active development at the Graz University of

Technology and is object-oriented and extensible.

It uses modified SIFT and Ferns algorithms to provide feature-

tracking, and claims to be twice as fast as ARToolkit on mobile

platforms [29].

While this library seems to be the ideal one to use for this project,

it remains closed-source and the developer is not currently

licensing it. It is included for consideration as a candidate when it

becomes open to licensing.

2.4.4 BazAR
BazAR is a C++ augmented reality library designed for feature-

based tracking [20]. Implemented in 2007, it is the most modern

of the open-source AR libraries available. BazAR uses the Ferns

feature-tracking algorithm, enabling it to track features much

more quickly than with SIFT.

The main problem with BazAR is that it does not support any

mobile platform out-of-the-box, so it would have to be ported to

run on the iPhone. In addition, since it is a newer library, the

community support for this library is non-existent. It is, however,

well-documented on its website.

Figure 4. BazAR utilizes the Ferns algorithm to rapidly track

surfaces without the need for fiduciary markers [20].

2.4.5 ARKit
ARKit is an open-source AR library natively implemented for the

iPhone [24]. It uses the GPS-tracking method and is therefore

unsuitable for this project. However, since there are no other

native AR libraries for the iPhone OS, this library can help with

the porting of other libraries to the iPhone, by supplying the

camera code necessary to get the camera feed.

2.5 Implementations for Feature Tracking
Two of the leading approaches in feature-recognition are SIFT

and Ferns [17]. Both algorithms have been used to implement

feature-tracking in AR libraries and applications, including

BazAR and Studierstube ES.

If a marker-tracking library is chosen for development, the more

efficient algorithm of the two will be used to implement feature-

tracking. It is important to examine these two approaches to

determine which is more suitable for a mobile platform.

SIFT (Scale Invariant Feature Tracking) uses “keypoint

localization, feature description and feature matching” [17] to

determine the location of the image. Without getting into the

algorithm itself, SIFT does have a reputation of being a

computationally expensive, comparison-heavy approach [16]. By

comparison, Ferns finds interest points in the video feed to

maximize the probability of finding the marker, and is much faster

in PC-based tests [16].

Wagner et al. studied the performance of both algorithms on the

mobile phone in 2008 [17]. It was found that while SIFT did have

a higher CPU overhead, Ferns utilized much more memory to

store the interest points. While high memory consumption may

not have been significant to desktop machines, it is much more

taxing on mobile phones, which have significantly less memory.

The study concluded that despite the computational differences,

SIFT and Ferns had a similar level of performance [17].

The result of this study is especially important with respect to

Ferns. Since mobile phones use the same memory for both the

CPU and GPU, high memory consumption for Ferns precludes the

use of large textures for the AR 3D models.

2.6 Compatibility with Mobile Platforms

2.6.1 iPhone
The iPhone is one of the two possible platforms for use in the

project. It has advantages in being a popular platform with a large

selection of applications and community support.

However, one major hurdle is that there are no existing open-

source AR libraries that work with the iPhone platform out-of-the-

box. It would be necessary to port any C/C++ AR libraries for use

on the iPhone.

Performance of visual-tracking and 3D model rendering on the

iPhone is also a cause for concern. A sample ARToolkit

implementation for the iPhone was unable to track a marker at

more than 10 frames-per-second [8]. Feature-tracking on the

iPhone is likely to be even slower owing to the complexity of the

algorithms. In addition, the iPhone is likely unable to render the

highly complex 3D human body overlays for use in AR.

Therefore should iPhone be chosen for use for this project, it is

developed with the knowledge that the application most likely

will run with a low frame rate, and that newer generations of the

iPhone are needed before acceptable performance can be

achieved.

2.6.2 Android
Google’s Android platform is the second possible candidate for

this project. Its primary advantage over the iPhone is having two

native AR libraries that include NyARToolkit and AndAR. While

neither library offers feature-tracking, using them does save time

in porting a preexisting API over to the iPhone OS.

Performance of the Nexus One Android phone uses a more

powerful ARM processor and GPU than the one in the iPhone, but

its performance in AR applications is not known.

Deserving of particular mention is Nvidia’s Tegra platform, which

uses a dual-core ARM processor and an Nvidia GoForce GPU

[12]. With a superior CPU and GPU, it is better equipped than

other platforms to handle the load of visual-tracking and 3D

rendering. It is used in the aforementioned ARhrrr project and

demonstrates that it is capable of smooth feature-tracking, albeit

with the optimized Studierstube ES library.

2.7 AR on Digital Tabletops
Finally, existing AR implementations on digital tabletops are rare.

Most implementations are completed for a physical table, such as

ARTHUR for urban development [10]. These make use of paper

markers, and therefore lack the flexibility compared to a digital

marker rendered in real-time. The closest approximation of a

digital tabletop comes from Dr. Chow Lam’s implementation of

AR into a tabletop trading card game [11]. However, this

implementation used a plasma TV laid on its side instead of a

tabletop, and AR is used to simulate a touch screen. This is not

necessary in digital tabletops, which have multi-touch features.

One of the reasons for the lack of digital tabletop AR might be the

inconvenient location of the tabletop’s cameras. The use of AR on

a tabletop generally requires a mobile overlooking camera, which

is not found on traditional tabletop surfaces. This means that this

project is one of the first in the field to deal with the use of AR on

a digital table, as well as its use in tandem with a handheld device.

3. PROPOSED SOLUTION
This project envisions an API that relies on the digital tabletop to

render the 3D model and markers, and a handheld device to

display additional medical information in AR. The medical

information includes 3D overlays such as muscle and bone

structure. In addition, the user should be able to manipulate and

request information for areas of the model viewed under the

handheld, which will appear in the form of pop-up windows.

Additional interaction methods are available on the table, such as

zooming, panning, and rotating. Any manipulation to the 3D

human body on the digital table is communicated to the handheld

device. The device then executes the corresponding

transformations to the augmented 3D information on its own field

of view.

The goal of the API is to be able to have it adapted to use any

other 3D model. Possible extensions might include AR display of

topographical maps, or 3D displays of medical CT scans. To this

end, there are three major design goals for this API:

1. Code reuse: to reduce implementation time, existing

tools and libraries should be used in favor of coding

new implementations.

2. Support and documentation: the API should be well

documented and all its components well-supported by

their developers. This means avoiding libraries that are

obscure or no longer supported.

3. The API should be general and extensible. It should

have an interface for user extensions, support new

models, and modular to allow for swapping of its

components.

3.1 Hardware Selection
The 3D model used is the LINDSAY virtual human project

developed by the University of Calgary Evolutionary and Swarm

Design Research Group. The majority of the project is

programmed in Cocoa and Objective-C. There is already a limited

implementation of LINDSAY on the iPhone. In addition, the

Agile Software Engineering Group has LINDSAY running on the

Smart Table with a Mac Mini.

In keeping with design goal #1, the iPhone and the Smart Table

should be the platforms on which to implement the project. While

there are concerns whether iPhone’s hardware is up to the task,

the more powerful Nvidia Tegra is discounted because it would

involve rewriting much of LINDSAY’s code. Furthermore, the

more powerful iPad also fails to meet the requirements for this

project due to the lack of a rear-facing camera.

3.2 Software Toolkit and Libraries
Since this project does not aim to recreate an AR environment

from scratch, it will make use of existing AR libraries. However,

there are no native implementations of any existing AR library for

the iPhone, barring the closed-source Studierstube ES.

The alternative is to choose the best C/C++ implementations of an

AR library and port it to the iPhone, which is between ARToolkit

and BazAR. BazAR is a superior choice in this case since it is

more modern, and offers native feature-tracking. The only

downside with this library is the lack of community support.

One of the main hurdles of this move is getting access to the code

to access iPhone’s camera API. Fortunately, there is a guide on

porting the C++ implementation of NyARToolkit to the iPhone,

complete with camera code [25]. In addition, the open-source

ARKit can also be used as reference to access the camera.

4. IMPLEMENTATION PLANNING

4.1 Implementation Schedule
The first stage of the implementation of the API is to be able to

render a part of the LINDSAY human model on the iPhone, and

have it oriented to a static paper marker. This stage involves

modifying LINDSAY code so that it can be rendered on the

iPhone, and porting BazAR to the iPhone. This stage is done

independently of the digital tabletop, and focuses mainly on

enabling basic AR functionality on the iPhone.

Since the LINDSAY model on the iPhone is the AR overlay to the

3D model on the digital tabletop, the next stage enables the

iPhone to track the zoom and orientation of the tabletop 3D

model. This is accomplished by embedding markers on the

tabletop model, tracked from the iPhone through marker-

recognition. This phase completes the multi-marker tracking of

the tabletop model, and overlays the iPhone model on top of it.

In the third stage, we will stop using symbols for fiduciary

markers and fully take advantage of the feature-tracking

algorithms in BazAR. Instead of using markers, the iPhone will

track the tabletop model through textures on the model itself.

Finally, in the last stage we will add the ability to display

information pop-ups. These windows display information about

the area of the body under the iPhone camera, such as medical

charts and CT scans.

Figure 5. Implementation concept drawing. The left image

depicts the digital table as seen through the naked eye, the red

figure being the 3D human body, black squares representing

embedded markers. The right image shows the augmented

scene as seen through the iPhone, complete with 3D overlay of

the human body and pop-ups.

4.2 System Design
The API is broken down into several main modules to allow for

greater extensibility and component-swapping. This makes it

easier to switch to different AR libraries to support other

platforms.

Figure 6. System Component Diagram

The AR library component is responsible for visual tracking of the

3D human model. BazAR with ported iPhone camera code is the

chosen candidate for this module. Should Studierstube ES ever be

released as open-source, it would most likely replace BazAR due

to performance concerns.

The AR wrapper is used to facilitate the swapping of the AR

component. It is an interface between BazAR functions and those

called by the core API.

The core API handles most of the graphics functionality. This

includes transformations on the 3D model and the iPhone AR

overlay. It also allows for the use of alternate 3D models, not just

the human body.

The model component is the 3D model data, including both the

tabletop model and the overlay models. These are displayed by

the core API and are replaceable with other models.

The communication component allows the iPhone to connect to

the tabletop server in order to receive information on the degree of

zoom, camera panning, and rotation on the tabletop model. This

data is used by the core API to transform the iPhone overlay. This

component will likely be using either REST or SOAP protocols.

4.3 Alternative Design
In the case where it becomes impossible for BazAR to perform

well on the iPhone, or it becomes too difficult for BazAR to be

ported, an alternative is to do the AR processing on the digital

tabletop’s computer instead of the mobile.

The PC outputting to the digital tabletop is responsible for

rendering the 3D LINDSAY model like in the original design. In

addition, the PC also runs the unaltered implementation of

BazAR. Since BazAR is known to perform well on the PC [15],

there should be no performance issues like with the original

design.

The iPhone then sends its own video feed to the PC via a wireless

connection. The PC uses BazAR to calculate the location of the

iPhone, overlays the 3D model, and sends the augmented video

stream back be displayed on the iPhone.

This design completely circumvents the performance issues with

the mobile device. However, the issue is whether a wireless

connection has sufficient bandwidth to transfer two video streams

at the same time. In addition, this model also scales poorly when

multiple mobiles are used, since the network load increases

significantly whenever a new phone is added.

5. CONCLUSION
We have presented a survey of existing augmented reality

libraries and mobile devices. We also explored the appropriate

software-hardware configuration necessary to implement a human

body AR API on a digital tabletop in conjunction with a mobile

device.

We originally assumed that modern smartphones have advanced

to the point where visual-tracked AR can be done in real-time.

However, it turned out that since most of the existing AR libraries

are developed for the PC, they do not include optimizations that

would have made real-time AR possible on a mobile.

The survey does reveal that, if real-time performance is not a

requirement, marker and feature AR tracking on a mobile device

is achievable. For the purposes of this project, the combination of

BazAR and the iPhone 3GS provides our API with the highest

chance for code reuse, support, and extensibility. While this

project is implemented with the knowledge that it is unlikely to

run in real-time on current mobile hardware, with the rapid

advancement of mobile technology, we are optimistic that

sufficiently powerful devices will arrive in the near future.

6. REFERENCES
[1] Boulware, L.E., Ratner, L.E., Cooper, L.A., LaVeist, T.A.

and Powe, N.R. 2004. Whole Body Donation for Medical

Science: A Population-Based Study. In Clinical Anatomy.

Wiley-Liss Inc., Wilmington, DE, 17, 570-577.

[2] Azuma, R.T. 1997. A Survey of Augmented Reality. In

Presence: Teleoperators and Virtual Environments. MIT

Press, Cambridge, MA, 6, 355-385.

[3] Schmalstieg, D. and Wagner, D. 2007. Experiences with

Handheld Augmented Reality. In Proceedings of the 2007

6th IEEE and ACM international Symposium on Mixed and

Augmented Reality (November 13 - 16, 2007). Symposium

on Mixed and Augmented Reality. IEEE Computer Society,

Washington, DC, 1-13. DOI=

http://dx.doi.org/10.1109/ISMAR.2007.4538819

[4] Apple App Store. Retrieved March 24, 2010 from Apple:

http://app-

store.appspot.com/?url=viewGrouping%3Fid%3D25204%26

mt%3D8%26ign-mscache%3D1

[5] Augmented Reality Browser – Layar. Retrieved January 20,

2009 from Layar: http://layar.com/

[6] Wagner, D.; Schmalstieg, D.; , "Making Augmented Reality

Practical on Mobile Phones, Part 1," Computer Graphics and

Applications, IEEE , vol.29, no.3, pp.12-15, May-June 2009

doi: 10.1109/MCG.2009.46

[7] Wagner, D.; Schmalstieg, D.; , "Making Augmented Reality

Practical on Mobile Phones, Part 2," Computer Graphics and

Applications, IEEE , vol.29, no.4, pp.6-9, July-Aug. 2009

doi: 10.1109/MCG.2009.67

[8] ARToolKit v4.4 iPhone. Retrieved March 24, 2010 from

ARToolworks, Inc.:

http://www.artoolworks.com/ARToolKit_iPhone.html

[9] ARToolkit. Retrieved January 22, 2010 from University of

Washington: http://www.hitl.washington.edu/artoolkit/

[10] Penn, A. 2004. Augmented Round Table for Architecture

and Urban Planning. Retrieved January 22, 2010 from

University College London:

http://www.vr.ucl.ac.uk/projects/arthur/

[11] Lam, A.H.T., Chow, K.C.H., Yau, E.H.H., and Lyu, M.R.

2006. ART: Augmented Reality Table for Interactive

Trading Card Game. Proceedings of the 2006 ACM

international conference on Virtual reality continuum and its

applications, June 14-April 17, 2006, Hong Kong, China.

DOI=http://doi.acm.org/10.1145/1128923.1128987

[12] Nvidia Developer Zone: Tegra. Retrieved January 26, 2010

from Nvidia Corporation:

http://tegradeveloper.nvidia.com/tegra/

[13] Gillet, A., Sanner, M., Olson, A., Weghorst, S. and Winn, W.

2004. Computer-Linked Autofabricated 3D Models for

Teaching Structural Biology. Retrieved January 16, 2010

from University of Washington:

http://www.hitl.washington.edu/publications//r-2004-45/r-

2004-45.pdf

[14] ARISER NET: Augmented Reality in Surgery. Retrieved

January 20, 2009 from University of Oslo:

http://www.ariser.info/index.php

[15] Scherrer, C., Pilet, J., Fua, P., and Lepetit, V. 2008. The

haunted book. In Proceedings of the 7th IEEE/ACM

international Symposium on Mixed and Augmented Reality

(September 15 - 18, 2008). Symposium on Mixed and

Augmented Reality. IEEE Computer Society, Washington,

DC, 163-164. DOI=

http://dx.doi.org/10.1109/ISMAR.2008.4637347

[16] Ozuysal, M.; Fua, P.; Lepetit, V.; , "Fast Keypoint

Recognition in Ten Lines of Code," Computer Vision and

Pattern Recognition, 2007. CVPR '07. IEEE Conference on ,

vol., no., pp.1-8, 17-22 June 2007

doi: 10.1109/CVPR.2007.383123

URL: http://ieeexplore.ieee.org.ezproxy.lib.ucalgary.ca/stam

p/stamp.jsp?tp=&arnumber=4270148&isnumber=4269956

[17] Wagner, D.; Reitmayr, G.; Mulloni, A.; Drummond, T.;

Schmalstieg, D.; , "Pose tracking from natural features on

mobile phones," Mixed and Augmented Reality, 2008.

ISMAR 2008. 7th IEEE/ACM International Symposium on ,

vol., no., pp.125-134, 15-18 Sept. 2008

doi: 10.1109/ISMAR.2008.4637338

[18] Huynh, D. T., Raveendran, K., Xu, Y., Spreen, K., and

MacIntyre, B. 2009. Art of defense: a collaborative handheld

augmented reality board game. In Proceedings of the 2009

ACM SIGGRAPH Symposium on Video Games (New

Orleans, Louisiana, August 04 - 06, 2009). S. N. Spencer,

Ed. Sandbox '09. ACM, New York, NY, 135-142. DOI=

http://doi.acm.org/10.1145/1581073.1581095

[19] ARhrrr! Retrieved March 24, 2010 from Georgia Institute of

Technology:

http://www.augmentedenvironments.org/lab/research/handhe

ld-ar/arhrrrr/

[20] BazAR: A vision based fast detection library. Retrieved

March 24, 2010 from École Polytechnique Fédérale de

Lausanne: http://cvlab.epfl.ch/software/bazar/

[21] ARTag. Retrieved March 25, 2010 from Columbia

University: http://www.artag.net/index.html

[22] NyARToolkit. Retrieved March 26, 2010 from NyARToolkit

Project:

http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en

[23] AndAR – Android Augmented Reality. Retrieved March 26,

2010 from AndAR Project: http://code.google.com/p/andar/

[24] iPhone ARKit. Retrieved March 26, 2010 from ARKit

Project: http://www.iphonear.org/

[25] Augmented Reality on the iPhone using NyARToolkit.

Retrieved March 26, 2010 from More Than Mechanical:

http://www.morethantechnical.com/2009/07/01/augmented-

reality-on-the-iphone-using-nyartoolkit-w-code/

[26] Wei-Chao Chen; Yingen Xiong; Jiang Gao; Gelfand, N.;

Grzeszczuk, R.; , "Efficient Extraction of Robust Image

Features on Mobile Devices," Mixed and Augmented Reality,

2007. ISMAR 2007. 6th IEEE and ACM International

Symposium on , vol., no., pp.287-288, 13-16 Nov. 2007

doi: 10.1109/ISMAR.2007.4538870

[27] Langlotz, T. 2010. Studierstube ES. Retrieved March 14,

2010 from Graz University of Technology:

http://studierstube.icg.tu-graz.ac.at/handheld_ar/stbes.php

[28] Langlotz, T. 2010. Studierstube ES Videos. Retrieved March

14, 2010 from Graz University of Technology:

http://studierstube.icg.tu-graz.ac.at/handheld_ar/videos.php

[29] Wagner, Daniel; Reitmayr, Gerhard; Mulloni, Alessandro;

Drummond, Tom; Schmalstieg, Dieter; , "Real-Time

Detection and Tracking for Augmented Reality on Mobile

Phones," Visualization and Computer Graphics, IEEE

Transactions on , vol.16, no.3, pp.355-368, May-June 2010

doi: 10.1109/TVCG.2009.99

[30] Fiala, M.; , "Comparing ARTag and ARToolkit Plus fiducial

marker systems," Haptic Audio Visual Environments and

their Applications, 2005. IEEE International Workshop on ,

vol., no., pp. 6 pp., 1-2 Oct. 2005

doi: 10.1109/HAVE.2005.1545669

URL: http://ieeexplore.ieee.org.ezproxy.lib.ucalgary.ca/stam

p/stamp.jsp?tp=&arnumber=1545669&isnumber=32980

[31] Art of Defense: a Mobile AR Game with Sketch-Based

Interaction and Dynamic Multi-Marker Building Techniques.

Retrieved March 28, 2010 from Georgia Institute of

Technology:

http://www.augmentedenvironments.org/lab/research/handhe

ld-ar/artofdefense/

