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ABSTRACT 

In this paper, we present a survey of existing augmented reality 

implementations to determine a software and hardware approach 

in implementing an augmented reality API. The API seeks to 

combine augmented reality on a mobile device with a 3D model 

of the human body on a digital table. We address the advantages 

and shortcomings of existing augmented reality APIs and examine 

their compatibility with current mobile devices. 

 

1. INTRODUCTION 
In medical schools, human dissection is a fundamental part of a 

physician’s education and an important rite of passage. However, 

the number of body donors frequently fall short of the huge 

demand of cadavers for research and teaching [1]. This causes a 

mounting shortage that is detrimental to physician training and is 

difficult to address in a social and moral context. 

Modern computing advances may shed light on a technological 

answer to the problem, in the form of an interactive, 3D model of 

the human body. While it is impossible to replace the experience 

of a physical cadaver, it is hoped that the system can supplement 

physician education while reducing the need for cadavers. 

The motivation for this project arises from a convergence of 

several new technologies: the digital tabletop, powerful and 

affordable handheld devices, and augmented reality platforms. 

Augmented reality (AR) is the real-time integration of virtual 3D 

environments and the real world [2]. The real environment is 

analyzed through a computer camera, and the computer then 

renders a virtual 3D model at a designated location. Often the use 

of fiducial markers, in the form of non-symmetrical pictures, is 

used to indicate the location of a 3D object. The computer 

calculates the distance and location of the 3D models in relation to 

these markers. This technology makes it possible for us to see a 

projected 3D model as it would appear in the real world. 

The use of AR involves heavy use of visual recognition and 

tracking, and is understandably computationally expensive. Many 

prior experiments with augmented reality were conducted with 

AR head-mounted-displays (HMD), where the lenses are LCD 

displays inches away from the viewer’s eyes [2]. These displays 

are expensive, and must be used in conjunction with a computer, 

limiting its mobility. The introduction of powerful handheld 

technologies, such as smartphones means that it is now possible 

for AR calculations to be done on a mobile device.  

Finally, for AR and the 3D model to be effective as a teaching 

device, a digital tabletop is necessary to simulate a dissection 

environment. The digital tabletop allows for the real-time display 

of markers, and offers interaction through multi-touch 

capabilities. This gives the system a degree of flexibility that is 

not possible with physical markers in traditional AR 

implementations.  

 

Figure 1. Augmented reality as seen through a head-mounted 

display, using traditional physical markers [9]. 

With a wide range of devices and software libraries to choose 

from, a literature survey is necessary to find the appropriate tools 

for such an implementation. This project focuses on the 

construction of an API that allows the display and interaction with 

a 3D model of a human body. In such a system, the tabletop is 

responsible for displaying the human body and AR markers, while 

the handheld device uses the markers as reference and overlays 

medical information on the 3D model. 

This project aims to evaluate current handheld devices and AR 

tools to determine which is most suitable for such an API that 

integrates all three components. 

 

2. EXISTING WORKS 
The advent of powerful smartphones made AR applications 

possible on a handheld device. In contrast to the cumbersome 

backpack-and-HMD implementations, the portability and 

affordability of smartphones makes widespread adoption of AR 

possible. Today we are seeing some of the first AR applications 

released for commercial use. Examining these existing 

applications can give us insight into the strengths and limitations 

of current AR implementations and mobile hardware. 



2.1 Limitations of AR on Mobile Devices 
In spite of the power of modern mobile devices, we should keep 

in mind that traditional AR applications are implemented on the 

PC. Designing a mobile AR API means we have to deal with 

weaknesses inherent in a mobile platform. 

Performance problems are a major concern in mobile devices. 

Visual-recognition is computationally expensive even for 

relatively simple markers [6]. The port for ARToolkit Plus, an AR 

API for the iPhone, had problems rendering more than 10 frames 

per second on an iPhone 3G [8]. This performance issue is further 

compounded with more complex algorithms used in feature-

tracking, where no fiduciary markers are used. In addition, the 

graphics processing units (GPU) present in many smartphones are 

unable to render complex 3D models, either because they are not 

fast enough or simply do not have enough memory. Therefore any 

3D models used for a mobile implementation should have its 

complexity reduced to achieve an acceptable memory footprint 

[7]. 

In addition to performance concerns, a handheld device also has 

usability problems compared to a PC. Since visual-tracking 

requires sight of the markers to render the models, awkward 

placement of markers can cause arm fatigue. Furthermore, a 

handheld’s small screen results in a low field of view for the user. 

This can not only cause eye-strain after long periods of use, but 

might also make the users stand unacceptably far from the digital 

tabletop in order to see the entire table. 

2.2 GPS-Tracked Mobile Implementations  
Considering that visual tracking is the dominant area of AR 

research since its inception, perhaps it is ironic that the first 

commercial AR applications predominantly make use of GPS 

tracking. As of this writing, a cursory search of “Augmented 

Reality” on Apple’s App Store reveals that out of a collection of 

28 results, there are none that use any form of visual tracking, and 

2 simply overlay graphics on top of the phone’s camera feed 

without any tracking [4]. The remaining 26 applications use the 

iPhone’s built-in global positioning system (GPS), accelerometer, 

and magnetometer to determine the user’s current location and 

direction. 

One of the most iconic applications using this tracking method is 

Layar, developed by the company of the same name [5]. The 

application determines the user’s location and direction using the 

aforementioned method, and overlays user-desired information 

from the internet to the camera feed. This combined footage is 

rendered on the phone’s screen, which may include directions to 

nearest attractions, real estate pricing and location, and public 

transit information. 

One major benefit of GPS-tracking is that it is not very 

computationally expensive: the program needs only to read the 

coordinates given by the instruments to determine the device’s 

location in space. This eliminates the heavy demand placed on the 

CPU for visual recognition and noise-filtering expected in visual-

tracking. In addition, the use of GPS-based tracking enables these 

applications to track themselves and locations in a 3D 

environment that is global in scope, whereas visual-tracking 

applications are only limited to the device’s immediate 

environment. However, these benefits come at the cost of 

accuracy. Visual-tracking is accurate to millimeters, depending on 

the size of the marker and the quality of the camera, while the 

error in GPS-tracking may vary as much as meters. This means 

that GPS-tracking, while less computationally-demanding, is not 

nearly accurate enough to satisfy the requirements for this project. 

2.3 Visually-Tracked Implementations 
Visually-tracked augmented reality applications use a variety of 

visual computing algorithms to search for pre-defined markers or 

features. These are divided into marker-tracking and feature 

tracking. 

In marker-tracking, the marker used is usually in the form of a 

square monochrome symbol with highly defined borders. Feature-

tracking, sometimes known as markerless-tracking, does away 

with these possibly intrusive symbols, and instead utilizes more 

sophisticated visual-recognition algorithms to look for a given 

image instead of a symbol. Unlike the monochrome symbol, the 

image may be of any shape or color. 

2.3.1 Art of Defense 
The Art of Defense is a tower-defense style AR game 

implemented for the Nokia N95 [18]. Two players must construct 

offensive towers to defend a central tower from attacking 

enemies. The towers are assigned to markers represented by 

arrows, and are placed on top of an assembled game board 

assembled from hexagonal tiles. Enemies attack the tower from 

predefined routes. The player must place offensive towers on 

optimal tiles to prevent enemies from reaching the central tower. 

This game uses the closed-source library Studierstube ES, an AR 

implementation designed for mobile devices [27]. 

The Nokia N95 has hardware specifications similar to that of the 

original iPhone. While it did not run into any limitations using the 

AR library, it did suffer on the graphics rendering front. The 

phone was unable to render sophisticated 3D models quickly, a 

performance ceiling likely also present in other mobile devices. 

 

Figure 2. The Nokia N95 is unable to render complex models 

in Art of Defense due to hardware limitations [31]. 

The game is an effective proof-of-concept of running a visually-

tracked AR application on a mobile device. However, there are 

limitations in the system arising from the lack of a tabletop 

component. 

Each piece of the gaming area is represented by a board with a 

printed marker. This makes the game harder to manage as players 

need to find the correct board piece to play, which is distracting in 

an application conducted in real-time. Furthermore, adding a 



board piece to the existing play area risks moving the pieces 

already in play, possibly upsetting the location of existing AR 

models. By contrast, a digital table is able to dynamically generate 

markers on its screen through a touch interface, and the user is not 

put at risk of upsetting the existing markers on screen. This can 

give this game the possibility of computer-generated maps, 

enlivening the play experience. 

2.3.2 ARhrrrr! 
ARhrrr is an AR shooting game implemented for the Nvidia Tegra 

platform through the Studierstube ES library [19]. The game uses 

feature-tracking techniques to render a zombie-infested city block 

on top of a map. The player plays as a helicopter pilot tasked to 

rescue civilians by shooting the zombies by tapping the 

touchscreen on the mobile device. 

 

Figure 3. Feature-tracking enables ARhrrr to track and 

display 3D models on top of terrain features of an image [19]. 

This AR implementation uses noticeably more complex models 

than those from Art of Defense, and demonstrates the Tegra 

platform’s superior hardware capabilities. The entire game, 

combined with feature tracking, runs well on the platform, 

showing that perhaps other open-source libraries can also run well 

on the Tegra. 

The game could still be improved by a dynamically-rendered map, 

however. The integration of a digital surface has the capability to 

render and scroll existing defined-features, thereby simulating a 

changing field of view. This allows for extensionality and variety 

that are the main strengths of an AR application when integrated 

with a digital tabletop. 

2.4 Existing AR Libraries and Toolkits 
There exist a number of commercial and open-source AR toolkits 

for developers. Since short implementation time and code-reuse 

are a priority for the project, each major AR library is evaluated 

for compatibility, functionality, and efficiency.  

It should be noted that since the majority of these APIs are used 

for PC development, there are performance concerns when run on 

a mobile device.  

2.4.1 ARToolkit and Derivatives 
ARToolkit is one of the first open-source visual-tracking libraries 

available [9]. First introduced in 1999, its strength is its out-of-

the-box approach by integrating a simple graphics library and 

real-time marker tracking. 

Since it is written in C, it is compatible with the iPhone. It also 

has a Java port in the form of NyARToolkit [22] and Android 

with AndAR [23]. While it is no longer being actively developed, 

its popularity means that it is well-documented and is used by a 

large community. 

However, due to its age, it does have a number of limitations. The 

performance of its tracking algorithm is not as good as those of 

the more modern libraries [8]. Its tracking is also less accurate and 

has a higher chance of error. In particular, it is more prone to 

finding false positives in cases where lighting makes one marker 

resemble another [30]. 

Finally, ARToolkit only features marker-tracking, in the form of a 

black square with a non-symmetric symbol in the center. One of 

the weaknesses of this implementation is the need of the marker to 

be always visible. This means that any user interaction with the 

markers will cause the models to vanish, which is not ideal for a 

tabletop that is centered on touch-based interaction. A 

workaround might include the use of multiple markers or tracking 

based on the environment. In order to make use of feature-

tracking, a visual-recognition algorithm such as SIFT needs to be 

integrated in the API, which takes additional time to implement. 

2.4.2 ARTag 
ARTag is a more recent library that uses digital encoding instead 

of binary correlation to identify markers [21]. Its improved 

detection algorithms enable more accurate tracking compared to 

ARToolkit in cases where there is lighting variation in the 

markers [30]. It includes a library of 2002 unique markers. 

In addition, while ARToolkit uses the square marker boundary to 

distinguish the marker, ARTag offers a limited ability to 

hypothesize about broken borders so that markers remain 

identified even when a part of the border is obscured. 

Despite its advantages, however, there does not currently exist a 

mobile implementation of ARTag, and any mobile 

implementations would have to be ported from C++ to work with 

a mobile platform. ARTag is also no longer in active 

development, and does not benefit from support of a large 

community like ARToolkit.  

2.4.3 Studierstube ES 
Studierstube ES is one of the only libraries designed ground-up 

with mobile devices in mind [27]. It provides support for 

Windows CE, Symbian, and iPhone platforms. It supports 

rendering through OpenGL, and boasts a small memory footprint 

to compensate for the poor memory bandwidth in mobile systems 

[7].  It is in active development at the Graz University of 

Technology and is object-oriented and extensible. 

It uses modified SIFT and Ferns algorithms to provide feature-

tracking, and claims to be twice as fast as ARToolkit on mobile 

platforms [29]. 

While this library seems to be the ideal one to use for this project, 

it remains closed-source and the developer is not currently 

licensing it. It is included for consideration as a candidate when it 

becomes open to licensing.  



2.4.4 BazAR 
BazAR is a C++ augmented reality library designed for feature-

based tracking [20]. Implemented in 2007, it is the most modern 

of the open-source AR libraries available. BazAR uses the Ferns 

feature-tracking algorithm, enabling it to track features much 

more quickly than with SIFT.  

The main problem with BazAR is that it does not support any 

mobile platform out-of-the-box, so it would have to be ported to 

run on the iPhone. In addition, since it is a newer library, the 

community support for this library is non-existent. It is, however, 

well-documented on its website. 

 

Figure 4. BazAR utilizes the Ferns algorithm to rapidly track 

surfaces without the need for fiduciary markers [20]. 

2.4.5 ARKit 
ARKit is an open-source AR library natively implemented for the 

iPhone [24]. It uses the GPS-tracking method and is therefore 

unsuitable for this project. However, since there are no other 

native AR libraries for the iPhone OS, this library can help with 

the porting of other libraries to the iPhone, by supplying the 

camera code necessary to get the camera feed. 

2.5 Implementations for Feature Tracking 
Two of the leading approaches in feature-recognition are SIFT 

and Ferns [17]. Both algorithms have been used to implement 

feature-tracking in AR libraries and applications, including 

BazAR and Studierstube ES.  

If a marker-tracking library is chosen for development, the more 

efficient algorithm of the two will be used to implement feature-

tracking. It is important to examine these two approaches to 

determine which is more suitable for a mobile platform. 

SIFT (Scale Invariant Feature Tracking) uses “keypoint 

localization, feature description and feature matching” [17] to 

determine the location of the image. Without getting into the 

algorithm itself, SIFT does have a reputation of being a 

computationally expensive, comparison-heavy approach [16]. By 

comparison, Ferns finds interest points in the video feed to 

maximize the probability of finding the marker, and is much faster 

in PC-based tests [16]. 

Wagner et al. studied the performance of both algorithms on the 

mobile phone in 2008 [17]. It was found that while SIFT did have 

a higher CPU overhead, Ferns utilized much more memory to 

store the interest points. While high memory consumption may 

not have been significant to desktop machines, it is much more 

taxing on mobile phones, which have significantly less memory. 

The study concluded that despite the computational differences, 

SIFT and Ferns had a similar level of performance [17]. 

The result of this study is especially important with respect to 

Ferns. Since mobile phones use the same memory for both the 

CPU and GPU, high memory consumption for Ferns precludes the 

use of large textures for the AR 3D models. 

2.6 Compatibility with Mobile Platforms 

2.6.1 iPhone 
The iPhone is one of the two possible platforms for use in the 

project. It has advantages in being a popular platform with a large 

selection of applications and community support.  

However, one major hurdle is that there are no existing open-

source AR libraries that work with the iPhone platform out-of-the-

box. It would be necessary to port any C/C++ AR libraries for use 

on the iPhone. 

Performance of visual-tracking and 3D model rendering on the 

iPhone is also a cause for concern. A sample ARToolkit 

implementation for the iPhone was unable to track a marker at 

more than 10 frames-per-second [8]. Feature-tracking on the 

iPhone is likely to be even slower owing to the complexity of the 

algorithms. In addition, the iPhone is likely unable to render the 

highly complex 3D human body overlays for use in AR. 

Therefore should iPhone be chosen for use for this project, it is 

developed with the knowledge that the application most likely 

will run with a low frame rate, and that newer generations of the 

iPhone are needed before acceptable performance can be 

achieved. 

2.6.2 Android 
Google’s Android platform is the second possible candidate for 

this project. Its primary advantage over the iPhone is having two 

native AR libraries that include NyARToolkit and AndAR. While 

neither library offers feature-tracking, using them does save time 

in porting a preexisting API over to the iPhone OS. 

Performance of the Nexus One Android phone uses a more 

powerful ARM processor and GPU than the one in the iPhone, but 

its performance in AR applications is not known. 

Deserving of particular mention is Nvidia’s Tegra platform, which 

uses a dual-core ARM processor and an Nvidia GoForce GPU 

[12]. With a superior CPU and GPU, it is better equipped than 

other platforms to handle the load of visual-tracking and 3D 

rendering. It is used in the aforementioned ARhrrr project and 

demonstrates that it is capable of smooth feature-tracking, albeit 

with the optimized Studierstube ES library. 

2.7 AR on Digital Tabletops 
Finally, existing AR implementations on digital tabletops are rare. 

Most implementations are completed for a physical table, such as 

ARTHUR for urban development [10]. These make use of paper 

markers, and therefore lack the flexibility compared to a digital 

marker rendered in real-time. The closest approximation of a 

digital tabletop comes from Dr. Chow Lam’s implementation of 



AR into a tabletop trading card game [11]. However, this 

implementation used a plasma TV laid on its side instead of a 

tabletop, and AR is used to simulate a touch screen. This is not 

necessary in digital tabletops, which have multi-touch features. 

One of the reasons for the lack of digital tabletop AR might be the 

inconvenient location of the tabletop’s cameras. The use of AR on 

a tabletop generally requires a mobile overlooking camera, which 

is not found on traditional tabletop surfaces. This means that this 

project is one of the first in the field to deal with the use of AR on 

a digital table, as well as its use in tandem with a handheld device. 

 

3. PROPOSED SOLUTION 
This project envisions an API that relies on the digital tabletop to 

render the 3D model and markers, and a handheld device to 

display additional medical information in AR. The medical 

information includes 3D overlays such as muscle and bone 

structure. In addition, the user should be able to manipulate and 

request information for areas of the model viewed under the 

handheld, which will appear in the form of pop-up windows. 

Additional interaction methods are available on the table, such as 

zooming, panning, and rotating. Any manipulation to the 3D 

human body on the digital table is communicated to the handheld 

device. The device then executes the corresponding 

transformations to the augmented 3D information on its own field 

of view. 

The goal of the API is to be able to have it adapted to use any 

other 3D model. Possible extensions might include AR display of 

topographical maps, or 3D displays of medical CT scans. To this 

end, there are three major design goals for this API: 

1. Code reuse: to reduce implementation time, existing 

tools and libraries should be used in favor of coding 

new implementations. 

2. Support and documentation: the API should be well 

documented and all its components well-supported by 

their developers. This means avoiding libraries that are 

obscure or no longer supported. 

3. The API should be general and extensible. It should 

have an interface for user extensions, support new 

models, and modular to allow for swapping of its 

components. 

3.1 Hardware Selection 
The 3D model used is the LINDSAY virtual human project 

developed by the University of Calgary Evolutionary and Swarm 

Design Research Group. The majority of the project is 

programmed in Cocoa and Objective-C. There is already a limited 

implementation of LINDSAY on the iPhone. In addition, the 

Agile Software Engineering Group has LINDSAY running on the 

Smart Table with a Mac Mini. 

In keeping with design goal #1, the iPhone and the Smart Table 

should be the platforms on which to implement the project. While 

there are concerns whether iPhone’s hardware is up to the task, 

the more powerful Nvidia Tegra is discounted because it would 

involve rewriting much of LINDSAY’s code. Furthermore, the 

more powerful iPad also fails to meet the requirements for this 

project due to the lack of a rear-facing camera. 

3.2 Software Toolkit and Libraries 
Since this project does not aim to recreate an AR environment 

from scratch, it will make use of existing AR libraries. However, 

there are no native implementations of any existing AR library for 

the iPhone, barring the closed-source Studierstube ES. 

The alternative is to choose the best C/C++ implementations of an 

AR library and port it to the iPhone, which is between ARToolkit 

and BazAR. BazAR is a superior choice in this case since it is 

more modern, and offers native feature-tracking. The only 

downside with this library is the lack of community support.  

One of the main hurdles of this move is getting access to the code 

to access iPhone’s camera API. Fortunately, there is a guide on 

porting the C++ implementation of NyARToolkit to the iPhone, 

complete with camera code [25]. In addition, the open-source 

ARKit can also be used as reference to access the camera. 

 

4. IMPLEMENTATION PLANNING 

4.1 Implementation Schedule 
The first stage of the implementation of the API is to be able to 

render a part of the LINDSAY human model on the iPhone, and 

have it oriented to a static paper marker. This stage involves 

modifying LINDSAY code so that it can be rendered on the 

iPhone, and porting BazAR to the iPhone. This stage is done 

independently of the digital tabletop, and focuses mainly on 

enabling basic AR functionality on the iPhone. 

Since the LINDSAY model on the iPhone is the AR overlay to the 

3D model on the digital tabletop, the next stage enables the 

iPhone to track the zoom and orientation of the tabletop 3D 

model. This is accomplished by embedding markers on the 

tabletop model, tracked from the iPhone through marker-

recognition. This phase completes the multi-marker tracking of 

the tabletop model, and overlays the iPhone model on top of it. 

In the third stage, we will stop using symbols for fiduciary 

markers and fully take advantage of the feature-tracking 

algorithms in BazAR. Instead of using markers, the iPhone will 

track the tabletop model through textures on the model itself. 

Finally, in the last stage we will add the ability to display 

information pop-ups. These windows display information about 

the area of the body under the iPhone camera, such as medical 

charts and CT scans. 

 

Figure 5. Implementation concept drawing. The left image 

depicts the digital table as seen through the naked eye, the red 

figure being the 3D human body, black squares representing 

embedded markers. The right image shows the augmented 

scene as seen through the iPhone, complete with 3D overlay of 

the human body and pop-ups. 



4.2 System Design 
The API is broken down into several main modules to allow for 

greater extensibility and component-swapping. This makes it 

easier to switch to different AR libraries to support other 

platforms.  

 

 

Figure 6. System Component Diagram  

The AR library component is responsible for visual tracking of the 

3D human model. BazAR with ported iPhone camera code is the 

chosen candidate for this module. Should Studierstube ES ever be 

released as open-source, it would most likely replace BazAR due 

to performance concerns. 

The AR wrapper is used to facilitate the swapping of the AR 

component. It is an interface between BazAR functions and those 

called by the core API. 

The core API handles most of the graphics functionality. This 

includes transformations on the 3D model and the iPhone AR 

overlay. It also allows for the use of alternate 3D models, not just 

the human body. 

The model component is the 3D model data, including both the 

tabletop model and the overlay models. These are displayed by 

the core API and are replaceable with other models. 

The communication component allows the iPhone to connect to 

the tabletop server in order to receive information on the degree of 

zoom, camera panning, and rotation on the tabletop model. This 

data is used by the core API to transform the iPhone overlay. This 

component will likely be using either REST or SOAP protocols.   

4.3 Alternative Design 
In the case where it becomes impossible for BazAR to perform 

well on the iPhone, or it becomes too difficult for BazAR to be 

ported, an alternative is to do the AR processing on the digital 

tabletop’s computer instead of the mobile. 

The PC outputting to the digital tabletop is responsible for 

rendering the 3D LINDSAY model like in the original design. In 

addition, the PC also runs the unaltered implementation of 

BazAR. Since BazAR is known to perform well on the PC [15], 

there should be no performance issues like with the original 

design. 

The iPhone then sends its own video feed to the PC via a wireless 

connection. The PC uses BazAR to calculate the location of the 

iPhone, overlays the 3D model, and sends the augmented video 

stream back be displayed on the iPhone. 

This design completely circumvents the performance issues with 

the mobile device. However, the issue is whether a wireless 

connection has sufficient bandwidth to transfer two video streams 

at the same time. In addition, this model also scales poorly when 

multiple mobiles are used, since the network load increases 

significantly whenever a new phone is added.  

5. CONCLUSION 
We have presented a survey of existing augmented reality 

libraries and mobile devices. We also explored the appropriate 

software-hardware configuration necessary to implement a human 

body AR API on a digital tabletop in conjunction with a mobile 

device. 

We originally assumed that modern smartphones have advanced 

to the point where visual-tracked AR can be done in real-time. 

However, it turned out that since most of the existing AR libraries 

are developed for the PC, they do not include optimizations that 

would have made real-time AR possible on a mobile. 

The survey does reveal that, if real-time performance is not a 

requirement, marker and feature AR tracking on a mobile device 

is achievable. For the purposes of this project, the combination of 

BazAR and the iPhone 3GS provides our API with the highest 

chance for code reuse, support, and extensibility. While this 

project is implemented with the knowledge that it is unlikely to 

run in real-time on current mobile hardware, with the rapid 

advancement of mobile technology, we are optimistic that 

sufficiently powerful devices will arrive in the near future. 
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