
Linking Feature Models to Code Artifacts using

Executable Acceptance Tests1

Yaser Ghanam and Frank Maurer

Department of Computer Science

2500 University Dr. NW, Calgary

Alberta, Canada T2N 1N4

{yghanam, fmaurer}@ucalgary.ca

Abstract. A feature model is a representation of the requirements in a given

system abstracted at the feature level. Linking conceptual requirements in

feature models to actual implementation artifacts provides for many advantages

such as increased program comprehension, implementation completeness

assessment, impact analysis, and reuse opportunities. However, in practice, as

systems evolve, traceability links between the model and the code artifacts may

become broken or outdated. In this paper, we contribute an approach to provide

traceability links in a way that ensures consistency between the feature model

and the code artifacts, enables the evolution of variability in the feature model,

and supports the product derivation process. We do that by using executable

acceptance tests as a direct traceability link between feature models and code

artifacts. We evaluate our approach and present a brief overview of the tool

support we provide.

Keywords: agile product line engineering, feature models, traceability,

variability evolution, executable acceptance tests.

1 Introduction

Feature modelling has become an essential aspect of software engineering in general

and software product line engineering (SPLE) in particular. A feature model is a

representation of the requirements in a given system abstracted at the feature level

[30]. A feature can be broadly defined as a chunk of functionality that delivers value

to the end user. In SPLE, feature models represent a hierarchy of features and sub-

features in a product line and include information about variability in the product line

and constraints of feature selection.

Linking conceptual requirements in feature models to actual implementation

artifacts provides for advantages such as increased program comprehension,

implementation completeness assessment, impact analysis, and reuse opportunities

[2]. Nevertheless, traceability is a non-trivial problem. Berg et al. [3] analyzed

1 This research is supported by iCore – Alberta Innovates Technology Futures.

traceability between the problem space (i.e. the model) and the solution space (i.e. the

development artifacts) in a software product line context. The results suggested that

the feature model provided an excellent visualization means at individual levels of

abstraction. However, it did not improve the traceability between artifacts across

development spaces. Furthermore, in practice, as the product line evolves, traceability

relationships between the model and the code artifacts may become broken or

outdated [29]. This happens either because changes in the model are not completely

and consistently realized in the code artifacts; or because changes due to continuous

development and maintenance of the code artifacts are not reflected back in the

model. This problem is not unique to SPLE. In fact, outdated traceability between

requirement specifications and other development artifacts has always been an issue

in software engineering [13, 6].

Traceability links provided by some commercial tools (e.g. DOORS [7]) mitigate

this issue, but leave some other problems unsolved. For example, say feature A and

feature B are independent features in the product line. During the maintenance of

feature A, the developer introduced a change that unintentionally caused a technical

conflict between feature A and feature B. Although the tool will maintain the

traceability links between each piece of code and the correspondent feature, it cannot,

uncover the newly introduced conflict in order to reflect it back in the model.

In this paper, we propose the use of executable acceptance tests as a direct

traceability link between feature models and code artifacts. In the next subsection, we

give an overview of executable acceptance tests and their characteristics.

1.1 Executable Acceptance Tests

Requirement specifications – in its traditional format – exist in a number of

documents and are written in a natural language. The correctness of the behaviour of a

system is determined against these specifications using test cases or scenarios. On the

other hand, executable specifications are written in a semi-formal language that aims

to reduce ambiguities and inconsistencies. Executable specifications take various

formats ranging from very formal [11] to English-like [22]. The English-like ones are

often called scenario tests [17], story tests [19], or acceptance tests [26]. They are

usually used in organizations where Agile Software Development [20] is practiced.

These names highlight the role of these artifacts as:

1. Cohesive documentation of the specifications of a given feature.

2. Accurate, high-level validity tests: by being executable, these specifications

can be run (executed) against the system directly in order to test the

correctness of its behaviour.

Throughout this paper, we will use the general term executable acceptance test

(EAT) to refer to the English-like specifications that can play the two roles above. In

this paper, we present an idea on how EATs can be used as a traceability link between

feature models and code artifacts. Fig. 1 shows an example of an EAT. If the

behaviour of the system matches the expected one as specified in the EAT, the test

passes. Otherwise, the test fails indicating either a technical problem in the code, or a

business problem in understanding the specifications of the system. To link the EAT

to actual production code, a thin layer of test code – called fixture – is used. EATs are

usually executed using tools like FIT [10] and GreenPepper [14].

Home owner is notified after two failed attempts

Start Screen.Login

Enter Name John PIN 1234

Check Info is valid False

Enter Name John PIN 4321

Check Info is valid False

Check Owner is notified

Fig. 1. Example of an EAT

1.2 Traceability from EATs to Code Artifacts

The fundamental basis of our approach is that EATs natively provide the necessary

links to code artifacts. The reason why acceptance tests can be executed against the

system is that they are linked to a thin layer of test code, and from there to actual

production code. Fig. 2 shows an example of this traceability. At the first layer, only

one row of a row-fixture EAT is shown for simplicity. This row is linked – by a test

automation framework (e.g. FIT) – to a method in the test code called

addResidentWithPIN(…). This method in turns uses the addResident(…) method in

the production code, specifically in the HomeResidentsList class. When the test is

executed, an attempt to add a resident with the given parameters will be made. In this

scenario, if the attempt is not successful – for a variety of reasons such as the PIN

being too short or too long – the EAT will fail. Otherwise, it will pass. Usually, a suite

of EATs is executed rather than a single EAT. Moreover, with appropriate test

coverage, tools generate reports stating which methods where involved in the

execution process of a certain EAT. Later in the paper, we will discuss how this

traceability is useful in linking features models with the code artifacts.

The rest of this paper is structured as follows. Section 2 is a review of relevant

literature. Section 3 presents the proposed approach. Section 4 elaborates on the

positive implications of the approach. Section 5 is an evaluation of our approach in

comparison to other traditional approaches. Finally, we conclude in Section 6.

2 Literature Review

There is a large body of research on feature modeling in software engineering in

general, and SPLE in particular. FODA [18] was one of the earliest techniques off

which many other techniques were based (e.g. [16] and [8]). In our work, we use

feature trees as described in traditional modeling techniques such as FODA, but the

generality of our work is not affected by that choice.

Efforts to study traceability links between feature models and other development

artifacts include the one by Filho et al. [15] in which they proposed the integration of

feature models with the UML meta-model to facilitate the instantiation process.

Another effort was the one by Ramesh et al. [28] in which use cases (representing

requirements) were linked to design artifacts and from there to code artifacts. To

group requirements at a more meaningful and comprehendible level of abstraction,

Riebisch [29] suggested the use of feature models as an intermediate element between

use cases and other artifacts. The main issue with this approach is that in real settings

a massive effort is required to establish and maintain the traceability links due to the

informal descriptions of the requirements – which made automation impossible [25].

To solve the language informality issue, new techniques were proposed. For example,

Antoniol et al. [2] proposed an information retrieval method to link flat requirements

to code artifacts. The caveat of the approach is that it is based on the hypothesis that

programmers use names for program items (e.g. classes, methods, variables) that are

also found in the text documents. There is also the issue of managing and maintaining

the established traceability links. In a panel report, Huang [15] discusses the state-of-

the-practice in traceability techniques. The report asserts that requirement trace

matrices (RTMs) are often maintained either manually or using a management tool;

and the amount of effort needed to keep these links up-to-date is enormous.

Commercial tools are available to support traceability. CaliberRM [4], DOORS [7]

and other tools are used to manage and visualize traceability links. However, these

links have to be established manually, and the tools do not address issues specific to

feature models such as variability in requirement. Some software product line tools

like pure::variants [27] provide add-ins to allow requirement models in traditional

management tools to be remodeled as feature models.

Our contribution in this paper is novel because we link feature models to

specifications that are executable. We also show in the sections to follow how this

linkage provides advantages specific to feature models and software product lines.

3 Using Feature Models with EATs

We propose extending feature models by including EATs as concrete descriptors of

features at the lowest level of the feature tree. EATs should be associated with

features that originally would be considered leaf nodes in the tree as shown in Fig. 3.

Acceptance Test Add resident | Robert | with PIN | 4421

Test Code
bool addResidentWithPIN (string user, string pin) {
 //some setup code
 bool result = homeResidents.addResident(user, pin);
 return result;
}

Production Code

class HomeResidentsList {
public bool addResident (string user, string pin) ;
//other methods

}

 Fig. 2. Traceability through EATs

For instance, the feature ―Access by PIN‖ is associated with three EATs. These EATs

describe scenarios that need to be satisfied in the implementation of this specific

feature. 2

Linking between an EAT node in the model and the actual specification happens

by associating a test unit to the EAT node. An EAT node can link to a test table, a test

page, or a test suite. We intentionally do not put any constraints on the granularity of

the test unit to leave it flexible for various contexts. Nevertheless, a single test table

may be insufficient given that usually more than one table is needed to specify some

behaviour. This makes a single table less cohesive than desired. On the other hand, a

test suite may be too large because it involves more than one feature creating

dependencies between test units. Therefore, we suggest the use of a test page as a

usual test unit that provides reasonable cohesion and independence. Depending on the

testing tools, test pages can take various formats such as html files or excel sheets.

3.1 Linking Features to EATs

Following the earlier definition of a feature as a chunk of functionality that delivers

value to the end user, one EAT generally is not sufficient to represent a feature in a

system. In practice, a group of EATs represent the different scenarios or stories

expected in a given feature in a system. This implies that in order to somehow link

features in a feature model to EATs, one-to-one relationships are not practical. Rather,

each feature in the feature model should be linked to one or more EATs (Fig. 4). The

―Access by PIN‖ feature is specified using three EATs. In order for the behaviour of

this feature to be deemed correct, all three EATs should pass. Moreover, in some

cases, a single EAT can be at a level high enough to cut across a number of features in

the system. Consider, for example, a high-level EAT such as ―Owner entering

premises‖ as in Fig. 4. Say in order for the scenario specified in this EAT to pass,

2 This is a simple example of a feature model. All features are mandatory unless there is a white

circle indicating their optionality. For instance, the ―Access Control‖ feature is optional.

Grouping features (or sub-features) with an arch indicates that these features are alternatives.

That is, only one feature can be selected from the group. If more than one feature can be

selected from a group, a multiplicity constraint of the form [min..max] will be included.

Fig. 3. The proposed extension to feature models

Home Security

System

Burglary Detector Access Control

Motion detector Window contacts Glass break detector Access by PIN Access by fingerprint

EAT A EAT B

Features

EATs EAT E EAT F EAT G EAT C EAT D EAT H EAT I EAT J

more than one feature should be involved (i.e. EAT X cuts across a number of

features). This implies that a many-to-many relationship is needed in order to

accurately represent the relationship between EATs and features in a feature model.

Linking features to EATs has consequences. For one, the selection of a feature in

the product derivation phase automatically implies the inclusion of all its EATs.

Secondly, EATs shall inherit all the dependencies and constraints originally imposed

on their parent nodes. For example, according to the model in Fig. 4, the two features

―Access by PIN‖ and ―Access by fingerprint‖ are mutually exclusive. This implies

that the groups: {EAT E, EAT F, EAT G} and {EAT H, EAT I, EAT J} are mutually

exclusive too. The importance of explicating these consequences will be discussed

later in the paper.

4 Implications of Using EATs as Traceability Links

In the previous sections, we discussed how features in the feature model can be linked

to EATs in order to provide traceability links between the feature model and the code

artifacts. This section analyzes the implications of using EATs by highlighting three

main ways through which EATs provide significant contribution to feature models.

4.1 Consistency between the Feature Model and the Code Artifacts

EATs provide a means to ensure that the problem space (i.e. the specifications), and

the solution space (i.e. the implementation) are consistent. This consistency is due to

the fact that these specifications can be executed against the implementation, and the

result of their execution gives an unambiguous insight of whether or not the intended

requirements currently exist in the system. In our approach, we provide a link

between feature models and EATs in order to inherit this important property. Within

this context, we realize two key advantages of our approach:

Access by PIN

EAT E: Adding an owner

EAT F: Authenticating a PIN

EAT G: Tracking attempts

EAT X: Owner entering premises

Access by fingerprint

Motion Detector

Feature EAT
m n

addingOwner.htnl

authPIN.xls

tracking.html

enteringpremises.doc

Test unit
1 1

Features EATs Test Units

Fig. 4. Relationships between features, EATs, and test units.

Continuous Two-way Feedback. Maintaining a practice where every feature in the

feature model has to be associated with some EATs is valuable. Changes due to

continuous development and maintenance of the code artifacts are reflected back in

the model, because – at any point of time – the EATs are either in a passing state

(visualized as green) or a failing state (visualized as red). For instance, Fig. 5 shows

how a change in the code (e.g. bug fix) caused EAT B to fail – also causing the

―Motion Detector‖ to be denoted as incomplete. The opposite direction of feedback

occurs when introducing a new feature to the model. The accompanied EATs will

initially be in a failing state indicating that the feature is not implemented yet.

Exploiting Hidden Variability Concerns. Using EATs helps in revealing unwanted

feature interactions that otherwise might be hidden. It also supports the realization of

common aspects of features. We illustrate these points further by going through a

number of scenarios.

Scenario 1: In some cases, the same EAT can be used as part of the specifications of

two different features. If the features are originally mutually exclusive, and the same

EAT passes in both, then this EAT is agnostic to the source of variation in the

features. This means that the specifications in this EAT are part of the common

portion of the parent node, which exploits a commonality aspect that was not

originally apparent. Fig. 6 shows that because EAT G and EAT J are the same (we use

a dashed line to denote this – it is also possible to give them the same name), we can

abstract the commonality as a mandatory sub-feature under ―Access Control‖.

Scenario 2: Using EATs allow finding unwanted feature interactions. EATs for

independent features may pass when the features are selected separately; but fail

when selected together. This is indicative of an unwanted feature interaction. This

conflict is either a problem in the implementation and should be resolved, or an

unavoidable real conflict that should then be reflected in the model as an ―excludes‖

dependency or using a multiplicity constraint.

Scenario 3: Some EATs for independent features fail when these features are selected

separately, but when selected together, they pass. This is indicative of a dependency

between the features. It can be either due to unnecessary coupling in the

implementation itself that should be resolved, or due to a necessary ―requires‖

dependency that should then be reflected in the model.

Motion detector

EAT A EAT B

Motion detector

EAT A EAT B

New Feature

EAT K EAT L

change

(a) a change in the code caused an EAT to fail

providing immediate feedback in the feature model.

(b) when adding a feature to the model, initially

EATs fail indicating incomplete implementation.

Fig. 5. Continuous two-way feedback

4.2 Supporting the Evolution of Variability in the Extended Feature Model

Using EATs as a basis for evolving variability in the feature model is rewarding in a

number of ways. Consider the following scenarios:

Scenario 1: A new feature or sub-feature is added to the feature model. In case the

newly added feature causes EATs of other features that were originally passing to fail,

this is a sign that a new conflict was introduced by the new feature. Without the direct

feedback of failing tests, it is less likely for this conflict to be immediately exposed.

Scenario 2: An existing feature or sub-feature is removed from the feature model. If

this feature was originally related to other features, then all dependencies are to be

resolved before removing the feature safely. However, in case there was a hidden

(unexploited) dependency between this feature and other features, removing this

feature and its corresponding code might have a destructive effect on the other

features. The fastest way to discover such effects is by looking for EATs that started

to fail only after removing the feature.

Scenario 3: A new variant is to be added to a group of variants under a given feature.

For developers, using EATs provides guidance on where and how this new variant

should be accommodated in the system. For example, suppose we want to add a new

alternative ―Access by Magnet Card‖ under ―Access Control‖. First of all, we may be

able to reuse the EATs of the other sibling alternatives and tweak them to reflect the

requirements of the new alternative. And because EATs are traceable to code

artifacts, we can look at the implementation of the sibling alternatives in order to have

a better comprehension on where in the code we should incorporate the new variant,

and how it should be handled. With appropriate tool support, we can also automate

the process of adding a variant by using the sibling nodes as templates, and directing

the developer to the exact place in the code base where the new logic should be added

[12]. This is particularly important for legacy systems with poor or outdated design

documentation or for development environments where design documentation might

not be available at all.

Access Control

Access by PIN Access by fingerprint

EAT E EAT F EAT G EAT H EAT I EAT J

Access by PIN Access by fingerprint

EAT E EAT F EAT G EAT H EAT I

Tracking attempts

Access Control

(a) EAT G and EAT J are the same, and they both

pass in mutually exclusive features.

(b) exploiting the commonality aspect as a mandatory

sub-feature.

Fig. 6. Abstracting the commonality as a mandatory sub-feature

Scenario 4: Abstracting a variability aspect to the common layer. Say an EAT is used

as part of the specifications of two mutually exclusive features, and this EAT passes

in both. This means that the specifications in this EAT can be abstract to become part

of the common layer of the parent node (as a mandatory sub-feature – this was

discussed in the previous section).

4.3 Deriving Products using the Extended Feature Model

In a software product line context, feature models are used to select features and

variants that constitute a product instance. The selection process should take into

consideration the constraints and dependencies between features and variants, as

conveyed in the feature model. Nowadays, tool support is available to make this

process easier, faster and less error-prone. Once the features and configurations have

been selected, an instance is derived that has the required feature composition and

configuration. This section discusses the beneficial roles EATs can play in the product

derivation process (aka. product instantiation process).

Selecting Configurations. During the derivation process, we usually need to set

certain parameters (e.g. compiler directives, configuration classes) in order to select

certain configurations for the product instance at hand. We can rely on EATs to

automatically set up these parameters. This can be done because for an EAT to pass

(independently of other EATs), it needs to set the correct parameter before it can

execute the production code. When we finish the selection process of features in the

feature model, we can run all the EATs that are relevant to the current selection.

Given that all EATs have passed for the current selection, this means that all

parameters in the system have been set properly, and the system is now ready to

produce the right instance (Fig. 7). Another role of EATs in this context can be

described as ―configuration by example.‖ That is, EATs provide a good starting point

for the developers to learn how to configure a certain feature

Extracting Required Artifacts. In some derivation techniques, a subset of code

artifacts are extracted from a common base according to which features in the feature

Home Security System

Burglary Detector

Motion detector Window contacts Glass break detector

EAT A EAT B EAT C EAT D

Production Code
if (FeatureSelector. WindowContacts) {…}

Feature Selector Code
class FeatureSelector {
 public static bool WindowContacts;
 //other parameters
}

Testing Code
FeatureSelector. WindowContacts = True;

Fig. 7. Using EATs to select configurations

model were selected. EATs can play an important role in supporting this process.

After the selection process of features in the feature model, we can run all the EATs

that are relevant to the current selection as shown in Fig. 8 (CU refers to code unit and

TU refers to test unit). Static code analysis can provide details on which code artifacts

are needed to produce the desired instance by computing the transitive closure of all

calls in the fixture classes used in the EATs of the instance.

4.4 Tool Support

In order to realize the benefits we discussed in the previous sub-sections, we built a

tool that supports traceability links between the feature model and code artifacts via

EATs3. To avoid reinventing the wheel, an open-source modeling tool was chosen in

order to be extended. We used Feature Model DSL as the basis (available online [1]).

The tool provides a feature modeling toolbox integrated in the Visual Studio

environment. It includes a visual designer to create and modify models. It also

provides a configuration window that allows the creation of configurations based on

the feature model. We extended the tool in two ways, namely: allow the linkage

between features and EATs, and define a course of action to complete the derivation

process of individual instances after the configuration process. The remaining of this

section will explain the currently available features.

The user can represent features and the relationships between them following the

typical feature modeling notation. In our extension of the tool, the leaves of the

feature tree can be linked to EATs as shown in Fig. 9.

3 We thank Felix Riegger for his contribution in providing the tool support.

Home Security System

Burglary Detector

Motion detector Window contacts Glass break detector

EAT A EAT B EAT C EAT D

Production Code

EATs Testing Code

EAT A EAT B

EAT C EAT D

TU 1 TU 2

TU 3 TU 4

TU 5 TU 6

CU 1 CU 2

CU 3 CU 4

CU 5 CU 6

CU 7 CU 8

TU 1 TU 4

TU 5 TU 6

CU 1 CU 3

CU 5 CU 4

CU 7

EAT A EAT B

EAT D

Extract for

the new instance

Fig. 8. Using EATs coverage reports to extract artifacts

Fig. 9. The leaves of the feature tree can be linked to EATs

The tool also allows the user to run EATs directly from the feature model as shown

in Fig. 10. Nodes that have passing tests are coloured in green and those with failing

tests are coloured in red. After feature selection, the tool checks the constraints to

ensure the validity of the selected subset of features, and it runs only those EATs that

are relevant to a given instance. This is shown in Fig. 11. The extended version of the

tool will be made available online in Spring 2010.

Fig. 10. The tool allows the user to run ATs directly from the variability model

Fig. 11. The tool runs only those EATs that are relevant to a given instance

5 Evaluation

In this paper, we proposed the use of EATs to link feature models to code artifacts.

This section presents an evaluation of the proposed approach. We evaluate the

approach in two different ways. First, we compare our approach with traditional

requirement traceability approaches and other approaches that involve feature models,

as discussed in the literature review section. Then, we use the running example

presented throughout this paper to list the limitations of the approach (the advantages

of the approach were already discussed in the previous section). Using a running

example for validation and evaluation purposes has been a well accepted technique in

the community [31, 24, 5].

Table 1 lists a number of criteria against which we conduct our comparison. The

criteria are based on guidelines obtained from the literature such as [29] and [2]. The

system evolution criterion describes how traceability links are affected with the

evolution of a system such as adding or removing requirements. In the case of feature

model approaches, we are more concerned with the evolution of variability such as

adding or removing variation points and variants. We use the program

comprehension criterion to describe the ability of the developers to form a mental

model of the variability definition as described in the feature tree as well as the

realization of that variability at the code level. This evaluation is limited by the

subjectivity arising from the criteria being considered. We intend to conduct a more

thorough evaluation to collect empirical evidence of the feasibility and usefulness of

the proposed approach.

Having illustrated the advantages of our approach in comparison to other

traditional approaches, we think there is a raft of issues that need to be addressed. For

one, we cannot currently predict how scalable our approach is – especially when

dealing with a large number of variation points and variants. This problem is inherited

from the scalability issues associated with feature modeling in general. Furthermore,

despite the fact that EATs provide an elegant way to specify functional requirements

in software systems, they have not yet been widely used in specifying non-functional

attributes such as usability and security (other non-functional attributes like

performance can be specified and executed as described in [21]). For feature models

that contain variability due to non-functional aspects, our approach may not be

sufficient. Moreover, the most common practices involving EATs focus on code

artifacts much more than other development artifacts. For organizations that consider

design artifacts, for instance, to be essential, the adoption of our approach may result

in these artifacts becoming rapidly outdated - mainly because from a developer‘s

perspective there will be no need to maintain them anymore. However, the

organization can solve this problem by requiring that some EATs be used as

placeholders to associate important information such as links to design documents,

standards or data files [23]. Another critical point that may be a real challenge in

some organizations is the commitment and discipline needed to provide sufficient

EAT coverage of all features in the system in a sustainable manner. Adopting test-

driven development practices is one way to deal with this issue.

It is also important to point out that contrary to the initial impression that this

approach may lead to architectural drift, the approach may actually improve

adherence to the architecture. This is because of the transparency and traceability

between the model artifacts and the code artifacts, which provide the developers with

a holistic and consistent understanding of the product line. This, however, is still an

open issue to investigate in the near future.

Table 1. Comparison between the different approaches of traceability

 Traditional

Requirement

Traceability

Traceability through

Feature Models

Traceability through

Feature Models and

EAT

Number of links Very large, because

every requirement is

linked to relevant

design and code

artifacts.

Somewhat large,

because every feature

is linked to relevant

design and code

artifacts.

Fairly small, because

every feature is only

linked to the EATs

files specifying that

feature.

Quality of links

over time

Links become broken

or/and outdated

without appropriate

manual revisions and

updates.

Links become broken

or/and outdated

without appropriate

manual revisions and

updates.

Links stay consistent

and up-to-date because

of the immediate

feedback on broken or

outdated links.

System

evolution

Not supported

efficiently. If a

requirement is added or

removed, links have to

be re-established.

Not supported

efficiently. If a new

variation is added or

removed, links have to

be re-established. Also,

there are no automatic

checks for new hidden

conflicts in the feature

model.

Full support. Only

links for the added or

removed features or

variations need to be

handled. Failing EATs

indicate newly

introduced conflicts.

Impact analysis Provides information

on the artifacts that can

be potentially impacted

by a change. No details

on the actual impact.

Provides information

on the artifacts that can

be potentially impacted

by a change. No details

on the actual impact.

Provides information

on the artifacts that are

actually impacted by a

change, and provides

immediate feedback on

the actual impact of

that change.

Program

comprehension

Improved over systems

with no traceability.

But requires an effort

for developers to link

requirements with code

tasks (reading RTMs is

not simple). Also,

given that variability is

not modelled

explicitly, handling

each type of variation

in code is not

straightforward.

Reasonable, because

requirements are

conceptualized at a

more comprehendible

level of abstraction (i.e.

features), and

variability is modelled

explicitly.

Good, because features

are linked directly to

code artifacts, and

hence variants can be

traced to code easily.

Also, developers get

instant feedback on

changes to the code.

6 Conclusion & Future Work

The significance of establishing good traceability links cannot be overstated as

evident in the literature and in practical contexts. We presented an approach to link

feature models to code artifacts using executable acceptance tests. This paper

contributed an approach to provide traceability links in a way that:

 ensures consistency between the feature model and the code artifacts,

 enables the evolution of variability in the feature model, and

 supports the product derivation process.

The valuable implications of these three characteristics were illustrated in detail,

and the approach was compared to traditional approaches to highlight its strengths. In

spite of the limitations our approach has, we think this is a first yet significant step

towards a framework to adopt efficient traceability practices in software product line

organizations. For future work, we need to conduct a more comprehensive evaluation

of this approach in an industrial setting. We also would like to continue working on a

complete tool support for creating, managing, refactoring, and linking EATs within

the context of feature models.

References

1. André, F., http://featuremodeldsl.codeplex.com/. Feature Model DSL Homepage, 2009.

Accessed February 10, 2010.

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E., Recovering traceability

links between code and documentation, IEEE Transactions on Software Engineering,

vol.28, no.10, pp. 970- 983, Oct 2002.

3. Berg, K., Bishop, J., and Muthig, D., ―Tracing Software Product Line Variability — From

Problem to Solution Space,‖ presented at 2005 annual research conference of the South

African institute of computer scientists and information technologists on IT research in

developing countries, White River, South Africa, 2005.

4. CaliberRM, http://www.borland.com/us/products/caliber/index.html, accessed March 1,

2010.

5. Cho, H., Lee, K., and Kang, K. C. 2008. Feature Relation and Dependency Management:

An Aspect-Oriented Approach. Proceedings of the 2008 12th international Software

Product Line Conference (2008). IEEE Computer Society, Washington, DC, 3-11.

6. Cleland-Huang, J., Zemont, G., and Lukasik, W. 2004. A Heterogeneous Solution for

Improving the Return on Investment of Requirements Traceability. In Proceedings of the

Requirements Engineering Conference, 12th IEEE international(September 06 - 10,

2004). RE. IEEE Computer Society, Washington, DC, 230-239.

7. DOORS, http://www-01.ibm.com/software/awdtools/doors/, accessed March 1, 2010.

8. Fey, D., Fajta, R., and Boros, A., Feature Modeling: A Meta-Model to Enhance Usability

and Usefulness. In Software Product Lines (SPLC2): Springer, 2002, pp. 198-216.

9. Filho, I.M., Oliveira, T.C., Lucena, C.J.P., 2002. A proposal for the incorporation of the

features model into the UML language. Proceedings of the 4th International Conference

on Enterprise Information Systems (ICEIS2002), Ciudad Real, Spain.

10. FIT, http://fit.c2.com, accessed Nov, accessed March 1, 2010.

11. Fuchs, N.E.: Specifications are (Preferably) Executable. IEE/BCS Software Engineering

Journal 7(5) (1992) 323–334.

12. Ghanam, Y., and Maurer, F., Extreme Product Line Engineering – Refactoring for

Variability: A Test-Driven Approach. The 11th International Conference on Agile

Processes and eXtreme Programming (XP 2010), Trondheim, Norway, 2010.

13. Gotel, O., and Finkelstein, A., ―An Analysis of the Requirements Traceability Problem,‖

1st International Conference on Requirements Eng., 1994, pp. 94-101.

14. GreenPepper, http://www.greenpeppersoftware.com, accessed March 1, 2010.

15. Huang, J. C. ―Just enough requirement traceability‖, Proceedings of the 30th Annual

International Computer Software and Applications, Chicago, September 2006,pp. 41– 42.

16. K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, FORM: A feature-oriented

reuse method with domain specific reference architectures, Annals of Software

Engineering, vol. 5, pp. 143-168, 1998.

17. Kaner, C. ―Cem Kaner on Scenario Testing: The Power of ‗What-If…‘ and Nine Ways to

Fuel Your Imagination‖, Better Software, 5(5):16–22, 2003.

18. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A., Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, 1990

19. Kerievsky, J. ―Storytesting‖, http://industrialxp.org/storytesting.html, accessed March 1,

2010.

20. Manifesto for Agile Software Development, available at: http://www.agilemanifesto.org/,

accessed May 13, 2010.

21. Marchetto, A., http://selab.fbk.eu/swat/slide/2_Fitnesse.ppt, accessed March 10, 2010.

22. Melnik, G., Maurer, F., and Chiasson, M., "Executable Acceptance Tests for

Communicating Business Requirements: Customer Perspective," Proc. Agile 2006

Conf., IEEE CS Press, 2006, pp. 35–46.

23. Park, S.S., Maurer, F.: The benefits and challenges of executable acceptance testing. In:

APOS 2008: Proceedings of the 2008 international workshop on Scrutinizing agile

practices or shoot-out at the agile corral, pp. 19–22 (2008).

24. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented

Product Lines. Proceedings of 13th International Software Product Line Conference

(SPLC), San Francisco, CA, USA (2009).

25. Pashov, I., Feature Based Method for Supporting Architecture Refactoring and

Maintenance of Long-Life Software Systems. PhD Thesis, Technical University Ilmenau,

2004.

26. Perry, W. Effective Methods for Software Testing, 2/e, John Wiley & Sons: New York,

NY, 2000.

27. Pure::Systems, http://www.pure-systems.com/DOORS.102+M54a708de802.0.html,

accessed March 1, 2010.

28. Ramesh, B., Jarke, M., Toward Reference Models for Requirements Traceability. IEEE

Transactions on Software Engineering, vol. 27, Issue 1 (January 2001) pp. 58 – 93.

29. Riebisch, M., Supporting Evolutionary Development by Feature Models and Traceability

Links. Proceedings of the 11th IEEE international Conference and Workshop on

Engineering of Computer-Based Systems (May 24 - 27, 2004). ECBS. IEEE Computer

Society, Washington, DC, 370.

30. Riebisch, M., Towards a more precise definition of feature models. Position Paper, in: M.

Riebisch, J.O. Coplien, D, Streitferdt (Eds.), Modelling Variability for Object-Oriented

Product Lines, 2003.

31. Tun, T. T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P. (2009) Relating

Requirements and Feature Configurations: A Systematic Approach, International Software

Product Line Conference (SPLC 2009).

