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Abstract. A feature model is a representation of the requirements in a given 

system abstracted at the feature level. Linking conceptual requirements in 

feature models to actual implementation artifacts provides for many advantages 

such as increased program comprehension, implementation completeness 

assessment, impact analysis, and reuse opportunities. However, in practice, as 

systems evolve, traceability links between the model and the code artifacts may 

become broken or outdated. In this paper, we contribute an approach to provide 

traceability links in a way that ensures consistency between the feature model 

and the code artifacts, enables the evolution of variability in the feature model, 

and supports the product derivation process. We do that by using executable 

acceptance tests as a direct traceability link between feature models and code 

artifacts. We evaluate our approach and present a brief overview of the tool 

support we provide. 

Keywords: agile product line engineering, feature models, traceability, 

variability evolution, executable acceptance tests. 

1   Introduction 

Feature modelling has become an essential aspect of software engineering in general 

and software product line engineering (SPLE) in particular. A feature model is a 

representation of the requirements in a given system abstracted at the feature level 

[30]. A feature can be broadly defined as a chunk of functionality that delivers value 

to the end user. In SPLE, feature models represent a hierarchy of features and sub-

features in a product line and include information about variability in the product line 

and constraints of feature selection.  

Linking conceptual requirements in feature models to actual implementation 

artifacts provides for advantages such as increased program comprehension, 

implementation completeness assessment, impact analysis, and reuse opportunities 

[2]. Nevertheless, traceability is a non-trivial problem. Berg et al. [3] analyzed 
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traceability between the problem space (i.e. the model) and the solution space (i.e. the 

development artifacts) in a software product line context. The results suggested that 

the feature model provided an excellent visualization means at individual levels of 

abstraction. However, it did not improve the traceability between artifacts across 

development spaces. Furthermore, in practice, as the product line evolves, traceability 

relationships between the model and the code artifacts may become broken or 

outdated [29]. This happens either because changes in the model are not completely 

and consistently realized in the code artifacts; or because changes due to continuous 

development and maintenance of the code artifacts are not reflected back in the 

model. This problem is not unique to SPLE. In fact, outdated traceability between 

requirement specifications and other development artifacts has always been an issue 

in software engineering [13, 6]. 

Traceability links provided by some commercial tools (e.g. DOORS [7]) mitigate 

this issue, but leave some other problems unsolved. For example, say feature A and 

feature B are independent features in the product line. During the maintenance of 

feature A, the developer introduced a change that unintentionally caused a technical 

conflict between feature A and feature B. Although the tool will maintain the 

traceability links between each piece of code and the correspondent feature, it cannot, 

uncover the newly introduced conflict in order to reflect it back in the model.  

In this paper, we propose the use of executable acceptance tests as a direct 

traceability link between feature models and code artifacts. In the next subsection, we 

give an overview of executable acceptance tests and their characteristics.  

1.1   Executable Acceptance Tests 

Requirement specifications – in its traditional format – exist in a number of 

documents and are written in a natural language. The correctness of the behaviour of a 

system is determined against these specifications using test cases or scenarios. On the 

other hand, executable specifications are written in a semi-formal language that aims 

to reduce ambiguities and inconsistencies. Executable specifications take various 

formats ranging from very formal [11] to English-like [22]. The English-like ones are 

often called scenario tests [17], story tests [19], or acceptance tests [26]. They are 

usually used in organizations where Agile Software Development [20] is practiced. 

These names highlight the role of these artifacts as:  

1. Cohesive documentation of the specifications of a given feature. 

2. Accurate, high-level validity tests: by being executable, these specifications 

can be run (executed) against the system directly in order to test the 

correctness of its behaviour.  

 

Throughout this paper, we will use the general term executable acceptance test 

(EAT) to refer to the English-like specifications that can play the two roles above.  In 

this paper, we present an idea on how EATs can be used as a traceability link between 

feature models and code artifacts. Fig. 1 shows an example of an EAT. If the 

behaviour of the system matches the expected one as specified in the EAT, the test 

passes. Otherwise, the test fails indicating either a technical problem in the code, or a 

business problem in understanding the specifications of the system. To link the EAT 



to actual production code, a thin layer of test code – called fixture – is used. EATs are 

usually executed using tools like FIT [10] and GreenPepper [14]. 

 
Home owner is notified after two failed attempts 

Start Screen.Login  

Enter Name John PIN 1234 

Check Info is valid False 

Enter Name John PIN 4321 

Check Info is valid False 

Check Owner is notified 

Fig. 1. Example of an EAT 

1.2   Traceability from EATs to Code Artifacts 

The fundamental basis of our approach is that EATs natively provide the necessary 

links to code artifacts. The reason why acceptance tests can be executed against the 

system is that they are linked to a thin layer of test code, and from there to actual 

production code. Fig. 2 shows an example of this traceability. At the first layer, only 

one row of a row-fixture EAT is shown for simplicity. This row is linked – by a test 

automation framework (e.g. FIT) – to a method in the test code called 

addResidentWithPIN(…). This method in turns uses the addResident(…) method in 

the production code, specifically in the HomeResidentsList class. When the test is 

executed, an attempt to add a resident with the given parameters will be made. In this 

scenario, if the attempt is not successful – for a variety of reasons such as the PIN 

being too short or too long – the EAT will fail. Otherwise, it will pass. Usually, a suite 

of EATs is executed rather than a single EAT. Moreover, with appropriate test 

coverage, tools generate reports stating which methods where involved in the 

execution process of a certain EAT. Later in the paper, we will discuss how this 

traceability is useful in linking features models with the code artifacts. 

The rest of this paper is structured as follows. Section 2 is a review of relevant 

literature. Section 3 presents the proposed approach. Section 4 elaborates on the 

positive implications of the approach. Section 5 is an evaluation of our approach in 

comparison to other traditional approaches. Finally, we conclude in Section 6.  

2   Literature Review 

There is a large body of research on feature modeling in software engineering in 

general, and SPLE in particular. FODA [18] was one of the earliest techniques off 

which many other techniques were based (e.g. [16] and [8]). In our work, we use 

feature trees as described in traditional modeling techniques such as FODA, but the 

generality of our work is not affected by that choice.  

Efforts to study traceability links between feature models and other development 

artifacts include the one by Filho et al. [15] in which they proposed the integration of 

feature models with the UML meta-model to facilitate the instantiation process. 

Another effort was the one by Ramesh et al. [28] in which use cases (representing 



requirements) were linked to design artifacts and from there to code artifacts. To 

group requirements at a more meaningful and comprehendible level of abstraction, 

Riebisch [29] suggested the use of feature models as an intermediate element between 

use cases and other artifacts. The main issue with this approach is that in real settings 

a massive effort is required to establish and maintain the traceability links due to the 

informal descriptions of the requirements – which made automation impossible [25]. 

To solve the language informality issue, new techniques were proposed. For example, 

Antoniol et al. [2] proposed an information retrieval method to link flat requirements 

to code artifacts. The caveat of the approach is that it is based on the hypothesis that 

programmers use names for program items (e.g. classes, methods, variables) that are 

also found in the text documents. There is also the issue of managing and maintaining 

the established traceability links. In a panel report, Huang [15] discusses the state-of-

the-practice in traceability techniques. The report asserts that requirement trace 

matrices (RTMs) are often maintained either manually or using a management tool; 

and the amount of effort needed to keep these links up-to-date is enormous. 

Commercial tools are available to support traceability. CaliberRM [4], DOORS [7] 

and other tools are used to manage and visualize traceability links. However, these 

links have to be established manually, and the tools do not address issues specific to 

feature models such as variability in requirement. Some software product line tools 

like pure::variants [27] provide add-ins to allow requirement models in traditional 

management tools to be remodeled as feature models.  

Our contribution in this paper is novel because we link feature models to 

specifications that are executable. We also show in the sections to follow how this 

linkage provides advantages specific to feature models and software product lines.  

 

 

3   Using Feature Models with EATs 

We propose extending feature models by including EATs as concrete descriptors of 

features at the lowest level of the feature tree. EATs should be associated with 

features that originally would be considered leaf nodes in the tree as shown in Fig. 3. 

Acceptance Test   Add resident | Robert | with PIN | 4421 

Test Code 
bool addResidentWithPIN (string user, string pin) { 
         //some setup code 
         bool result = homeResidents.addResident(user, pin); 
         return result; 
} 

Production Code 

class HomeResidentsList { 
public bool addResident (string user, string pin) ; 
//other methods 

} 
 

 Fig. 2. Traceability through EATs 



For instance, the feature ―Access by PIN‖ is associated with three EATs. These EATs 

describe scenarios that need to be satisfied in the implementation of this specific 

feature. 2  

 

 
Linking between an EAT node in the model and the actual specification happens 

by associating a test unit to the EAT node. An EAT node can link to a test table, a test 

page, or a test suite. We intentionally do not put any constraints on the granularity of 

the test unit to leave it flexible for various contexts. Nevertheless, a single test table 

may be insufficient given that usually more than one table is needed to specify some 

behaviour. This makes a single table less cohesive than desired. On the other hand, a 

test suite may be too large because it involves more than one feature creating 

dependencies between test units. Therefore, we suggest the use of a test page as a 

usual test unit that provides reasonable cohesion and independence. Depending on the 

testing tools, test pages can take various formats such as html files or excel sheets. 

3.1   Linking Features to EATs  

Following the earlier definition of a feature as a chunk of functionality that delivers 

value to the end user, one EAT generally is not sufficient to represent a feature in a 

system. In practice, a group of EATs represent the different scenarios or stories 

expected in a given feature in a system. This implies that in order to somehow link 

features in a feature model to EATs, one-to-one relationships are not practical. Rather, 

each feature in the feature model should be linked to one or more EATs (Fig. 4). The 

―Access by PIN‖ feature is specified using three EATs. In order for the behaviour of 

this feature to be deemed correct, all three EATs should pass. Moreover, in some 

cases, a single EAT can be at a level high enough to cut across a number of features in 

the system. Consider, for example, a high-level EAT such as ―Owner entering 

premises‖ as in Fig. 4. Say in order for the scenario specified in this EAT to pass, 

                                                           
2 This is a simple example of a feature model. All features are mandatory unless there is a white 

circle indicating their optionality. For instance, the ―Access Control‖ feature is optional. 

Grouping features (or sub-features) with an arch indicates that these features are alternatives. 

That is, only one feature can be selected from the group. If more than one feature can be 

selected from a group, a multiplicity constraint of the form [min..max] will be included. 

Fig. 3. The proposed extension to feature models 

Home Security 

System 

Burglary Detector Access Control 

Motion detector Window contacts Glass break detector Access by PIN Access by fingerprint 

EAT A EAT B 

Features 

EATs EAT E EAT F EAT G EAT C EAT D EAT H EAT I EAT J 



more than one feature should be involved (i.e. EAT X cuts across a number of 

features). This implies that a many-to-many relationship is needed in order to 

accurately represent the relationship between EATs and features in a feature model.  

Linking features to EATs has consequences. For one, the selection of a feature in 

the product derivation phase automatically implies the inclusion of all its EATs. 

Secondly, EATs shall inherit all the dependencies and constraints originally imposed 

on their parent nodes. For example, according to the model in Fig. 4, the two features 

―Access by PIN‖ and ―Access by fingerprint‖ are mutually exclusive. This implies 

that the groups: {EAT E, EAT F, EAT G} and {EAT H, EAT I, EAT J} are mutually 

exclusive too. The importance of explicating these consequences will be discussed 

later in the paper.  

 

 

4   Implications of Using EATs as Traceability Links 

In the previous sections, we discussed how features in the feature model can be linked 

to EATs in order to provide traceability links between the feature model and the code 

artifacts. This section analyzes the implications of using EATs by highlighting three 

main ways through which EATs provide significant contribution to feature models.  

4.1   Consistency between the Feature Model and the Code Artifacts 

EATs provide a means to ensure that the problem space (i.e. the specifications), and 

the solution space (i.e. the implementation) are consistent. This consistency is due to 

the fact that these specifications can be executed against the implementation, and the 

result of their execution gives an unambiguous insight of whether or not the intended 

requirements currently exist in the system. In our approach, we provide a link 

between feature models and EATs in order to inherit this important property. Within 

this context, we realize two key advantages of our approach: 

Access by PIN 

EAT E: Adding an owner  

EAT F: Authenticating a PIN  

EAT G: Tracking attempts 

EAT X: Owner entering premises 

Access by fingerprint 

Motion Detector 

Feature EAT 
m n 

addingOwner.htnl 

authPIN.xls 

tracking.html 

enteringpremises.doc 

Test unit 
1 1 

Features EATs Test Units 

Fig. 4. Relationships between features, EATs, and test units. 



Continuous Two-way Feedback. Maintaining a practice where every feature in the 

feature model has to be associated with some EATs is valuable. Changes due to 

continuous development and maintenance of the code artifacts are reflected back in 

the model, because – at any point of time – the EATs are either in a passing state 

(visualized as green) or a failing state (visualized as red). For instance, Fig. 5 shows 

how a change in the code (e.g. bug fix) caused EAT B to fail – also causing the 

―Motion Detector‖ to be denoted as incomplete. The opposite direction of feedback 

occurs when introducing a new feature to the model. The accompanied EATs will 

initially be in a failing state indicating that the feature is not implemented yet.  

 
 

Exploiting Hidden Variability Concerns.  Using EATs helps in revealing unwanted 

feature interactions that otherwise might be hidden. It also supports the realization of 

common aspects of features. We illustrate these points further by going through a 

number of scenarios. 

 

Scenario 1: In some cases, the same EAT can be used as part of the specifications of 

two different features. If the features are originally mutually exclusive, and the same 

EAT passes in both, then this EAT is agnostic to the source of variation in the 

features. This means that the specifications in this EAT are part of the common 

portion of the parent node, which exploits a commonality aspect that was not 

originally apparent. Fig. 6 shows that because EAT G and EAT J are the same (we use 

a dashed line to denote this – it is also possible to give them the same name), we can 

abstract the commonality as a mandatory sub-feature under ―Access Control‖.  

Scenario 2: Using EATs allow finding unwanted feature interactions. EATs for 

independent features may pass when the features are selected separately; but fail 

when selected together. This is indicative of an unwanted feature interaction. This 

conflict is either a problem in the implementation and should be resolved, or an 

unavoidable real conflict that should then be reflected in the model as an ―excludes‖ 

dependency or using a multiplicity constraint.   

Scenario 3: Some EATs for independent features fail when these features are selected 

separately, but when selected together, they pass. This is indicative of a dependency 

between the features. It can be either due to unnecessary coupling in the 

implementation itself that should be resolved, or due to a necessary ―requires‖ 

dependency that should then be reflected in the model. 

Motion detector 

EAT A EAT B 

Motion detector 

EAT A EAT B 

 

New Feature 

EAT K EAT L 

change 

(a) a change in the code caused an EAT to fail 

providing immediate feedback in the feature model. 

(b) when adding a feature to the model, initially 

EATs fail indicating incomplete implementation. 

Fig. 5. Continuous two-way feedback 



 

4.2   Supporting the Evolution of Variability in the Extended Feature Model 

Using EATs as a basis for evolving variability in the feature model is rewarding in a 

number of ways. Consider the following scenarios: 

 

Scenario 1: A new feature or sub-feature is added to the feature model. In case the 

newly added feature causes EATs of other features that were originally passing to fail, 

this is a sign that a new conflict was introduced by the new feature. Without the direct 

feedback of failing tests, it is less likely for this conflict to be immediately exposed.  

Scenario 2: An existing feature or sub-feature is removed from the feature model. If 

this feature was originally related to other features, then all dependencies are to be 

resolved before removing the feature safely. However, in case there was a hidden 

(unexploited) dependency between this feature and other features, removing this 

feature and its corresponding code might have a destructive effect on the other 

features. The fastest way to discover such effects is by looking for EATs that started 

to fail only after removing the feature. 

Scenario 3: A new variant is to be added to a group of variants under a given feature. 

For developers, using EATs provides guidance on where and how this new variant 

should be accommodated in the system. For example, suppose we want to add a new 

alternative ―Access by Magnet Card‖ under ―Access Control‖. First of all, we may be 

able to reuse the EATs of the other sibling alternatives and tweak them to reflect the 

requirements of the new alternative. And because EATs are traceable to code 

artifacts, we can look at the implementation of the sibling alternatives in order to have 

a better comprehension on where in the code we should incorporate the new variant, 

and how it should be handled. With appropriate tool support, we can also automate 

the process of adding a variant by using the sibling nodes as templates, and directing 

the developer to the exact place in the code base where the new logic should be added 

[12]. This is particularly important for legacy systems with poor or outdated design 

documentation or for development environments where design documentation might 

not be available at all.  

Access Control 

Access by PIN Access by fingerprint 

EAT E EAT F EAT G EAT H EAT I EAT J 

Access by PIN Access by fingerprint 

EAT E EAT F EAT G EAT H EAT I 

Tracking attempts 

Access Control 

(a) EAT G and EAT J are the same, and they both 

pass in mutually exclusive features. 

(b) exploiting the commonality aspect as a mandatory 

sub-feature. 

Fig. 6.  Abstracting the commonality as a mandatory sub-feature 



Scenario 4: Abstracting a variability aspect to the common layer. Say an EAT is used 

as part of the specifications of two mutually exclusive features, and this EAT passes 

in both. This means that the specifications in this EAT can be abstract to become part 

of the common layer of the parent node (as a mandatory sub-feature – this was 

discussed in the previous section). 

4.3   Deriving Products using the Extended Feature Model  

In a software product line context, feature models are used to select features and 

variants that constitute a product instance. The selection process should take into 

consideration the constraints and dependencies between features and variants, as 

conveyed in the feature model. Nowadays, tool support is available to make this 

process easier, faster and less error-prone. Once the features and configurations have 

been selected, an instance is derived that has the required feature composition and 

configuration. This section discusses the beneficial roles EATs can play in the product 

derivation process (aka. product instantiation process).  

 

Selecting Configurations. During the derivation process, we usually need to set 

certain parameters (e.g. compiler directives, configuration classes) in order to select 

certain configurations for the product instance at hand. We can rely on EATs to 

automatically set up these parameters. This can be done because for an EAT to pass 

(independently of other EATs), it needs to set the correct parameter before it can 

execute the production code. When we finish the selection process of features in the 

feature model, we can run all the EATs that are relevant to the current selection. 

Given that all EATs have passed for the current selection, this means that all 

parameters in the system have been set properly, and the system is now ready to 

produce the right instance (Fig. 7). Another role of EATs in this context can be 

described as ―configuration by example.‖ That is, EATs provide a good starting point 

for the developers to learn how to configure a certain feature   

 

 
Extracting Required Artifacts. In some derivation techniques, a subset of code 

artifacts are extracted from a common base according to which features in the feature 

Home Security System 

Burglary Detector 

Motion detector Window contacts Glass break detector 

EAT A EAT B EAT C EAT D 

Production Code 
if (FeatureSelector. WindowContacts) {…} 
 

Feature Selector Code 
class FeatureSelector { 
         public static bool WindowContacts; 
        //other parameters 
} 
 
 

Testing Code 
FeatureSelector. WindowContacts = True; 
 

Fig. 7. Using EATs to select configurations 



model were selected. EATs can play an important role in supporting this process. 

After the selection process of features in the feature model, we can run all the EATs 

that are relevant to the current selection as shown in Fig. 8 (CU refers to code unit and 

TU refers to test unit). Static code analysis can provide details on which code artifacts 

are needed to produce the desired instance by computing the transitive closure of all 

calls in the fixture classes used in the EATs of the instance.  

 

4.4   Tool Support  

In order to realize the benefits we discussed in the previous sub-sections, we built a 

tool that supports traceability links between the feature model and code artifacts via 

EATs3. To avoid reinventing the wheel, an open-source modeling tool was chosen in 

order to be extended. We used Feature Model DSL as the basis (available online [1]). 

The tool provides a feature modeling toolbox integrated in the Visual Studio 

environment. It includes a visual designer to create and modify models. It also 

provides a configuration window that allows the creation of configurations based on 

the feature model. We extended the tool in two ways, namely: allow the linkage 

between features and EATs, and define a course of action to complete the derivation 

process of individual instances after the configuration process. The remaining of this 

section will explain the currently available features.  

The user can represent features and the relationships between them following the 

typical feature modeling notation. In our extension of the tool, the leaves of the 

feature tree can be linked to EATs as shown in Fig. 9.  

 

                                                           
3 We thank Felix Riegger for his contribution in providing the tool support. 
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EAT A EAT B 

EAT C EAT D 

TU 1 TU 2 

TU 3 TU 4 

TU 5 TU 6 
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CU 3 CU 4 

CU 5 CU 6 

CU 7 CU 8 

TU 1 TU 4 

TU 5 TU 6 

CU 1 CU 3 

CU 5 CU 4 

CU 7 

EAT A EAT B 

EAT D 

Extract for  

the new instance 

 

Fig. 8. Using EATs coverage reports to extract artifacts 



 

Fig. 9. The leaves of the feature tree can be linked to EATs 

The tool also allows the user to run EATs directly from the feature model as shown 

in Fig. 10. Nodes that have passing tests are coloured in green and those with failing 

tests are coloured in red. After feature selection, the tool checks the constraints to 

ensure the validity of the selected subset of features, and it runs only those EATs that 

are relevant to a given instance. This is shown in Fig. 11. The extended version of the 

tool will be made available online in Spring 2010.  

 

 

Fig. 10. The tool allows the user to run ATs directly from the variability model 

 

 

Fig. 11. The tool runs only those EATs that are relevant to a given instance 



5   Evaluation  

In this paper, we proposed the use of EATs to link feature models to code artifacts. 

This section presents an evaluation of the proposed approach. We evaluate the 

approach in two different ways. First, we compare our approach with traditional 

requirement traceability approaches and other approaches that involve feature models, 

as discussed in the literature review section. Then, we use the running example 

presented throughout this paper to list the limitations of the approach (the advantages 

of the approach were already discussed in the previous section). Using a running 

example for validation and evaluation purposes has been a well accepted technique in 

the community [31, 24, 5]. 

Table 1 lists a number of criteria against which we conduct our comparison. The 

criteria are based on guidelines obtained from the literature such as [29] and [2]. The 

system evolution criterion describes how traceability links are affected with the 

evolution of a system such as adding or removing requirements. In the case of feature 

model approaches, we are more concerned with the evolution of variability such as 

adding or removing variation points and variants.  We use the program 

comprehension criterion to describe the ability of the developers to form a mental 

model of the variability definition as described in the feature tree as well as the 

realization of that variability at the code level. This evaluation is limited by the 

subjectivity arising from the criteria being considered. We intend to conduct a more 

thorough evaluation to collect empirical evidence of the feasibility and usefulness of 

the proposed approach.  

Having illustrated the advantages of our approach in comparison to other 

traditional approaches, we think there is a raft of issues that need to be addressed. For 

one, we cannot currently predict how scalable our approach is – especially when 

dealing with a large number of variation points and variants. This problem is inherited 

from the scalability issues associated with feature modeling in general. Furthermore, 

despite the fact that EATs provide an elegant way to specify functional requirements 

in software systems, they have not yet been widely used in specifying non-functional 

attributes such as usability and security (other non-functional attributes like 

performance can be specified and executed as described in [21]). For feature models 

that contain variability due to non-functional aspects, our approach may not be 

sufficient. Moreover, the most common practices involving EATs focus on code 

artifacts much more than other development artifacts. For organizations that consider 

design artifacts, for instance, to be essential, the adoption of our approach may result 

in these artifacts becoming rapidly outdated - mainly because from a developer‘s 

perspective there will be no need to maintain them anymore. However, the 

organization can solve this problem by requiring that some EATs be used as 

placeholders to associate important information such as links to design documents, 

standards or data files [23]. Another critical point that may be a real challenge in 

some organizations is the commitment and discipline needed to provide sufficient 

EAT coverage of all features in the system in a sustainable manner. Adopting test-

driven development practices is one way to deal with this issue.  

It is also important to point out that contrary to the initial impression that this 

approach may lead to architectural drift, the approach may actually improve 

adherence to the architecture. This is because of the transparency and traceability 



between the model artifacts and the code artifacts, which provide the developers with 

a holistic and consistent understanding of the product line. This, however, is still an 

open issue to investigate in the near future.  

Table 1. Comparison between the different approaches of traceability 

 Traditional 

Requirement 

Traceability  

Traceability through 

Feature Models 

Traceability through 

Feature Models and 

EAT 

Number of links  Very large, because 

every requirement is 

linked to relevant 

design and code 

artifacts. 

Somewhat large, 

because every feature 

is linked to relevant 

design and code 

artifacts. 

Fairly small, because 

every feature is only 

linked to the EATs 

files specifying that 

feature. 

Quality of links 

over time 

Links become broken 

or/and outdated 

without appropriate 

manual revisions and 

updates. 

Links become broken 

or/and outdated 

without appropriate 

manual revisions and 

updates. 

Links stay consistent 

and up-to-date because 

of the immediate 

feedback on broken or 

outdated links. 

System 

evolution 

 

Not supported 

efficiently. If a 

requirement is added or 

removed, links have to 

be re-established.  

Not supported 

efficiently. If a new 

variation is added or 

removed, links have to 

be re-established. Also, 

there are no automatic 

checks for new hidden 

conflicts in the feature 

model.  

Full support. Only 

links for the added or 

removed features or 

variations need to be 

handled. Failing EATs 

indicate newly 

introduced conflicts. 

Impact analysis Provides information 

on the artifacts that can 

be potentially impacted 

by a change. No details 

on the actual impact. 

Provides information 

on the artifacts that can 

be potentially impacted 

by a change. No details 

on the actual impact. 

Provides information 

on the artifacts that are 

actually impacted by a 

change, and provides 

immediate feedback on 

the actual impact of 

that change. 

Program 

comprehension 

Improved over systems 

with no traceability. 

But requires an effort 

for developers to link 

requirements with code 

tasks (reading RTMs is 

not simple). Also, 

given that variability is 

not modelled 

explicitly, handling 

each type of variation 

in code is not 

straightforward.  

Reasonable, because 

requirements are 

conceptualized at a 

more comprehendible 

level of abstraction (i.e. 

features), and 

variability is modelled 

explicitly. 

Good, because features 

are linked directly to 

code artifacts, and 

hence variants can be 

traced to code easily. 

Also, developers get 

instant feedback on 

changes to the code.  

 



6   Conclusion & Future Work 

The significance of establishing good traceability links cannot be overstated as 

evident in the literature and in practical contexts. We presented an approach to link 

feature models to code artifacts using executable acceptance tests. This paper 

contributed an approach to provide traceability links in a way that:  

 ensures consistency between the feature model and the code artifacts,  

 enables the evolution of variability in the feature model, and  

 supports the product derivation process.  

The valuable implications of these three characteristics were illustrated in detail, 

and the approach was compared to traditional approaches to highlight its strengths. In 

spite of the limitations our approach has, we think this is a first yet significant step 

towards a framework to adopt efficient traceability practices in software product line 

organizations. For future work, we need to conduct a more comprehensive evaluation 

of this approach in an industrial setting. We also would like to continue working on a 

complete tool support for creating, managing, refactoring, and linking EATs within 

the context of feature models.  
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