
Learning Gestures for Interacting with Low-Fidelity Prototypes

Tulio de Souza Alcantara
Department of Computer

Science
Calgary, Canada

University of Calgary
tuliosouza@gmail.com

Jörg Denzinger
Department of Computer

Science
Calgary, Canada

University of Calgary
denzinge@cpsc.ucalgary.ca

Jennifer Ferreira
Department of Computer

Science
Calgary, Canada

University of Calgary
jen.ferreira@ucalgary.ca

Frank Maurer
Department of Computer

Science
Calgary, Canada

University of Calgary
frank.maurer@ucalgary.ca

Abstract—This paper presents an approach to help designers

create their own application-specific gestures and evaluate
them in user-studies based on low fidelity prototypes of the
application they are designing. In order to learn custom
gestures, we developed a machine learning tool that uses an
anti-unification algorithm to learn based on samples of the
gesture provided by the designer.

Keywords-custom gestures; anti-unification; low-fidelity
prototyping

I. INTRODUCTION
Designing WIMP-based applications is a well-known

challenge. This challenge becomes even bigger with the
increasing popularity of touch-based devices and gesture
based applications. The popularity of these devices requires
designers to learn how gesture-based and touch-based
interactions can improve the user experience. The constant
evolution of these touch-based devices allows users to
interact in new and different ways, which gives possibilities
to user experience designers to try different approaches for
users to interact with the software.

For touch-based devices a preferable user interface
integrates gesture-based interactions into the applications
[1]. Frameworks like Windows Presentation Foundation
(WPF) [21] provide a set of pre-defined gestures that
application developers can use easily [20]. However, the
literature shows many examples of gestures that are not
available out of the box, e.g. [1],[6].

When creating new gestures for interacting with touch-
based applications, user experience designers have to
determine if users consider them natural, understandable
and easy to use [1].

In an effort to help interaction designers to create more
intuitive and user oriented gestures, the present paper
proposes Intelligent Gesture Toolkit (IGT) which will allow
users with no previous programming knowledge

 to create their own custom gestures by providing
samples and

 to evaluate these gestures in the context of a low-
fidelity prototype of the application.

As defined by Mitra and Acharya in 2007, gestures can
be static or dynamic [10]. In static gestures, a user assumes a
certain pose using hands and fingers, while a dynamic
gesture can be a stroke or set of strokes on the touch surface.

Some gestures combine both dynamic and static elements.
IGT works with both types of gestures.

A designer creates custom gestures in IGT by training the
tool through examples of the gesture (samples) he wants to
create. Through an anti-unification process IGT learns the
most compact way to represent the gesture. The tool is
integrated with a low-fidelity prototyping tool Active Story
Touch (AST) [3] so that a designer can draw UIs and
associate custom gestures that will trigger specific page
transitions in the prototype.

For brevity of the paper, the user experience designer or
user interaction designer will be referenced as designer and
the user that will evaluate the low-fidelity prototypes will be
referenced as user.

The next section discusses related work. This is followed
by a tool description that will explain the architecture of
IGT. The fourth section focuses on the learning aspect of the
tool, explaining the anti-unification process in detail.

The fifth section explains the role of IGT in the low-
fidelity prototype evaluation process. The last section
presents the conclusion and future work of this research.

II. RELATED WORK
In the current literature there are several solutions for

gesture creation and recognition. In special, gesture
recognition that uses statistical model approaches such as
Hidden Markov Models (HMM) [11], [12], [7] and machine
learning methods [13] has received a lot of attention.

In 2008, Damaraju and Kerne proposed a tool for gesture
definition and recognition using trained HMM [7]. In
comparison with IGT, this tool defines and recognizes
finger gestures but lacks support for hand gestures.

Some studies focus on the gesture recognition and gesture
definition as a specific problem. In 2007, Mitra et al. [10]
published a survey that covers several approaches used in
gesture recognition and in 1997 Bobick et al. [18] proposed
a state-based approach to the representation and recognition
of gestures.

In 2005, Karam proposed a taxonomy of gestures in the
human computer interaction field [15]. A design model for
gesture interactions was proposed by Lao and Wang in 2009
[16]. Finally, in 2010, Morris et al. compared a set of
gestures created by end-users and HCI researchers to
understand user preferences for gestures [17].

978-1-4673-1753-5/12/$31.00 c© 2012 IEEE RAISE 2012, Zurich, Switzerland32

Figure 1 Gesture definition using IGT

Wobbrock et al. published in 2009 a study to gather the

gestures which people would use for specific tasks [1]. For
the same tasks, they compared gestures created by Human
Computer Interaction experts and users. The result showed
the gestures created by the experts did not cover half of the
ones created by users, meaning that designer opinion or
expertise alone is not sufficient and user opinions are also
required. This enforces the need for a user-centered design
process when creating gestures.

To show the importance of user experience designers
taking into consideration various aspects when defining
gestures, Hinrichs and Carpendale found in a study using
interactive tabletops, that the choice and use of multi-touch
gestures are influenced by the action and social context in
which these gestures occur [2]. Their study suggests that
previous gestures influence the formation of subsequent
gestures and that evaluating gestures requires
contextualizing them in the application in which they will be
used. Our use of the low-fidelity evaluations is in line with
this approach.

In 2010, Khandkar and Maurer proposed a gesture
definition language to be used by developers to define new
gestures [6], which is the language used by the present paper
to define the gestures.

 Also in 2010, Khandkar et al. proposed a tool to support
testing complex multi-touch gestures [9]. This enables
automated testing for gesture based applications. This
solution differs from the one proposed in this paper as it
focuses more on development testing, while the solution
proposed in this paper focuses on low-fidelity prototype
evaluations involving the users.

Instead of having a user to train the tool, the paper in
2009 by Freeman et al. [8] proposes a tool to help users

learn multi-touch and whole hand gestures in a tabletop
surface by showing an example and feedback of the gesture
for the user to learn.

For the machine learning approach used in this paper, an
approach in a similar fashion is applied in 2007 by Cottrell
et al. that presents a proof-of-concept plug-in to Eclipse for
automatically determining correspondences as an early step
in a generalization task [23].

III. TOOL CONTRIBUTIONS
IGT is based on the Gesture Toolkit (GT), a tool

proposed by Khandkar et al. in 2010 [6]. To help understand
IGT, some concepts of the GT framework and how IGT
extends GT will be explained in the following.

The Gesture Toolkit is a toolkit that simplifies the multi-
touch application development; it consists of a predefined
set of common primitive gestures, a domain-specific
language to define new gestures and a device-independent
architecture that allows the application to run on different
devices [6]. The definition of a gesture is created using the
Gesture Definition Language (GDL) [6].

The GDL provides a set of primitive conditions to define
the gesture. Primitive conditions include trigonometric and
geometric calculations that can be used in GDL with other
conditions. Primitives can contain values and they can be of
two types: a fixed value or a range.

For example in Figure 1 the primitive Touch path length
in step1 (see quadrant 2) contains a fixed value of 295.98.

A gesture definition in the GT has three sections;
 a name that uniquely identifies a definition within

the application;
 one or more validation blocks that contain

combinations of primitive conditions; and
 a return block that contains one or more return types.

33

Figure 2 IGT Architecture

After defining a gesture in GT, a designer, with the help

of functions and methods provided by the toolkit, needs to
bind the gesture detection to trigger an event and to create
the event (or callback). This step requires programming
skills from the designer in GT, but is not necessary in IGT,
as events are provided out of the box and just need to be
selected from a list of events to be bound with gesture
detection.

In IGT a value can also be a variable related to another
primitive in the gesture definition, meaning that values in
the definition of the language can be proportional between
them. Gestures with proportional values are called smart
gestures and will be explained in the following section.

Figure 1 shows a snapshot of IGT for the definition of a
check gesture. In Figure 1, quadrant 1 is the canvas where
the gesture should be performed for training the tool; it
shows a feedback of the gesture. Quadrant 2 shows the
definitions generated by the tool for the gestures performed.
As samples are added, the previous sample is collapsed and
the new one expanded. Quadrant 3 shows the smart gesture
that was generated based on the samples provided in
quadrant 2. Finally, quadrant 4 is a control section that to
date has only two properties; to control the accuracy for the
anti-unification algorithm and a checkbox to control
whether the tool should try to break the gesture into steps or
not.

The main modifications between IGT and GT are in the
gesture definition phase. IGT creates another layer of
abstraction in order to allow designers to create new gestures
by training the tool through examples of the gesture
performed by the designer. This allows designers with no
programing skills, to create custom gestures. An example can
be seen in Figure 1: by providing one sample of the check
gesture on the left, IGT produces the definition on the right.

IV. LEARNING GESTURES
A gesture definition needs to be as broad as necessary to

surpass the nuances of different users performing the
gesture in different moments. A gesture also needs to be as
precise as possible to avoid conflict with other gestures and
to be detected only when a gesture is intended by the user.

This problem requires a definition of gestures that is the
most specific pattern among certain variations. In order to

achieve this solution, IGT sees the problem as an anti-
unification problem that, based on the definition given by
Bulychev et al. in 2009 [4], finds the most specific template
or pattern between two terms.

The implementation proposed in this paper, is an
approximation of the anti-unification modulo theory, but as
the anti-unification modulo theory is in general undecidable,
the proposed implementation is a subset of the theory [24].

In order to gather the terms and the different nuances for
the anti-unification process, IGT asks the designer to train
the tool by performing examples of the gesture he wants to
create. It is up to the designer to provide examples that
cover all the nuances he desires the gesture definition to
cover. It is in the designer’s best interest to train the tool to
learn the gesture in a way that provides the best outputs of
the tool.

There is no conflict handling mechanism between
different gestures necessary, as there is only one designer
training the tool at a time and the samples of the gesture
exist without any interaction with other gestures already
defined.

IGT has a feedback mechanism that informs when a
sample of a gesture provided by the designer to train the tool
is outside the standard and confirms with the designer
whether he really meant to provide that sample or if it was a
mistake. A sample is considered outside the standard when
less than 20% of its primitives match any of the previous
samples.

The designer can keep the different sample, which creates
a more general gesture, or the designer can also remove the
sample and add another one. This implies a scheme where
there is a dialog between the designer and the tool.

The samples of the gesture to train the tool can be a
sequence of 2D points that can use fingers or the hand.

IGT doesn’t need any previous training set to be
calibrated or to function properly, but also, there is an
established moment when the designer uses the tool to
define the gesture. This means that once the definition of a
gesture is finished, it will not be updated when it is used.

The anti-unification process in IGT works in two main
steps; first as proposed by Nilsson in 2005 [5], it analyzes
the primitives for one sample of the gesture and creates
relations between the different steps of that gesture, creating

34

relational rules.
Given a number n of samples of a gesture

{푥 , 푥 , … , 푥 , 푥 }, the algorithm creates an anti-unifier of
the first two samples and then anti-unifies the analyzed anti-
unifier with the next sample to create the next anti-unified
pattern. If in this process it finds a sample that is outside the
standard, it asks the user to confirm this sample or replace it
for a new one. It repeats this process until it compares with
the sample	푥 . Then, based on the final pattern, the
algorithm generates a rule that is the most specific pattern
between all the samples provided.

In IGT the sequence of points from the samples are pre-
analyzed and converted by the point translator as shown in
Figure 2. This step looks for patterns in the sequence of the
points to see if the gesture can be broken into smaller steps
in order to help the anti-unification process.

For example, in Figure 1 there is one single stroke
performed by a finger gesture that makes the check gesture.
The point translator tries to identify patterns and breaks the
check gesture into two steps, each one containing one line.

After the analysis, the point translator creates Touch
Points that can be interpreted by the Gesture Toolkit
framework which identifies the primitives that match the
Touch Points (Ex: If the shape is a line or if it is a closed
loop) and returns these primitives to the anti-unification
algorithm.

Figure 3 Relational rules

The primitives are grouped in a data structure as seen in

Figure 3 that contains:
 Step in which the primitive is detected (ID:1);
 Name of the primitive (primitive2);
 Value of the primitive (value x).

As seen in Figure 3, relational rules involve one or more
steps and allow the definition of relational values for the
primitives of the gesture.

The second step of the anti-unification process analyzes
the rules among the samples and creates the most compact
way to represent the rules in the samples, creating a smart
rule.

Figure 4 Example of a low-fidelity prototype in AST

With two samples provided for the same gesture, the

second step of the anti-unification process looks for the
same rules in the different samples and check if the
proportions and relational rules found in the first step are
consistent among the other samples.

V. IGT IN A LOW-FIDELITY PROTOTYPE EVALUATION
The current literature shows that low-fidelity prototypes

improve the design of touch-based applications for multi-
touch surfaces and allows a more user-centered design of
applications [3], [22].

The study published by Derboven et al. in 2010 [19]
introduces two low-fidelity prototype methods for multi-
touch surfaces consisting of “physical” materials such as
paper, cardboards and markers.

This paper proposes a solution to create and evaluate
gestures contextualized in a low-fidelity prototype. To use
low-fidelity prototypes, IGT is embedded in an existing tool
called Active Story Touch (AST).

Figure 5 Evaluation cycle of AST and IGT

AST is a tool proposed by Hosseini-Khayat et al. in 2011

that targets the creation of low-fidelity prototypes for
gesture-based applications [3]. Figure 4 shows a low-fidelity
prototype being created in AST.

To better illustrate a gesture evaluation in a low-fidelity
prototype context, Figure 5 shows how a designer can create
gestures using IGT and how this new gesture fits in a low-
fidelity prototype evaluation using AST [3].

When creating a low-fidelity prototype in AST a designer
can use IGT to create a custom gesture that will be used in
the prototype. The designer creates the definition of the
gesture in IGT as previously explained by providing
samples of the gesture. IGT will create a definition of the
gesture in GDL and make the new gesture available to be
used in AST.

Having the newly created gesture available, the designer

35

can bind it to some event and use it in the low fidelity
prototype to trigger a behavior or functionality. It is
important to mention that all this binding can be done
without writing one single line of code.

As illustrated in Figure 5, a designer can create a custom
“right rotate” gesture and bind it to switch between pages of
the prototype. The low-fidelity prototype will be evaluated
by the user which will use the custom “right rotate” gesture
and give feedback to the designer about not only the
prototype but also about the gestures used.

VI. CONCLUSION AND FUTURE WORK
The approach given in this paper addresses a new

challenge in the design of gesture based applications for
multi-touch devices. Our tool provides designers with an
easy way to create gestures that does not require any
programming skills in order to come up with a bigger
variety of gestures. Also this paper provides a scheme for
the tool to evaluate the gesture in the application’s context.

Another contribution of this paper is the anti-unification
approach used here to learn new gestures, allowing
definition of gestures that cover all the different nuances
required for a more accurate recognition of the gesture.

The tool we described is currently in development, having
the learning and detection of finger and hand gestures
available.

By adopting one device, there are possibilities of different
features that can be applied to the gesture learning tool, such
as the learning of tag-less tangibles.

In order to analyze the tool’s performance, an evaluation
will be done in two parts. First, designers will evaluate IGT
without any context. This will be done to obtain feedback on
the anti-unification approach. This feedback will allow the
comparison of performance of IGT with other similar tools
in the field of gesture learning.

Second, designers will evaluate IGT in a low-fidelity
prototype experiment and evaluate how important it is to
define gestures for a low-fidelity prototype evaluation. This
will provide feedback on the evaluation cycle proposed in
this paper.

REFERENCES
[1] Wobbrock, J. O., Morris, M. R., & Wilson, A. D. (2009). User-

defined gestures for surface computing. Proceedings of CHI ’09.
Pages 1083-1092. New York, New York, USA: ACM Press.
doi:10.1145/1518701.1518866.

[2] Hinrichs, U., & Carpendale, S. (2011). Gestures in the Wild :
Studying Multi-Touch Gesture Sequences on Interactive Tabletop
Exhibits. CHI 2011, Pages 3023-3032. May 7–12, 2011, Vancouver,
BC, Canada.

[3] Hosseini-, A., Seyed, T., Burns, C., Maurer, F. (2011). Low-Fidelity
Prototyping of Gesture-based Applications. EICS’11,Pages 289-294.
June 13–16, 2011, Pisa, Italy.

[4] Bulychev, P. E., Kostylev, E. V., & Zakharov, V. A. (2009). Anti-
unification algorithms and their applications in program analysis. In
Proceedings of PSI 2009, Novosibirsk, Russia, June 15-19, 2009,
pages 413-423, Springer, 2010.

[5] Nilsson, N. J. (2005). INTRODUCTION TO MACHINE
LEARNING AN EARLY DRAFT OF A PROPOSED TEXTBOOK
Department of Computer Science. Stanford University,Stanford, CA
94305.

[6] Khandkar, S. H., & Maurer, F. (2010). A Domain Specific Language
to Define Gestures for Multi-Touch Applications. DSM:10, 17-OCT-
2010, Reno, USA.

[7] S. Damaraju and A. Kerne. Multitouch.(2008) Gesture Learning and
Recognition System. In Poster session presented at TABLETOP ’08.

[8] Freeman, D., Benko, H., Morris, M. R., Wigdor, D., & Way, O. M.
(2009). ShadowGuides : Visualizations for In-Situ Learning of Multi-
Touch and Whole-Hand Gestures. Proceedings of the ACM ITS '09.

[9] Khandkar, S. H., Sohan, S. M., Sillito, J., & Maurer, F. (2010). Tool
Support for Testing Complex Multi-Touch Gestures. ITS '10.

[10] Mitra, S.; Acharya, T. (2009). "Gesture Recognition: A Survey,"
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on , vol.37, no.3, pp.311-324, May 2007 doi:
10.1109/TSMCC.2007.893280.

[11] Rabiner, L.R.(1989), "A tutorial on hidden Markov models and
selected applications in speech recognition," Proceedings of the IEEE
, vol.77, no.2, pp.257-286, Feb 1989 doi: 10.1109/5.18626.

[12] Wilson, A.D.; Bobick, A.F.;(1999) , "Parametric hidden Markov
models for gesture recognition," Pattern Analysis and Machine
Intelligence, IEEE Transactions on , vol.21, no.9, pp.884-900, Sep
1999 doi: 10.1109/34.790429.

[13] Choi, H., Paulson, B., & Hammond, T. (2008). Gesture Recognition
Based on Manifold Learning, 247-256. Proceeding SSPR & SPR '08.

[14] Wu, M., & Balakrishnan, R. (2003). Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop displays.
Proceedings of UIST ’03, 5(2), 193-202. New York, New York,
USA: ACM Press. doi:10.1145/964696.964718

[15] M. Karam and M. C. Schraefel.(2005) A taxonomy of gesture in
human computer interactions. Technical report, Technical Report
ECSTR-IAM05-009, Electronics and Computer Science, University
of Southampton, 2005.

[16] Lao, S., & Wang, P. (2009). A Gestural Interaction Design Model for
Multi-touch Displays. In Proceedings of the 2009 British Computer
Society Conference on Human-Computer interaction, , 440-446.

[17] Morris, M. R., Wobbrock, J. O., & Wilson, A. D. (2010).
Understanding Users Preferences for Surface Gestures. Interfaces,
261-268.

[18] Bobick, A. F., & Wilson, A. D. (1997). A state-based approach to the
representation and recognition of gesture. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 19(12), 1325–1337.
IEEE.

[19] Derboven, J., Roeck, D. D., & Verstraete, M. (2010). Low-Fidelity
Prototyping for Multi-Touch Surfaces. Presented in the workshop
Engineering Patterns for Multi-Touch Interfaces held in EICS 2010,
2nd edition, Berlin, Germany.

[20] GestureWorks, a multitouch application framework for Adobe Flash
and Flex. 2010. Available at http://gestureworks.com/ accessed in
February 2012.

[21] Windows Presentation Foundation, Available at
http://msdn.microsoft.com/en-us/library/ms754130.aspx, Accessed
December 2010

[22] Olmsted-Hawala, E. L., Romano, J. C., & Murphy, E. D. (2009). The
use of paper-prototyping in a low-fidelity usability study. 2009 IEEE
International Professional Communication Conference, 1-11. IEEE.
doi:10.1109/IPCC.2009.5208693.

[23] Cottrell, R., Chang, J. J. C., Walker, R. J., & Denzinger, J. (2007).
Determining detailed structural correspondence for generalization
tasks. Proceedings of ESEC-FSE ’07, Pages 165-174. New York,
New York, USA: ACM Press. doi:10.1145/1287624.1287649.

[24] Jochen Burghardt. (2005). E-generalization using grammars. Artif.
Intell. 165, 1 (June 2005), 1-35. DOI=10.1016/j.artint.2005.01.008
http://dx.doi.org/10.1016/j.artint.2005.01.008

36

