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Abstract—This paper presents an approach to help designers 

create their own application-specific gestures and evaluate 
them in user-studies based on low fidelity prototypes of the 
application they are designing. In order to learn custom 
gestures, we developed a machine learning tool that uses an 
anti-unification algorithm to learn based on samples of the 
gesture provided by the designer. 

Keywords-custom gestures; anti-unification; low-fidelity 
prototyping 

I.  INTRODUCTION 
Designing WIMP-based applications is a well-known 

challenge. This challenge becomes even bigger with the 
increasing popularity of touch-based devices and gesture 
based applications. The popularity of these devices requires 
designers to learn how gesture-based and touch-based 
interactions can improve the user experience. The constant 
evolution of these touch-based devices allows users to 
interact in new and different ways, which gives possibilities 
to user experience designers to try different approaches for 
users to interact with the software.  

For touch-based devices a preferable user interface 
integrates gesture-based interactions into the applications 
[1]. Frameworks like Windows Presentation Foundation 
(WPF) [21] provide a set of pre-defined gestures that 
application developers can use easily [20]. However, the 
literature shows many examples of gestures that are not 
available out of the box, e.g. [1],[6]. 

When creating new gestures for interacting with touch-
based applications, user experience designers have to 
determine if users consider them natural, understandable 
and easy to use [1].  

In an effort to help interaction designers to create more 
intuitive and user oriented gestures, the present paper 
proposes Intelligent Gesture Toolkit (IGT) which will allow 
users with no previous programming knowledge  

 to create their own custom gestures by providing 
samples and 

 to evaluate these gestures in the context of a low-
fidelity prototype of the application.  

As defined by Mitra and Acharya in 2007, gestures can 
be static or dynamic [10]. In static gestures, a user assumes a 
certain pose using hands and fingers, while a dynamic 
gesture can be a stroke or set of strokes on the touch surface. 

Some gestures combine both dynamic and static elements. 
IGT works with both types of gestures. 

A designer creates custom gestures in IGT by training the 
tool through examples of the gesture (samples) he wants to 
create. Through an anti-unification process IGT learns the 
most compact way to represent the gesture. The tool is 
integrated with a low-fidelity prototyping tool Active Story 
Touch (AST) [3] so that a designer can draw UIs and 
associate custom gestures that will trigger specific page 
transitions in the prototype. 

For brevity of the paper, the user experience designer or 
user interaction designer will be referenced as designer and 
the user that will evaluate the low-fidelity prototypes will be 
referenced as user.  

The next section discusses related work. This is followed 
by a tool description that will explain the architecture of 
IGT. The fourth section focuses on the learning aspect of the 
tool, explaining the anti-unification process in detail.  

The fifth section explains the role of IGT in the low-
fidelity prototype evaluation process. The last section 
presents the conclusion and future work of this research.  

II. RELATED WORK 
In the current literature there are several solutions for 

gesture creation and recognition. In special, gesture 
recognition that uses statistical model approaches such as 
Hidden Markov Models (HMM) [11], [12], [7] and machine 
learning methods [13] has received a lot of attention. 

In 2008, Damaraju and Kerne proposed a tool for gesture 
definition and recognition using trained HMM [7]. In 
comparison with IGT, this tool defines and recognizes 
finger gestures but lacks support for hand gestures. 

Some studies focus on the gesture recognition and gesture 
definition as a specific problem. In 2007, Mitra et al. [10] 
published a survey that covers several approaches used in 
gesture recognition and in 1997 Bobick et al. [18] proposed 
a state-based approach to the representation and recognition 
of gestures.  

In 2005, Karam proposed a taxonomy of gestures in the 
human computer interaction field [15]. A design model for 
gesture interactions was proposed by Lao and Wang in 2009 
[16]. Finally, in 2010, Morris et al. compared a set of 
gestures created by end-users and HCI researchers to 
understand user preferences for gestures [17]. 
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Figure 1 Gesture definition using IGT 

 
Wobbrock et al. published in 2009 a study to gather the 

gestures which people would use for specific tasks [1]. For 
the same tasks, they compared gestures created by Human 
Computer Interaction experts and users. The result showed 
the gestures created by the experts did not cover half of the 
ones created by users, meaning that designer opinion or 
expertise alone is not sufficient and user opinions are also 
required. This enforces the need for a user-centered design 
process when creating gestures. 

To show the importance of user experience designers 
taking into consideration various aspects when defining 
gestures, Hinrichs and Carpendale found in a study using 
interactive tabletops, that the choice and use of multi-touch 
gestures are influenced by the action and social context in 
which these gestures occur [2]. Their study suggests that 
previous gestures influence the formation of subsequent 
gestures and that evaluating gestures requires 
contextualizing them in the application in which they will be 
used. Our use of the low-fidelity evaluations is in line with 
this approach. 

In 2010, Khandkar and Maurer proposed a gesture 
definition language to be used by developers to define new 
gestures [6], which is the language used by the present paper 
to define the gestures.  

 Also in 2010, Khandkar et al. proposed a tool to support 
testing complex multi-touch gestures [9]. This enables 
automated testing for gesture based applications. This 
solution differs from the one proposed in this paper as it 
focuses more on development testing, while the solution 
proposed in this paper focuses on low-fidelity prototype 
evaluations involving the users.  

Instead of having a user to train the tool, the paper in 
2009 by Freeman et al. [8] proposes a tool to help users 

learn multi-touch and whole hand gestures in a tabletop 
surface by showing an example and feedback of the gesture 
for the user to learn. 

For the machine learning approach used in this paper, an 
approach in a similar fashion is applied in 2007 by Cottrell 
et al. that presents a proof-of-concept plug-in to Eclipse for 
automatically determining correspondences as an early step 
in a generalization task [23].  

III. TOOL CONTRIBUTIONS 
IGT is based on the Gesture Toolkit (GT), a tool 

proposed by Khandkar et al. in 2010 [6]. To help understand 
IGT, some concepts of the GT framework and how IGT 
extends GT will be explained in the following.  

The Gesture Toolkit is a toolkit that simplifies the multi-
touch application development; it consists of a predefined 
set of common primitive gestures, a domain-specific 
language to define new gestures and a device-independent 
architecture that allows the application to run on different 
devices [6]. The definition of a gesture is created using the 
Gesture Definition Language (GDL) [6].   

The GDL provides a set of primitive conditions to define 
the gesture. Primitive conditions include trigonometric and 
geometric calculations that can be used in GDL with other 
conditions. Primitives can contain values and they can be of 
two types: a fixed value or a range. 

For example in Figure 1 the primitive Touch path length 
in step1 (see quadrant 2) contains a fixed value of 295.98. 

A gesture definition in the GT has three sections; 
 a name that uniquely identifies a definition within 

the application;  
 one or more validation blocks that contain 

combinations of primitive conditions; and 
 a return block that contains one or more return types.  
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Figure 2 IGT Architecture 

 
After defining a gesture in GT, a designer, with the help 

of functions and methods provided by the toolkit, needs to 
bind the gesture detection to trigger an event and to create 
the event (or callback). This step requires programming 
skills from the designer in GT, but is not necessary in IGT, 
as events are provided out of the box and just need to be 
selected from a list of events to be bound with gesture 
detection. 

In IGT a value can also be a variable related to another 
primitive in the gesture definition, meaning that values in 
the definition of the language can be proportional between 
them. Gestures with proportional values are called smart 
gestures and will be explained in the following section. 

Figure 1 shows a snapshot of IGT for the definition of a 
check gesture. In Figure 1, quadrant 1 is the canvas where 
the gesture should be performed for training the tool; it 
shows a feedback of the gesture. Quadrant 2 shows the 
definitions generated by the tool for the gestures performed. 
As samples are added, the previous sample is collapsed and 
the new one expanded. Quadrant 3 shows the smart gesture 
that was generated based on the samples provided in 
quadrant 2. Finally, quadrant 4 is a control section that to 
date has only two properties; to control the accuracy for the 
anti-unification algorithm and a checkbox to control 
whether the tool should try to break the gesture into steps or 
not.  

The main modifications between IGT and GT are in the 
gesture definition phase. IGT creates another layer of 
abstraction in order to allow designers to create new gestures 
by training the tool through examples of the gesture 
performed by the designer. This allows designers with no 
programing skills, to create custom gestures. An example can 
be seen in Figure 1: by providing one sample of the check 
gesture on the left, IGT produces the definition on the right. 

IV. LEARNING GESTURES 
A gesture definition needs to be as broad as necessary to 

surpass the nuances of different users performing the 
gesture in different moments. A gesture also needs to be as 
precise as possible to avoid conflict with other gestures and 
to be detected only when a gesture is intended by the user. 

This problem requires a definition of gestures that is the 
most specific pattern among certain variations. In order to 

achieve this solution, IGT sees the problem as an anti-
unification problem that, based on the definition given by 
Bulychev et al. in 2009 [4], finds the most specific template 
or pattern between two terms. 

The implementation proposed in this paper, is an 
approximation of the anti-unification modulo theory, but as 
the anti-unification modulo theory is in general undecidable, 
the proposed implementation is a subset of the theory [24]. 

In order to gather the terms and the different nuances for 
the anti-unification process, IGT asks the designer to train 
the tool by performing examples of the gesture he wants to 
create. It is up to the designer to provide examples that 
cover all the nuances he desires the gesture definition to 
cover. It is in the designer’s best interest to train the tool to 
learn the gesture in a way that provides the best outputs of 
the tool. 

There is no conflict handling mechanism between 
different gestures necessary, as there is only one designer 
training the tool at a time and the samples of the gesture 
exist without any interaction with other gestures already 
defined. 

IGT has a feedback mechanism that informs when a 
sample of a gesture provided by the designer to train the tool 
is outside the standard and confirms with the designer 
whether he really meant to provide that sample or if it was a 
mistake. A sample is considered outside the standard when 
less than 20% of its primitives match any of the previous 
samples. 

The designer can keep the different sample, which creates 
a more general gesture, or the designer can also remove the 
sample and add another one. This implies a scheme where 
there is a dialog between the designer and the tool. 

The samples of the gesture to train the tool can be a 
sequence of 2D points that can use fingers or the hand.  

IGT doesn’t need any previous training set to be 
calibrated or to function properly, but also, there is an 
established moment when the designer uses the tool to 
define the gesture. This means that once the definition of a 
gesture is finished, it will not be updated when it is used. 

The anti-unification process in IGT works in two main 
steps; first as proposed by Nilsson in 2005 [5], it analyzes 
the primitives for one sample of the gesture and creates 
relations between the different steps of that gesture, creating 
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relational rules. 
Given a number n of samples of a gesture 

{푥 , 푥 , … , 푥 , 푥 }, the algorithm creates an anti-unifier of 
the first two samples and then anti-unifies the analyzed anti-
unifier with the next sample to create the next anti-unified 
pattern. If in this process it finds a sample that is outside the 
standard, it asks the user to confirm this sample or replace it 
for a new one. It repeats this process until it compares with 
the sample	푥 . Then, based on the final pattern, the 
algorithm generates a rule that is the most specific pattern 
between all the samples provided.  

In IGT the sequence of points from the samples are pre-
analyzed and converted by the point translator as shown in 
Figure 2. This step looks for patterns in the sequence of the 
points to see if the gesture can be broken into smaller steps 
in order to help the anti-unification process. 

For example, in Figure 1 there is one single stroke 
performed by a finger gesture that makes the check gesture. 
The point translator tries to identify patterns and breaks the 
check gesture into two steps, each one containing one line.  

After the analysis, the point translator creates Touch 
Points that can be interpreted by the Gesture Toolkit 
framework which identifies the primitives that match the 
Touch Points (Ex: If the shape is a line or if it is a closed 
loop) and returns these primitives to the anti-unification 
algorithm. 

 
Figure 3 Relational rules 

 
The primitives are grouped in a data structure as seen in 

Figure 3 that contains: 
 Step in which the primitive is detected (ID:1); 
 Name of the primitive (primitive2); 
 Value of the primitive (value x). 

As seen in Figure 3, relational rules involve one or more 
steps and allow the definition of relational values for the 
primitives of the gesture. 

The second step of the anti-unification process analyzes 
the rules among the samples and creates the most compact 
way to represent the rules in the samples, creating a smart 
rule. 

 
Figure 4 Example of a low-fidelity prototype in AST 

 
With two samples provided for the same gesture, the 

second step of the anti-unification process looks for the 
same rules in the different samples and check if the 
proportions and relational rules found in the first step are 
consistent among the other samples. 

V. IGT IN A LOW-FIDELITY PROTOTYPE EVALUATION 
The current literature shows that low-fidelity prototypes 

improve the design of touch-based applications for multi-
touch surfaces and allows a more user-centered design of 
applications [3], [22].  

The study published by Derboven et al. in 2010 [19] 
introduces two low-fidelity prototype methods for multi-
touch surfaces consisting of “physical” materials such as 
paper, cardboards and markers.  

This paper proposes a solution to create and evaluate 
gestures contextualized in a low-fidelity prototype. To use 
low-fidelity prototypes, IGT is embedded in an existing tool 
called Active Story Touch (AST).  

 
Figure 5 Evaluation cycle of AST and IGT 

 
AST is a tool proposed by Hosseini-Khayat et al. in 2011 

that targets the creation of low-fidelity prototypes for 
gesture-based applications [3]. Figure 4 shows a low-fidelity 
prototype being created in AST.  

To better illustrate a gesture evaluation in a low-fidelity 
prototype context, Figure 5 shows how a designer can create 
gestures using IGT and how this new gesture fits in a low-
fidelity prototype evaluation using AST [3].  

When creating a low-fidelity prototype in AST a designer 
can use IGT to create a custom gesture that will be used in 
the prototype. The designer creates the definition of the 
gesture in IGT as previously explained by providing 
samples of the gesture. IGT will create a definition of the 
gesture in GDL and make the new gesture available to be 
used in AST.  

Having the newly created gesture available, the designer 
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can bind it to some event and use it in the low fidelity 
prototype to trigger a behavior or functionality. It is 
important to mention that all this binding can be done 
without writing one single line of code. 

As illustrated in Figure 5, a designer can create a custom 
“right rotate” gesture and bind it to switch between pages of 
the prototype. The low-fidelity prototype will be evaluated 
by the user which will use the custom “right rotate” gesture 
and give feedback to the designer about not only the 
prototype but also about the gestures used.  

VI. CONCLUSION AND FUTURE WORK 
The approach given in this paper addresses a new 

challenge in the design of gesture based applications for 
multi-touch devices. Our tool provides designers with an 
easy way to create gestures that does not require any 
programming skills in order to come up with a bigger 
variety of gestures. Also this paper provides a scheme for 
the tool to evaluate the gesture in the application’s context.  

Another contribution of this paper is the anti-unification 
approach used here to learn new gestures, allowing 
definition of gestures that cover all the different nuances 
required for a more accurate recognition of the gesture.  

The tool we described is currently in development, having 
the learning and detection of finger and hand gestures 
available. 

By adopting one device, there are possibilities of different 
features that can be applied to the gesture learning tool, such 
as the learning of tag-less tangibles. 

In order to analyze the tool’s performance, an evaluation 
will be done in two parts. First, designers will evaluate IGT 
without any context. This will be done to obtain feedback on 
the anti-unification approach. This feedback will allow the 
comparison of performance of IGT with other similar tools 
in the field of gesture learning. 

Second, designers will evaluate IGT in a low-fidelity 
prototype experiment and evaluate how important it is to 
define gestures for a low-fidelity prototype evaluation. This 
will provide feedback on the evaluation cycle proposed in 
this paper. 
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