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Abstract

Test-driven reuse (TDR) proposes to find reusable source code through the provision

of test cases describing the functionality of interest to a developer. The vocabulary

and design of the interface of the function under test is used as the basis of selecting

potentially relevant candidate functions to be tested. This approach requires that the

searcher know—or correctly guess—the solution’s interface vocabulary and design.

However, semantic similarity neither implies nor is implied by syntactic or structural

similarity. According to empirical studies, behaviourally similar code of independent

origin can be syntactically very dissimilar.

We believe test cases that exercise a function provide additional facts for describing

its semantics. Therefore, the thesis of this dissertation is that by modelling tests—in

addition to function interfaces—the odds of finding semantically relevant source code

is improved. Additionally, to facilitate similarity comparisons and improve perfor-

mance, we propose a multi-representation approach to building a reuse library. To

validate these claims we created a similarity model using lexical, structural, and data

flow attributes of test cases. Four similarity heuristics utilize this model to indepen-

dently find relevant test cases that exercise similar functionality. We developed a

proof of concept TDR tool, called Reviver, that finds existing test cases exercising

similar functions once given a new set of test cases. Using Reviver a developer writing

tests for a new functionality can reuse or learn from similar functions developed in

the past.

We evaluated the effectiveness of Reviver in a controlled study using tasks and

their manually generated approximations. We experimented with different configu-

rations of Reviver and found that overall the combination of lexical and data flow

similarity heuristics is more likely to find an existing implementation of the func-

tion under test. Our results confirm that lexical, structural, and data flow facts in

the test cases exercising a function—in addition to the interface of function under

test—improve selection of semantically relevant functions.
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Chapter 1

Introduction

I don’t know exactly where ideas come from, but when I’m
working well ideas just appear. I’ve heard other people say
similar things - so it’s one of the ways I know there’s help
and guidance out there. It’s just a matter of our figuring out
how to receive the ideas or information that are waiting to
be heard.

Jim Henson

1.1 Software Reuse and Testing

Software reuse is the use of existing software, or software knowledge, to build new

software. Development effort can be reduced by reusing existing software while the

quality of production can be increased by using mature previously tested assets (Basili

et al., 1996). Programmers have always pragmatically reused1 sections of code, func-

tions, and procedures. Such source code, that is not necessarily designed in a reusable

fashion, might be acquired from the internal organizational repositories or any where

on the Internet. With the rise of the open source movement since the late 1990s, a

rapidly growing quantity of publicly available source code has become available on

the Web. With hundreds of millions of files available in online repositories, building

1Reusing source code that was not designed in a reusable fashion has been known by many names:
code scavenging (Krueger , 1992), ad hoc reuse (Prieto-Dı́az , 1993), opportunistic reuse (Rosson and
Carroll , 1993), copy-and-paste reuse (Lange and Moher , 1989), and pragmatic reuse (Holmes, 2008).
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search platforms that allow efficient retrieval of source code is an essential step in

enabling code reuse.

Using tests as a means of expressing the function and behaviour of a system is a

common practice in many agile development processes. In test-driven development

(TDD) the implementation of an improvement or a new feature is led by writing

tests (Beck , 2002). The process is followed by producing minimal amount of code

to pass the tests and eventually refactoring the new code to meet the production

standards. The cycle is repeated in small increments until the desired new behaviour

is achieved. The proponents of the test-driven development paradigm claim that it

improves the design of the system in addition to its testability (Marchesi et al., 2003).

As test-driven development has gained in industrial popularity, the prospect of

utilizing test cases as the basis for software reuse has become tantalizing: test cases

can express a rich variety of structure and semantics that automated reuse tools can

potentially utilize. TDR search queries are automatically generated from test cases

written by developers practicing TDD. Such developers are obligated to write tests

before they develop functional code. Tests also provide an automated means of ver-

ification of search results. Potential candidates are automatically adapted, compiled

and tested2 by the TDR system. Candidates that pass the test cases are presented

to the developer as potential solutions. By reducing the effort required for locating

and verifying reusable source code, TDR seeks to make reuse an integrated part of

the software development process.

2Compiling and running arbitrary source code retrieved on the Internet cannot always be fully
automated. For further details see the discussion in Section 2.2.2.
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1.2 Test-Driven Reuse

As demonstrated in Figure 1.1, existing test-driven reuse (TDR) systems (Hummel

and Janjic, 2013; Lazzarini Lemos et al., 2011; Reiss , 2009a) follow a four step pro-

cess: (1) a developer has to write code for a function that he suspects might have

been developed in the past; (2) she writes a minimal test that describes the desired

behaviour of the function sought after; (3) a number of candidates that potentially

match the specification of the function exercised in the supplied test are selected from

a source code repository; (4) the test is used to verify candidates. If any of the re-

trieved candidates passes the test it is recommended to the developer as a potential

solution. Otherwise, the developer can continue the search by modifying the test.

Figure 1.1: A graphical representation of the test-driven reuse cycle; the query test
cases might be refined and the search be repeated until appropriate source code is
found (or the searcher gives up).

Unit tests produced in TDD are typically written in XUnit3 frameworks. Exist-

3XUnit is the family name given to a set of testing frameworks that have become widely known
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ing TDR approaches select relevant source code by extracting the interface of the

function under test from query XUnit test cases and use it to perform an interface-

based search4 over a library of existing entities. And therein lies the crux of the

potential problem: in TDD, the developer may have at best a fuzzy notion (initially)

of the functionality she wants. If a TDR approach places too much weight on the

details of the test cases written (such as the particular names of types and methods),

it is unlikely to find appropriate source code nor source code that can be trivially

transformed to become a perfect match for those test cases.

1.3 Motivational Example

To demonstrate the potential limitations of the interface-based approach in finding

relevant source code, consider the unit test in Figure 1.2. The system under test in

the given scenario is the Account class and the action being validated is the transfer()

method at line 18. Fixture setup and precondition verification takes place in lines

6-16 and the post condition verification takes place by the assertions in lines 20-22.

An existing test-driven reuse system would realize that the developer is looking

for the Account class. It would then extract the interface of the Account class (i.e.,

interface Account {Double getBalance(); Transaction transfer(Double, Account);}) from the

test and perform an interface-based search to find classes matching this interface

in the reuse library. Obviously such a search query only includes a subset of the

information in the test case in Figure 1.2. Other essential facts like the pre- and

post-conditions of the transfer action, the presence of other collaborator classes like

amongst software developers. The name is a derivation of JUnit the first of these to be widely
known (Fowler , 2013).

4The combination of signature and name-based retrieval (Hummel et al., 2007).
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1 public class AccountTest
2 {
3 @Test
4 public void testValidTransfer()
5 {
6 Account from = new Account();
7 Account to = new Account();
8 Bank bank = Bank.getInstance();
9

10 bank.register(from);
11 bank.register(to);
12
13 Double fromBalance = from.getBalance();
14 Double toBalance = to.getBalance();
15
16 assertNull(bank.getLastTransaction());
17
18 Transaction t = from.transfer(100.0, to);
19
20 assertEquals(fromBalance − 100.0, from.getBalance(), 0.01);
21 assertEquals(toBalance + 100.0, to.getBalance(), 0.01);
22 assertEquals(t, bank.getLastTransaction());
23 }
24 }

Figure 1.2: A JUnit test case for testing the fund transfer functionality in a bank.

Bank, and their interactions with the Account class are not taken into consideration.

Furthermore, a matching solution AnotherAccount in the reuse library—that can satisfy

the testValidTransfer() test case—is not considered as a candidate if it does not match

the expected interface. In other words, the relevance criteria is restrictive and rejects

a class that might have been implemented using an alternative vocabulary and design.



6

1.4 Finding Source Code for Reuse

Software developers use open source code available online in their work. Studies have

found code duplication across open source projects to be a common phenomenon

(Schwarz et al., 2012); hence, suggesting that developers often pragmatically reuse

existing source code in absence of appropriate reusable components. Software devel-

opers also look upon information and code snippets on the Web and online forums as

a learning resource that assists with solving problems (Gallardo-Valencia and Sim,

2013; Barua et al., 2012). Evidence of this practice can be found in the number

of project hosting sites, code repositories, developer forums, and source code search

engines that have appeared (Umarji et al., 2008).

1.4.1 Code Search Engines

Developers often use general search engines such as Google for finding reusable source

code. While these tools are effective in retrieving documents they can only be used

for code searches if the functionality is defined by well-known terms. Code search

engines slightly improve this situation by indexing source code based on a number of

attributes, e.g., programming language, class, function, file, and license. Nevertheless,

source code is more or less treated as a bag of words and the structure and semantics

of it are largely ignored. As a result, similar to general search engines, code search en-

gines can only be effective in search scenarios where the program vocabulary is known

in advance or not difficult to guess. Code-specific search engines have been found to

be more suitable for more coarse grained software searches like libraries rather than

blocks of functionality (Sim et al., 2011). Finding smaller chunks of functionality—in

which program vocabulary can at best be guessed—is still a challenging task for code
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search engines.

Some recent code search engines, such as Sourcerer 5 (Linstead et al., 2009), in-

dex structural relationships between elements in source code. Although structured

retrieval improves search effectiveness, semantic similarity neither implies nor is im-

plied by structural similarity. Current code search engines provide searches based on

syntactic and structural attributes of software artifacts. Retrieving a function that

matches a given behavioural specification—for instance a test case—remains beyond

what today’s code search engine offer.

1.4.2 Finding Examples

Relevant source code cannot always be integrated into the system; it might not exactly

provide the sought after functionality, or the effort required to adapt and reuse it

is not justifiable (i.e., costs outweigh benefits), or licensing and quality limitations

might prevent the developer from reusing it as-is. However, relevant source code can

still serve as a reference example that provides knowledge to the developer to build

functionality they need. Developers also look up existing source code snippets to

learn about an API, framework, or a programming language (Umarji et al., 2008).

Using current code search engines, finding reference examples that can help with

development can be much easier than finding source code that can be reused as-

is (Sim et al., 2011).

Several code snippet retrieval systems have appeared in the code search and reuse

literature (Holmes et al., 2005; Mandelin et al., 2005; Sahavechaphan and Claypool ,

2006; Xie and Pei , 2006; Bajracharya et al., 2010a). These approaches use the de-

5http://sourcerer.ics.uci.edu/sourcerer/search/index.jsp

http://sourcerer.ics.uci.edu/sourcerer/search/index.jsp
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velopment context to look up and suggest potentially related code snippets. The

developer can then evaluate a recommended code snippet, learn how it works, and

copy and paste it into their own work. Example recommender systems are not a

replacement for reuse systems as they are only effective when retrieving source code

that uses similar APIs. A TDR system, on the other hand, has to provide recommen-

dations that can pass searcher test cases no matter what underlying APIs are used

in them.6

1.5 An Alternative Approach to Test-Driven Reuse

After carefully examining existing code search and retrieval techniques, including

interface-based retrieval, we decided to pursue the goal of creating an improved ap-

proach for selecting relevant source code in a test-driven reuse system. Thus, we

decided to investigate which facts from test cases—beyond the interface of the sys-

tem under test—can be utilized in the TDR selection step and whether they can

improve the relevance of the retrieved source code.

1.5.1 A Multi-Representation Reuse Library

The selection step in software reuse and the choice of underlying representations be-

come more important with the growing size of the reuse library (Frakes and Pole,

1994). Assets in a reuse library are stored according to a representation scheme. The

choice of the representation scheme and associated indexes determine the range of

operations that can be performed on the library and the overall efficiency of the reuse

6Ideally, TDR users should be able to select the APIs in the implementation of a function if
desired.
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selection process (Frakes and Gandel , 1989). Furthermore, there is empirical evi-

dence that different representation methods can complement each other by retrieving

different items (Frakes and Pole, 1994). Hence, to improve the performance of the

TDR system, we propose a multi-representation scheme where each representation

efficiently indexes a different aspect of tests.

We propose to process test cases at index time and model their features in the

reuse library using lexical, structural, and data flow representations. The lexical

representation features the names of classes, objects, and methods in the test case;

the structural representation includes all types and the methods invoked on them; and

finally, the data flow representation is a graph of data dependencies between methods

invoked. Figure 1.3 demonstrate the three representations of the fund transfer test

case in Figure 1.2.

Figure 1.3: The three representations of the fund transfer test case in Figure 1.2.
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1.5.2 Test Case Similarity As a Measure of Relevance

Existing TDR approaches select relevant source code by extracting the interface of

the entity under test from the query test cases and use it as the basis for performing

an interface-based search over a catalogue of existing entities. Inspired by case-based

reasoning (CBR)7, we propose a new approach for utilizing test cases to find and reuse

existing source code. Figure 1.4 demonstrates the workflow of our proposed approach.

We take test cases exercising a system to be a partial description of the problem solved

by the system under test. Collecting and indexing test cases and the systems they

test in a repository is analogous to building a case library of programming problems

described as test cases. A new problem—formulated as new test cases—can then be

matched with existing similar problems (i.e., old test cases) to recommend a potential

solution (i.e., an existing system).

Our test similarity model uses similarity heuristics operating on the lexical, struc-

tural, and data flow facts extracted from test cases to find existing test code that

exercise similar entities. Each similarity heuristic operates independent of the other

heuristics and returns a result list. Recommendations are made to the developer

based on the aggregated similarity score of the heuristic results. We built Reviver, a

proof of concept prototype based on the Eclipse integrated development environment

(IDE) that indexes test cases and represents them using text search and relational

database platforms8. The repository of the prototype solution was populated with

7Case-based reasoning (CBR) (Althoff et al., 1998) is a problem solving paradigm based on the
solutions of similar problems in the past. A case library is built of past problems and their solutions;
to solve a current problem: the problem is matched against the cases in the library, and similar
cases are retrieved. The retrieved cases are used to suggest a solution. The solution might then be
revised, if necessary. CBR has been applied to software engineering problems in the past, including
cost and effort estimation, quality prediction, and software reuse (Shepperd , 2003).

8A graph database could have been an alternative platform for implementing the graph-based



11

Figure 1.4: An alternative approach to selection of relevant source code in test-driven
reuse. Test similarity is used to find similar test cases in the reuse library. The system
under test is returned as relevant source code. The rest of the reuse process is similar
to existing test-driven reuse systems.

a selection of Java open source projects with JUnit tests. A controlled experiment

produced evidence that using more facts in the test cases improves the precision of a

test-driven reuse system in identifying the function under test.

1.6 Thesis Statement

The thesis of this dissertation is that by modelling tests—in addition to function

interfaces—the odds of finding semantically relevant source code is improved.

1.7 Outline

Chapter 2 provides an overview of related work. Chapter 3 reports on an evaluation

study we conducted on current TDR approaches. We provide an analysis of the

portion of our test similarity model.
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shortcomings and underlying problems in existing approaches, and a discussion of

potential solutions. The description of our test similarity model and representation

methods is presented in Chapter 4. An overview of the Reviver proof of concept

prototype and evaluation study is given in Chapters 5 and 6 respectively. In Chapter 7

we describe our proposed ideas for future work to extend TDR. First, we describe

a technique for extending interface-based retrieval. Then, we describe a pattern-

based retrieval technique for finding assets based on their structural and behavioural

characteristics. Chapter 8 provides a discussion and suggestions on the research

directions that could follow this work. Chapter 9 concludes this thesis with a short

summary.
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Chapter 2

Related Work

Test-driven reuse is a fairly recent approach to software reuse. The idea of utilizing

tests for software retrieval was first proposed by (Hummel and Atkinson, 2004). Test-

driven development that is related to test-first programming was first introduced by

extreme programming (Beck , 2000) in 1999. On the other hand, software reuse has a

well-established history in both research literature and industrial practice. Due to the

broad scope of software reuse, relevant research is found in many different fields in-

cluding software engineering, programming languages, information retrieval, program

understanding, and many fields that utilize domain-specific reuse mechanisms. Re-

search efforts relevant to this thesis have been organized into six primary categories:

pragmatic software reuse, test-driven reuse, design for reuse, software recommender

systems, source code retrieval, and test similarity. This chapter outlines relevant re-

lated work and differentiates the research in this dissertation from previous research

efforts.

2.1 Pragmatic Software Reuse

Reusing source code that was not designed in a reusable fashion has been known by

many names: code scavenging (Krueger , 1992), ad hoc reuse (Prieto-Dı́az , 1993),

opportunistic reuse (Rosson and Carroll , 1993), and copy-and-paste reuse (Lange
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and Moher , 1989). While research has stated that pragmatic reuse can be effec-

tive (Krueger , 1992; Frakes and Fox , 1995), little research has been performed to

identify how industrial developers reason about and perform these tasks. Unlike

planned reuse in which a library of reusable assets is maintained within the organiza-

tion, pragmatic reuse tasks are more opportunistic. A developer simply decides that

they want to reuse some existing functionality, regardless of whether it has been de-

signed in a reusable fashion or not, and performs the reuse task manually. Pragmatic

reuse tasks can be of any size, but are typically limited by the developers ability to

fully understand their reuse task; as such, they tend not to be as large as the largest

black-box tasks, and are particularly suited for medium-scale reuse tasks (Holmes ,

2008).

There are several aspects of pragmatic reuse that make it a difficult problem.

For example, a factor that can limit opportunistic reuse of source code online is

the quality requirements. A number of approaches have been proposed for measuring

trustability of code search results (Gysin, 2010; Gallardo-Valencia et al., 2010). These

metrics assist the developer with risk-cost-benefit analysis they undertake to find

suitable integration candidates. Another factor is the problem of finding source code

to reuse. This problem has been tackled in various ways, but there has not been a

comprehensive solution that has really worked. Hence, despite the high availability

of open source code on the Internet, pragmatic reuse is rather limited, due to the fact

that equivalent code is difficult to find (Reiss , 2009a).
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2.2 Test-Driven Reuse

Podgurski and Pierce (Podgurski and Pierce, 1992) proposed behaviour sampling,

an approach to retrieve reusable components using searcher-supplied samples of in-

put/output for desired operations. As a pre-filtering step, behaviour sampling uses

signature matching to limit the components to be tested. However, the signature

matching techniques can deliver thousands of candidates for generic signatures, e.g.,

well-known data structures like stack. A rigid signature matching technique, on the

other hand, will not deliver any recommendations if it cannot find sufficiently similar

interfaces amongst software assets in the repository. We will further discuss in Chap-

ter 3 that in general the expectation that the searcher would know the interface of the

functionality beforehand is not realistic. A signature or interface based search would

not yield relevant results unless part of the desired program interface is known—or

correctly guessed.

2.2.1 Existing Test-Driven Reuse Approaches

(Podgurski and Pierce, 1992) also proposed extensions to the classic form of be-

haviour sampling. Test-driven reuse realizes one of these extensions that permits

the searcher to provide the retrieval criteria through a programmed acceptance test.

Three approaches to test-driven reuse have appeared in the literature: Code Con-

jurer (Hummel and Janjic, 2013), CodeGenie (Lazzarini Lemos et al., 2011), and

S6 (Reiss , 2009a). The prototype tool for each approach operates on source code

written in the Java programming language.

Table 2.1 provides a comparison of these approaches. In terms of commonality,

each tool: (a) represents source code as a collection of terms; (b) uses existing (code)
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search engines as the underlying search providers; (c) retrieves relevant candidates

via lexical similarity enhanced by signature matching; (d) relaxes query constraints if

enough candidates cannot be retrieved otherwise; (e) requires test cases to pass; and

(f) attempts to adapt and resolve the external dependencies of the candidate source

code prior to executing tests.

In terms of differences, each tool: (a) utilizes a different underlying search en-

gine; (b) retrieves different extents of code; (c) applies a different ranking function;

(d) tries different query relaxation approaches; and (e) tries a different approach for

adaptation/integration of retrieved candidates. In addition, CodeGenie and S6 slice

the candidate source code to obtain the subset that is required to run the test cases,

whereas Code Conjurer does not.

Code Conjurer and CodeGenie are JUnit1-based implementations of test-driven

reuse. The plug-in to the integrated development environment (IDE) provided by each

of the tools automatically extracts operation signatures from the searcher-supplied

JUnit test code. Search is then performed via a source code search engine and re-

sults are presented to the searcher for inspection in the IDE. The Merobase and

Sourcerer (Linstead et al., 2009) code search engines power Code Conjurer and Code-

Genie searches respectively. CodeGenie further assists the searcher in slicing the

source code to be reused; however, unlike Code Conjurer, the current implementation

of CodeGenie can only be used to search for a single missing method, and not an

entire class (Lazzarini Lemos et al., 2011).

S6 complements the use of behaviour sampling with other forms of semantic

specifications. It implements the abstract data type extension proposed by (Podgurski

1JUnit is an automated testing framework for Java code.
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and Pierce, 1992) to handle object-oriented programming. Unlike Code Conjurer and

CodeGenie, S6 does not utilize JUnit test code as a query language, but requires

that the searcher provide the interactions of a class’s methods through its web user

interface. S6 attempts a small set of limited transformations on candidate source

code, in an attempt at relaxing the constraints imposed by literal interpretation of

the input query. S6 can use a local repository or remote code search engine like

Sourcerer as the codebase searched through for candidate source code. Similar to

Code Conjurer and CodeGenie, S6 depends on being able to find an appropriate

initial result set.

The overall pipe-line architecture realized by the existing TDR approaches is

demonstrated in Figures 2.1. All three approaches initially filter the repository on the

basis of lexical or syntactic similarity with the supplied test case/query specification.

All three try to execute the test case on each of the filtered results to assess semantic

similarity as well; this acts solely to further constrain the set of potential matches.

Figure 2.1: The pipe-line architecture of the test-driven reuse process as realized by
existing approaches.
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2.2.2 Problems in Test-Driven Reuse

We remain convinced that TDR is a promising way to enable source code reuse,

however a number of difficult research problem have to be overcome before it can

be adopted by industrial developers. In a qualitative study of existing TDR ap-

proaches (Nurolahzade et al., 2013), we discovered that current TDR prototypes have

difficulty recommending non-trivial functionality—like that needed in the daily tasks

of developers. The interface-based retrieval mechanism employed by these approaches

limits how relevant source code is selected. It requires the searcher to know—or cor-

rectly guess—the solution vocabulary and its design. Finding relevant source code is

not the only difficult problem in test-driven reuse; automated adaptation and inte-

gration of source code is a prerequisite of running test cases. Adapting, compiling,

and running arbitrary source code found on the Web are ongoing areas of research in

software engineering.

Finding Relevant Source Code

Similarity of programs is evaluated in many contexts, including detecting code clones

(Gabel et al., 2008; Juergens et al., 2010), detecting plagiarism (Liu et al., 2006), find-

ing examples (Holmes et al., 2006; Bajracharya et al., 2010b), and finding source to

reuse. Although there is no consensus in the research community about the definition

of similarity between programs, different similarity types are generally believed to

belong to the dual categories of representational and semantic (or behavioural) simi-

larity. Representational similarity refers to lexical, syntactic, and structural similarity.

Semantic similarity, on the other hand, can be defined in terms of the function or

behaviour of the program (Walenstein et al., 2006). Unlike representational similarity
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for which various detection techniques has been devised, few studies have targeted

semantic similarity where representational similarity may not necessarily be present.

Theoretically, a TDR system could retrieve semantically similar code by verifying

its behaviour through searcher supplied test cases. However, current TDR approaches

draw on the representational similarity of the function under test in the developer

supplied test cases and source code in the reuse repository to select relevant source

code (Nurolahzade et al., 2013). Behaviourally similar code of independent origin is

not guaranteed to be lexically2 or structurally similar. In fact, it can be so syntac-

tically different that representational similarity approaches are unlikely to identify

it (Juergens et al., 2010). One may argue that it is unrealistic to expect any TDR

approach to not depend on the presence of specific vocabulary. If one works in a

context where a domain is well-established, for instance within a specific organization

or while utilizing a specific application programming interface, this dependency could

even be reasonable. However, the desire to find useful functionality in the absence of

known vocabulary is industrially reasonable and should not be dismissed.

Adapting and Compiling Source Code

Source code retrieved from the internet might be incomplete and miss dependencies—

in the form of sources or libraries—that are required to statically or dynamically

analyze it. A number of techniques have been proposed by the research community

to resolve some of the external dependencies in source code (Ossher et al., 2010). To

optimize the size of the resulting code, resolved dependencies are sliced to a minimal

set of resources that can be compiled and executed properly (Ossher and Lopes , 2013).

2The vocabulary problem also known as vocabulary mismatch problem, states that on average
the chance of two domain experts using the same words to name things is only 10-15% (Furnas
et al., 1987).
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If retrieved source code is inconsistent with the developer supplied test cases then its

interface has to be adapted accordingly (Reiss , 2009a). Alternatively, an adapter

may wrap the reusable source code with the appropriate interface in order to make it

compilable and executable (Hummel and Atkinson, 2010). However, both techniques

are rather limited and can only fix instances that require minor adaptation. In reality,

such triage decisions can at best be semi-automated for non-trivial reuse tasks using

current state of the art (Holmes , 2008).

Running Source Code

Even if source code can be compiled, there is still no guarantee that it can be

run. Running programs may require provision of specific runtime environments or

resources. For example, web-based and mobile components require specific contain-

ers to run. A database or network component requires those external resources to

deliver its services. Even if one manages to have source code run automatically, it

may not behave as expected because it requires special configuration that is described

in the accompanying documentation. To improve automated analysis of source code,

researchers and software professionals should look into the problem of making source

code and projects more code search engine friendly. Static and dynamic analysis of

large repositories of source code is not possible unless developer intervention in the

process is kept to a minimum.

2.3 Design for Reuse

A type of reuse—that is not covered by this thesis—is planned reuse or design of

software components so that they be reused in future projects. Component-based
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software engineering (CBSE) is a reuse-based approach to developing a software sys-

tem as a collection of independent components. Software libraries (APIs), frame-

works, and web services are examples of software components that encapsulate a

set of related functions and data. One of the main objectives of CBSE is reusing

software components in multiple systems. Since the 1990s, the growing availabil-

ity of commercial-off-the-shelf (COTS) components in the software market has been

a driver for research on location and selection of the components that best fit the

requirements. Keyword searches on component descriptions (Maarek et al., 1991),

faceted classification (Prieto-Diaz , 1990), domain ontologies (Pahl , 2007), signature

matching (Zaremski and Wing , 1997), formal (Zaremski and Wing , 1997) and be-

havioural specifications (Hashemian, 2008) are all examples of retrieval approaches

proposed for component libraries (Lucredio et al., 2004).

Signature matching—a technique also used in TDR approaches—has also been

applied to the web service composition problem where a composite web service is

built by automatically assembling a number of existing web services. In (Hashemian,

2008), a behavioural specification is provided along with each web service in the

repository that is utilized along with the component signature in order to find and

assemble the right components together. A formal specification of component be-

haviour along with signatures were used in (Zaremski and Wing , 1997) to retrieve

matching components. Formal specifications were written in the form of pre and post

condition predicates. A theorem prover determines wether a component specification

matched query requirements.

Software product lines (SPL) (Krueger , 2004) are another approach to planned

reuse in which a shared set of assets are used to create a collection of software sys-
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tems. Unlike opportunistic approaches to reuse, software product lines only create

a software asset in reusable fashion if the asset can be reused in at least another

product. This thesis focuses on the topic of opportunistic reuse of source code in

organizational or online repositories that is not necessarily designed in a reusable

fashion. Arbitrary source code retrieved online is not accompanied by semantic be-

havioural models. Hence, retrieval and composition strategies utilized in reuse of

reusable software components cannot be utilized by TDR approaches.

2.4 Software Recommender Systems

Software development involves dealing with large code bases and complex project

artefacts. In addition, developers need to keep up-to-date with the latest changes in

software development technologies through constant learning. Unless appropriate as-

sistance is provided to them, it is easy to get bogged down in details seeking the right

information (Robillard et al., 2010). Software recommender systems come in handy

to inexperienced developers or when the information space grows far beyond the abil-

ity of developers to consider everything. Hipikat (Čubranić et al., 2005) is a good

example of a software recommendation system that uses a broader set of project infor-

mation sources including source code, documentation, bug reports, e-mail, newsgroup

articles, and version information. It provides recommendations about project infor-

mation a developer should consider during a modification task. (Ying et al., 2004)

and (Zimmermann et al., 2004) apply association rule mining on software change his-

tory records extracted from version control system. The developer is warned about

potentially missing changes to (based on mined association rules) when trying to

commit a change-set.
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There are various forms of software recommender systems. Here we discuss three

of them that we find related to this dissertation.

2.4.1 Finding Example Source Code

Developers who are new to an API sometimes find themselves overwhelmed when they

try to accomplish development tasks. Developers often learn to work with unfamiliar

APIs by looking at existing examples. Strathcona (Holmes et al., 2006) recommends

pieces of code that demonstrate how to use an API. It uses structural context at-

tributes (e.g., parents, invocations, and types) in the code under development to

create a set of heuristics. Heuristics are then used to query the code repository,

returning snippets of code with similar structural context. MAPO (Xie and Pei ,

2006) clusters examples based on their API usage. Frequent API call sequences are

then mined from code snippets in each cluster. Code snippets are recommended by

comparing API usage in development context with that of the identified patterns.

(Bajracharya et al., 2010b) use structural semantic indexing (SSI) to capture word

associations in order to retrieve examples from a code repository. The SSI argument

is that code snippets that share APIs are likely to be functionally similar; therefore

the terms used in them are likely to be related.

Unlike example retrieval systems, a TDR system is not bound by a specific API,

framework, or technology platform. However, TDR systems can be extended to—

optionally—include facts about the current development context in their queries.

Thereby, they would be able to retrieve other test cases syntactically, structurally,

or semantically similar to the current test case. Inside organizational boundaries

where domain-specific software is developed, there is a chance that (partially) similar
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functionality is developed over time. Our test similarity model in Chapter 4 combines

characteristics of examples recommenders and test-driven reuse systems. As a result,

its performance is improved in the contexts that the selection of APIs is not very

diverse.

2.4.2 Guiding Development

Some recommendation systems aim to improve developer productivity or detect bad

usage once dealing with unfamiliar API. CodeBroker (Ye and Fischer , 2005) was one

of the first proactive tools that explored this idea. It relies on developer comments

and method signatures to retrieve and recommend matching components. RAS-

CAL (McCarey et al., 2008) uses collaborative filtering to recommend new methods

to developers. It models individual API method calls as items, while method bodies

are taken to be users. A program method that calls an API method is counted as a

vote by a user for that item. JADET (Wasylkowski et al., 2007) compares method

call sequences with identified frequent patterns (that are taken to represent object

protocols) to spot defects and code smells in developer code. Kawrykow and Ro-

billard (Kawrykow and Robillard , 2009) use code similarity detection techniques to

detect imitations of API method calls. The main hypothesis underlying their tech-

nique is that client code imitating the behaviour of an API method without calling

it may not be using the API effectively because it could instead call the method it

imitates.

These recommender systems spot similarity between current development context

and that of many examples in the repository. They provide opportunities for very

small-scale reuse in the form of one or more known API calls. Test-driven reuse
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systems, on the other hand, seek units of functionality ranging from a single method to

complete components. Unless requested by the searcher, there should be no restriction

on the choice of APIs used in a retrieved functionality as long as it adheres to the

given behavioural specification.

2.4.3 Code Completion

Code completion systems are another form of recommender systems that are designed

for integrated development environments (IDEs) and provide small-scale code reuse.

Prospector (Mandelin et al., 2005), XSnippet (Sahavechaphan and Claypool , 2006),

and ParseWeb (Thummalapenta and Xie, 2007) address the situation in which a

developer knows what type of object is needed, but does not know how to write the

code to get the object. Code completion recommendations can disorient developers

if they are irrelevant to the current development context. Recommendations can

be ranked and filtered out based on the frequency of occurrence in existing code

repositories and relevancy to current development context (Bruch et al., 2009).

Similar to other software recommendation system, the underlying modelling tech-

niques used by code completion can be beneficial to TDR systems. Program statement

sequences and control and data flows in test cases can be analyzed to better under-

stand the semantics of test cases. Using graphs to model code—as done by some code

completion systems—is an alternative that has to be investigated by the code search

and retrieval community given the latest advances in graph database technology.
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2.5 Source Code Retrieval

The increasing availability of high quality open source code on the Internet is changing

the way software is being developed. It has become commonplace to search the

Internet for source code in the course of software development (Gallardo-Valencia and

Sim, 2009). Developers search on-line for code to either find reusable code or reference

example. A key difference between the two motivations is how much modification is

expected to reuse the code. Reusable code was considered to be source code that

they could slightly modify and use right away. A reference example is a piece of code

that illustrates a particular solution but needs to be re-implemented or significantly

modified (Umarji et al., 2008).

Source code retrieval approaches can be classified based on their underlying repre-

sentation schemes. Early software retrieval systems that indexed hundreds of artifacts

built indexes from descriptive information provided by system administrators (Hum-

mel et al., 2013). In more recent years, with dramatic increase in the number of

artifacts, automatically generated indexes have replaced bibliographic libraries of the

past. Due to its inherent simplicity and better scalability and availability of various

libraries and frameworks that facilitate it, representing source code as text has been

and still remains the number one choice for most code search engines. Alternatively,

relational databases have been used for storing structural relationships between code

elements. Other more elaborate representations like representing code as graph have

only been applied to small repositories. Devising a scalable approach that utilizes

deeper semantics of source code remains an open problem to this date.
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2.5.1 Lexical and Syntactic Approaches

Many code retrieval approaches build upon the term-based search approaches com-

monly used in information retrieval. Terms are generally taken from program element

names (e.g., class, method, or variable), comments, and documentation. Accordingly,

a search query is expressed in (or converted to) a natural language expression (Mc-

Carey et al., 2008). Developers comprehend code by seamlessly processing synonyms

and other word relations. Researchers have leveraged word relations in software com-

prehension and retrieval tools. For example, B.A.R.T (Durão et al., 2008) enhances

input queries by a domain ontology. In another research project synonyms and word

relations in WordNet were taken into consideration in term matching (Sridhara et al.,

2008).

Information retrieval representation schemes such as term vector and bag of words

models designed for free format text documents can also be applied to source code

files. This would improve the speed of relevance matching at the cost of precision.

To compensate for the loss of precision, tools might only use term-based retrieval as

a first filter to shrink the candidate space considered by later, more computationally

expensive, filtering stages. Unfortunately, this comes with the downside of filtering

some of the relevant results in an early stage due to vocabulary mismatches. The

success of term matching depends on matching the users vocabulary with that of the

original programmer. To be effective, a searcher has to find terms that are unique

enough to actually identify the code in mind (Reiss , 2009b).

Existing TDR approaches rely on underlying code search engines that represent

source code files using term vector model. Relevant source files are identified through

their vector distance computation from the set of terms automatically extracted from
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the input test cases. Hence, they are technically bound by the limitations of the

term-based retrieval. If the terms are off and do not match the desired functionality,

later stages down the pipeline in Figure 2.1 would not have any potentially relevant

candidates to operate on.

2.5.2 Structural Approaches

Source code is different from plain text because it is structured in nature due to

the fact it follows strict syntax rules specific to a programming language (Gallardo-

Valencia and Sim, 2009). Structural-based code retrieval approaches rely on infor-

mation inferred from relationships between properties (e.g. methods and objects) of

a program. Such relationships include class inheritance, interface hierarchies, method

invocations and dependencies, parameters and return types, object creations, and

variable access within a method (Yusof and Rana, 2008).

Sourcerer (Linstead et al., 2009) is a code search engine that provides term and

fingerprint (structural metadata) searches. Sourcerer uses the CodeRank metric to

rank the most frequently called/used components higher. Structure fingerprints are

code metrics like number of loops and special statements (e.g., wait, notify, and if).

Type fingerprints consist of code metrics like number of declared methods, number

of fields, and number of parameters.

Structural relationships between program elements have alternatively been mod-

elled using program dependence graph (PDG) (Horwitz et al., 1988). Subgraph simi-

larity has been tried by code clone detection community to identify source code with

similar syntactic structure and data flow relationships (Krinke, 2001; Liu et al., 2006).

Reverb (McIntyre and Walker , 2007) employes a set of similarity matching heuristics
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on a graph built from structural facts extracted from source code to find structurally

similar source code. Jigsaw (Cottrell et al., 2008b) utilizes a similar approach on

abstract syntax trees (AST) in order to identify structural similarities in source code

when integrating retrieved source code with the developer’s context.

Structural retrieval is most effective when the interface or the internal structure

of the function sought after is known is advance. Domain-specific software follows

domain vocabulary and standards. Use of domain-specific APIs positively influence

the interface similarity of software (Kratz , 2003). Our test similarity model in our

TDR approach described in Chapter 4 uses structural similarity in addition to other

heuristics. Organizational developers writing domain-specific code using a bounded

set of APIs will be benefited by the structural similarity heuristics in our model.

2.6 Test Similarity

Identifying similar test cases is an area of interest to a number of research communities

including test suite reduction and test case prioritization. These lines of research

focus on domain-specific similarities in test cases. Similarity search takes place in

the domain of the same software or its release history where the APIs are limited

and known in advance. Some of the underlying similarity matching heuristics in our

proposed test similarity model in Chapter 4 are analogous to techniques used in other

research fields that perform similarity search on tests.

2.6.1 Test Suite Reduction

Test suite reduction (or minimization) techniques attempt to minimize test mainte-

nance costs by eliminating redundant test cases from test suites. Obviously, reducing
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the size of a test suite will only be justifiable if it does not reduce the its ability to

reveal bugs in the software. Most test suite reduction approaches rely on coverage

information collected during dynamic execution (Harrold et al., 1993; Offutt et al.,

1995). Dynamic analysis of test cases requires availability of test input data or spe-

cialized resources (e.g., execution environment or hardware). Static approaches have

been proposed for identifying potentially redundant tests cases based on similarity of

instruction sequences when execution of software is not an option (Li et al., 2008).

2.6.2 Test Case Prioritization

Test case prioritization (TCP) is a technique to reduce the cost of regression testing.

Test cases are prioritized according to some measure of importance so that for example

test cases that may detect bugs in the software are run earlier in the regression

testing process. Most TCP techniques use the dynamic run behaviour (e.g., statement

coverage) of the system under test (Elbaum et al., 2002). Static TCP techniques try to

maximize diversity by giving priority to test cases that are highly dissimilar. Similar

test cases may be identified based on the static call graph of the test cases (Zhang

et al., 2009), string distance (Ledru et al., 2012), or their linguistic features (Thomas

et al., 2012). While static TCP techniques do not have as much information to work

with as those based on execution information, static techniques are less expensive

and are lighter weight, making them applicable in many practical situations.
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Chapter 3

An Assessment of TDR

The evaluation of TDR tools to-date has been performed using a collection of classic

tasks commonly used in the software reuse literature. Most of these tasks involve

common data structures and functions, for which the developer can be expected to

use the standard domain-specific vocabulary. We claim that these tasks are not repre-

sentative of the daily requirements of developers performing TDD, where a developer

cannot be expected to know of a standard domain-specific vocabulary.1

To express our concerns about the existing evaluations of test-driven reuse ap-

proaches (Hummel and Janjic, 2013; Lazzarini Lemos et al., 2011; Reiss , 2009a), we

have categorized the tasks that they used according to the commonality of the domain

and thus its vocabulary, and the commonality of the variation sought. The categories

derive from our conjecture that the more well-defined a domain vocabulary is, the

easier it should be to locate software from that domain. Likewise, common variations

of a domain (e.g., an ordinary stack data structure) are easier to locate than un-

common variations of the same domain (e.g., a stack data structure retaining unique

objects). It is important to note that task difficulty (in terms of implementation)

1This chapter is an extended version of the paper An Assessment of Test-Driven Reuse: Promises
and Pitfalls co-authored with Robert J. Walker and Frank Maurer that appeared in John Proceed-
ings of 13th International Conference on Software Reuse, volume 7925 of ICSR 2013, pages 6580,
Springer Berlin Heidelberg, 2013. Permission to use the paper in this doctoral dissertation was
granted to the first author by the co-authors.
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is orthogonal to the difficulty in locating an existing implementation: a complicated

but well-known algorithm might be very easy to find, while a simple utility that is

not usually referred to by a common name might be very difficult to locate.

60 to 80 percent of the tasks from the existing evaluations fall into the most trivial

cases category. For example, an implementation of the quick sort algorithm, stack

data structure, or a function that prints out prime numbers are the kind of tasks given

to people learning a programming language. Ironically, while the existing evaluations

concentrate heavily on wellknown cases, we believe that the lessknown tasks are the

ones in which a developer is most likely to need and to want to use a TDR tool.

To study the effectiveness of the existing test-driven reuse tools, we conducted an

experiment with tasks drawn from real developers.

3.1 Experiment

Our research question is “Do existing TDR tools recommend relevant source code

for which minimal effort should be needed to integrate with an existing project?” In

particular, we consider whether each tool is able to recommend known source code

that solves a task, given modified forms of the existing test cases—taken from the

same codebase—that exercise that source code.

To this end, we located a set of tasks that were discussed by developers on the

web, suggesting that these were problematic for them. For each task, we also located

an implementation that would serve as a solution; each implementation needed to

exist in the TDR tools’ repositories and have automated test cases associated with

them. We detail our tasks and our selection methodology in Section 3.1.1.

The test cases associated with the known solutions would not be appropriate to
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give to the TDR tools without modification, because (1) they would immediately

identify the project and classes that would serve as the solution, and (2) they would

be far too detailed to represent realistic test cases drawn from test-driven develop-

ment. In TDD, the developer can at best be expected to have an approximate idea

of the interfaces to be exercised. Thus, the test cases needed to be altered in as

unbiased manner as possible. Furthermore, because of implementation choices and

shortcomings of the prototype tools, additional translations were required in order

to be fair to the tools. We detail our experimental design including the test case

modification methodology in Section 3.1.2.

After obtaining recommendations from each tool for each task, we needed to assess

their suitability as solutions for the task. We utilized two subjective, qualitative

measures for this purpose: relevance and effort. To improve the construct validity

of our measurements, we had other developers assess a sample of our suitability

assessments, and compared them with our own. We detail our and the external

assessments of suitability in Section 3.1.3.

3.1.1 Task Selection

Constructing a definitive reference task set that is comparable to those used in evalu-

ation of text retrieval remains an elusive target (Hummel , 2010). Instead, we located

the 10 programming tasks in Table 3.1 for our experiment. We explain below our

methodology for obtaining these.

Sources of tasks. As the existing TDR tools all operate on Java source code,

we focused on Java-oriented sources of information. We first examined material de-

signed for developer education, including Oracle’s Java Tutorial (http://docs.oracle.

http://docs.oracle.com/javase/tutorial
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Table 3.1: Brief task descriptions.

Task Description

1 A Base64 coder/decoder that can Base64 encode/decode simple text (String

type) and binary data (byte array); should ignore invalid characters in the
input; should return NULL when it is given invalid binary data.

2 A date utility method that computes the number of days between two dates.

3 A HTML to text converter that receives the HTML code as a String object
and returns the extracted text in another String object.

4 A credit card number validator that can handle major credit card types
(e.g., Visa and Amex); determines if the given credit card number and type
is a valid combination.

5 A bag data structure for storing items of type String; it should provide the
five major operations: add, remove, size, count, and toString.

6 An XML comparison class that compares two XML strings and verifies if
they are similar (contain the same elements and attributes) or identical
(contain the same elements and attributes in the same order).

7 An IP address filter that verifies if an IP address is allowed by a set of
inclusion and exclusion filters; subnet masks (like 127.0.1.0/24, 127.0.1/24,
172.16.25.∗ or 127.∗.∗.∗) can be used to define ranges; it determines if an IP
is allowed by the filters or not.

8 A SQL injection filter that identifies and removes possible malicious injec-
tions to simple SELECT statements; it returns the sanitized version of the
supplied SQL statement; removes database comments (e.g., −−, #, and ∗)
and patterns like INSERT, DROP, and ALTER.

9 A text analyzer that generates a map of unique words in a piece of text along
with their frequency of appearance; allows for case-sensitive processing; it
returns a Map object that maps type String to Integer where the key is the
unique word and the value is the frequency of the word appearance.

10 A command line parser with short (e.g., −v) and long (e.g. −−verbose)
options support; it allows for options with values (e.g. −d 2, −−debug 2,
−−debug=2); data types (e.g. Boolean, Integer, String, etc.) can be explicitly
defined for options; it allows for locale-specific commands.

http://docs.oracle.com/javase/tutorial
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com/javase/tutorial). Such tutorials are usually developed by experienced developers

to teach other developers what they should know about a language or technology be-

cause they are likely to come across tasks that would require that knowledge. In

a similar fashion, we looked in source code example catalogues including Java2s

(http://www.java2s.com), which features thousands of code snippets demonstrating

common programming tasks and usage of popular application programming interfaces

(APIs). These two sources represent material designed for consumption by develop-

ers. To find what kinds of problems developers seek help to solve, we also looked

at popular developer forums: Oracle Discussion Forums (https://forums.oracle.com/

forums/category.jspa?categoryID=285) and JavaRanch (http://www.javaranch.com), where

developers discuss their information needs with fellow developers.

Locating known solutions and their test cases. After locating descriptions of

pertinent tasks, we sought existing implementations relevant to those tasks on the

internet through code search engines, discarding search results that did not also come

with JUnit test cases. After locating pertinent candidates we checked that both the

solution and the test cases that exercised the solution existed in the repositories of

the tools. Dissimilarity of the tools’ underlying repositories made it difficult to select

targets that simultaneously existed in all three repositories. Therefore, we settled for

targets that exist in at least two of the three investigated repositories. Task selection

and experimentation was performed incrementally over a period of three months; we

found this process to be slow and laborious and thus we limited the investigated tasks

to ten.

http://docs.oracle.com/javase/tutorial
http://docs.oracle.com/javase/tutorial
http://www.java2s.com
https://forums.oracle.com/forums/category.jspa?categoryID=285
https://forums.oracle.com/forums/category.jspa?categoryID=285
http://www.javaranch.com
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Coverage of multiple units. JUnit tests can cover more than one unit (despite

the apparent connection between its name and “unit testing”). For example, an

integration test can cover multiple classes collaborating in a single test case. Ideally,

a test-driven reuse tool should be able to recommend suitable candidates for each

missing piece referred to in a test scenario. Instead, current TDR prototypes have

been designed around the idea that tests drive a single unit of functionality (i.e., a

single method or class) at a time. We aimed our trial test cases to those targeting a

single unit of functionality.2

3.1.2 Experimental Method

The experiment involved, for each identified task, (a) modifying the associated test

case to anonymize the location of the known solution, (b) feeding the modified test

case to the interface of each TDR tool, and (c) examining the resulting recommenda-

tions from each tool in order to assess their suitability to address the task (discussed

in Section 3.1.3).

For simplicity of the study design, we assume that iterative assessment of recom-

mendations and revision of the input test cases can be ignored. We further assume

that a searcher would scan the ranked list of recommendations in order from the first

to the last; however, we only consider the first 10 results, as there is evidence that

developers do not look beyond this point in search results (Joachims et al., 2005).

Anonymization. We wished to minimize experimenter bias by using (modified

versions of) the existing test cases of the solutions. The query for each task then

2In one case, this constraint was not strictly met: the known solution for Task 4 relies on a set
of static properties defined in a helper class CreditCardType.
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consisted of the modified JUnit test cases—thereby defining the desired interfaces,

vocabulary, and testing scenarios of the trial tasks.

The test code used in the experiment was anonymized by a four step process:

(1) any package statement is removed; (2) any import statements for types in the

same project are removed (by commenting them out); (3) the set of test methods

is minimized, by ensuring that all required methods for the sought functionality are

exercised no less than once, while removing the rest; and (4) the statements within

each test method are minimized, for cases where multiple conditions are tried, by

retaining the first condition and removing the rest. This process was intended to

reduce the test cases to the point that would resemble the minimal test scenarios

developed in a TDD setting.3

Tool-specific adjustments. Minor adjustments were made to some test cases in

the end to make them compatible with individual tools. For instance, Code Con-

jurer does not fire a search when no object instantiation takes place in the test code,

preventing Code Conjurer from triggering a search when the target feature is imple-

mented through static methods. To get around this problem, we revised test cases

for Tasks 1, 2, and 4 and replaced static method calls with instance method calls

preceded by instantiation of the unit under test. The example in Figure 3.1 demon-

strates some of the changes made to the query test class Base64UtilTest used in Task 1

for replacing static method calls with instance method calls.

Unlike Code Conjurer and Code Genie, S6 comes with a web-based search inter-

face; a class-level search through the Google or Sourcerer search provider was selected

3The complete set of known solutions and test cases, and their transformed versions used as
inputs, can be retrieved from: http://tinyurl.com/icsr13.

http://tinyurl.com/icsr13
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1 @Test public void testEncodeString() {
2 final String text = ”This is a test”;
3 // String base64 = Base64Util.encodeString(text);
4 // String restore = Base64Util.decodeString(base64);
5 Base64Util util = new Base64Util();
6 String base64 = util.encodeString(text);
7 String restore = util.decodeString(base64);
8 assertEquals(text, restore);
9 }

Figure 3.1: A sample test query illustrating the replacement of static calls.

for all the searches performed through the S6 web interface. As S6 cannot process

test code directly, a conversion process was followed to transform individual test cases

into a form acceptable by the S6 interface (as a “call set”). Minor changes were made

in some transformations due to the limitations imposed by the interface. In the case

of Task 1, we could not provide the three test cases to S6 all at the same time;

tests were therefore provided to the S6 search interface one at a time but S6 did not

return results for any of them. For Task 9, we were not able to exactly reproduce

the test case using an S6 call set. More specifically, we were not able to manipulate

the returned java.util.Map object from the getWordFrequency() call; neither removing

the assertions on the returned java.util.Map object nor using the “user code” feature

produced any results. Task 10 involves the inner class CmdLineParser.Option that made

S6 complain about an unknown type; we replaced the inner class with the type Object

in order for the search to be launched.

3.1.3 Suitability Assessment

Many factors can make unplanned reuse difficult (Holmes and Walker , 2012). Two

pieces of code of similar quality might satisfy the same feature set; however, developers
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are inclined to reuse the one that requires less adaptation and accommodation—after

all, major motivations for reuse are to save time and effort and to reduce the likelihood

of bugs. Therefore, it is important to present the developer with choices that they are

likely to consider as relevant to their task, suitable for integration in their code, and

whose adaptation would result in a net cost savings. To assess the quality of retrieved

results, we thus recorded two subjective, qualitative measurements: relevance and

effort.

Relevance and effort. Relevance is a measure traditionally used in evaluation of

information retrieval (IR) systems, to indicate how well a retrieved resource meets

the information needs of the user. In the context of this study, relevance measures

how many of the features expected by a trial task are covered by a search result. For

TDR, good relevance is necessary but not sufficient.

Table 3.2: Guidelines for classifying relevance.

Level Description

1 There is no meaningful connection between the given task and the recom-
mended code. I would not reuse this code to finish this task.

2–4 There is a noticeable overlap between the given task and the recommended
code. However, some of the required features of the described functionality
are missing or implemented in a different way (the smaller the mismatch,
the higher the relevance).

5 The recommended code exactly or closely matches the functionality de-
scribed in the task.

Effort is a measure of the work involved to adapt the retrieved source code. Effort

is a compound measurement of size and complexity of the source code to be integrated,
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external objects it refers to, and the amount of mismatch it has with the existing

development context; for our study, the “existing development context” comprised

the test suite used as input to the search.

Two recommendations with the same relevance level may have completely differ-

ent effort levels. For example, one recommendation can be considerably larger, more

complex, or have more external dependencies than an equally relevant one. How-

ever, relevance and effort are not orthogonal. As the relevance starts to decline, the

effort tends to increase; for example, additional effort might be required to add miss-

ing features. Ultimately the developer will avoid reusing located source code if the

adaptation effort is (apparently) comparable to that of reimplementation.

To account for partial suitability, we adopted 5-point scales of relevance and of

effort, as shown in Tables 3.2 and 3.3 respectively. For rating relevance, 1 stands

for no/minimal relevance and 5 stands for complete relevance. For rating efforts, 1

stands for little/no effort while 5 stands for excessive effort.

Table 3.3: Guidelines for classifying effort.

Level Description

1 This code can be reused to develop the entire functionality described in the
task. I may only need to do one or two very simple adjustments.

2–4 I may or may not choose to reuse the recommended code or its design ideas.
However, to reuse it I would have to refactor it, make modifications to its
design, or write new code for missing features (the fewer the adjustments,
the lower the effort).

5 I would not reuse this code to develop the functionality described in the
task. It would require too much effort to build upon this code.
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Assessments of suitability. After running the 10 trial tasks against the three

test-driven reuse tools we collected 109 individual recommendation results (out of

300 possible results), as the number of results was less than our cut-off of 10 for some

task/tool combinations.

Figures 3.2 and 3.3 respectively show the relevance and effort scores assigned to

results from individual tasks. Each subfigure represents the results for the indicated

task, for up to the first 10 results, represented by three vertical bars for Code Con-

jurer, CodeGenie, and S6 respectively. The absence of a bar indicates the lack of a

corresponding result.

There are 25 potential combinations of relevance and effort scores; however, only

some of those combinations are expected to be observed, due to the relationship

between relevance and effort discussed above. Table 3.4 indicates our classification

of each possible combination, as good (a solution), ok (a near-solution), bad (a non-

viable recommendation), or impossible (left as blank). We deem combinations of fairly

low relevance and low effort to be contradictory and hence impossible, since lack of

relevance implies high effort would be needed. In the absence of a good solution, a

developer might consider a near-solution, which is a relevant result that still requires

non-trivial effort to use for the task.

Relevance and effort ratings were assigned to the results following a manual in-

spection of the retrieved source code. An attempt was made to integrate the query

test cases with the retrieved code, if possible. To make the tests run, external depen-

dencies of the source code were resolved and refactorings were performed, if necessary.

Ratings were given based on the effort spent to make the tests run and an estimate

of the extent of the missing features in each case.
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Figure 3.2: Task relevance level versus result number, for the 10 tasks.

External validation. As relevance and effort are subjective measures, different

developers can disagree on the reuse suitability of a piece of code in a certain context.

To improve construct validity of the experiment, we compared our relevance and effort

ratings with those from five experienced Java developers. Participants consisted of

two graduate students and three industrial developers, all with 3–5 years of industrial

experience in developing Java software. All participants reported that being familiar

with the JUnit framework, having developed unit tests, and having conducted code

reviews in the past. A short training example was used at the start of the session
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Figure 3.3: Task effort level versus result number, for the 10 tasks.

to familiarize participants with the procedures. A random sample of results (12

out of 109 recommendations) were selected, and provided to each participant for

evaluation; each participant was asked to evaluate the same sample. In a short post-

study questionnaire, all participants indicated that they have developed code for

tasks similar to the ones they were given in the experiment, confirming that these are

realistic tasks.

Participants were given a guide that described the purpose of this experiment and

the rationale behind the relevance and effort scores, along with—for the results in the
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Table 3.4: Quality classes.

Relevance
1 2 3 4 5

E
ff

or
t

1 good
2 ok good
3 bad ok ok
4 bad bad bad bad
5 bad bad bad bad bad

Table 3.5: Inter-rater reliability scores.

P1 P2 P3 P4 P5

Relevance 0.86 0.89 0.93 0.84 0.81
Effort 0.72 0.75 0.82 0.74 0.72

sample to be validated—a short description of each task, the test cases, and the source

code retrieved by a tool. Participants were asked to rate each result’s relevance and

effort according to our 5-point scales. Participants were asked to justify their choice

through additional comments, which we used to check that their reasoning conformed

to their numerical ratings. Spearman’s rank correlation coefficient (ρ) was used to

measure the inter-rater reliability of the rankings made by the first author and each

participant; Spearman’s ρ can measure pairwise correlation among raters who use a

scale that is ordered. Table 3.5 displays the ρ values computed for participants P1 to

P5. In all five cases, there is strong positive correlation between relevance and effort

ratings of the first author and those of the external validators.
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3.2 Results and Discussion

Table 3.6 summarizes the results of the experiment for each tool/task pairing, indi-

cating: the number of recommendations returned; how many of these were duplicates;

the ranking by the respective tool of the recommendation that we deemed the best,

within the first 10 results (or fewer if fewer were recommended); and the quality of

the best solution. To be clear, in some cases, the recommendation by a tool that we

deemed best amongst its results, we still assessed as badly suited; the tools’ rankings

and our assessment of quality often did not correlate.

We can see that each of the tools did a poor job at recommending solutions.

Table 3.6: Results of the experiment for each tool/task combination. The columns
for each tool indicate: the number of recommendations produced (rec); the number
of these that are duplicates of other recommendations (dup); the ranking by the tool
of the recommendation that we deemed the best within the results (best); and the
quality of that best recommendation (qual). In cases marked with an asterisk, we
were not able to verify the presence or absence of the known solution within the tool’s
repository.

Task
Code Conjurer CodeGenie S6

rec dup best qual rec dup best qual rec dup best qual
(#) (#) (rank) (#) (#) (rank) (#) (#) (rank)

1 8 (1) 8 ok *8 (3) 3 good 0
2 9 (1) 1 bad *10 2 ok 10 (6) 1 good
3 10 (1) 3 ok *0 0
4 0 *0 10 (6) 1 bad
5 2 (1) 1 bad *0 0
6 10 (2) 1 bad 2 1 bad 0
7 10 (5) 2 bad 0 0
8 0 *0 0
9 *10 (4) 1 bad 0 0
10 10 (3) 3 good 0 0
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Table 3.7: Summary of quality classifications for all recommendations. The number
of duplicate recommendations included is shown in parentheses.

Quality Code Conjurer CodeGenie S6

good 4 (3) 3 (2) 10 (6)
ok 3 11 (2) —

bad 62 (15) 6 10 (6)

Total 69 (18) 20 (3) 20 (12)

Code Conjurer provided a good solution for only one task, and near-solutions for

two others; for five of the remaining tasks only bad recommendations were provided.

CodeGenie provided a good solution for only one task, and a near-solution for one

other; no recommendations were provided for seven out of eight of the remaining

tasks, so false positives were relatively low. S6 only provided a good solution for one

task, and no near-solutions; again, no recommendations were provided for seven out

of eight of the remaining tasks, so false positives were relatively low. For Task 8,

none of the tools provided a recommendation. For Tasks 4–7 & 9, each tool either

provided no recommendations or only bad recommendations. In fairness, for task/tool

combinations in which we were unable to verify the presence of the known solution

(marked with asterisks), the associated repository may not have contained a viable

alternative but this only affects four of the tasks for CodeGenie and none for the

other two tools.

Table 3.7 summarizes our classifications of all recommendations produced by the

tools for the 10 tasks. Code Conjurer has a much larger number of false positive

(i.e., bad) recommendations than the other two, but all three tools produce many

bad recommendations, when they produce any recommendations at all.
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The results of our experiment indicate that there is a serious problem at work with

the existing TDR approaches. Could the problem simply be due to implementation

weaknesses, or is there a more fundamental shortcoming with the underlying ideas?

To address this question, we first examined similarities between the input test cases

and the results, described below.

3.2.1 Lexical and syntactic matching

From the published literature on the TDR approaches, we recognized the importance

that each places on lexical and (to a lesser extent) syntactic similarity between po-

tential hits in the repository and the input test case. Specifically, Code Conjurer and

CodeGenie both utilize similarity of type and method names plus similarity of method

signatures; S6 utilizes similarity between user-supplied keywords and potential hits

plus similarity of method signatures. We manually examined each recommendation

returned by the tools to determine if lexical or syntactic similarities existed with the

input test case for each task. We empirically discerned four kinds of matching criteria:

type name, method name, signature, and other keywords.

Table 3.8 presents the results of our similarity examination. We can see that Code

Conjurer places great emphasis on type name similarity while S6 ignores it. But

ultimately, every recommendation could be traced to a mostly lexical similarity.

This heavy reliance on lexical/syntactic similarity to the supplied test case, in

making recommendations, yields many false positive results—especially when simple

functionality is sought. For example, the utility program sought in Task 2 consists of

a single function with two parameters of type java.util.Date and a return value of type

int. Code Conjurer retrieved 9 results all of which match this signature but none of
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Table 3.8: Classification of matches between recommendations and input test cases.
For a given recommendation, multiple kinds of match may exist.

Match kind
Code Conjurer CodeGenie S6

High Partial High Partial High Partial
similarity similarity similarity similarity similarity similarity

Type name 62 15
Method name 5 8 1 8 6
Signature 15 8 10 8 20
Other keyword 21 2 20

Total recoms. 69 20 20

which match the desired functionality.

Each approach had the greatest success when multiple kinds of similarity occurred

simultaneously; again, this is not surprising since the likelihood that similarities in

multiple dimensions are spurious seems much lower than in few dimensions. Unfor-

tunately, it appears from the results that simply demanding multiple kinds of lex-

ical/syntactic similarity simultaneously would lead to limited applicability of these

tools. Others have noted the tradeoff limitations to lexical/syntactic similarity in

code search (Holmes et al., 2006).

3.2.2 Issues with the Approaches

We see several issues that arise not from weaknesses in tool implementation, but more

fundamentally from the ideas behind the TDR approaches.

Signature matching. The existing test-driven reuse approaches make signature

matching a necessary condition to the relevance and matching criteria: a component

is considered only if it offers operations with sufficiently similar signatures to the test

conditions specified in the original test case. However, semantic similarity neither
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implies nor is implied by structural similarity. This limits the applicability of the

test-driven reuse to situations in which the design of the feature sought is very simple

or known in advance.

A more flexible approach to signature matching could improve recall. For exam-

ple, operation argument and return value types, order, or count could be ignored.

Unfortunately, this would in turn make the execution of test cases for validating can-

didate results difficult. Automated tests can only be run if a match can be established

between missing elements in the tests and those in the retrieved source code. Code

Conjurer retrieved testable results (source code that has sufficiently close signatures

for at least some of the operations) for Tasks 1, 3, and 10, while CodeGenie could

achieve the same goal only for Tasks 1 and 2. S6 tries to take advantage of simple

transformations to generate possible candidates that can pass the tests; however, a

candidate is considered for applying the transformations only if structural dissimi-

larities are minor. Consequently, S6 ended up retrieving results for only two of the

tasks (Tasks 2 and 4) because candidates retrieved for other tasks did not meet the

input criteria of the transformations.

Filtering by lexical relevance. Filtering candidate results based on their lexical

relevance before other relevance criteria are considered leaves out all potential solu-

tions that do not match the searcher’s choice of program vocabulary. For example,

the date utility function in Task 2 is named getNumberOfDaysBetweenTwoDates() and

is defined in a class named DateUtils. Tokenizing these two names, as is performed

by Code Conjurer and CodeGenie, would give a list of generic words that can be

matched with almost any date utility class. All the 9 classes retrieved by Code Con-

jurer are named DateUtils and each has at least one method matching the signature
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of the method sought after; however, none of them is a method that computes the

distance between two dates. CodeGenie manages to find an instance of the function

for Task 2 that is given the same name and is defined in a class with the same name.

Other results are false positives arising from lexical and signature similarities.

Code Conjurer and CodeGenie use terms in the signature of methods as a key

component of relevance. While S6 uses a supplied keyword list to shrink the candi-

date space in which signature matching and transformations are to be performed, the

use of keywords in the search has been limited to lexical matching that in turn re-

sults in tool performance being limited by the searcher’s choice of vocabulary (Reiss ,

2009a; Lazzarini Lemos et al., 2011). We designed our experiment to favour the eval-

uated tools: we used test code taken from the same project in order to retrieve the

feature under test. Changing the original program vocabulary instead—which would

be reasonable in modelling situations where the developer does not know the needed

vocabulary—would have limited lexical relevance, resulting in even worse performance

of the tools.

Automatically compiling and running source code. The existing test-driven

approaches all attempt to execute the supplied test case on potential matches in the

repository. This has the advantage that additional semantic constraints implied by

the supplied test case can be checked, eliminating false positive matches. Given the

large number of false positives that we obtained from the approaches, it is clear that

this idea is not working as intended; in fact, for Code Conjurer in particular, we

believe that test case execution remains an unimplemented idea, judging from the

very large number of false positives.

The retrieved source code has to be runnable in order to execute test cases, but
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automatically compiling and running arbitrary source code accumulated in a reposi-

tory is no easy task, often because of dependencies on external source code. A number

of heuristics have been proposed by the research community to resolve external de-

pendencies without developer intervention (Ossher et al., 2010). In the context of our

trial, only Task 4 has an external dependency on the org.apache.commons.lang project,

while Tasks 6, 7, and 8 have dependencies to other source code in the same project,

and the rest of the tasks can be compiled using a standard JDK by itself.

Even if source code can be compiled, there is still no guarantee that it can also

be run, as programs can rely on specific runtime environments or resources. For

example a web or mobile component relies on a specific container to run. A database

or network application requires those external resources to offer its services. To the

benefit of the evaluated tools, none of our tasks required an external environment or

resources to run.

In a similar fashion, the TDR query test cases may also rely on resources external

to the JUnit program. For example, the original version of the XML utility for Task 6

relied on XML strings loaded from the file system. For the sake of our experiment, we

modified the test4 (Figure 3.4) to utilize XML strings embedded in the source code,

but there is no a priori reason to expect that the developer will not wish to rely on

external resources in this fashion.

Contextual facts. Test cases are in fact simple examples demonstrating the use of

the system-under-test. They show helper types that may interact with the system-

under-test in typical scenarios. The existing TDR approaches disregard the elements

4We repeated this experiment with the original version of the test case. Code Conjurer and
CodeGenie produced the same result. S6 does not allow using external resources.
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1 import static org.junit.Assert.∗;
2 import org.junit.Test;
3 import java.io.IOException;
4 import org.xml.sax.SAXException;
5
6 public class TestXmlDiff {
7 String xml1 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><a><b>text1

</b><c>text2</c></a>”;
8 String xml2 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><!−− copy

−−><a><c>text2</c><b>text1</b></a>”;
9

10 /∗ @Test public void testDiff() throws XmlException, IOException, SAXException {
11 DomainsDocument dd1 = DomainsDocument.Factory.parse(new File(”src/test/

resources/instances/test1.xml”));
12 DomainsDocument dd2 = DomainsDocument.Factory.parse(new File(”src/test/

resources/instances/test2.xml”));
13 Diff myDiff = new Diff(dd1.toString(), dd2.toString());
14 } ∗/
15
16 @Test public void testDiff() throws IOException, SAXException {
17 Diff myDiff = new Diff(xml1, xml2);
18 assertTrue(myDiff.similar());
19 assertFalse(myDiff.identical());
20 }
21 }

Figure 3.4: Test case for validating equality and similarity of XML strings (Task 6).

of this interaction like participating types and the data/control flow between them.

They merely extract lexical and syntactic features of missing elements from the tests

while the context in which those elements appear might also help to understand their

semantics.

For example, by solely relying on names and signatures, Code Conjurer did not

retrieve anything related to XML processing for Task 6 (the input test case is shown

in Figure 3.4). Only one of the results out of the 10 retrieved happened to con-
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tain the keyword “xml” that was a statement importing the class org.allcolor.xml.

parser.CStringTokenizer. The exception type org.xml.sax.SAXException thrown by the

test method testDiff is part of a well-known API for processing XML documents.

SAXException is not thrown by any of the resolvable methods in the test scenario;

therefore, the functionality being sought should throw that exception. Incorporating

this additional semantic fact could have helped to improve the relevance of retrieved

results.

Searching for a specific implementation. Code Conjurer and CodeGenie man-

aged to retrieve relevant results for Task 1 in which a Base64 encoder/decoder is

sought. The class name, base64 is the name of a well-known algorithm. The method

names encode and decode are common choices for a utility class offering such services.

However, the Base64 encoder/decoder described in the tests extends the common

variation of this algorithm and adds a few constraints. When decoding Base64 char-

acter sequences, it should detect and ignore invalid sequences and simply return NULL.

Therefore, our Task 1 is slightly different from most of the Base64 encoder/decoders

available on the internet. None of the recommendations by Code Conjurer and Code-

Genie offers the special behaviour expected. S6 fails to retrieve any results for the

very same task. We speculate that it has retrieved various implementations of the

Base64 algorithm through its initial keyword search, but not exactly the variation

described in the tests; as none of them could pass the tests, they were all discarded

in the end.

Most of the tasks reported by proponents of test-driven reuse approaches seek

common variations of well-known algorithms and data structures. Using lexical and

signature relevance criteria would yield multiple instances of such programs that can
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possibly pass the tests. However, similar to the example given above, if a variant

were sought, relying on common terms and operation signatures would not suffice.

3.2.3 Issues with the Tools

In addition, the prototype tools themselves have a number of issues that need to be

addressed.

Ranking. Table 3.6 shows the rank at which the tool placed the result for each task

that we deemed to be the most suitable out of the recommendations. Only in 1 out

of 6 cases in which a solution or near-solution was recommended was it ranked first

by the respective tool (by S6 for Task 2). For 3 of the 5 remaining cases, the item

ranked first by the tool had the same relevance score as the solution or near-solution

recommendation but rated as requiring higher effort. Hence, a better estimate of the

adaptation effort should be employed in the ranking functions.

We also observed that duplicate recommendations in the result lists are not ranked

consecutively. As duplicates are necessarily equally suitable, the expectation is that

they should be equally treated by the ranking function.

Duplicates. There are arguments and supporting evidence that redundant results

do not represent any additional value to users and can lead to disorientation and frus-

tration (Kazai and Lalmas , 2006). We observed that all the tools generated duplicate

recommendations in their result lists. The number of duplicate recommendations

produced by tools for each task is shown in Tables 3.6 and 3.7. For example, 12 out

of 20 results that S6 retrieved for Tasks 2 and 4 were duplicates.

Most redundant recommendations originated from secondary sources, such as a
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Java archive file that is replicated in multiple locations online. A code search engine

crawler then retrieves and indexes the same source files multiple times. We also came

across cases where the same source file (from the same origin) appeared more than

once in the search results. Such duplicates could have been avoided via strategies

like shingling (Manning et al., 2008). Alternatively, duplicate results can be grouped

together at presentation time simply because they are equally suitable.

Near-Misses. We define a near-miss as a piece of code that is structurally related to

the source code sought, such as a bad method recommendation that is declared within

the same class as a relevant method that should have been recommended instead.

Code Conjurer and CodeGenie produced near-misses (Kazai and Lalmas , 2006) in

their search results. For instance, Code Conjurer recommended a few methods that

used other methods implementing the desired feature, in Tasks 1 and 3. Likewise,

CodeGenie returned a test case in which a method implementing the desired feature

was being tested, in Task 6. CodeGenie also recommended an interface rather than

a relevant, concrete implementation of that interface, in Task 2.

Integration Support. Code Conjurer and CodeGenie provide limited automated

support for integrating recommendations with an existing system. However, both

tools have issues when trying to resolve dependencies, i.e., source code from the same

project or external libraries that the retrieved code depends on.

When Code Conjurer inserts a file into the current project, it can overwrite and

destroy existing code. Inserting code into a new blank project just downloads code

to the developer’s machine but leaves the integration task to the developer. Neither

approach recovers all referenced source code or external libraries. What is missing in
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the end has to be manually resolved, adding to the effort required for the complete

reuse task.

CodeGenie provides better integration support in comparison to Code Conjurer.

It relies on program slicing to return self-contained pieces of code. However, the end

result is often not compilable, especially when functionality in an external library is

referenced. CodeGenie tries to slice up the source code for the library and return

the exact subset that is required. The client–server connection occasionally times out

when the size and number of externally referenced resources increase. Finally, the

weaving process that is intended to take care of resolving the dependencies between

existing and retrieved code was mostly unreliable; in most cases, we were unable to

use the woven code for the tasks.

S6 does not provide IDE tooling; therefore, it does not provide automated inte-

gration support with retrieved code.

Reliability. We are not certain that CodeGenie fired a search for Tasks 9 and 10;

the Eclipse-based client appears to be faulty or expecting input in an undocumented

form that we were unable to figure out. We managed to get results from S6 only

for Tasks 2 and 4. S6 timed out on Tasks 5 and 7 with the error message “No

response from S6 server”. The features needed by these two tasks require having

more methods, relative to some of the either tasks. To help S6 better analyze the

input, we repeated each task by reducing the number of methods; however, this still

did not yield recommendations.

Composing queries. We found that translating test code into the S6 search form

was difficult. We consulted online documentation and research papers, and performed
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some trial and error to compose queries. It would have been much easier for us if

S6, like Code Conjurer and CodeGenie, came with an IDE plug-in. Such a front-end

plug-in could then extract all required bits of information from supplied test cases to

compose the query and submit to its back-end server. However, in the case of Code

Conjurer and CodeGenie it was not clear what bits of information are collected from

the test code. Again, we had to rely on trial and error especially when the tools

produced no or too few search results.

Presentation of results. All the tools offer views with limited syntax highlighting

that make evaluating code excessively difficult. Results are limited to a single file (or

excerpts of it) that matched the query; browsing support for the rest of the project

is not provided. This makes evaluating suitability problematic, especially in the case

of near-misses.

None of the tools highlight the logic that makes retrieved code relevant (from the

tool’s perspective) to the test code, known as recommendation rationale (Robillard

et al., 2010). Without relevance highlighting, discarding false positives takes longer

as the size and complexity of search results increases. Likewise, we found it easy to

miss the most relevant part while examining larger source files.

Studies show that, when source code is located for reuse, information about the

originating project is sought or inferred to contextualize that source code (Burkhardt

and Détienne, 1995; Rouet et al., 1995). Providing such contextual information should

thus be a design goal for any TDR technique.
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3.2.4 Threats to Validity

The primary question regarding generalizability of our study is the representativeness

of the tasks. We took task ideas from the discussions in the Java developer community

websites, and from code example catalogues commonly used as a reference by Java

developers. Developers evidently find these features worthwhile to discuss and learn

from, and not so easy to develop or to find. In addition, our five external evaluators

consisting of three industrial developers and two graduate students found the tasks

familiar in the sense that they had previously developed similar functionality. The

number of trial tasks is another limiting factor of our study. However, it is comparable

to the average number of tasks used in the evaluations in the TDR literature (Hummel

et al., 2008; Lazzarini Lemos et al., 2011; Reiss , 2009a).

The modifications we made to the trial test cases in our study also threatens

the validity of our study. Anonymization was performed to ensure that the facts in

the test cases, other than the identity of the target project, could still contribute to

identification of the solution. Test case refinement was done to remove test cases

that exercised features beyond the scope of the study tasks. Neither anonymization

nor refinement should negatively affect the retrieval capacity of the tools. To find

the best strategy to overcome the tools’ limitations, we experimented with different

alternatives and compared results in each case. The alternative that yielded better

results was chosen over others.

Test-driven reuse is a repetitive process. Searchers might reformulate their queries

based on the current results in a way that may result in finding better results. This

brings up the question of whether having a static query set is the right way to evaluate

a code search tool. We deliberately ignored this issue by giving the tools the best
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possible queries by providing them with the test cases developed for the same code.

We considered different existing variations of the features, and chose the ones that

came with a reasonable test suite. This should have biased the results in favour of

the tools.

Code relevance and effort categorization are subjective, and thus may differ from

one developer to the next. It is often easy to say that one source code recommendation

is more suitable than another, but the quantification of this difference is somewhat ar-

bitrary. While our categorization of the relevance and effort of each recommendation

represents our best judgment, a random subset of our categorizations was indepen-

dently evaluated by experienced Java developers. The strong positive correlation

between raters suggests our categorization of the results is reasonable.

Considering only the top 10 results for evaluating a retrieval algorithm might be

overly restrictive, despite evidence that developers generally do not investigate more

than the first 10 results (Joachims et al., 2005). However, in our experiment, the tools

provided fewer than 10 recommendations in 22 out of the 30 cases. Therefore, we

have considered all the results collected by the tools in more than 70% of the cases.

3.2.5 Precision versus accuracy

The measures we used in our evaluation are qualitative and imprecise. Nevertheless,

the results suffice to demonstrate that the approaches work poorly for these examples,

and point to the need to address their underlying designs. Thus the results do provide

accuracy : our criteria for rating the results are sufficiently well defined that our

participants’ ratings agreed to a degree that is quantitatively demonstrable.

The greater precision that would be obtained by using quantitative measures is
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not warranted—measuring degrees of “poor performance” would not provide us with

a deeper understanding of the cause of the failure of these approaches. Only with an

acceptable level of performance is it worthwhile to invest in precise measurements.
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Chapter 4

Test Similarity Model

In test-driven reuse, the fitness of the retrieved source code is verified through run-

ning searcher supplied test cases. However, for the tests to be effective as a means of

verification, semantically relevant source code containing the functionality has to be

retrieved. The interface-based search approach adopted by current TDR approaches

requires the searcher to know—or correctly guess—the solution vocabulary and de-

sign. In this chapter, we propose an approximate model for representing assets in a

TDR repository that improves the likelihood of retrieving semantically related source

code.

4.1 Software Similarity

The problem of similarity searching, as defined in program retrieval and many other

modern applications, is to find a set of objects that are more similar to a given query

object. The similarity between any two objects is usually computed by a distance

function. A precondition of computing similarity is to define what it means for two

objects to be similar, which is not always so obvious. In the context of software,

the notion of program similarity is not firmly defined by the use of a particular dis-

tance function. Different metrics have been proposed in the literature for measuring

similarity along various—mostly syntactic and structural—features. A feature-based
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similarity measure built from static analysis of software only provides an approxima-

tion of the program behaviour. For a similarity analysis to be precise the approximate

model should be close to the actual behaviour of the program. Although, a perfectly

precise analysis is undecidable due to Rice’s theorem (Rice, 1953), however even

without perfect precision the results are still practical and useful (Cesare and Xiang ,

2012).

Software is a high-dimensional data space. Modelling the various aspects of a

program including its terms, syntax, structure, control and data flow, assumptions,

limitations, dependencies, quality, performance, and semantics requires using com-

plex data models. Searching in high-dimensional spaces is time-consuming (Donoho,

2000). Generally, as the dimensionality of a data space increases the problem of

efficiently finding similar objects becomes more difficult. This effect is commonly

refereed to as the curse of dimensionality (Bellman, 1961): when the dimensionality

increases, the volume of the space increases so fast that the available data becomes

sparse; organizing and searching data often relies on detecting areas where objects

form groups with similar properties; in high dimensional data however all objects

appear to be sparse and dissimilar in many ways which prevents common data orga-

nization strategies from being efficient.

4.2 Test Similarity

Test suites developed for quality assurance purpose in an organization are maintained

for the purposes of regression testing. We propose a technique that utilizes this source

of information for finding and reusing instances of similar functionality developed in

the past. Developers practicing TDD start development of new functionality by
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developing minimal new test cases for it. Current TDR approaches use the interface

of the function under test to find similar existing functions. However, in addition to

the interfaces, tests also demonstrate examples of the control and data flow, pre- and

post-conditions, exceptional cases, and input/output values. We believe that TDR

can take advantage of these additional attributes of test cases to query source code

repositories more accurately.

Finding an existing test case in the repository that is sufficiently similar to the

test case just developed can be indicative of the fact that a function similar to the

functionality about to be developed has been developed in the past. The existing

function can potentially be reused or looked upon as an example. In order to find

similar test cases, we developed a test similarity model based on lexical, structural

context1, and data flow attributes of test cases.

We developed similarity search heuristics for finding similar test cases according

to names (HeuristicLexical), references (HeuristicType), invocations (HeuristicCall),

and data flow (HeuristicDataF low) facts in the query test case. Each heuristic selects a

number of test cases from the system Repository due to similarity to a certain aspect

of the query test case Q. A candidate result item is a test case that is selected by at

least one of the heuristics. Similar(Q) represents the set of similar test cases in the

system Repository for a query test case Q.

1Our reference and call-set similarity heuristics were inspired by the Strathcona (Holmes et al.,
2006) example recommendation system.
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Similar(Q) = HeuristicLexical(Q) ∪HeuristicType(Q)∪

HeuristicCall(Q) ∪HeuristicDataF low(Q) (4.1)

Figure 4.1 demonstrates our proposed federated search2 strategy over multiple

representations of test cases. In Section 4.4 we will describe the three representa-

tion schemes underlying our similarity heuristics. An aggregator computes a simi-

larity score (eq 4.2) based on TC’s similarity scores along lexical (simLexical), type

(simType), invocation (simCall), and data flow (simDataF low) features. In other words,

if a candidate test case is returned by more than one heuristic, its similarity scores

are added up.

Figure 4.1: A federated search platform utilizing multiple similarity search heuristics.

2Federated search is an information retrieval technology that allows the simultaneous search of
multiple searchable resources. A user makes a single query request which is distributed to the search
engines participating in the federation. The federated search then aggregates the results that are
received from the search engines for presentation to the user.
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Retrieved test cases TC in Similar(Q) for a query test case Q are ranked in

descending order of aggregated similarity score. A test case that has higher aggregated

similarity can potentially have similarity along more dimensions with the query test

case; hence it might be a better fit as a recommendation. Similarity scores of the four

dimensions were given equal weights; i.e., wLexical = wType = wCall = wDataF low = 1.

Heuristic similarity scores are normalized by the maximum score assigned to any test

case in the repository for that heuristic. If more than one test case is provided in

the search query the facts from all test cases are aggregated into a unified fact set.

Hence, the test cases are considered as if they were one big test case. Likewise, when

trying to find a match in the repository, we find matching test classes with one or

more test cases containing facts that match those in the search query.

AggregatedSim(Q, TC) =

wLexical ×
simLexical(Q, TC)

max{simLexical(Q, TC ′) | TC ′ ∈ HeuristicLexical(Q)}
+

wType ×
simType(Q, TC)

max{simType(Q, TC ′) | TC ′ ∈ HeuristicType(TC)}
+

wCall ×
simCall(Q, TC)

max{simCall(Q, TC ′) | TC ′ ∈ HeuristicCall(TC)}
+

wDataF low ×
simDataF low(Q, TC)

max{simDataF low(Q, TC ′) | TC ′ ∈ HeuristicDataF low(TC)}
(4.2)

In the following, we describe our heuristics and similarity functions for retrieving

similar test cases based on different features of a query test case.
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4.2.1 Lexical Similarity

Two test cases have lexical similarity if they use similar terms for naming program-

ming constructs. Terms are selected from program elements including test class, test

method, accessed references, exceptions, and invoked methods. In addition to the

names of elements the fully qualified name of some constructs are utilized in simi-

larity comparisons. Lexical similarity is also utilized in the interface-based retrieval

approach underlying current TDR approaches. However, our lexical similarity heuris-

tic goes beyond the terms in the interface of function under test and also considers

the terms in its context. The name of the test class, test method, and references

can provide additional semantic information in identifying the function under test.

Table 4.1 displays the complete list of lexical features extracted from test cases. Ap-

pendix A provides an example of how terms from test cases are represented as bag of

words data structures in Apache Solr.

Table 4.1: Lexical features used in similarity comparison of test cases.

Test Element Property Bag of Words

Test class Name Names

Test method Name Names

Method
Name Names
FQN FQNs
Return type FQN FQNs

Reference
Name Names
FQN FQNs
Owner’s FQN FQNs

Exception FQN FQNs
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Two bags of words are compiled for each test case; one for the names and a second

one for the fully qualified names (FQNs) in the test case. Using Apache Solr each

test case is represented as a vector with two dimensions; the Names and FQNs bags

of words being its dimensions. To measure the similarity of two test cases one now

has to measure the similarity of their term vectors. The function simLexical(TC, TC
′)

that combines tf-idf and cosine similarity (Manning et al., 2008) (as implemented by

Apache Lucene3) represent the lexical similarity between query test case TC and a

test case TC ′. Term frequency-inverse document frequency (tf-idf), is a numerical

statistic which reflects how important a word is to a document in a collection. Cosine

similarity, on the other hand, is a measure of similarity between two vectors in a vector

space that measures the cosine of the angle between them. The similarity function

gives equal weights to Names and FQNs bags of words. The lexical similarity heuristic

returns the top 1000 test cases TC ′ in Repository that are lexically similar to the

query test case TC.

4.2.2 Reference Similarity

The types that a function is related to in the context of a test case can potentially

help to understand its semantics. For example, the runtime exceptions it throws or

the helper types associated with it help with understanding the behaviour of the func-

tion. These helper types that might produce (or consume) a service provided by the

function under test may not necessarily be part of its interface. The interface-based

retrieval technique only considers the types in the public interface of the function

under test. Our reference similarity heuristic, on the other hand, also considers the

3http://lucene.apache.org/core/4 5 1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.
html

http://lucene.apache.org/core/4_5_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://lucene.apache.org/core/4_5_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
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types in the context in which the function is tested. Two test cases are taken to

have reference similarity if they use or operate on a similar set of data structures.

Reference types can be primitive like char and int, standard classes defined in the

JDK like String and Date, or general classes defined by 3rd party libraries and user

code.

Let TypesTC = {t1, t2, ..., tn} be the set of types referenced in the test case TC.

The function simType(TC, TC
′) represents the reference similarity between the query

test case TC and a test case TC ′.

0 ≤ simType(TC, TC
′) =

|TypesTC ∩ TypesTC′ |
|TypesTC |

≤ 1 (4.3)

The reference similarity heuristic (eq 4.4) returns the test cases TC ′ in Repository

that have references similar to the query test case TC. In our evaluations, we used

all retrieved test cases in the repository (i.e., θType = 0). For a larger repository the

similarity cut off value needs to be empirically adjusted.

HeuristicType(TC) = {TC ′ ∈ Repository | simType(TC, TC
′) ≥ θType} (4.4)

4.2.3 Call-Set Similarity

The invocations made in the context of a test case are semantically related to the test

scenario. Such invocations are not only limited to the function under test but also in-

clude helper types. Although the reference similarity heuristic considers helper types,

the details of what role they play in the scenario is better captured by considering

the invocations on them. Two test cases have call-set similarity if they call a similar
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set of methods. Let CallsTC = {m1,m2, ...,mn} be the set of method invocations

in a test case TC. The function simCall(TC, TC
′) represents the call-set similarity

between the query test case TC and a test case TC ′.

0 ≤ simCall(TC, TC
′) =

|CallsTC ∩ CallsTC′ |
|CallsTC |

≤ 1 (4.5)

The call-set similarity heuristic (eq 4.6) returns the test cases TC ′ in Repository

that have invocations similar to the query test case TC. In our evaluations, we used

all retrieved test cases in the repository (i.e., θCall = 0). For a larger repository the

similarity cut off value needs to be empirically adjusted.

HeuristicCall(TC) = {TC ′ ∈ Repository | simCall(TC, TC
′) ≥ θCall} (4.6)

4.2.4 Data Flow Similarity

The similarity of the dependencies between program statements in test cases (e.g.,

ordering of statements) is not included in the metrics discussed so far. Data flow rela-

tionships are a model for representing the coupling between program statements. In

this section we introduce our static light-weight data flow similarity model customized

for modelling data flow dependencies in test code. Using a combination of relational

database and text representations, we have designed a naive—yet scalable—graph

matching algorithm for finding similar data flow patterns.
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Call Dependence Graph (CDG)

Program dependence graphs (PDGs)—program representations that encode data and

control dependencies between statements and predicates—have been used in the past

for finding similar code (Krinke, 2001), plagiarism detection (Liu et al., 2006), and

mining semantic clones (Gabel et al., 2008). Similarity between program fragments

is established based on the isomorphism of their associated PDGs. To the best of

our knowledge, PDGs have never been applied to tests. We introduce call depen-

dence graph (CDG), a customized variation of the program dependence graphs, for

representing data flow dependencies between method invocations in test code4. A

call dependence graph is in fact a model composed of the data interactions between

the invocations and references in a test case. Hence, it overlaps two of our existing

test similarity heuristics (i.e., call-set and reference heuristics). In Chapter 6 we will

discuss if the data flow heuristic can indeed replace these two disjoint heuristics.

Definition 1. A call dependence is a data flow relationship between two method

calls m1 and m2 such that the data produced and returned by m1 is passed to and

consumed by m2 as an input parameter. A call dependence relationship implies a

temporal relationship between the two invocations; as for the data flow to be possible,

m1 should have been invoked prior to m2.

Definition 2. A call dependence graph is a directed graph such that:

1. Each node is a method of the system under test or one of the helper types in the

test scenario. Nodes have a number of attributes including the type owning the

method and the method’s name, return type, and parameters.

4Control dependencies are not included in this version but the model can easily be extended to
include them. Appendix D provides further discussion on providing support for control structures
in a test data flow model.
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2. Each edge is a call dependence between two method invocations in the test sce-

nario.

Definition 3. The call dependence graph of a test case TC is denoted as CDGTC.

The set of nodes and edges in CDGTC are denoted by V (CDGTC) and E(CDGTC)

respectively.

Building a Call Dependence Graph

The query test case and the test cases in the repository are processed for data flow de-

pendencies. Figure 4.2 shows a naive static analyzer for building CDGTC . Existing

static/dynamic data flow analyzers are designed for source code that can be com-

piled. A TDD test case, on the other hand, is source code that cannot be compiled.

Furthermore, due to unavailability of the source code of the system under test intra-

procedural data flow analysis is impossible. Therefore, we ended up designing our

own naive static analyzer that extracts intra-procedural data flow dependencies. Call

dependencies extracted by the analyzer are recorded to a relational database model

that allows fast retrieval of call dependency graph edges. The attributes of each node

are stored in an Apache Solr text representation that allows quick discovery of nodes

with similar attributes.

Limitations Our naive static data flow analyzer is designed for efficiency. Hence

it can only detect a subset of data dependencies; more specifically, it can only detect

direct data flow dependencies between methods. Let void f(int) and int g(void) be

two methods invoked in a test case; the call dependency between the two methods is

considered direct if (a) the return value of g() flows into f() as an input parameter (e.g.,

f(g());) or (b) the same effect is mediated through a third-party reference (e.g., int
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ref = g(); f(ref);). A data dependency that involves more than one reference (e.g., int

ref1 = f(); int ref2 = ref1; g(ref2);) is not detected by the current algorithm. However,

the algorithm can be extended to cover these scenarios as well.

for all statement in TC do
if statement is a method call f() then

if f() is nested inside another method call f ′() then
generate a data flow edge from f() to f ′()

else if f() is part of an expression that is assigned to a reference x then
remember the data flow dependency from f() to x

else if a reference y is passed to f() as parameter then
if there is a data flow dependency from a method f ′′() to y then

generate a data flow edge from f ′′() to f()
end if

end if
end if

end for

Figure 4.2: A naive static analysis algorithm for building a call dependence graph
from a test case TC.

A sample test case from Apache Commons Net5 project is demonstrated in Fig-

ure 4.3. The system under test in the given scenario is org.apache.commons.net.

SocketClient. The two helper types java.net.Proxy and java.net.InetSocketAddress assist

the system under test for the purpose of this test case. Figure 4.4 demonstrates the

call dependence graph generated by our naive static algorithm for this test case.

Finding Test Cases with Similar Call Dependencies

To find test cases that have data flow similarity to a query test case TC the subgraph

isomorphism problem needs to be solved. However, as this problem is NP-complete

5http://commons.apache.org/proper/commons-net

http://commons.apache.org/proper/commons-net
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1 public class SocketClientTest extends TestCase
2 {
3 private static final String PROXY HOST = ”127.0.0.1”;
4 private static final int PROXY PORT = 1080;
5
6 /∗∗
7 ∗ A simple test to verify that the Proxy is being set.
8 ∗/
9 public void testProxySettings()

10 {
11 SocketClient socketClient = new FTPClient();
12 assertNull(socketClient.getProxy());
13 Proxy proxy = new Proxy(Proxy.Type.SOCKS, new
14 InetSocketAddress(PROXY HOST, PROXY PORT));
15 socketClient.setProxy(proxy);
16 assertEquals(proxy, socketClient.getProxy());
17 assertFalse(socketClient.isConnected());
18 }
19 }

Figure 4.3: A sample test case taken from Apache Commons Net project. SocketClient

is the system under test and Proxy and InetSocketAddress are helper types.

in general (Cook , 1971) we propose a naive—yet scalable—approximate solution.

Our proposed algorithm relies on a combined metric of node and edge similarity for

measuring the similarity of subgraphs.

Definition 4. The data flow similarity of a query test case Q and a candidate test

case TC is measured by the degree of similarity of their call dependence graphs CDGQ

and CDGTC that is denoted by the function simDataF low(Q, TC).

The data flow heuristic HeuristicDataF low(Q) returns the set of test cases TC in

Repository that have similar data flow dependencies to a given query test case Q. The

data flow similarity of the query test case Q and candidate test cases TC is measured

by the function simDataF low(Q, TC). The data flow heuristic is designed for scalabil-
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Figure 4.4: Call dependence graph generated by our naive static algorithm for the
Apache Commons Net project test case in Figure 4.3.

ity. To allow approximate graph matching6 in a repository of thousands/millions of

graphs we made the trade-off of making our algorithm naive; instead of looking for

approximate structural similarity we settled for maximal edge similarity. Hence, the

algorithm returns the set of graphs in the repository that have the highest number of

common edges (i.e., call dependence relationships) with a given query graph.

Our naive data flow similarity function is based on a two phase algorithm. We

used a hybrid indexing method that incorporates node attributes and graph structure

using text and relational representations to support the searches performed. In phase

one, the algorithm finds the sets of matching nodes Matchestart and Matcheend
for

every edge (estart, eend) of the query graph CDGQ in the graph repository. To do so,

it performs lexical matching on node attributes using the text index built for all nodes

6Approximate graph matching is the problem of finding subgraphs in a database of graphs that
are similar to the a given query graph, allowing for node mismatches and graph structural differences.
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in the repository. In phase two, the similarity score of the graphs that have an edge

with one node in Matchestart and another in Matcheend
is increased. The relational

database index is used for verifying the structure of the graph and connectivity of the

nodes.

The algorithm for computing HeuristicDataF low(Q) is given in Figure 4.5. In our

evaluations, we used all retrieved test cases in the repository (i.e., θDataF low = 0). For

a larger repository the similarity cut off value needs to be empirically adjusted.

Definition 5. A node v in a call dependence graph constitutes of an ordered set of

attributes A(v) from the domain A. Ai(v) is the ith attribute of v where 1 ≤ i ≤ |A|.

Definition 6. If the similarity of two attributes a1 and a2 of two methods is defined

by the function 0 ≤ simAttribute(a1, a2) ≤ 1. Then the similarity of two methods v1

and v2 in a call dependence graph is defined as:

simNode(v1, v2) =

∑|A|
i=1wisimAttribute(Ai(v1), Ai(v2))∑|A|

i=1wi

(4.7)

where wi is the weight associated with the ith attribute.

Given a query test case Q and a candidate test case TC, the simNode(v1, v2)

similarity function is used to find the best match v2 in CDGTC for every method v1

in call dependence graph CDGQ. To be the best matching node, v2 needs to have a set

of attribute values that best match that of v1. We used Apache Solr term matching

for simAttribute(a1, a2) on method attributes. Attributes were assigned to two bags of

words for the sake of similarity comparisons. The Names bag of words is seeded with

method name while FQNs is populated with method, return type, and parameter

fully qualified names (see Section 4.2.1 for more details). Appendix A provides an

example of how terms from methods are represented as bag of words data structures
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in Apache Solr.

for all test case TC ∈ Repository do
simGraph(CDGQ, CDGTC)← 0

end for
for all data flow edge (estart, eend) ∈ E(CDGQ) do
Matchestart ← {v ∈ V (CDGTC), TC ∈ Repository | simNode(v, estart) ≥ θNode}
Matcheend

← {v ∈ V (CDGTC), TC ∈ Repository | simNode(v, eend) ≥ θNode}
HasSimilarNodes ← {TC ∈ Repository | (v1, v2) ∈ E(CDGTC) ∧ v1 ∈
Matchestart ∧ v2 ∈Matcheend

}
for all test case TC ∈ HasSimilarNodes do
maxScore← max(simNode(v1, estart) + simNode(v2, eend))
simGraph(CDGQ, CDGTC)← simGraph(CDGQ, CDGTC) +maxScore

end for
end for
HeuristicDataF low(Q) ← {TC ∈ Repository | simGraph(CDGQ, CDGTC) ≥
θDataF low}

Figure 4.5: A naive algorithm for finding the test cases with the most data flow
similarity to a query test case Q. A cut off value of 0.5 was used for call dependence
graph node similarity (θNode).

Possible Extensions

The data flow similarity function rewards test cases based on the number of call

dependence relationships that they share with the query test case. The unwanted

side effect of such a rewarding policy would be that larger test cases with lots of call

dependence relationships get scored higher. The data flow similarity score can be

normalized by the size of the candidate call dependence graph CDGTC to account

for the size of its test case.

AdjustedSimGraph(Q, TC) =
SimGraph(Q, TC)

|E(CDGTC)|
(4.8)
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Another possible extension to the data flow similarity function can be inclusion

of longer data flow paths. Currently, only the similarity of direct data dependencies

is taken into consideration. A more generalized version of the data flow similarity

function may also take the path (v1, ..., v2) to be similar to (v1, v2). The similarity

score can be discounted by the length of the distance from v1 to v2.

AdjustedSimNode(v1, v2) =
SimNode(v1, v2)

d(v1, v2)
(4.9)

A graph database representation can be used in order to make computation of

shortest path more efficient7.

4.3 Software Representation and Indexing

A common technique to managing high dimensional data is to reduce the dimen-

sionality of the data using techniques such as principal component analysis (PCA).

Multidimensional index structure are then utilized to support searches in the resulting

low-dimensional space (Böhm et al., 2001). Current software modelling techniques,

including those used by the TDR approaches, rely on underlying representation

schemes that are suitable for querying artifacts based on either lexical or structural

features (Hummel et al., 2013). Document search engines and relational databases

allow lexical and some structural similarity comparisons to be efficiently performed

on source code—as is done in other research on marked-up text.

Some of the most accurate software representation models created over the past

decade include complex data structures involving graphs and trees (Krinke, 2001;

7For example, Neo4j graph database provides the query function shortestPath for finding the
shortest path between two nodes

http://docs.neo4j.org/chunked/milestone/query-match.html##match-shortest-path
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Mandelin et al., 2005; Sager et al., 2006; Sahavechaphan and Claypool , 2006; Thum-

malapenta and Xie, 2007; Gabel et al., 2008). However, due to the lack of an efficient

large-scale graph storage and retrieval platform, in-memory representations have been

used in most software recommendation and search and retrieval research. Conse-

quently, the resulting approaches are not scalable and are limited to a single project

or a small repository that can be loaded into the system memory. The alternative

strategy adopted by some research—including existing TDR approaches—is to reduce

the size of the search space by filtering artifacts based on their lexical and structural

features. Consequently, similarity comparisons based on other features—not included

in the filter—might require a sequential scan of the retrieved results if not efficiently

represented. If the cost of these similarity operations is high, the sequential scan has

to be limited to a subset of the results to ensure timeliness of the response when

excessive number of results are retrieved.

The filtering approach to similarity search comes with a major drawback. It places

a high burden on the developer to provide precise input for the features included in

the filter; it will fail to retrieve pertinent source code if exact but inappropriate lexical

and structural details are provided. For example, the choice of names or structures

might be an arbitrary means to express the sought after semantics. Putting too much

emphasis on these aspects of the query can be misleading for finding a viable match.

The empirical study results indicate that behaviourally similar code of independent

origin is highly unlikely to be syntactically similar (Juergens et al., 2010).
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4.4 Multiple Representations of Source Code

To overcome the limitations of current test-driven reuse systems, we propose a multi-

representation approach to building a source code repository. According to (Frakes

and Pole, 1994) reuse systems should employ multiple representation techniques in

order to improve their efficiency:

Represent your collection in as many ways as you can afford. None of

the methods is sufficient for finding all relevant components for a given

search. Having more representations will increase the probability that rel-

evant items will be found.

The rationale behind using multiple representations can also be explained in terms

of the implementation requirements of the similarity model. A complex model may

have to be compromised—if at all possible—in order to be represented through a

single representation. Breaking down a complex model into sub-models results in

redundancy but at the same time it allows each sub-model to be represented by

a platform and backed up by indexes that are optimized for the underlying data

structures. Representing source code as text allows indexing and thus querying its

lexical feature efficiently; program structures would be best represented in a relational

database; and graph databases are a more suitable representation for modelling pro-

gram dependencies.

In general, any representation might allow building efficient index structures for

only a subset of the source code features. Hence, the strategy we propose (simi-

lar to work done in other high-dimensional spaces like multimedia (Ishimaru and

Uemura, 1996) and geospatial (Rigaux and Scholl , 1994) data) is to use multiple rep-

resentations of source code to facilitate different types of similarity comparisons. As
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demonstrated in Figure 4.6, we used three interconnected representations of source

code based on two storage and retrieval platforms to model its lexical, structural,

and data flow dependency features. By separating representations we made the data

set more efficiently indexed and searchable according to criteria related to different

feature sets. Additionally, separating feature representations improves extensibility

of the model; features can be added or removed from the model independent of the

existing features in the model.

Figure 4.6: A test-driven reuse library utilizing multiple representation schemes. The
model can be extended by adding new representation schemes for additional facts.

4.4.1 Terms

Representing software through a controlled vocabulary, faceted classification, or free

text has been a common practice with many early software retrieval systems (Frakes

and Pole, 1994). Most modern software search engines utilize a key-value pair storage

model in which fields are populated by content and metadata extracted from the
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software component, its documentation, and potentially its source code. Many code

search engines automatically identify and parse different programming languages.

When parsing source code, terms extracted from different programming constructs

can be tagged accordingly. The search query can then specify the scope of the result

that a term should be present in. For example, a term can be required to match a

class or method name.

We used the bag of words model that is a simplifying representation used in

natural language processing and information retrieval. The terms collected from each

test case are represented as an unordered collection of words. The following process

is repeated at index time for each test case in the repository and at query time

for the supplied query test case to generate the bag of words. First, to facilitate

partial comparisons, words are split using camel case and fully qualified name (FQN)

tokenizers. For example, the expression java.io.FileInputStream is split into the set of

words: java, io, File, Input, and Stream. Next, to allow case-insensitive comparisons,

all words are converted to lower case. Furthermore, a stemmer algorithm8 for the

English language reduces words to their stems. For example, the words retrieval,

retrieves, retrieving, and retrieved are all reduced to their root word retrieve. Finally,

duplicate words are removed from the resulting bag of words. Hence, both the order

and frequency of terms is ignored in our lexical representation.

4.4.2 Structure

The relational model has traditionally been the storage model of choice when it comes

to representing the structure of software. Recent code search work (Hummel et al.,

8We used the Snowball (Porter , 2001) stemmer algorithm.
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2013; Bajracharya et al., 2012; Holmes et al., 2006) has suggested a few relational

data models for storing source code artifacts. Our structural representation combines

ideas from existing models and adds a few missing concepts (e.g., ControlFlow, DataFlow

, TestMethod, and Assertion). Figure 4.7 displays the entity relationship diagram of

our relational database schema.

Figure 4.7: Entity relationship diagram of the structural representation.

4.4.3 Control and Data Flow

Program control and data flow dependencies are usually modelled as graph structures.

Relational databases can be used for representing graphs and simple querying require-

ments, e.g., finding all nodes adjacent to a query node. However, querying structural

properties that are essential for similarity comparisons between subgraphs (e.g., the

shortest path between two nodes) becomes less efficient in a relational representation

as the size of the database grows (Vicknair et al., 2010). In recent years, storage and



84

retrieval mechanisms with support for SQL-like query languages (NoSQL) have been

offered for handling big data. Specifically, the popularity of online social networks

have led to the emergence of graph database storage systems.

Data and control flow relationships, design patterns, object specifications and

protocols, code clones, and program dependencies are examples of the structural re-

lationships that can be modelled and queried efficiently through a graph database.

Existing work in the area of software reuse recommendation systems that relies on in-

memory graph representations such as (Mandelin et al., 2005; McIntyre and Walker ,

2007; Sahavechaphan and Claypool , 2006)—and hence are usually bound to a sin-

gle project—can be scaled to mine cross project patterns in a repository of graphs.

Exploring the possibility of utilizing graph databases for representing structural and

semantic relationships in/between software artifacts remains a topic for future re-

search. We used a light-weight data flow model design using the relational represen-

tation to model data dependencies. The Control, ControlFlow, and DataFlow entities in

Figure 4.7 entity relationship diagram were added to represent control and data flow

dependencies between method invocations in test cases.
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Chapter 5

Reviver : The TDR Prototype

We built Reviver, a proof of concept TDR prototype, based on the ideas introduced

in Chapter 4. Reviver is designed as an IDE-based code search infrastructure for

finding existing functionality in an organizational source code repository. Developers

practicing test-driven development can use this infrastructure in their development

process to look up similar functionality developed in the past for reuse or as reference

examples. We populated the system repository from an existing repository of open

source code and evaluated its ability to identify and retrieve existing functions given

their test cases (see Chapter 6).

5.1 System Architecture

Reviver is built completely on top of open-source platform-independent technology

stack. It is composed of a client-side component that sits inside the developer IDE

and a server-side component that hosts an indexed repository of organizational source

code. The client-side was implemented as an Eclipse1 IDE plug-in. It relies on

the active JUnit2 test case under development as the search query. Once the test

case is parsed by Fact Extractor a search request is sent over the network to the

1http://www.eclipse.org
2http://junit.org

http://www.eclipse.org
http://junit.org
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Query Manager on the server-side. Query Manager then generates multiple search

queries based on different heuristics that are executed by the Fact Manager. Search

results are collected and aggregated by Query Manager and sent over the network to

the View Manager for presentation. A UML deployment diagram of the system in

Figure 5.1 displays the packaging of the system components and the communication

protocols used. The system repository consists of two different representations of

organizational source code. The lexical representation is managed by Apache Solr

search platform and the relational representation is hosted by MySQL3 relational

database management system. Access to the system repository is provided through

enterprise Java beans (EJB) deployed inside JBoss Application Server 4.

Figure 5.1: UML deployment diagram of Reviver, the proof of concept TDR prototype

3http://www.mysql.com
4https://www.jboss.org/jbossas

http://www.mysql.com
https://www.jboss.org/jbossas


87

5.1.1 Fact Extractor

Fact Extractor extracts lexical, structural, and data flow facts from test cases. Fact

extraction takes place both at index time when representing a test case in the repos-

itory and at query time for finding similar test cases in the repository. Fact Manager

is implemented as an Eclipse JDT plug-in that parses the abstract syntax tree (AST)

representation of JUnit test code. To improve overall performance of the indexing

process, Fact Manager was built as a multi-threaded headless Eclipse plug-in that

handles multiple test cases in parallel. The indexer walks through the files in a spec-

ified directory on the file system. If the Java class in the source file is a JUnit 3.x or

4.x test file then it is further processed, otherwise it is ignored. For each processed

test class, all occurrences of references, invocations, exceptions, and assertions in all

test methods are recorded. Furthermore, data flow dependencies between methods

invoked in test cases are detected as described in Section 4.2.4.

5.1.2 Fact Manager

Fact Manager provides access to different representations of facts in the system. It

is designed following the service architecture and implemented as a number of EJB

components5 deployed inside JBoss Application Server. Services in the Fact Manager

are divided into two layers. The bottom layer EJB services provide access to the

relational database and text representations of software artifacts in the repository

discussed in Section 4.4. The Hibernate6 object-relational mapping framework was

used for persisting and retrieving artifact objects from the relational database. Com-

5EJB technology enables development of scalable, distributed, and portable server components
based on Java platform.

6http://www.hibernate.org

http://www.hibernate.org
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munication with the Apache Solr server is facilitated through a custom built SolrJ 7

connector. Similarity comparisons and score computations are conducted by the top

layer heuristic services (see Section 4.2 for a descriptions of test similarity heuristics).

5.1.3 Query Manager

The client-side of the Reviver is implemented as an Eclipse plug-in that fires a search

based on the current active JUnit test case. Figure 5.2 demonstrates a screen shot of

the user interface of the prototype. The search query generated by the Fact Extractor

is forwarded to the remote search service proxy inside the EJB container. Searches

are performed on indexed data in relational database and text storage providers. Af-

ter search results are collected for all similarity heuristics they are aggregated and

returned to the View Manager for display. Retrieved artifacts are ranked in descend-

ing order of their aggregated similarity score. The searcher can then browse through

artifacts and see the list of relevant items that contributed to the selection of each.

5.2 Repository

The structure and graph representations of the assets in our repository is managed by

a MySQL database instance. Use of the Hibernate object-relational mapping frame-

work in the Fact Manager however makes the system portable and independent of

any particular database engine. The text representation of the assets is managed by

an Apache Solr instance hosting two schemas. The main schema defines the lexical

elements of test cases utilized by the lexical similarity heuristic (see Section 4.2.1). A

second schema defines attributes of method signatures for the sake of finding similar

7http://wiki.apache.org/solr/Solrj

http://wiki.apache.org/solr/Solrj
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Figure 5.2: The client user interface of Reviver, the proof of concept TDR prototype

nodes in call dependence graphs in the data flow heuristic (see Section 4.2.4). Popu-

lating the Apache Solr index takes place once all source code is parsed and indexed

in the MySQL database. A custom built importer links up Apache Solr with MySQL

through JDBC.

5.2.1 Content

To help with evaluating the prototype the repository was populated with a research

data set collected from open source projects. We used a subset of the Merobase code

repository (Janjic et al., 2013) in our experiments. The Eclipse JDT cannot build a

complete AST of Java source code unless it is compilable. Previous research has come

up with approaches for resolving missing dependencies in source code retrieved from
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the Internet (Ossher et al., 2010). We relied on an alternative approach by using the

Eclipse plug-in provided by the partial program analysis (PPA)8 project (Dagenais

and Hendren, 2008). PPA cannot detect the fully qualified name of all types refer-

enced in the indexed source code and hence introduces some level of error. However,

the effort required for parsing the source files was considerably reduced this way.

8Partial Program Analysis for Java is a static analysis framework that transforms the source
code of an incomplete Java program into a typed abstract syntax tree.
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Chapter 6

Evaluation

The goal of our evaluation is to validate the hypothesis that our semantic heuristics

utilizing multiple representations of source code enhance the effectiveness of test-

driven reuse by retrieving better results. To validate this hypothesis, we conducted a

controlled experiment using the ten test cases from Chapter 3, each of which had 16

variations. We evaluated the effectiveness of the approach in retrieving approxima-

tions of input test cases by providing it with transformations of the tests. To compare

the efficiency of our approach to that of existing TDR approaches we made an ad

hoc implementation of the interface-based retrieval technique—the combination of

signature matching and keyword-based retrieval generally used by these approaches.

Test cases were provided as search queries to both systems; the rank of the correct

result was recorded in each case. We experimented with different configurations of

Reviver to see what combination of heuristics makes it more effective. We found that

overall a configuration of Reviver using lexical and data flow similarity heuristics is

more likely to find an existing implementation of the function under test. An analysis

of evaluation results and discussion of limitations of the experiment is provided in the

conclusion.
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6.1 Experiment

Given an input test case, the interface-based retrieval approach tries to find an in-

stance of the system under test only using the facts related to its interface; while the

domain specific TDR approach also considers additional facts related to the test case

that exercises the system under test. We decided to design an experiment to compare

the ability of the two approaches in identifying the associated functions under test

by providing a set of input test cases exercising those functions. However, due to

unavailability of two of the three TDR prototypes1, we ended up building an ad hoc

implementation of the interface-based retrieval technique based on the ideas used in

these approaches.

We used the same of set of tasks we used in Section 3.1.1 for evaluating existing

TDR approaches. Each task is composed of a minimized and anonymized JUnit test

case. Table 6.1 shows the interface of the function under test in the ten trial test cases.

A short description of the tasks is provided in Table 3.1. For each task, the unmodified

version of each test case and all classes under test were added to the system repository.

The baseline objective of the evaluation is to see if the system is able to identify

and recommend the function in Table 6.1 once given the anonymized version of the

original test case. Furthermore, to evaluate the ability of the approaches in retrieving

approximations of the search query we also provided each system with transformations

1All tools are offered as online services. CodeGenie was offered as a search client for the Sourcerer
code search engine. The recent developments in the Sourcerer project has forced the CodeGenie
sub-project into retirement. Although the latest source code for the Sourcerer project is available
however it cannot be used to set up an experiment locally because it no longer supports CodeGenie.
Likewise, the Code Conjurer search client remotely connects to the Merobase code search engine. The
new version of Code Conjurer is under development while due to changes to the search gateway the
previous version is no longer functional. Due to unavailability of the source code and configuration of
the Merobase code search engine, setting up a local instance of Merobase for the sake of experiments
is not an option.
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of the original test cases. Test cases were transformed along name, type, scenario,

and protocol dimensions according to the rules described in Section 6.1.2.

Our repository contains 43,826 test methods collected from 4,768 JUnit test

classes. Tests were automatically selected from the SVN repository of the Merobase

project dataset (Janjic et al., 2013). Table 6.2 gives an overview of the statistical

properties of the content loaded into repository for the evaluation study. The Apache

Solr index that supported the interface-based retrieval prototype was populated with

the terms from the interfaces of 15,119 classes that appeared in test cases as a refer-

ence, exception, method argument, or method return type.

In Section 5.2.1 we described the process of statically processing test code in the

Reviver repository. Due to limitations of partial program analysis (Dagenais and

Hendren, 2008) that we relied upon for this purpose, many types were not identified

and hence listed as the default UKNOWN type. Likewise, when the package that

a type belongs to is not identified it is listed as UNKNOWNP. The fully qualified

name of a type that is completely unclassified (i.e., neither the class nor the package

is identified) is listed as UKNOWNP.UNKNOWN. Table 6.3 lists the percentage of

program elements that could not be classified at index time. For reference, method,

and argument entities roughly 10 percent or less of the types were not classified. The

PPA parser runs into trouble resolving method return value types more than anything

else; the return value type of slightly more than half of the methods invoked in the

test cases were not classified.
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Table 6.1: The interfaces of the function under test extracted from the ten trial test
cases used in the evaluation. The name of the function under test and its method
signatures are indicated in Class Name and Methods columns, respectively.

Task Class Name Methods

1 Base64Util static String encodeString(String);

static String decodeString(String);

static String encode(byte[]);

static byte[] decode(String);

2 DateUtils static int getNumberOfDaysBetweenTwoDates(Date,Date);

3 ConvertHtmlToText ConvertHtmlToText();

String convert(String);

4 TypeValidatorUtil TypeValidatorUtil();

boolean isCreditcardNumber(String, CreditcardType);

5 StringBag StringBag();

void add(String);

boolean remove(String);

int occurencesOf(String);

int size();

String toString();

6 Diff Diff(String, String);

boolean similar();

boolean identical();

7 IpFilter IpFilter();

void setFilters(String, String);

boolean isIpAllowed(String);

8 SQLInjectionFilterManager static SQLInjectionFilterManager getInstance();

String filter(String);

9 Utilities Utilities();

Map getWordFrequency(String);

Map getWordFrequency(String, boolean);

10 CmdLineParser CmdLineParser();

CmdLineParser.Option addBooleanOption(char, String);

CmdLineParser.Option addIntegerOption(char, String);

CmdLineParser.Option addStringOption(char, String);

CmdLineParser.Option addDoubleOption(char, String);

CmdLineParser.Option addBooleanOption(char, String);

CmdLineParser.Option addBooleanOption(String);

CmdLineParser.Option addLongOption(char, String);

parse(String[], Locale);

Object getOptionValue(CmdLineParser.Option);

String[] getRemainingArgs();
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Table 6.2: An overview of the statistical properties of the repository. For each param-
eter the total, the minimum, maximum, average, and standard deviation are indicated
in Total, Min, Max, Avg, and Stdev columns, respectively.

Parameter Total Min Max Avg Stdev

# methods per JUnit test class 43,826 1 180 9.21 12.91
# references per test method 149,129 1 159 4.09 3.73
# invocations per test method 364,701 1 642 9.16 12.67
# assertions per test method 88,623 1 106 3.52 4.82
# exceptions per test method 25,367 0 8 1.16 0.50
# data flow dependencies per test method 157,060 0 420 4.86 6.21

Table 6.3: Unclassified entities in the repository. For each entity type the number
of unclassified instances, the total number of occurrences, and the percentage of
unclassified instances are indicated in Unclassified, Total, and Percentage columns,
respectively.

Entity Unclassified Total Percentage

Reference 15,438 149,129 10.35%
Method invocation 38,629 364,701 10.59%
Method return type 31,044 58,347 53.21%
Method argument 4,980 57,344 8.68%

6.1.1 Interface-based Retrieval Prototype

Existing TDR approaches rely on keyword searches enhanced by signature matching,

a technique also known as interface-based or interface-driven retrieval. Unfortunately,

bugs in the prototypes and unavailability due to on-going development or retirement of

the project makes conducting a comparative study on these approaches very difficult,

if not impossible. We decided to build an ad hoc prototype of the interface-based

retrieval technique based on the description given in TDR literature (Hummel , 2008;

Bajracharya, 2010; Reiss , 2009a). Our simple ad hoc implementation of interface-
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based retrieval does not come with the method parameter matching feature proposed

in (Hummel et al., 2013) but would otherwise measure up to what is offered by the

existing prototypes.

We used text representation, as is used by existing TDR approaches, for rep-

resenting classes under test. Bag of words data structures, similar to the ones we

used in our lexical and data flow similarity heuristics, hold attributes of the interface

of the indexed classes. Tokenization, stemming, and duplicate removal are applied

to all words, as was described in Section 4.2.1. Table 6.4 gives an overview of the

interface attributes and the bag of words data structure they are assigned to in our

interface-based retrieval prototype. All attributes are weighted equally when comput-

ing similarity scores. We processed the test cases in the repository and indexed the

interface of the class under test. More specifically, the class names, method names,

parameter types, and return types were indexed in each case. Appendix A provides

an example of how terms in a class interface are represented as bag of words data

structures in Apache Solr.

Table 6.4: The attributes of the classes under test indexed by the interface-based
retrieval prototype. The JUnit test case element and the property from which the
attribute was collected from are indicated in Test Element and Property columns,
respectively. The Apache Solr bag of words structure utilized for indexing each at-
tribute is indicated in the Bag of Words column.

Test Element Property Bag of Words

Class under test Name ClassFQNs
Method name MethodNames
Method argument FQNs ArgumentFQNs
Method return type FQNs ReturnTypeFQNs
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Apache Solr allows logical operators like AND and OR in input queries. Exist-

ing TDR prototypes relying on interface-based retrieval either connect all terms in

the query through the AND operator or just do this initially and if nothing is re-

trieved try to relax the query by replacing the AND operators with OR. For example,

an interface-based search for a Calculator class with add, subtract, multiply, and divide

methods will result in the search query Calculator AND add AND subtract AND multiply

AND divide. However, if not such Calculator class can be found the search query is

relaxed to Calculator OR add OR subtract OR multiply OR divide.

Our initial experiments indicated that although the use of the AND operator serves

best for retrieving exact matches but at the same time it is going to make retrieving

any other variation impossible. As soon as a new term is introduced to the input

query as a result of one of the transformations the resulting query will not match

anything in our repository. In the example above, the query using AND operators

will not match a class named Computer that would have the same four methods add,

subtract, multiply, and divide. We use the OR operator between all query terms in our

prototype implementation of the interface-based retrieval. Despite the fact that it

negatively impacts the rank of the correct result once no transformation is applied,

it makes retrieving transformed versions of the input query possible.

6.1.2 Test Case Transformations

We devised a technique for generating approximations of test cases by modifying

their underlying features, in order to compare the ability of Reviver with that of the

interface-based retrieval in matching approximations of an input query. Transforma-

tions refactor and restructure code but do not modify the semantics of the function
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under test. In other words, the idea of transforming a test case is to generate seman-

tically equivalent functions under test with alternative designs and testing scenarios.

In real world situations a searcher might formulate a search query in many different

ways. Transformations help with evaluating and comparing retrieval algorithms. We

can study if a code search mechanism can retrieve a target function given the trans-

formed version of the query. Ideally, differences in program vocabulary, types, and

design should not exclude an asset from search results if it semantically satisfies the

search query.

The number of modifications that can be made during each transformation is virtu-

ally unlimited. We identified the attributes of the input test cases that each algorithm

relied on for retrieving similar assets. Attributes were classified into four general cat-

egories: names, types, scenario, and protocol. A transformation was assigned to each

category to modify the attributes, hence resulting in four transformations. The four

transformation types are orthogonal and can be combined. We considered all possible

combinations of the four transformation types resulting in a total of 15 transforma-

tions. To allow more fine tuned evaluation of code search and retrieval system, future

research should look into automating the process of generating transformed varia-

tions of input queries. For the sake of our evaluation we performed transformations

manually.

Given the 10 original test cases, we came up with 160 (150 transformed test

cases plus 10 original test cases) input queries for our evaluation study. Examples of

application of the four transformation types to a test case are provided in Appendix B.

In the rest of this section we will describe the four transformation types.
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Name Transformation

Name transformation generates a variant of a given test case that utilizes alternative

terminology. It modifies the choice of names for the function under test and that of

elements of the test case. Element names can be changed to their synonyms, random

words taken from a repository of programming element names, or randomly generated

based on a dictionary. The names of class, methods, and public fields of the function

under test are modified during this transformation. Similarly, the names of the class,

test methods, fields, local variables, and literals of the test class exercising the function

under test are modified. Table 6.5 illustrates the set of rules for modifying name and

literal attributes of a test case. Appendix B provides an example of applying name

transformation rules to a test case.

Table 6.5: Test case name transformation (N) rules. The element to which the rule
is applied and the set of modifications that take place on the element are indicated
in Element and Transformation Rule columns, respectively.

Element Transformation Rule

Class under test Rename to C

Instance of the class under
test

Rename to c

Methods of class under test Rename to m1, m2, etc. in order of appearance

Test class Rename to CTest

Test methods Rename to tm1, tm2, etc. in order of appearance

Fields, local variables, and
method arguments

Rename to var, var1, var2, etc. in order of appear-
ance (variable names can be reused if the contexts
in which they appear does not overlap)

Literal Change to arbitrary values that do not break test
logic
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Type Transformation

Type transformation generates a variant of a given test case that utilizes alternative

types and references. It modifies the choice of types and APIs for the function under

test and the test case exercising it. Types can be refactored to compatible types

from JDK or other APIs or arbitrary types as long as it does not break the test

logic. Parameterized types need to have both the main type and the parameter to

be refactored. The types of public fields, method arguments, and method return

values of the function under test are modified by this transformation. Similarly, the

types of fields, local variables, helper classes, and helper methods of the test class

exercising the function under test are modified. Table 6.6 illustrates the set of rules

for modifying the types in test cases. Appendix B provides an example of applying

type transformation rules to a test case.

Table 6.6: Test case type transformation (T) rules. The element to which the rule is
applied and the set of modifications that take place on the element are indicated in
Element and Transformation Rule columns, respectively.

Element Transformation Rule

Test class Add new fields/variables with arbitrary types

Test class fields and local
variables

Refactor to other compatible types/APIs

Method parameters of the
function under test

Refactor types, count, and order

Method return type of the
function under test

Refactor type

Public fields of the function
under test

Refactor type
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Scenario Transformation

Scenario transformation generates a variant of a given test case that utilizes an al-

ternative scenario for testing the function under test. It modifies how the function

under test is exercised in a test case. A unit test class relies on a number of archi-

tectural elements like fixture setup and test helpers for supporting operations in the

test cases. The factoring of the test scenario to setup, helper, and test methods is

modified by the scenario transformation. In addition, the number of scenarios and

the conditions that they depend on is altered. Table 6.7 gives an overview of the rules

for modifying the testing scenario in test cases. Appendix B provides an example of

applying scenario transformation rules to a test case.

Table 6.7: Test case scenario transformation (S) rules. The element to which the rule
is applied and the set of modifications that take place on the element are indicated
in Element and Transformation Rule columns, respectively.

Element Transformation Rule

Fixture setup method Combine with test method

Helper method Combine with test method

Test method Refactor into fixture setup and helper methods

Test case inside test method Add a new scenario, remove an existing scenario,
change data/conditions, or modify assertions of an
existing scenario

Protocol Transformation

Protocol transformation generates a variant of a given function under test that has

alternative design. It modifies the protocol design and design patterns (Gamma

et al., 1994) associated with the function under test in a test case. The behaviour of



102

a function can be altered by changing the selection of methods offered and ordering of

the calls. For example, a dependency between two methods m1 and m2 that makes m1

a precondition of m2 can be replaced by a new method m3 that combines m1 and m2.

Creational, structural, and behavioural design patterns can be taken advantage of in

creating semantically equivalent functions. For example, using the creational design

patterns singleton and factory method we modified how a function is instantiated.

Alternatively, by making the method calls static we removed the need for instantiation

in some scenarios. Table 6.8 gives an overview of the rules for modifying the protocol

of the function under test in test cases. Appendix B provides an example of applying

protocol transformation rules to a test case.

Table 6.8: Test case protocol transformation (P) rules. The element to which the rule
is applied and the set of modifications that take place on the element are indicated
in Element and Transformation Rule columns, respectively.

Element Transformation Rule

Constructor of the function
under test

Replace with singleton or factory method

Method of the class under
test

Make static if instance method; or make instance
method if static

Split into two or more methods where possible

Combine with another method where possible

Class under test Add new methods
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6.2 Results

Tables 6.9 and 6.10 summarize the results of the evaluation experiment for the

interface-based retrieval prototype and Reviver, respectively. For each of the 10 eval-

uation tasks we supplied the original and 15 transformed test cases as input queries

to both prototypes and recorded the rank of the correct result in the recommenda-

tions. Tables indicate the rank of the correct result for every possible combination

of name, type, scenario, and protocol transformations in addition to the original test

case. Only the first one thousand results produced by each prototype were retrieved

in every session. If the correct result was not found in the first one thousand results

the rank is left blank in the tables. The bottom row in Table 6.10 lists the time in

seconds for extracting the top one thousand results for all 16 variations of a task from

the repository. The results were collected from an Ubuntu 13.10 running on a 8 core

Intel Xeon 3.20GHz box with 8GB of RAM.

In order to facilitate the analysis and comparison of the results we decided to

focus on cases in which the correct result was ranked among the top ten items re-

trieved. There is evidence that developers do not look beyond this point in search

results (Joachims et al., 2005). Table 6.11 provides a side-by-side comparison of the

experiment results for the two approaches. For each pair of task and transformation

combination, the rank of the correct result for the interface-based retrieval prototype

(left) and Reviver (right) are given. Only ranks among the top ten are indicated;

others are marked with a dash sign. The total column and row indicate the count of

instances that the correct result was ranked among the top ten for each transforma-

tion combination and task, respectively. In some cases the rank of correct result has

been improved despite application of transformations. We verified that if a frequently



104

Table 6.9: The result of the experiment for 10 tasks and 16 transformation combi-
nations for the interface-based retrieval prototype. The numbers in columns indicate
the rank of the correct result for each task. If the correct result was not found in the
first 1000 items retrieved the rank is marked by a dash sign. In the Transformations
column, O, N, T, S, and P stand for original, name, type, scenario, and protocol
transformations respectively.

Tasks
Transformations 1 2 3 4 5 6 7 8 9 10

O 3 1 1 1 13 30 2 2 1 1
N 58 5 403 - 685 - 621 455 11 2
T 3 1 1 1 26 7 13 2 1 1
S 3 1 2 1 17 45 1 1 1 1
P 3 1 2 1 20 1 2 93 5 1
NT - 317 - - - - - - 177 26
NS 46 5 649 - 685 - 686 - 27 2
NP 70 5 425 - 743 - 621 779 906 56
TS 3 1 1 1 26 7 2 1 1 1
TP 2 1 2 1 27 1 4 40 3 1
SP 2 1 5 1 22 1 1 5 3 1
NTS - 317 - - - - - - 625 26
NTP - - 523 - 563 - - - - 56
NSP 38 27 468 - 693 - 686 - 908 56
TSP 2 1 2 1 30 1 2 11 3 1
NTSP - - 688 - - - - - - 20

occurring fact is eliminated from the query as a result of the application of a trans-

formation then it can positively impact the rank of the correct result in the result

set. This effect can be attributed to the the inverse document frequency (Manning

et al., 2008) component in the computation of the lexical similarity metric. It results

in reduced lexical similarity score when the intersection of the search query and the

document representation of the correct test case is composed of frequent terms.
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Table 6.10: The result of the experiment for 10 tasks and 16 transformation combi-
nations for Reviver. The numbers in columns indicate the rank of the correct result
for each task. If the correct result was not found in the first 1000 items retrieved
the rank is left blank. In the Transformations column, O, N, T, S, and P stand for
original, name, type, scenario, and protocol transformations respectively. The Time
row at the bottom indicates the total time in seconds for extracting the first 1000
results for all 16 variations of a task from the repository.

Tasks
Transformations 1 2 3 4 5 6 7 8 9 10

O 1 1 1 1 1 1 1 1 1 1
N 1 1 18 5 709 - 1 105 2 1
T 3 1 1 1 1 1 16 4 28 1
S 1 1 1 1 1 1 1 1 1 1
P 1 1 1 1 1 832 1 4 78 1
NT - 917 353 - - - - - - 60
NS 3 1 18 114 709 - - 885 3 1
NP 5 5 18 4 498 - 1 105 223 1
TS 1 1 1 319 1 10 12 1 23 1
TP 2 1 1 1 1 137 13 21 486 9
SP 1 1 1 1 1 837 1 1 78 1
NTS - - 802 - - - - - - 77
NTP - - 297 - - - - - - 78
NSP 46 6 18 113 340 - - 885 223 1
TSP 1 1 1 314 1 140 13 74 486 1
NTSP - - 806 - - - - - - 34

Time (sec) 1:42 1:48 3:34 1:20 1:50 0:32 0:28 2:16 2:34 3:30
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6.2.1 Heuristic Selection

Feature selection (Blum and Langley , 1997) is the process in which the redundant

and irrelevant features are removed from the model. Our test similarity model might

contain redundant heuristics. Redundant heuristics are those that provide no more

information that the currently selected ones. If a heuristic selects irrelevant results

then the overall performance of the model can be improved by removing it from

the model. Furthermore, the aggregated similarity function in Equation 4.2 can be

optimized by properly adjusting the relative importance (i.e., weights) of heuristics

based on the data in the repository. Machine learning techniques like reinforcement

learning, Bayesian methods, or Genetic Algorithms (GA) can be used to optimize

the weights in the similarity function given the data in the repository (Richter and

Weber , 2013).

To select heuristics and adjust weights, data in the repository is split into training

and validation sets. The training data set is first used for heuristic selection and weight

learning. The error rate in the validation set is then used to measure the fitness of

the model. Alternatively, a cross-validation technique like k -fold cross validation2 can

be used.

Manual generation of test case transformations poses a major limitation for ap-

plying feature selection and weight learning techniques to our data set. To train and

cross-validate the test similarity model the 15 combinations of the four test case trans-

formations have to be generated for a large (if not the entire) subset of the repository;

2In k -fold cross-validation, the repository is randomly split into k equal size subsets. Of the k
subsets, a single subset is retained as the validation data for testing the model, and the remaining
k -1 subsets are used as training data. The cross-validation process is then repeated k times (the
folds), with each of the k subsets used exactly once as the validation data. The average error rate
of the folds is then used as a single estimation.
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a task that would not be possible unless the process of generating transformations

is automated. Unfortunately, automating the transformation process is beyond the

scope of this thesis. Therefore, we decided to experiment with the small manually

generated data set of the ten trial tasks we originally used to evaluate the existing

TDR approaches.

We evaluated and compared the performance of Reviver on the ten trial tasks

and their transformations with all 15 possible combinations of the four heuristics.

Tables 6.12 and 6.13 provide the result of this evaluation. The numbers in columns

indicate the number of tasks (Table 6.12) and transformations (Table 6.13) for which

the correct result was placed in the top 10 items retrieved by each heuristic combina-

tion. The Total row shows the number of cases in the ten evaluation tasks and their

15 transformations (between 0 and 160) that the correct result was ranked in the top

10 items by each heuristic combination. As it can be seen in both tables the combi-

nation of the data flow and lexical similarity heuristics offers the best performance

over the ten trial tasks.

6.3 Analysis

Figure 6.1 summarizes the number of correct recommendations made by the two

prototypes3. For every combination of test case transformations the number of tasks

(i.e., between 0 and 10) that made it to the top ten recommendations are shown as

columns in the bar chart. The bar chart in Figure 6.2 provides an alternative view of

the same data; the number of transformations (i.e., between 0 and 16) for which the

3Numbers in the two charts for Reviver belong to our best performing configuration—the com-
bination of data flow and lexical similarity heuristics.
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correct result made it to the top ten recommendations is shown for each task.

Figure 6.1: The number of tasks successfully retrieved for every transformation com-
bination.

Looking at results of evaluation for different combinations of heuristics, one can

see the lexical similarity heuristic—with 89 correct results—is the second best com-

bination amongst all. A plausible question that therefore arises is whether the data

flow similarity heuristic in the combination of the two is playing any significant role.

Another related question is whether either of the dismissed reference and call-set

similarity heuristics retrieved any correct results that data flow and lexical similar-

ity heuristics did not cover. Table 6.14 provides a side-by-side comparison of the

four similarity heuristics. Comparing the results of data flow similarity with those of

the lexical similarity revealed that heuristics share 59 correct results. In addition, the

data flow and lexical similarity heuristics separately returned 14 and 30 correct results

respectively. Hence, the data flow similarity heuristic provides utility to the model

by retrieving correct results that the lexical similarity heuristic could not retrieve.
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Figure 6.2: The number of transformation combinations successfully retrieved for
every task.

Interestingly, the call-set similarity heuristic did not return any correct results that

were not already covered by the lexical and data flow similarity heuristics but the

reference similarity heuristic produced 8 correct results that neither of the two heuris-

tics identified. Therefore, the reference similarity heuristic has to be given perhaps a

discounted weight but shall not be completely dismissed from the overall model.

Reviver does a great job when exact input is provided as the search query (i.e.,

no transformation is applied) by always retrieving the correct result at rank one.

While the interface-based retrieval approach could achieve the same goal for only

five tasks. In the case of Tasks 5 and 6 the correct result did not even make it to

the top ten. We suspected that this might be the result of using the OR operator

by default in the interface-based retrieval prototype. Therefore, we repeated the

experiment for this prototype with the AND operator—instead of OR—connecting

all the terms in the Apache Solr search. This strategy improved the ranking of the
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original test cases by placing seven correct recommendations at the top position—

it still did not manage to place the correct result for two tasks among the top ten

because the interfaces are composed of very common terms. On the downside, this

strategy reduced retrievability for transformed test cases by retrieving a total of 27

correct results—instead of the original 71 correct results with the OR operator.

If the searcher’s choice of names is the same as that of the existing functionality

(i.e., in the case of T, S, P, TS, TP, SP, and TSP transformations) both approaches

perform quite well—with Reviver being noticeably better. The Reviver approach only

failed to retrieve 4 out of 80 results in this category while the interface-based retrieval

failed in 15 cases. Exactness of names often provides enough lexical similarity for both

approaches to correctly identify the target function. However, if the combination of

terms in the input query is very common then lexical similarity might not suffice.

If the searcher uses the correct types but her choice of names is not the same as

that of the existing functionality (i.e., in the case of N, NS, NP, and NSP transfor-

mations) both approaches struggle to retrieve relevant results—with Reviver again

being noticeably better. Reviver successfully retrieved 16 out of 40 results in this

category while the interface-based retrieval only did it for 5 cases. In other words,

if a searcher is uncertain about naming of a function or its interface elements (e.g.,

methods) a keyword-based search would not be the best approach for finding it. This

could happen every time a searcher is looking for a piece of code that is not described

by a designated name or none that she is aware of. Type similarity still induces some

level of lexical similarity that the interface-based retrieval approach can benefit from.

The searcher might still have a chance to retrieve some relevant results if she can get

the types in the interface of function right—that is its public attributes, method ar-
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guments, and return value types. Similarity of types in method invocations—despite

dissimilarity of their names—still gives the data flow similarity heuristic the chance

to find similar data flow paths, hence making Reviver more efficient.

The greatest challenge to both approaches is when the searcher’s choice of both

names and types is not the same as that of the existing functionality (i.e., in the

case of NT, NTS, NTP, and NTSP transformations). Out of the 40 cases in this

category neither of the approaches managed to place any results in the top ten. The

combination of name and type dissimilarities leaves no lexical similarity between

the input query and the target function. Hence, the interface-based retrieval would

have no chance to retrieve the correct result. Likewise, both lexical and data flow

similarity heuristics in Reviver are rendered ineffectual in the absence of lexical and

type similarity.

At the task level, Reviver outperforms the interface-based retrieval approach by

retrieving one to five more correct results except for Tasks 3 and 9; approaches tie

in the number of correct results retrieved for Task 3 and the interface-based retrieval

approach performs better in the case of Task 9 by retrieving two more correct results.

The function under test in both tasks has a very simple design and is composed of

one method—that limits the applicability of our data flow similarity heuristic. In

other words, the data flow similarity heuristic is returning rather irrelevant results

for these two tasks hence reducing the quality of the overall result set. However, the

combination of the terms in the name of the class and its method (i.e., convert, html,

and text in Task 3 and util, word, and frequenc in Task 9) are unique enough4 in our

repository to help identify the class once the names are not masked5 through name

4A list of top 30 frequent terms in the Apache Solr index is provided in Appendix C.
5The correct results in both tasks are from cases that name transformation was not applied, i.e.,
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transformation.

A good example of the term uniqueness phenomenon is observed in the case of

Task 4. Reviver outperforms the interface-based retrieval approach by retrieving one

more correct results but the interface-based retrieval approach does a better job by

placing eight correct result at the top—compared to Reviver that only did it for 6

cases. Further investigation uncovered that the term creditcard appears in no other

class than that of the function under test in Task 4. Hence, similar to Tasks 3 and 9,

the interface-based retrieval approach manages to successfully identify the function

under test for the 8 transformations that do not include name transformation due to

the fact that the combination of terms in the test cases are quite unique.

On the contrary, when it comes to Task 5 the interface-based retrieval prototype

cannot retrieve any of the transformations while Reviver came up with 8 out of the 16

possible transformation combinations. The set of terms that make up the interface

of Task 5 (i.e., string, bag, add, remov, occur, and size) are very general and the

combination of them appears in our repository quite frequently. As a result, none

of the transformations of Task 5 made it to the top ten results retrieved by the

interface-based retrieval prototype.

6.4 Limitations

The choices and assumptions made in the evaluation could have limited the validity

of the experiment.

The repository used in the evaluation study is relatively small compared to the

size of the open source code available online. However, it is well comparable to a

O, T, S, P, TS, TP, SP, and TSP transformations.



117

private software repository of a medium to large organization. In terms of repository

content, a domain-specific repository like that of an organization would consist of more

tightly-related projects exercising standardized vocabulary, APIs, and technologies.

Our source code repository was populated with arbitrary projects taken from the

Subversion servers of the Sourceforge6 open source software directory. The uniqueness

of terms related to some tasks might have given the lexical similarity heuristic an

unfair advantage in identifying them where name transformation is not applied, hence

elevating the relative importance of the lexical similarity heuristic. However, its

impact on the comparison of the two approaches would be small because they both

utilize lexical similarity.

Another factor that influences the evaluation results is the choice of tasks that

were employed to generate input queries. Tasks were originally selected for the eval-

uation study in Chapter 3. As we argued previously, task ideas were taken from the

discussions in the Java developer community websites, and from code example cata-

logues commonly used as a reference by Java developers. Developers evidently found

these functions worthwhile to discuss and learn from, and not so easy to develop or

to find. The tasks were selected to be complex enough so that a developer would

rather prefer to reuse, if given a chance. However, for a quantitative evaluation—to

be statistically representative of the kind of tasks developers perform during their

daily activities—the size of the task pool needs to be much larger than ten.

The four types of transformation discussed in Section 6.1.2 can only generate a

subset of the possible semantically equivalent variations of a given function. Fu-

ture research has to look into extending and adding other potential transformation

6sourceforge.org

sourceforge.org
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types. Besides, manual application of transformation rules to test cases makes gen-

eration of transformed variation a tedious task prone to human error. Automating

the process would allow for application of additional, more complex rules resulting in

the expansion of the pool of the possible variations. Selecting an optimal subset of

heuristics and their respective weights in the aggregated similarity function requires

cross-validation with a large subset of the data set. Unless the application of test case

transformations is automated, such a validation will not be possible. Furthermore,

we are aware of the fact that utilizing such a small data set increases the risk of

overfitting. Therefore, the results hereby reported may not be generalizable to the

entire repository—until a future experiment validates them.

The four transformations were manually applied in the following order: name,

type, scenario, and protocol. For example, to derive the NTP variation, first the

name transformation was applied to the original test case. Then, the type and pro-

tocol transformation were applied to the outcome of the previous transformation

respectively. The order in which transformations are applied can have an impact

on the final product. Due to manual application of transformation we did not con-

sider all possible ordering of transformations. When automating the generation of

transformations in the future, altering the order of transformations may yield more

variations.

In our evaluation combinations of transformations are assumed to have equal im-

pact. As a result, the likelihood of the occurrence of semantically equivalent variations

of any given function is expected to be the same. Furthermore, to limit the number

of resulting combinations, partial transformations are not considered. Consequently,

all the rules in a transformation category are administered together (resulting in bi-
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nary combinations). In reality, however, none of these assumptions may be true;

certain variations may statistically occur more frequently than others. For exam-

ple, semantically equivalent instances of a function that provide alternative protocols

in their design might be far more frequent than instances that utilize alternative

terminology—or vice versa. Empirical studies in the future have to investigate char-

acteristics of semantically similar source code and verify these assumptions.

One may argue that human written test cases can be very different from manually

or automatically generated test cases based on a ruleset. Searchers in the real world

might write test cases that would have little resemblance to those of the relevant

functions in the repository. However, the same argument can also be made against

the interface-based retrieval technique. The contrasts between the terminology and

signature design equally limits the performance of the interface-based retrieval: the

effect of such human generated test cases on the performance of the approaches has

to be further studied in a future controlled user experiment.

The quality of the interface-based similarity metric has an impact on the effective-

ness of the resulting interface-based retrieval approach. A better crafted interface-

based similarity implementation can improve the performance of the TDR approach

utilizing it. Our interface-based retrieval prototype does not support signature-based

searches—where the names are left blank but the types are filled in—that can be use-

ful for some searches. However, no matter how perfect the interface-based similarity

gets it would still fail once name and type transformations are applied. Our study has

been successful in demonstrating this major limitation of the interface-based retrieval

approach.

Our interface-based retrieval prototype is roughly equivalent to the retrieval com-
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ponent of the existing TDR prototypes; it does not come with the automated trans-

formation and testing features offered by some of the existing TDR approaches. Al-

though post-retrieval processes—like those offered by S6 —help with selection of more

relevant results, they do not impact what is or is not retrieved. The question we tried

to answer by our evaluation is which of the two approaches is more effective in retriev-

ing relevant results. The effectiveness of the post-retrieval processes is best evaluated

by another controlled experiment or a user study that is beyond the scope of our

work.
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Chapter 7

Extending Test-Driven Reuse

Our proposed approach to representing software semantics requires a test suite in

order to index the semantics of the functionality in the system under test. Unit

testing is a practice on the rise and it would not pose a problem to a organization

that already practices unit testing. However, for the time being, the number of open

source projects that come with unit tests is limited. As a result, the repository

built by processing test cases will only be a fraction of the publicly available source

code. To overcome this limitation, we propose ideas for two alternative techniques

for retrieving relevant source code using test cases without requiring the projects to

have been delivered with a test suite. The ideas here are presented in a preliminary

form and have not been empirically evaluated. Future research in the area of software

search and retrieval has to further solidify these propositions before they can be put

into practice. Our first proposed approach seeks to improve interface-based retrieval

as it is the underlying technique in existing TDR approaches. Next, we describe a

new approach for finding existing functionality based on structural and behavioural

patterns identified in test cases and the function under test.
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7.1 Extended Interface-based Retrieval

The interface-based retrieval approach is based on the assumption that the design of

the interface of a function and its choice of vocabulary can be known—or at least par-

tially guessed—by the searcher. Although generally not true, this approach can help

with retrieving software under circumstances that the interface design and vocabu-

lary is preset or can easily be guessed. However, we found that the interface-based

retrieval technique employed by existing TDR approaches can be made more flexible

by changing its underlying representation model. To take advantage of high-speed

token matching capabilities of text search engines, Code Conjurer and CodeGenie

represent operation signatures as text. We propose an interface-based matching tech-

nique based on hybrid text and relational representation methods. Our approach

builds matching flexibility into interface-based retrieval by allowing use of wildcards

in the search query.

When program interfaces are represented as text then type similarity is limited to

type name similarity. For example, all numeric reference types in the java.lang package

(e.g., Integer, Byte, Short, and Double) extend the abstract class java.lang.Number. As a

result, the search query specifying a single method specialized operation like String

toString(Integer) can technically be matched with a more generalized implementation

that comes with the operation signature String toString(Number). The toString(Number)

operation can be passed an argument of any type extending Number including java.

lang.Integer. However, as type hierarchies are not modelled in the text representation

of program interfaces this operation cannot be performed. One may argue that this

problem can be resolved by defining the terms number and integer as synonyms.

Although it makes sense in this example, it would not work for any general type
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and sub-type relationship. For example, although java.util.Stack<E> extends java.util.

Vector<E>, defining the terms stack and vector as synonyms would do far more harm

than good to the term matching overall.

7.1.1 Wildcards

Let’s imagine a searcher is looking for a simple Logger feature that she initially

expresses as:

1 class Logger {
2 void setDefaultLevel(Integer);
3 Integer getDefaultLevel();
4 void log(String);
5 void log(Integer, String);
6 }

The logging level (e.g., info, warning, and error) are given as Integer numbers and

log messages will be supplied as String objects. The searcher has composed the input

query based on her idea of what a logger might look like but would consider other

similar designs as long as the functionality she is looking for is provided. For example,

an alternative design in which logging level is defined by the enumeration type Level

consisting of values INFO, WARN, and ERROR. Hence, the suggested interface for such

a logger would be:

1 class Logger {
2 void setDefaultLevel(Level);
3 Level getDefaultLevel();
4 void log(String);
5 void log(Level, String);
6 }

The current interface-based similarity techniques—for instance that one offered

by the Merobase code search engine—are equipped with a procedure called query
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relaxation (Hummel and Janjic, 2013). Interface-based retrieval query relaxation

ignores the name of an operation or the types in its signatures if the query does not

match any or enough number of results. However, the current procedure is not flexible

to distinguish between what is already known and preset and what can potentially be

relaxed. We propose to use wildcards to create additional flexibility for matching type

relationships inside and between operation signatures. Using wildcards in interface-

based search queries is like using parameters when defining programming types, for

instance Java parameterized types. Any type that can be relaxed in a search query

can be replaced by a wildcard. Constraints can be specified to restrict the types that

can be replaced for the wildcard. Using wildcards, the search query for the Logger

can be expressed as:

1 class Logger {
2 void setDefaultLevel(W1);
3 W1 getDefaultLevel();
4 void log(String);
5 void log(W1, String);
6 }

W1 in the above code snippet is a wildcard that be replaced by the type Integer,

a local type that is part of the same API, or simply any other type that even the

searcher does not know of. The same idea can be applied to the log methods as well.

In their current form they expect to receive an input argument of type String to write

to the output. However, it could well be that an existing implementation of the Logger

is so designed that it expect an Exception, Throwable, or a generic Object as the input

argument. A second wildcard W2 can be defined to replace the String argument in

the two log methods. The resulting input query then looks like the following:
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1 class Logger {
2 void setDefaultLevel(W1);
3 W1 getDefaultLevel();
4 void log(W2);
5 void log(W1, W2);
6 }

7.1.2 Constraints

A searcher may associate a set of constraints with a wildcard. Constraints are meant

to provide the searcher with a means of restricting or specifying preference for the

types that can be replaced for the wildcard. Wildcard constraint expressions are

composed according to the following protocol:

• A wildcard W can only be replaced with a type T is denoted by the clause

W = T . For example, W = String states that all occurrences of W in the

retrieved program interface have to be of type String.

• A wildcard W can only be replaced with a sub-type of T is denoted by the

clause W < T . W can be replaced either by T or one of its sub-types is denoted

by W <= T . For example, W < java.lang.Number states that W can be replaced

by sub-types of the abstract class Number like Integer or Double.

• A wildcard W can only be replaced with a super-type of T is denoted by the

clause W > T . W can be replaced either by T or one of its super-types is

denoted by W >= T . For example, W >= java.net.ConnectException states that

W can be replaced by ConnectException or one of its super-types like java.net.

SocketException or java.io.IOException.

• The wildcard Self can only be replaced with the type sought after. It can be

used to demonstrate creational design patterns like Singleton (Gamma et al.,
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1994) or for referencing inner-types defined inside the main type sought after.

For example, a singleton builder for Logger can be stated as Self getInstance().

• AND, OR, and NOT logical operators can be used to join wildcard clauses.

7.1.3 Representation

Our proposed interface-based retrieval approach relies on text and relational repre-

sentations of program interfaces. A bag of words representation based on Apache Solr

similar to the one we used for the interface-based retrieval prototype in Chapter 6.

Each class in the repository is represented as a document. Each document is a bag

of words consisting of the names in the public interface of the class, i.e., the name of

the class, its public methods, and attributes. For example, in the case of the Logger

discussed before the test representation would consist of the terms log, set, default,

level, and get. The words are reduced to their stem and duplicates are removed in

the pre-processing step as described in Section 4.4.1.

The relational model stores the types in the program interfaces and their relation-

ships. Type hierarchies are explored for all types in the repository and the extends and

implements relationships are stored in the relational model. Figure 7.1 shows the en-

tity relationship diagram of the relational model. Alternatively, the relational model

can be replaced by a graph model that facilitates querying paths between nodes. For

instance, verifying implements and extends relationships between two types using the

graph model would be much easier than a relational model.
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Figure 7.1: The entity relationship diagram of the relational representation of the
extended interface-based retrieval approach.

7.1.4 Similarity

Matching an input query with wildcards and a set of constraints with interfaces of

existing assets in the repository requires solving the assignment problem (Burkard

et al., 2009) over program interface elements.

Definition 7. Let MQ and MC be the set of methods in the input query Q and a class

C in the repository. The method interface similarity function sim : MQ×MC → [0, 1]

defines the degree of similarity between two method signatures based on their properties

(i.e., name, arguments, return type, exceptions, and qualifiers).

Definition 8. Given the two sets MQ and MC and the method interface similarity

function sim, the similarity score of the input query Q and a class C in the repository

is computed by finding an injective function f : MQ → MC such that all the query

constraints are met and the assignment score
∑

m∈MQ
sim(m, f(m)) is maximized.

Unfortunately, solving such an assignment problem for every asset in a large repos-

itory is not computationally viable. Therefore, we might rely on a lexical pre-filtering
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stage to reduce the number of potential candidates. The test lexical representation

is used for filtering candidates. Potential candidates are then delivered down the

pipeline to an interface matcher that computes the assignment score between the

query and each candidate. Finally, candidates are ranked in descending order of their

scores. To take the idea to the next level, special wildcards can be allowed for cer-

tain words in the query. The searcher my further constrain the word wildcards by

providing a small vocabulary.

7.2 Pattern-based Retrieval

When a developer reads through source code and documentation they form a mental

model and make speculations about source code elements, their role, and potential

relationships. In other words, the relationship between source code elements affects

their semantics. Unit tests provide a living documentation of the system by high-

lighting appropriate and inappropriate use of a unit. Developers can gain a basic un-

derstanding of the system API and how to use it by looking at its unit tests (Nasehi

and Maurer , 2010). A developer reads test code, in the same way they read any other

code, and tries to understand its semantics by figuring out the relationship between its

elements. We observed that certain structural and behavioural patterns get repeated

in test code. Such patterns relate the elements of the test case and the function under

test through pre and post conditions, constraints, and assumptions. For example, a

method might be inferred to be a pre-condition of another method judging by the

test scenarios that exercise that function. We propose to take advantage of structural

and behavioural patterns observed in test cases to search and retrieve the software

under test.
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Identifying recurring patterns in API usage is the subject of specification mining

research (Zeller , 2011). The functionality exercised in TDD tests might—at best—

have been partially developed. This creates a major hurdle for application of existing

specification mining techniques on TDD test cases. We thought of an alternative

approach for identifying structural and behavioural patterns in the test cases based

on the interface of the function under test. Using this approach we have collected

a number of these structural and behavioural relationships in a pattern catalogue.

Each pattern in our catalogue is a dependency between two or more methods in the

function under test. In addition, we describe how each pattern is mined from existing

source code. A pattern representation of source code can be used by a code search

and retrieval approach—in conjunction with other representations—to potentially

improve retrieval of relevant results.

Future software search and retrieval approaches can improve upon and utilize our

pattern catalogue. In a pattern-based retrieval system, the search query test cases

are scanned for any instances of the patterns in the catalogue. Identified patterns

are then matched with existing assets in the repository that possess similar patterns.

Although such a pattern-based approach cannot provide enough precision by itself,

however it can be beneficial in conjunction with other heuristics in the test similarity

model. Future empirical studies will determine the effectiveness of the proposed

pattern-based retrieval approach.

7.2.1 Setter-Getter Pattern

The setter-getter pattern is a form of data flow dependency between two methods.
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Identifying in a query test case An instance of setter-getter pattern exists in a

test case if a literal or a reference is passed to the system under test through an invo-

cation and later retrieved through another invocation. An assertion (e.g., assertEquals

or assertSame) verifies that the retrieved value is equal to the value originally passed

to the system under test. This indicates an implicit dependency between the two

methods that is mediated through common underlying state. For example, in the

following unit test excerpt m1 passes the same reference value to the system under

test that is later retrieved and returned by m2.

1 SystemUnderTest sut = new SystemUnderTest();
2 int x = 10;
3 sut.m1(x);
4 assertEquals(x, sut.m2());

Identifying in an existing unit An instance of setter-getter pattern can poten-

tially be present in a unit if a method m1 modifies the internal state (e.g., a data

structure) based on an input parameter. The internal state is later queried and re-

turned by a second method m2. For example, in the following code snippet, a call to

m1 followed by a call to m2 will result in a data flow relationship from m1 to m2 that

is mediated by the attribute f. Such a call sequence might not be an acceptable usage

scenario for the unit and might be disallowed.

1 public class SystemUnderTest {
2 private int f;
3 public void m1(int v) {
4 f = v;
5 }
6 public int m2() {
7 return f;
8 }
9 }
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7.2.2 Collection Pattern

The collection pattern is a variation of the setter-getter pattern that requires special

structural design in the system under test.

Identifying in a query test case An instance of collection pattern exists in a test

case if multiple values (i.e., literals or references) are passed to the system under test

through one method and later recovered through another method. Assertions (e.g.,

assertEquals or assertSame) are used to verify that the retrieved values are the same as

the values originally passed to the system under test. This indicates an implicit data

flow dependency between the two methods that is mediated through an underlying

collection data structure. For example, in the following unit test excerpt m1 passes

three different values to the system under test that are later retrieved and returned

by m2.

1 SystemUnderTest sut = new SystemUnderTest();
2 int x = 1, y = 2, z = 3;
3 sut.m1(x);
4 sut.m1(y);
5 sut.m1(z);
6 assertEquals(z, sut.m2());
7 assertEquals(y, sut.m2());
8 assertEquals(z, sut.m2());

Alternatively, the getter method may retrieve and return the entire collection

instead of individual items. Depending on the type of the collection returned the

verification is going to be different. For example, the following test code snippet

demonstrate the collection pattern when a Map collection is returned by the getter

method.

1 SystemUnderTest sut = new SystemUnderTest();
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2 int xValue = 10, yValue = 20, zValue = 30;
3 int xKey = sut.m1(xKey, xValue);
4 int yKey = sut.m1(yKey, yValue);
5 int zKey = sut.m1(zKey, zValue);
6 Map<Integer, Integer> map = sut.m2();
7 assertEquals(xValue, map.get(xKey));
8 assertEquals(yValue, map.get(yKey));
9 assertEquals(zValue, map.get(zKey));

Identifying in an existing unit An instance of collection pattern can potentially

be present in a unit if a method m1 modifies the internal state (e.g., a collection data

structure) based on an input parameter. The internal state (e.g., the collection object)

is later queried and an individual item or a subset of the collection is returned by a

second method m2. For example, in the following code snippet, a call to m1 followed

by a call to m2 will result in a data flow relationship from m1 to m2 that is mediated

by the collection f.

1 public class SystemUnderTest {
2 private Collection<Item> f;
3 public void m1(Item item) {
4 f.add(item);
5 }
6 public Item m2(Integer p) {
7 for (Item item : f)
8 if (item.getSomeAttribute() == p)
9 return item;

10 return null;
11 }
12 }

7.2.3 Inspector-Actor Pattern

The inspector-actor pattern is a form of control flow dependency between two meth-

ods.
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Identifying in a query test case An instance of inspector-actor pattern exists

in a test case if the return value of the call to m1 controls the condition of a control

structure while m2 is invoked inside that control structure. m2 is therefore dependent

upon the service provided by m1. The type of the control structure has an effect on

the nature of the dependencies. For example, an if/else or switch control structure

would make it a precondition dependency. In the following test excerpt the call to

m1 is the precondition of the call to m2.

1 int v = 0;
2 if (m1()) {
3 v=m2();
4 }
5 assertNotEquals(0, v);

Identifying in an existing unit An instance of the inspector-actor pattern can

potentially be present in a unit if a method m1 returns a projection or attribute of

a field f that a method m2 makes updates to. m1 can be used to verify a potential

condition that is modified by m2. For example, in the following code snippet m1

returns a property of the collection f that is modified through m2 and has an effect

on what is returned by m1.

1 public class SystemUnderTest {
2 private Collection f;
3 public int m1() {
4 return f.size();
5 }
6 public void m2(Item item) {
7 f.add(item);
8 }
9 }
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7.2.4 Precondition Pattern

The precondition pattern is a behavioural pattern observed in the sequence of invo-

cations of two methods.

Identifying in a query test case If invocations of a method always precede the

invocations of another method then they might have pre-condition dependency. A

first method invocation m1 might initialize the internal state so that a call to m2 can

successfully go through. However, coming across a couple of scenarios in which m1 ap-

pears before m2 cannot be a strong indication that a precondition relationship exists.

For example, the searcher might have simply missed scenarios that the invocation or-

der of m1 and m2 is interchanged. However, the process can still be semi-automated

with the searcher being prompted to confirm existence of a precondition dependency

at query time.

1 SystemUnderTest sut = new SystemUnderTest();
2 sut.m1();
3 Object v = sut.m2();
4 assertNotNull(v);

Identifying in an existing unit An instance of the precondition pattern can

potentially be present in a unit if a method m1 initializes internal/external structures

that the method m2 has to acquire in order to accomplish its task. Initialization can

either be a one-time thing or it might have to be repeated each time m2 is called.

If a one-time thing then the initialization usually takes place during construction

time. However, the object might be lazily initialized once a call to m2 is made. For

example, in the following code snippet m1 initializes the internal field f that is used

by the method m2.
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1 public class SystemUnderTest {
2 private List<Integer> f;
3 public SystemUnderTest() {}
4 public void m1() {
5 f = new ArrayList<Integer>();
6 }
7 public void m2(Integer i) {
8 f.add(i);
9 }

10 }

7.2.5 State Dependency Pattern

The state dependency pattern is a behavioural pattern that takes place between pairs

of methods that are tested together.

Identifying in a query test case If the effect of a method m1 is tested by another

method m2 then the two methods are in a state dependency. In other words, m1 affects

the internal state of the system in such a way that is visible and verifiable through

m2. Precondition pattern is a specialized form of the state dependency pattern. The

effect of initialization performed by the first method is visible and can be tested by the

second method. Hence, a state dependency exists between the two methods. Unlike

the precondition pattern, in the general state dependency pattern the call m2 does

not need to always preceded by a call to m1. In the following test case excerpt m2 is

used for verifying the effect of a previous invocation of m1.

1 SystemUnderTest sut = new SystemUnderTest();
2 sut.m1();
3 assertTrue(sut.m2());
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Identifying in an existing unit An instance of the state dependency pattern can

be present in a unit if a method m1 modifies state that is used by a second method

m2 for generating the return value. For example, in the following code snippet the

call to m1 has an effect on the field f that can be verified by a call to m2.

1 public class SystemUnderTest {
2 private List<Integer> f;
3 public SystemUnderTest() {
4 f = new ArrayList<Integer>();
5 }
6 public void m1(Integer i) {
7 f.add(i);
8 }
9 public int m2() {

10 return f.size();
11 }
12 }

7.2.6 Expected Exception Pattern

The expected exception pattern is observed in unintended or exceptional usage sce-

narios of a unit.

Identifying in a query test case If a usage scenario is expected to cause a runtime

or checked exception during testing then one or more of the methods invoked in the

scenario should be able to throw that exception or one of its sub-types. The treatment

of the exceptional behaviour can be indicative wether it is an intended or unintended

usage scenario for the unit under test. For example, handling an exception takes place

when it is intended. Failing the test through a fail call or re-throwing the exception

is the sign of unintended behaviour. In the following test scenario either m2 or m3

might throw IOException or one of its sub-types. The failed outcome of the test case



137

indicates that the exceptional behaviour is not intended.

1 SystemUnderTest sut = new SystemUnderTest();
2 sut.m1();
3 try {
4 sut.m2();
5 sut.m3();
6 } catch (IOException e) {
7 fail();
8 }

Alternatively, in JUnit4 the expected exception pattern might appear as an an-

notation on the test case. An exception expected this way is intended and does not

mark inappropriate usage of the unit under test.

1 @Test(expected = IllegalStateException.class)
2 public void test() {
3 SystemUnderTest sut = new SystemUnderTest();
4 sut.m1();
5 sut.m2();
6 }

Identifying in an existing unit Checked exceptions thrown by each method in a

unit are easily identifiable by looking at the throws statement of each method defini-

tion. Other runtime exceptions can be traced by verifying the throw in the body of the

method and other methods invoked by it. For example, in the following code snippet

m1 throws the checked exception type IOException because it calls on m3. m2 can throw

the runtime exception type IllegalStateException and m1 that invokes m2 is not han-

dling this exception. Consequently m1 has the potential to throw IllegalStateException

as well.

1 public class SystemUnderTest {
2 public void m1() throws IOException {
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3 m2();
4 m3();
5 }
6 private void m2() {
7 if (!precondition)
8 throw new IllegalStateException();
9 }

10 }
11 public void m3() throws IOException {
12 // something that can result in IOException
13 }
14 }
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Chapter 8

Discussion

The result of the evaluation study in Chapter 6 confirms our initial hypothesis that

modelling functionality by indexing test cases that exercise them—in addition to their

interfaces—provides a better means of capturing their semantics. We compared the

performance of our Reviver prototype that we built based on our proposed idea with

a prototype that we built to represent the interface-based retrieval approach. Reviver

performed better in retrieving semantically relevant results by comparing query test

case with test cases in the repository modelled by multiple representations. In this

chapter, we provide an analysis of the contributions, implications, limitations, and

applications of our work and a discussion of possible research directions that can

follow it.

8.1 Analysis of Findings

Private organizational repositories: Not all source code available publicly on-

line comes with a test suite. Therefore, building a catalogue of functions using test

cases would only be limited to a fraction of open source code available online. How-

ever, the popularity of unit testing and test-driven development is increasing between

industrial developers every year (Hein, 2012). For the time being, our proposed alter-

native to TDR perhaps better suites private repositories like that of an organization
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in which test-driven development is practiced. In such settings, the commonality

among applications in terms of services, operating environments, technologies, and

implementation techniques is high. Use of domain specific APIs increase similar-

ity (Kratz , 2003) and as a result increases the opportunity to reuse functionality

developed in the past. Our proposed TDR approach can take advantage of this op-

portunity and provides automated support for retrieving relevant source code from

organizational repository when developing new functionality.

Pattern-based similarity: The evaluation study in Chapter 6 indicated that Re-

viver—similar to existing TDR approaches—is likely to fail retrieving relevant results

if the query names and types do not match with that in the sought after function. The

lexical similarity heuristic cannot be helpful in these situations for obvious reasons.

The data flow similarity heuristic, on the other hand, requires similarity of method

call nodes in the data flow graph in order to determine the similarity of data flow

edges. The similarity of method call nodes is determined through lexical and type

similarity which is why it also fails once lexical and type similarity is not present. To

overcome this limitation of our approach we need test similarity heuristics that do

not require lexical and type similarity.

The Sourcerer source code search engine creates fingerprints of code entities in

the repository to support structural searches (Linstead et al., 2009). Such structural

fingerprints support retrieval of code with specific syntax irrespective of the its se-

mantic aspects. One of the kinds of fingerprints supported by Sourcerer is micro

patterns (Gil and Maman, 2005). Micro patterns are lower level structural design

patterns that are defined based on the interface of a Java class. The patterns in our

pattern catalog presented in Chapter 7 focus on behavioural attributes of methods.
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Such a behavioural pattern catalog can be used to fingerprint source code in the

repository to enable retrieval based on behavioural traits of source. An implemen-

tation of the pattern-based similarity heuristic can potentially improve the overall

performance of Reviver by identifying similar assets in absence of lexical and type

similarity.

Graph-based similarity: Our call dependence graph introduced in Chapter 4 is a

model for describing the behaviour of a function in the context of a test case. Different

behavioural models have been proposed in the literature for describing and matching

software components. Petri nets, finite state machines, and work flow languages have

all been used for modelling the behaviour of software components in the past. The

problem with all these approaches is that the generation of such models cannot be

mostly automated. Therefore, applying them to a repository the size of today’s code

search engines is practically out of the question. Our call dependence graph model

built from component test cases—although not as precise as developer generated

behavioural models—has the advantage of being automatically generated from test

code.

Complex similarity model: Lexical similarity, structural fingerprinting, and data

flow models have all been used for representing and matching software components

in the literature. However, to the best of our knowledge, these techniques have

never been applied to test cases before. We demonstrated how a similarity model

can be built based on multiple interconnected sub-models each having their own

representation. Using indexing techniques best suited for each representation, our

similarity model is well-equipped to handle large-scale source code repositories. Our
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model is extensible and can include additional sub-models and representations that

facilitate new similarity heuristics. The empirical evaluation study in Chapter 6

uncovered that the lexical and data flow similarity sub-models contribute the most

overall in the similarity model.

Similarity heuristics: When building a model to allow similarity comparison of

test cases (or code in general) one can assemble a group of rather disjoint naive

heuristics or combine them together and form fewer more complex heuristics. Naive

heuristics offer better scalability1 while complex heuristics can potentially offer better

precision. The reference and call-set similarity heuristics in our work—inspired by

the Strathcona (Holmes et al., 2006) example recommendation system—are rather

naive heuristics that specialize on one aspect of test cases. During the evaluation

study we observed that the naive heuristics returned more false-positives, resulting in

degradation of the aggregated results. Therefore, we hypothesize that a more complex

heuristic like data flow similarity—that combines lexical, reference, and invocation

features—has the potential to be more effective.

Protocol similarity: Neither lexical nor type similarity is a prerequisite to seman-

tic similarity. A similar function might have been designed using different vocabulary

and types. A key question however is if the types used in a similar function are differ-

ent then would such a function provide any utility for reuse? Obviously, if a searcher

is flexible in their choice of types or the effort required for refactoring types in the

function is justified then such a function can well be source for reuse. Otherwise, it

might serve as an example if the searcher finds the function design or its algorithm

1We had to make our data flow similarity heuristic more naive in order to make it computationally
efficient.
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reusable.

Another key question regarding semantic similarity in test cases is whether it can

be detected if lexical and type similarity is inexistent or insignificant. One way to

approach this problem is to observe similarity in the behavioural patterns of the func-

tions under test. In a controlled experiment, independent participants implemented

a given functionality based on a written description. The chance of having similar

protocol was observed to be much higher than having similar interface (Kratz , 2003).

Analysis and extraction of object protocols is the objective of both typestate anal-

ysis (DeLine and Fähndrich, 2004) and specification mining (Zeller , 2011) research

fields. However, the techniques devised in these fields require the source code or

binary of the participating objects to be available for some variation of static or dy-

namic analysis. Therefore, these approaches cannot be applied to TDD test cases in

which the code for the function under test is not yet available. Our pattern-based

retrieval idea introduced in Chapter 7 is an attempt to find structure and behaviour

similarity in software components based on the static analysis of their test cases.

Performance evaluation: A software reuse retrieval system—similar to any in-

formation retrieval system—has to be assessed on how well it meets the information

needs of its users. Currently, there is no reference repository for evaluating and com-

paring the performance of reuse systems (Hummel , 2010). The traditional metrics

like precision and recall 2 are based on the underlying assumption that the number

of relevant items to the query in the repository is known. In absence of a refer-

ence repository with a set of queries to which the number of relevant items is known

2Precision is the fraction of retrieved items that are relevant to the query; recall is the fraction
of items relevant to the query that are retrieved (Manning et al., 2008).
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many reuse systems rely on user studies in order to evaluate the utility of their sys-

tems. A user study better serves as a technique for evaluating the toolset associated

with a retrieval system and should not be solely used as a means of evaluating its

performance. In Chapter 6 we presented a technique based on code refactoring for

evaluating the performance of Reviver. Although we generated approximations man-

ually for a small task set but future research can look into automating generation

of approximations. A fully automated and improved approximate generator can be

used to measure approximate match retrieval performance of software reuse systems

over large repositories.

Multiple representations: Our multi-representation reuse system is—to the best

of our knowledge—the only one other than Proteus (Frakes and Pole, 1994). A

comparative study on document collections in information retrieval discovered that

although the differences in recall and precision between representation methods may

not be significant, different methods tend to retrieve different documents (Das-Gupta

and Katzer , 1983). Frakes later suggested that reuse systems should also seek to

employ as many different representations as cost will permit (Frakes and Gandel ,

1989). Findings of an empirical study with Proteus reuse system using four different

representation methods were consistent with that of document collections (Frakes and

Pole, 1994). We came up with the idea of using multiple representations of source code

independently without prior knowledge of Proteus research. Our evaluation results

in Chapter 6 provide further evidence that different similarity heuristics utilizing

different representations of source code can find different items. The data flow and

lexical similarity heuristics separately found 14 and 30 correct results respectively

that the other heuristic did not find. Furthermore, the reference similarity heuristic
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produced 8 correct results that neither of the other two heuristics identified.

8.2 Future Work

Realizing the complete CBR cycle: Case-based reasoning as a cyclic problem

solving process—as is test-driven reuse that is based on test-driven development. The

classic case-based reasoning cycle is composed of four steps: retrieve, reuse, revise,

and retain (Richter and Weber , 2013). Of these four steps, only the first three have

been covered by the test-driven reuse approaches. It would be interesting to see

how retain—the final step in CBR cycle—can also be integrated into the test-driven

reuse process. In the retain step of CBR, the problem and the adapted solution are

added to the case base. In the context of TDR, if the function a searcher is seeking

is successfully located in the repository then the input test cases and the adapted

function can both be added to the repository as a new variation. We hypothesize

that the overall utility of the search service can be improved by allowing searchers to

contribute new test cases and variations of existing functions.

Building a database of word relationships for software: When analyzing the

semantics of a software the use of vocabulary should never be overlooked. After all,

our most successful similarity heuristic proved to be the lexical similarity heuristic.

However, this should not be interpreted as if the lexical attributes of source code is

the most important of all; truth is that lexical similarity techniques and tools have

been around much longer than other software similarity approaches—and hence are

more mature. Researchers in recent years have tried to further adapt lexical similarity

techniques and tools to the domain of software search and retrieval.
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The main factor that limits the application of lexical similarity techniques is the

vocabulary problem (Furnas et al., 1987). A number of techniques have been devised

in text analysis to get around the vocabulary problem; for example word synonyms

can be used to expand the input query or similarity relationships can be established

between words that appear together through latent semantic indexing (LSI). We could

have had our lexical similarity heuristic utilize a database of word relationships like

WordNet (Fellbaum, 1998) in conjunction to Apache Solr. However, application of

WordNet to software has not been generally successful. Such a setup has been ob-

served to lead matching the input query with many rather irrelevant artifacts (Srid-

hara et al., 2008) simply because WordNet is populated with word relationships in

general English. In order to improve the existing lexical similarity techniques for the

software domain, future research has to come up a WordNet-like database of word

relationships for software. In such a lexical database the words write, persist, and

dump might be considered synonyms—a relationship that does not exist between

their English counterparts in WordNet.

Measuring type similarity: Another limiting factor for our similarity heuristics

is type-based similarity. For example, the reference similarity requires coexistence

of references of the same types in two contexts to classify them as similar. This

leads to what we call the type mismatch problem: different developers might use

different types or components to implement the same function. It remain a topic

for future research to determine the statistical significance of type mismatch in the

software domain. We can think of two approaches to get around this problem and

improve type-based similarity heuristics. A lexical and structural component similar-

ity measure can be developed using the anti-unification theory similar to that used
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in Jigsaw (Cottrell et al., 2008a). The degree of similarity of any pair of types in

the repository can then be determined at index-time. Alternatively, following the

latent semantic indexing technique for words, one can hypothesize that two software

components that are used similarly (e.g., in similar contexts) might in fact be similar.

A usage-based type similarity measure can therefore be defined based on the contexts

in which two types appear as is done in (Bajracharya et al., 2010b). Test similar-

ity heuristics then can rely on either of these type similarity measures to provide

cross-type matching.

Utilizing graph databases: Over the past decade various semantic and structural

similarity approaches based on abstract syntax tree and graph model have appeared

in the literature. Program dependence graph models have been used to identify se-

mantically similar code (Krinke, 2001) and semantic code clones (Gabel et al., 2008).

Abstract syntax trees have been utilized for finding structural similarity in source

code (Sager et al., 2006). Call graphs have been utilized for finding frequent API

call sequences (Xie and Pei , 2006) and sequences that start and end in two known

types (Mandelin et al., 2005; Thummalapenta and Xie, 2007). A graph model of

the active development context has been used to offer code snippets to developers

as examples (Sahavechaphan and Claypool , 2006). Behavioural patterns modelled as

graphs have been used to retrieve and compose web services (Grigori et al., 2008;

Corrales et al., 2008). However, the lack of technologies that facilitate mass storage

and querying of graph structures has restricted past research to in-memory represen-

tations and matching of graph models. We believe exploring how graph-based models

can be utilized in large-scale source code search and reuse would be an interesting

future line of research. As a first step, we explored how a data flow heuristic—part
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of our test similarity model in Chapter 4—based on a graph model of dependencies

between method invocations can find test cases with similar data flow patterns.

Improving data flow analysis: Our data flow similarity model is naive in its

design and implementation. First of all, our static data flow analysis engine—as

described in Chapter 4—is very simple and does only detect a subset of potential

data flow dependencies. Furthermore, we did not model control flow dependencies.

Our analysis of the control structures in our repository indicated that a large portion

of test cases utilize a variety of control structures (see Appendix D for more details).

Therefore, the impact of control structures on data flow dependencies in test cases

cannot be dismissed. Future research has to look into ways of enhancing the data

flow similarity model in test cases in order to improve the overall performance of the

test similarity model.

Semi-Automated search queries: Automated generation of search queries from

test cases in TDR makes it more convenient to the searcher. Unit tests are writ-

ten in test-driven development regardless, therefore TDR does not generate an ad-

ditional burden to developers. A plausible question that hereby arises is whether

auto-generated queries provide enough expressive power for all type of searches. For

example, when the searcher is not sure how to name or what types to use for certain

elements of the function sought after writing a test case can be difficult. In these type

of situations perhaps a mechanism for expressing the level of certainty can be provided

to the searcher. Alternatively, a searcher can be allowed to specify the importance

of individual elements in the test cases. For example, while certain behaviours or

structures might be deemed essential to a function, others might only be preferred.
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Ideally, a TDR prototype should allow the searcher to revise the auto-generated query

and supply additional meta data.

Automated suggestions for query composition: As we discussed in Chapter 4

some software retrieval approaches—including existing TDR approaches—perform

an initial filtering of search results based on the lexical and structural attributes

of candidate assets to reduce turnaround time. As a result, if the searcher cannot

come up with the correct choice for the interface terms and design then relevant

results cannot be retrieved. If the searcher is unaware of the content of the repository

then they have to resort to making arbitrary modifications to the search query. The

Design Prompter (Hummel et al., 2010) provides insight about repository content in

the form of automated suggestions by computing the average interface of the assets

that match an input query. These type of automated suggestions can help searchers

pick terms, types, and signatures that would lead to matches. However, we found

that more often the combination of the choices made by the searcher are so unique

that cause the query not to match any assets. An alternative strategy that hence

can be taken is to provide suggestions about choices that can be removed or altered

to make the query match more results. In other words, the retrieval system should

make automated query relaxation or modification suggestions in order to help adjust

the query based on repository content.

Creating search engine friendly software projects: The variety and complex-

ity of project configurations utilized by open source and proprietary projects makes

them difficult to be setup automatically. Setting up a project and then building it

requires developer knowledge that is now mostly described in documentation pages
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of a project. As a result, not all open source code retrieved on the Web can be

processed and analyzed by automated tools. To make processing of projects more

effective, the software community has to look into ways for supplying meta data that

makes software projects more code search engine friendly—as web masters do in or-

der to improve the visibility of their respective web sites. The Apache Maven3 build

automation tool can be used as a model for describing the project dependencies,

including binaries, containers, and operating systems. Furthermore, the individual

configurations required for building, running, and testing software projects can be

outlined.

Measuring test case and implementation code similarity: We used the con-

cept of test similarity as the basis of our approach for retrieving relevant source code

in a test-driven reuse system. This approach can also extended to be applied to ex-

isting implementation code in the reuse library. When a new test case is written, the

facts in the test case can be directly compared to those in existing source code in the

library. If a close match is found, it is recommended as relevant source code. The

Strathcona Example recommendation system (Holmes et al., 2006) uses the same

technique for retrieving examples exercising similar APIs from a reuse library. It

would be interesting to see if a similarity measure between test and implementation

code retrieve relevant source code from a reuse library that can be adapted and tested

or looked upon as an example.

3http://maven.apache.org

http://maven.apache.org
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Chapter 9

Conclusion

As test-driven development has gained in industrial popularity, the prospect of uti-

lizing test cases as the basis for software reuse has become tantalizing: test cases

can express a rich variety of structure and semantics that automated reuse tools can

potentially utilize. However, the imprecise interface-based retrieval technique uti-

lized by existing TDR approaches defeats the original purpose of utilizing the more

precise instrument of test cases. A TDR candidate selection approach needs to be

more flexible in recommending solutions, recognizing the inability of the developer to

know exact vocabulary and that such vocabulary will often fail to suffice in locating

a desired variation on common functionality.

The thesis of this dissertation is by modelling tests—in addition to function

interfaces—the odds of finding semantically relevant source code is improved. We

built a similarity model for comparing test cases along lexical, structural, and data

flow dimensions. To provide the flexibility required by our complex similarity model,

our similarity heuristics utilize multiple interconnected representations of test cases.

We built a proof of concept prototype, called Reviver, that indexes test cases and

represents them using text search and relational database platforms1. We populated

the repository of Reviver with a selection of Java open source projects with JUnit

1A graph database could have been an alternative platform for implementing the graph-based
portion of our test similarity model.
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tests. The result of a controlled experiment produce evidence that Reviver is more

efficient identifying the function under test in the supplied test cases compared to

an interface-based retrieval prototype that we built to represent existing TDR ap-

proaches. We provide further evidence that different similarity heuristics utilizing

different representations of test cases can find different items.

In the end, detecting semantic similarity in source code in absence of lexical and

type similarity still remains an open question. Today, despite being able to build

large libraries of open source code we are constrained in what we can retrieve and

reuse in such libraries due to our narrow definition of similarity. However, we believe

that the idea of multi-representation reuse libraries is promising and has to be further

pursued by the software search and retrieval community.

9.1 Contributions

This thesis has made five main contributions:

Evidence that current TDR approaches fall short of retrieving non-trivial

or uncommon variants of functionality: We performed an experiment on the

three existing tools for test-driven reuse, in which we found realistic, non-trivial tasks

in developer forums, and for which a known solution existed in the tools repositories.

We used existing test cases that exercised the known solution as the basis of the

input to the tools. All the tools failed in most cases to locate relevant source code

that would be simple to reuse, and often recommended irrelevant source code.

A similarity model for finding relevant source code in a TDR approach:

Existing TDR approaches rely on interface-based retrieval for selecting the candidate



153

code that goes through adaptation and testing. We propose the novel idea of indexing

tests instead of the interface of the function under test. We designed a similarity model

that uses heuristics that operate on the lexical, structural, and data flow features of

test cases in order to find existing tests that exercise similar functions.

A technique for building a multi-representation reuse library from test

code: There is empirical evidence that representing reusable artifacts through mul-

tiple representations improves the performance of reuse systems. Our test similarity

model is implemented using three different representations. Our evaluation results

provide further evidence that different similarity heuristics utilizing different represen-

tations of source code can find different items. Furthermore, we provide a federated

search technique that aggregates the results retrieved by multiple heuristics.

The Reviver TDR prototype: We built a TDR prototype utilizing our similarity

model using the open source stack. Reviver is designed as an IDE-based code search

provider for finding existing functionality in a source code repository. Developers

practicing test-driven development can use this toolset in their development process to

look up similar functionality developed in the past for reuse or as reference examples.

A technique for evaluating performance of TDR approaches: We devised a

technique for generating approximations of test cases by modifying their attributes.

Transformations refactor code but do not modify the semantic of the function under

test. We came up with a ruleset for transformations that generates semantically

equivalent functions under test with alternative designs and testing scenarios. Using

these transformations, we compared the performance of our similarity model with

that of the interface-based retrieval in retrieving approximate matches.
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Appendix A

Apache Solr Document Structure

We use Apache Solr to support lexical searches for the lexical and data flow heuristics

in our Reviver prototype. Additionally, the interface-based retrieval prototype we

built for the sake of evaluation study in Chapter 6 is also built on top of the Apache

Solr text search engine. The JUnit test cases for Task 1 of our evaluation study

is given in Figure A.1. The XML document in Listing A.1 demonstrates how the

lexical elements in the test cases are represented as bag of words data structures.

The lexical similarity heuristic described in Chapter 4 creates a similar document out

of the searcher supplied use cases and finds existing documents in the Apache Solr

index that best match it.

1 <doc>
2 <str name=”test class fqn”>com.javaeedev.util.Base64UtilTest</str>
3 <str name=”test class name”>Base64UtilTest</str>
4 <arr name=”method name”>
5 <str>encodeString</str>
6 <str>decodeString</str>
7 <str>getBytes</str>
8 <str>encode</str>
9 <str>decode</str>

10 </arr>
11 <arr name=”reference name”>
12 <str>text</str>
13 <str>base64</str>
14 <str>restore</str>
15 <str>data</str>
16 <str>length</str>
17 <str>i</str>
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18 </arr>
19 <arr name=”test method name”>
20 <str>testEncodeString</str>
21 <str>testEncode</str>
22 <str>testDecodeBadBase64</str>
23 </arr>
24 <arr name=”method return type fqn”>
25 <str>java.lang.String</str>
26 <str>byte[]</str>
27 </arr>
28 <arr name=”parameters”>
29 <str>java.lang.String</str>
30 <str>byte[]</str>
31 </arr>
32 <arr name=”reference fqn”>
33 <str>java.lang.String</str>
34 <str>byte[]</str>
35 <str>int</str>
36 </arr>
37 <arr name=”fqns”>
38 <str>com.javaeedev.util.Base64UtilTest</str>
39 <str>java.lang.String</str>
40 <str>byte[]</str>
41 <str>int</str>
42 </arr>
43 <arr name=”names”>
44 <str>Base64UtilTest</str>
45 <str>testEncodeString</str>
46 <str>testEncode</str>
47 <str>testDecodeBadBase64</str>
48 <str>text</str>
49 <str>base64</str>
50 <str>restore</str>
51 <str>data</str>
52 <str>length</str>
53 <str>i</str>
54 <str>encodeString</str>
55 <str>decodeString</str>
56 <str>getBytes</str>
57 <str>encode</str>
58 <str>decode</str>
59 </arr>
60 </doc>

Listing A.1: A sample Apache Solr document illustrating how test classes are
represented.



171

Our data flow similarity heuristic described in Chapter 4 uses bag of words data

structures to represent the methods invoked in the test cases. The XML document

in Listing A.2 demonstrates how the lexical elements in Task 1’s Base64Util.encode()

method are represented in Apache Solr. The data flow similarity heuristic creates a

similar document out of each invocation in the searcher supplied use cases and finds

existing documents in the Apache Solr index that best match it.

1 <doc>
2 <str name=”fqn”>com.javaeedev.util.Base64Util</str>
3 <str name=”name”>encode</str>
4 <arr name=”parameters”>
5 <str>byte[]</str>
6 </arr>
7 <str name=”return type fqn”>java.lang.String</str>
8 </doc>

Listing A.2: A sample Apache Solr document illustrating how methods are
represented.

The interface-based retrieval prototype in Chapter 6—that we used as a baseline

to compare the performance of Reviver against—uses bag of words data structures

to represent the interface of the class under test in test cases. The XML document

in Listing A.3 demonstrates how the lexical elements in the interface of Task 1’s

Base64Util are represented in Apache Solr. The prototype create a similar document

out of the searcher supplied test cases and finds existing document in the Apache Solr

index that best match it.

1 <doc>
2 <str name=”class fqn”>com.javaeedev.util.Base64Util</str>
3 <arr name=”method argument fqns”>
4 <str>java.lang.String</str>
5 <str>byte[]</str>
6 </arr>
7 <arr name=”method names”>
8 <str>encodeString</str>
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9 <str>decodeString</str>
10 <str>encode</str>
11 <str>decode</str>
12 </arr>
13 <arr name=”method return type fqns”>
14 <str>java.lang.String</str>
15 <str>byte[]</str>
16 </arr>
17 </doc>

Listing A.3: A sample Apache Solr document illustrating how classes under test are
represented.
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1 package com.javaeedev.util;
2
3 import static org.junit.Assert.∗;
4 import org.junit.Test;
5
6 public class Base64UtilTest {
7 @Test
8 public void testEncodeString() {
9 final String text = ”−−− abcdefg \r\n hijklmn \t opqrst \u3000 uvwxyz −−−”;

10 String base64 = Base64Util.encodeString(text);
11 String restore = Base64Util.decodeString(base64);
12 assertEquals(text, restore);
13 }
14
15 @Test
16 public void testEncode() {
17 final byte[] data = ”abcdefg \r\n hijklmn \t opqrst \u3000 uvwxyz”.getBytes();
18 String base64 = Base64Util.encode(data);
19 byte[] restore = Base64Util.decode(base64);
20 assertEquals(data.length, restore.length);
21 for(int i=0; i<data.length; i++) {
22 assertEquals(data[i], restore[i]);
23 }
24 }
25
26 @Test
27 public void testDecodeBadBase64() {
28 final String base64 = ”ABCDEFG@@@\u3000\n\n@@..=”;
29 assertNull(Base64Util.decode(base64));
30 }
31 }

Figure A.1: A sample test class retrieved from the source code repository.
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Appendix B

Example of Transformations

An example of applying the four transformations to Task 6 of our evaluation study is

provided here. The original test case for Task 6 is given in Figure 3.4. The result of

applying name, type, scenario, and prototype transformations to the same test case

can be seen in Figures B.1, B.2, B.3, and B.4 respectively.

1 import static org.junit.Assert.∗;
2 import org.junit.Test;
3 import java.io.IOException;
4 import org.xml.sax.SAXException;
5
6 public class CTest {
7 String var1 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><a><b>text1</

b><c>text2</c></a>”;
8 String var2 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><!−− copy

−−><a><c>text2</c><b>text1</b></a>”;
9

10 @Test
11 public void tm1() throws IOException, SAXException {
12 C c = new C(var1, var2);
13 assertTrue(c.m1());
14 assertFalse(c.m2());
15 }
16 }

Figure B.1: The name transformation applied to Task 6.
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1 import static org.junit.Assert.∗;
2 import org.junit.Test;
3 import java.util.Date;
4
5 public class TestXmlDiff {
6 StringBuffer xml1 = new StringBuffer(”<?xml version=\”1.0\” encoding=\”ISO

−8859−1\”?><a><b>text1</b><c>text2</c></a>”);
7 StringBuffer xml2 = new StringBuffer(”<?xml version=\”1.0\” encoding=\”ISO

−8859−1\”?><!−− copy −−><a><c>text2</c><b>text1</b></a>”);
8
9 @Test

10 public void testDiff() throws Exception {
11 Diff myDiff = new Diff(xml1, xml2);
12 Date ref = new Date();
13 assertEqual(1, myDiff.similar(ref));
14 assertNotEqual(1, myDiff.identical(ref));
15 }
16 }

Figure B.2: The type transformation applied to Task 6.
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1 import static org.junit.Assert.∗;
2 import org.junit.Before;
3 import org.junit.Test;
4 import java.io.IOException;
5 import org.xml.sax.SAXException;
6
7 public class TestXmlDiff {
8 String xml1;
9 String xml2;

10 String xml3;
11
12 @Before
13 public void setUp() {
14 xml1 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><a><b>text1</b><c

>text2</c><!−− comment −−></a>”;
15 xml2 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><!−− copy −−><a

><c>text2</c><b>text1</b></a>”;
16 xml3 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><!−− copy −−><a>

<c>text2</c> <b>text1</b></a>”;
17 }
18
19 @Test
20 public void testDiff1() throws IOException, SAXException {
21 Diff myDiff = new Diff(xml1, xml2);
22 assertTrue(myDiff.similar());
23 assertFalse(myDiff.identical());
24 }
25
26 @Test
27 public void testDiff2() throws IOException, SAXException {
28 Diff myDiff = new Diff(xml2, xml3);
29 assertTrue(myDiff.similar());
30 assertTrue(myDiff.identical());
31 }
32 }

Figure B.3: The scenario transformation applied to Task 6.
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1 import static org.junit.Assert.∗;
2 import org.junit.Test;
3 import java.io.IOException;
4 import org.xml.sax.SAXException;
5
6 public class TestXmlDiff {
7
8 String xml1 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><a><b>text1</b

><c>text2</c></a>”;
9 String xml2 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><!−− copy

−−><a><c>text2</c><b>text1</b></a>”;
10
11 @Test
12 public void testDiff() throws IOException, SAXException {
13 assertTrue(MyDiff.similar(xml1, xml2));
14 assertFalse(MyDiff.identical(xml1, xml2));
15 }
16 }

Figure B.4: The protocol transformation applied to Task 6.
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Appendix C

Frequency of Terms

Empirical research has provided evidence that the tokens in programming languages—

similar to words in natural languages—follow a Zipf-Mandelbrot law distribution

(Pierret and Poshyvanyk , 2009). Table C.1 lists the top 30 terms collected from

the class and method names of the 15,119 Java classes that appeared in test cases

in our repository. Table C.2 lists the top 30 terms collected from the fully qualified

package and type names in the same collection. For each term is frequency of classes

that it appears in is indicated in the Document Frequency column.

Figures C.1 and C.2 demonstrate the long tail1 distribution of terms in interface

names and types of the classes under test in our repository, respectively.

1In long-tailed distributions a high-frequency population is followed by a low-frequency population
which gradually tails off asymptotically. The events at the far end of the tail have a very low
probability of occurrence.
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Figure C.1: The distribution of document frequency of terms collected from class
interface element names. A term’s document frequency is the number of documents
(i.e., classes) in which a term appears. A sample population of terms (every 100th
term sorted by descending order of document frequency) is indicated on the horizontal
axis.



180

Table C.1: Top 30 terms collected from the interface element names of the classes
under test. Terms are collected from the class or its method names. The Term
and Document Frequency columns indicate the lower case stem of the word and the
number of classes in which it appears, respectively. The total number of classes in
the repository is 15,119.

Term Document Frequency

get 4661
set 2151
name 997
add 867
to 775
is 754
string 719
valu 688
id 617
creat 505
size 472
type 445
test 417
list 409
mock 379
properti 362
file 347
valid 323
equal 286
data 282
class 276
user 275
date 272
messag 262
instanc 261
context 260
remov 236
array 231
object 223
all 222
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Table C.2: Top 30 terms collected from the fully qualified name of interface element
types in the classes under test. Terms are collected from the fully qualified name of
the class, its method arguments, and method return types. The Term and Document
Frequency columns indicate the lower case stem of the word and the number of classes
in which it appears, respectively. The total number of classes in the repository is
15,119.

Term Document Frequency

java 8947
unknownp 7415
lang 7315
org 7063
unknown 6949
void 5953
string 4499
util 3550
test 3403
class 2899
net 2565
int 2094
com 1724
mifo 1570
sf 1493
boolean 1398
list 1395
null 1077
object 759
io 750
core 740
mock 692
account 655
sourceforg 647
except 637
type 626
set 622
servic 613
common 602
map 600
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Figure C.2: The distribution of document frequency of terms collected from the fully
qualified name of class interface element types. A term’s document frequency is the
number of documents (i.e., classes) in which a term appears. A sample population
of terms (every 100th term sorted by descending order of document frequency) is
indicated on the horizontal axis.
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Appendix D

Control Structures in Tests

We used PMD1—the source code analyzer tool—to analyze the control structures in

JUnit test code in our repository. Our simple data flow model in Chapter 4 does not

take control structures into account while analyzing data dependency relationships in

test code. Initially, we anticipated that the occurrence of control structures like for,

while, if, and switch would be rather limited in test code. Therefore, modelling data

flow relationships in tests can be rather simplified by ignoring control structures.

Later, we decided to verify this assumption, hence we designed a PMD ruleset to

identify control structures in JUnit test code.

Table D.1: The frequency of the four Java control structures for, while, if, and switch

in JUnit test cases. The Occurrence column indicates the total number of occurrences
of the control structure, while Test Count and Percentage columns indicate the num-
ber and percentage of JUnit test cases that happen to contain a control structure. The
maximum, average, and standard deviation of the occurrences of control structures
in JUnit tests are indicated in Max, Average, and Stdev columns respectively.

Control Occurrence Test Count Percentage Max Average Stdev

for 10276 3082 21.08% 132 3.34 5.12
while 2353 1107 7.57% 64 2.13 2.93
if 13285 3098 21.19% 199 4.30 8.37
switch 103 77 0.53% 4 1.34 0.66

1http://pmd.sourceforge.net

http://pmd.sourceforge.net
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Table D.1 demonstrates the results of our analysis. As it turns out, the two

control structures for and if occur in roughly 21% of JUnit test files in our repository.

Therefore, control structures cannot be totally dismissed from a data flow model built

for test cases. In light of the new knowledge, we decided to see if such a model should

also provide support for nested control structures. We built a second PMD ruleset

to analyze nested control structures in JUnit test code. As indicated in Table D.2

roughly 9% and 6% of test files in our repository contain nested control structures

involving outer for and if controls.

Table D.2: The frequency of nested controls in the four Java control structures for,
while, if, and switch in JUnit test cases. The Occurrence column indicates the total
number cases in which a control structures nested inside the given control structure,
while Test Count and Percentage columns indicate the number and percentage of
JUnit test cases that happen to contain such a nested control structure. The maxi-
mum, average, and standard deviation of the occurrences of nested control structures
in JUnit tests are indicated in Max, Average, and Stdev columns respectively.

Control Occurrence Test Count Percentage Max Average Stdev

for 2895 1299 8.89% 36 2.23 2.61
while 842 474 3.24% 19 1.78 1.76
if 2405 864 5.91% 73 2.79 4.34
switch 22 17 0.11% 3 1.29 0.57

While providing support for nested control structures would improve the precision

of the model but at the same time it would slow down the processing of test code

at index time and similarity matching of the input model at query time. Hence, the

trade-off analysis whether to provide support for nested control structures in the data

flow model remains to the future researchers.
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