
Improving Responsiveness, Bug Detection, and Delays
in a Bureaucratic Setting:

A Longitudinal Empirical IID Adoption Case Study

Caryna Pinheiro, Frank Maurer, Jonathan Sillito

University of Calgary
Calgary, Alberta, Canada

{capinhei, frank.maurer, sillito}@ucalgary.ca

Abstract. This paper empirically studies a group of projects in a large bureau-
cratic government agency that adopted iterative and incremental development
(IID). We found that a project that followed IID since inception provided
substantially better bug-fixing responsiveness and found bugs earlier in the
development lifecycle than existing projects that migrated to IID. IID practices
also supported managerial decisions that lead to on-time & on-budget delivery.

Keywords: Iterative and Incremental Development, Longitudinal Study, RUP.

1 Introduction

With the ascendance of Agile Methods it has become hard to find articles related to
process improvements without hitting the words “Iterative and Incremental
Development” (IID). Incremental means “add onto” and Iterative means “refine” [1].

This paper reports on a case study that was conducted to understand the adoption
of an IID approach by a group of IT projects in a large bureaucratic government
agency. The improvement efforts were motivated by concerns identified by the
business clients of those projects, primarily: poor bug-fixing responsiveness and
delivery delays. The focus of this work was to understand how effectively the process
changes have been able to deal with these concerns. To this end, we explore the
practices in the context of a new project in comparison with existing projects that
migrated to IID, both quantitatively and qualitatively.

An industrial investigation of IID practices merits examination for various
reasons. IID is often seen as the innovative response to traditional engineering
practices [2]. Many believe that IID practices have hit the mainstream of application
development [6]. Others believe that “we’re not there yet” [7]. Perhaps these
contradictory views are related to the fact that much of the evidence about Agile
adoption has been decontextualized [4]. In addition, Dingsoyr et al.’s roadmap [3]
calls for more industrial collaboration through Action Research and for more
knowledge on how Agile principles, such as IID, work in different contexts. In our
research, a governance model faced with strict conformance to rules and regulations
resulted in formal decision-making processes. This culture and context led managers

to adopt IID through a methodology with a higher degree of “ceremony and
formality”, the Rational Unified Process (RUP) [5].

The IID adoption strategy we present in this paper followed a “go all in, but
iterate first with some public display” [10]. IID adoption efforts were motivated by
several “smells” [9] identified by the business clients of those projects (poor bug-
fixing responsiveness and delivery delays). The adoption was top-down and mandated
that all projects in the organization had to follow the new RUP practices, but the
adoption path for existing projects was limited (discussed in a previous paper [14]).

2 Case Study

We collected data from a suite of three pre-existing complex projects in the largest IT
program that migrated to IID practices (Projects Transitioned), and from a suite of
four new applications developed using IID practices since inception (Project New).
Table 1 presents some organizational context following Eckstein’s five dimensions to
categorize the largeness of a project [11].

Table 1. Jutta Eckstein five dimensions of largeness.

People 900 employees in total. Ten IT programs with 191 IT professionals.
Scope Real-time validation of complex government rules and regulations during

on-line submission of data, with a user base of over 11,000 users.
Money The projects under study had budgets of over $1.5 million dollars.
Time One to three years for a first production release.

Risk Innovative and unconventional systems. Specially, one of the web

applications is considered a “state of the art” government application.

Due to external industrial factors, such as the Alberta oil and gas boom,
development was fast paced and many releases were rushed or delayed. Fixed
delivery dates forced unreliable acceptance testing schedules on the business clients.
IT project teams quickly evolved from small groups of four to six developers to
increased teams of over 15 developers. In less than three months the existing projects
under study grew to 40+ team members. The result was poor software quality, low
team morale, and loss of trust between IT management and business clients. Business
clients communicated the need for better quality, better stability, better
responsiveness, and more reliable testing schedules to management.

The introduction of process improvements in real life is a complex problem that
involves many simultaneous factors. IT Management made a small number of process
changes over a period of approximately 13 months to Projects Transitioned (discussed
in a previous paper [14]). In this section we provide further contextual information
about the process changes in the new project that followed IID since inception
(Project New), to avoid decontextualization [4]. Specific practices adopted by this
new IID project included: short iterations, iteration planning, scheduled iteration
testing, iteration end demos, risk management, early prototyping, and external focus
groups for user acceptance tests.

The reviewed RUP execution state used by Project New included: the iterative
RUP lifecycle, Rational Tools, Role sets, and selected work products (approximately
13). The team experimented with iteration length during the Inception and
Elaboration phases. At the end of first Elaboration phase, the team decided to
follow three-week iterations as more become known about the project. Transition
iterations were an exception; they were seven weeks long. The team also started to
hold daily stand-up meetings during the Elaboration phases and the developers
implemented unit tests to prototype and evaluate the risk of project tasks. Later in
the construction stages the team stopped developing and maintaining these unit
tests. Manual testing occurred during the last week of an iteration. During the last
week of Construction iterations code was de l ive red to a staging environment - the
“Sandbox.” A dedicated tester and the business analyst used this staging environment
to test and validate the builds. The team prepared demos for the business clients at
the end of each iteration. These demos presented the progress of the iteration to
business clients for feedback by showing a working version of the system in so far.

2.1 Methodological Approach

The data presented is longitudinal. It extends over three years of data from Projects
Transitioned and over two and a half years of data from Project New.

The Goal Question Metric approach (GQM) proposed by Basili et al. [8] was
adopted in order to formalize the research goals and to find appropriate measurements
to answer them. The question: “How long did it take to fix bugs?”, resulted in two
metrics: bug-fixing responsiveness in days (quantitative data) and subjective views of
business clients (qualitative data). This question and metrics were applied twice: once
for (Projects Transitioned) and once for (Project New).

Quantitative Data. Bugs were grouped based on priority. Mixing all the bugs
together would lead to a less realistic representation of bug fixing responsiveness as
higher priority items would most likely be worked on first. Bug priority was used
instead of bug criticality because according to interviewees, a clear definition of a
critical bug was not available until the later stages of the RUP adoption. We define
bug-fixing responsiveness as:

Bug-fixing responsiveness (in days) = The number of days between when the bug
was submitted and when it was closed.

(1)

Only bugs logged from the RUP Transition forward were measured for Projects

Transitioned to allow a fair comparison of the affects of the IID adoption. Bug reports
that did not include any action related to a developer analyzing and/or fixing the bug
were excluded. As a result, we only included 958 bugs from Projects Transitioned and
only 318 bugs from Project New in our analysis.

Qualitative Data. Data was gathered using field notes based on interview sessions
with the project manager, technical lead, business analyst, and one developer from
Project New. Three to four sessions were conducted with each of the participants

for approximately 20 minutes each time. The questions were designed based on
qualitative interviewing techniques [12] with probing questions [13].

3 Results

On-time & On-budget Delivery. The risk list document and iteration demos provided
a more tangible way to manage and negotiate expectations. Business clients bought
into the idea of having a subset of the project delivered first instead of prolonging
the delivery timelines. Based on items of this risk list the business clients agreed
to break Project New into two phases at the end of Elaboration Iteration 2.
Although the project took longer than it first envisioned, both phases of Project New
were delivered on-time and met the deliverables milestones.

This government agency has a set budget given to the IT Department at the
beginning of each fiscal year. The budget for Project New was set during
Inception. The interviewed business clients and the project manager stated that this
project was on-budget. The interviewees indicated that no overtime was required or
imposed to the project team.

This was confirmed by the overall perception of this project in the organization
that this was “ the first IT project to be on-time and on-budget in six years.”

Better Bug Detection. A core goal for software is to deploy bug-free software. Bugs
found before deployment are a sign that the overall process is working. As such, we
analyzed where in the development process most bugs were being logged for both
Projects Transitioned and for Project New. The bugs reports were grouped based on
the staging environment where they were discovered. The ascending order of staging
environment is: Dev (Development), Test (Testing) and or Sbx (Sandbox), UTE
(External User Testing Environment), Act (User Acceptance), Prod (Production).

Figure 1 shows that during the waterfall days (Pre-RUP), 40% of all bugs were
found after a production release for Projects Transitioned. A total of 47% of all
bugs were found in the two latest staging environments (Act and Prod). During the
RUP transition, the percentage of bugs found after a release dropped to 34%, and
after the Partial RUP adoption, the overall numbers dropped to 25%. We do see
an improvement in the amount of bugs found after a release (from 40% to 25%).

For Project New, Figure 1 shows that only 7% of all bugs were found after a
production release. Close to 9% of all bugs were found in the latest staging
environments. An interesting difference is that for Project New an external user
testing environment (UTE) was set up for external focus group participants to test
the application. 30% of the bugs reported were found during such testing.

Bug-fixing Responsiveness. Bugs were grouped based on priority. The arithmetic
mean (average) in days, median, standard deviation, minimum (min), and maximum
(max) number of days that it took to fix a bug were calculated for each group.
Figure 2 illustrates the results. The values from Projects Transitioned and Project
New are intercalated to facilitate comparisons. The averages and median values are
substantially lower for the project that followed IID practices since inception.

Figure 1. Bugs breakdown per staging environment.

Figure 2. Bug-fixing responsiveness - day to closure.

The data was not normally distributed. The standard deviation was always higher
than the averages. This variation in time to fix bugs within the same priority was
not a surprise. The level of effort required to fix a bug is not always associated
with its business impact and priority.

A quick turnaround to address an issue showed respect and concern towards the
business clients. The business partners felt they could trust the team to fix issues

in a timely manner. To validate this sentiment, bug-fixing responsiveness was also
measured relative to the iteration end dates. Project New’s bugs labeled as
“Resolve Immediately” were, on average, addressed within the iteration they were
found. “Give High Attention” and “Average” bugs were addressed within the next
iteration. Unfortunately that was not true of Projects Transitioned where due to the
high volume of bugs introduced before the concept of iterations was adopted,
existing bugs competed against new ones in the queue to resolution. In average bugs
were fixed well after the end date of releases in which they were found.

4 Conclusion

Through the analysis of bug-fixing data and qualitative data gathered during
interviews, we discovered that IID practices allowed a new project to: provide
support for managerial decisions that lead it to be the first project in six years to
deliver on-time and on-budget; avoid quality and stability issues; provide
substantially better bug-fixing responsiveness than projects that migrated to IID.
IID practices in both new and existing projects allowed the teams to detect bugs
earlier on in the development lifecycle.

References

1. Alistair Cockburn. Incremental versus iterative development. On-line:
http://alistair.cockburn.us/index.php/Incremental versus iterative development.

2. C. Larman and V.R. Basili. Iterative and incremental development: a brief history.
Computer, 36(6):47–56, June 2003.

3. T. Dingsoyr, T. Dyba, and P. Abrahamsson. A preliminary roadmap for empirical research
on agile software development. In Agile, 2008. AGILE ’08. Conference, 83–94, Aug. 2008.

4. Philippe Kruchten. Voyage in the agile memeplex. Queue, 5(5):38–44, 2007.
5. C. Larman. Agile & Iterative Development, A Manager’s Guide. Addison Wesley, 2004.
6. S. Ambler. Agile adoption rate survey. On-line:

www.ambysoft.com/surveys/agileMarch2007.html.
7. Hakan Erdogmus. Agile’s coming of age ... or not. Software, IEEE, 24(6):2–5, 2007.
8. H. Rombach V. Basili, G. Caldiera. The goal question metric approach. Encyclopedia of

Software Engineering, 2:528–532, 1994.
9. Amr Elssamadisy. Patterns of Agile Practice Adoption. Lulu.com - InfoQ, 2007.
10. Mike Cohn. Patterns of agile adoption. On-line:

http://www.agilejournal.com/content/view/734/111/.
11. Jutta Eckstein. Agile Software Development in the Large - Diving Into the Deep. Dorset

House, New York, 1983.
12. H. J. Rubin and I. S. Rubin. Qualitative Interviewing: The Art of Hearing Data (2nd Ed.).

SAGE, 2005.
13.The question man, What to avoid, What to do. On-line: http://www.a jr.org/article

printable.asp?id=676.
14. Caryna Pinheiro, Frank Maurer, and Jonathan Sillito. Improving quality, one process

change at a time. In 31st International Conference on Software Engineering (ICSE 2009),
volume 31 of ICSE Companion 2009, pages 81–90. IEEE, 2009.

