
UNIVERSITY OF CALGARY

Automated Example Oriented REST API Documentation

by

S M Sohan

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2017

© S M Sohan 2017

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for

acceptance, a thesis entitled “Automated Example Oriented REST API Documenation” submitted

by S M Sohan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOS-

OPHY.

Dr. Frank Maurer
Supervisor

Department of Computer Science
University of Calgary, Canada

Dr. Mea Wang
Supervisory Committee Member
Department of Computer Science

University of Calgary, Canada

Dr. Craig Anslow
Supervisory Committee Member

School of Engineering and
Computer Science

Victoria University of
Wellington, New Zealand

Dr. Nils Daniel Forkert
Internal Examiner

Department of Radiology and
Hotchkiss Brain Institute

University of Calgary, Canada

Dr. Yves Lucet
External Examiner
Computer Science

University of British Columbia
(Okanagan), Canada

Date

iii

Abstract

API documentation presents both a problem and an opportunity for API usability. REST APIs

provide interconnectivity between applications over HTTP. Documentation of a REST API is a key

information source for API client developers. Most REST APIs are documented using a manual

approach, which can be time consuming and error-prone. REST API developers need to efficiently

document their APIs with qualities that make the API usable. In this research, I focused on the

topic of automated REST API documentation to satisfy this need.

In this thesis, I present and evaluate of a novel technique to solve REST API documentation

requirements. I present a set of REST API documentation requirements by studying the existing

literature and the current industry practice. From this study, I observed that REST APIs evolve

frequently, but used a manual or bespoke approach for generating and maintaining their documen-

tation. I present, SpyREST, a reusable technique with a prototype implementation to automate the

REST API documentation process with executable API usage examples. The technique involves

the interception of example REST API calls using an HTTP proxy server to auto-generate an ac-

curate and updated REST API documentation. I present an industrial evaluation of the proposed

technique based on a period of eighteen months of production use. From this study, I found that

it was feasible to leverage API test code to automatically generate an always-updated REST API

documentation for evolving REST APIs with usage examples. To evaluate the impact of usage

examples on REST API client developers, I performed a controlled study with experienced REST

API developers. From this case study, I found that REST API client developers faced patterns

of obstacles using REST APIs that can be reduced by including API usage examples in the API

documentation, as suggested in the proposed technique.

The findings of this research can be used as a guideline by practitioners to automatically gen-

erate REST API documentation with usage examples. Researchers can extend the novel concept

of using interception to automatically document API usage examples for other forms of APIs.

iv

Acknowledgements

I am grateful to Shahana, my wife, for supporting me and the family while I took an unacceptable
amount of the time and attention away from them to work on this research.

I am thankful to my supervisor Dr. Frank Maurer for giving me the opportunity and valuable
guidance to pursue this research. I am also thankful to Dr. Craig Anslow for his continuous
encouragement and the countless number of hours that he spent to provide feedback about my
work.

I am grateful to Cisco for allowing me to pursue this research alongside my job. I am grateful
to the study participants in my case studies for sharing their time with me on the experiments.

v

Dedication

To my dear wife.

vi

Contents

Abstract . iv
Acknowledgements . v
Dedication . vi
Contents . vii
List of Tables . x
List of Figures . xi
List of Symbols . xii
1 Introduction . 1
1.1 Research Goals . 4
1.2 Research Objectives . 5
1.3 Cohesion and Unitary Report . 6
1.4 Contributions . 9
1.5 References . 9
2 A Case Study of Web API Evolution . 12
2.1 Abstract . 12
2.2 Introduction . 12
2.3 Related Work . 14

2.3.1 Empirical Research on Web API Evolution 14
2.3.2 Techniques to Evolve Web APIs . 15
2.3.3 Tool Support for Evolving Web APIs . 17

2.4 Case Study . 17
2.4.1 Research Questions . 18
2.4.2 Selection Strategy . 18
2.4.3 Research Method - Qualitative Analysis 18

2.5 Findings . 22
2.5.1 RQ1 Versioning . 22
2.5.2 RQ2 Documentation . 29
2.5.3 RQ3 Communication . 30

2.6 Discussion . 31
2.7 Conclusion . 34
2.8 References . 35
3 SpyREST: Automated RESTful API Documentation using an HTTP Proxy Server . 38
3.1 Abstract . 38
3.2 Introduction . 38
3.3 Related Work . 40

3.3.1 General API Documentation . 40
3.3.2 RESTful API Documentation . 41

3.4 SpyREST . 42
3.4.1 Requirements . 42
3.4.2 Design . 43
3.4.3 Features . 46

3.5 SpyREST Case Study . 48

vii

3.5.1 SpyREST Documentation vs. Official Documentation 48
3.6 Discussion . 49

3.6.1 Threats to Validity . 51
3.7 Conclusion . 52
3.8 References . 52
4 SpyREST in Action: An Automated RESTful API Documentation Tool 55
4.1 Abstract . 55
4.2 Introduction . 55
4.3 SpyREST . 56

4.3.1 Design . 56
4.3.2 Implementation . 58

4.4 Use Cases . 60
4.4.1 Initial API Documentation . 60
4.4.2 Maintaining API Documentation for Evolving APIs 62

4.5 Discussion . 63
4.6 Related Work . 66
4.7 Conclusion . 68
4.8 References . 68
5 Automated Example Oriented REST API Documentation at Cisco 71
5.1 Abstract . 71
5.2 Introduction . 71
5.3 Related Work . 73

5.3.1 API Usability and Documentation . 73
5.3.2 Usage Examples in API Documentation 74
5.3.3 REST API Documentation . 75

5.4 REST API Documentation Tool Selection . 77
5.4.1 Requirements . 77
5.4.2 Evaluation of Tools . 78

5.5 SpyREST – Overview . 78
5.6 Case Study: SpyREST at Cisco . 84

5.6.1 Methodology . 84
5.6.2 Context . 84
5.6.3 The API Development Process . 86

5.7 Discussion . 90
5.7.1 REST API Documentation from Test Code 90
5.7.2 Maintaining Custom Content . 91
5.7.3 Handling Flexible API Elements . 92
5.7.4 API Documentation Life-cycle . 93
5.7.5 API Changelog . 93
5.7.6 Cross-Referencing API Elements . 94
5.7.7 Extending beyond REST API Documentation 95
5.7.8 Limitations . 95

5.8 Conclusion . 96
5.9 References . 96
6 A Study of the Effectiveness of Usage Examples in REST API Documentation . . 101

viii

6.1 Abstract . 101
6.2 Introduction . 101
6.3 Research Question . 103
6.4 Methodology . 103

6.4.1 Study API . 104
6.4.2 Study Design . 106

6.5 Results . 114
6.5.1 Quantitative Analysis . 114
6.5.2 Qualitative Analysis Results . 116

6.6 Threats to Validity . 119
6.7 Related Work . 120
6.8 Conclusion . 122
6.9 References . 123
7 Conclusion . 126
7.1 Future Work . 129
A Source Code Fragments of the Spy from Chapter 4 131
B Permissions for Reusing Published Papers in PhD Thesis 146

ix

List of Tables

1.1 Summary and Flow of Arguments of the Sub-projects 7

2.1 Case Study - Representative Sample of Web APIs. 19
2.2 List of Codes . 21

4.1 Examples of Auto Detected Versions . 59

5.1 REST API Documentation . 77
5.2 Comparison of Tools against the Requirements 79

6.1 Participant Profile . 111

x

List of Figures

1.1 Manual REST API Documentation Steps . 3

2.1 Case Study - Change Profiles for the Web APIs. 27

3.1 SpyREST Screenshots Showing Auto Generated API Documentation 45

4.1 SpyREST Design . 57
4.2 SpyREST Screenshots Showing Auto Generated API Documentation 60

5.1 Screenshots of the REST API Documentation from Cisco using SpyREST 83
5.2 API Development workflow using SpyREST at Cisco 86

6.1 Screenshot of Documentation for Post/date . 106
6.2 Screenshot of the Custom-built Web-based REST API Explorer Used by Study

Participants . 109
6.3 Screenshots of Original vs. Enhanced API Documentation 110
6.4 Quantitative Comparison between G1 and G2 . 115
6.5 Participation Satisfaction Ratings on a Scale of 0-10 116

xi

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

API Application Programming Interface

HTTP Hyper Text Transfer Protocol

JSON JavaScript Object Notation

REST Representational State Transfer, used interchangeably with RESTful

SOAP Simple Object Access Protocol

WSDL Web Service Definition Language

XML Extensible Markup Language

xii

Chapter 1

Introduction

Robillard defines an API as follows: An API is the interface to implement functionality that devel-

opers can access to perform various tasks [1, 2]. Application Programming Interfaces, commonly

known as APIs, are used to express a software component in terms of its operations, inputs, outputs,

and their types1. APIs enable multiple software components to interact with each other. Web APIs

allow software-to-software interconnectivity using web technologies as the transport mechanism

between systems.

REST APIs are a type of API that are used to integrate software components using web tech-

nologies. Fielding defined Representational State Transfer or REST as an architectural style for

developing distributed hypermedia systems [3]. He described the design of modern Web as an

example of a REST-style architecture. REST-style architecture allows software components to

satisfy the data transfer needs of the modern Internet-scale applications by leveraging a generic in-

terface based on URIs and Internet media types that allow intemediate processing such as caching

to improve system performance.

REST APIs allow access to application resources over HTTP. While REST describes a generic

protocol for accessing application resources, the applications are responsible for the specific rep-

resentation of the resources. For example, a REST API may support multiple Internet media types

such as JSON, XML, CSV for a single application resource. Similarly, two different REST APIs

may use the same media type but contain entirely different formats to represent their objects.

For example, GitHub, an online code repository hosting tool, has a REST API that can be

used by third-party applications to integrate with GitHub features. The GitHub REST API2 has

a resource called Repository to denote a code repository that can be identified by the URL

1https://en.wikipedia.org/wiki/Application_programming_interface
2https://developer.github.com/v3/repos/#create

1

https://en.wikipedia.org/wiki/Application_programming_interface
https://developer.github.com/v3/repos/#create

/user/repos. To create a new Repository for a user, the GitHub API can be invoked via

HTTP POST at /user/repos using the following JSON representation of a Repository:

{

"name": "Hello-World",

"description": "This is your first repository",

"homepage": "https://github.com",

"private": false,

"has_issues": true,

"has_wiki": true,

"has_downloads": true

}

In today’s world of technology, REST APIs have become ubiquitous and the primary choice

for integrating Internet enabled applications due to its simplicity and similarity with HTTP [4]. For

example, a real estate listing website uses a REST API to collect “walk score” and another REST

API to show a map view of a property listing. By incorporating the map and walk score using REST

APIs, the real estate listing site provides important information to their users. Most REST APIs,

including these two examples, are often documented manually or using custom implemented tools

specific to the APIs that are not publicly available. This requires effort to generate and maintain

the documentation of REST APIs over time since there is a lack of reusable tool support.

Previous research in the area of API usability mostly focused on local APIs such as Java li-

braries. Researchers identified the documentation of APIs as both the primary source of informa-

tion as well as the key obstacle for API usability [2]. Hence the quality of the API documentation

plays an important role in API usability. To this regard, researchers have identified the qualities of

“good API documentation” as follows: complete, correct, includes thorough explanations and code

examples, provides consistent presentation and organization [2, 5]. Today, there are several tools

2

/user/repos
/user/repos

such as Javadoc3, UsETeC [6], Jadeite [7], APIMiner [8], Roast [9] that can be used to document

local APIs with the aforementioned qualities .

While there are overlaps between the documentation requirements of local and REST APIs,

there are significant requirements that are unique to each. The documentation of most local APIs

contain a structural definition of the API classes and methods. API usage examples for local APIs

are documented using the same programming language of the API. On the other hand, REST

APIs are defined using HTTP specific parameters such as API endpoints, query parameters, HTTP

headers and body. REST API clients can be written in any programming language agnostic to

the API implementation language. Due to such structural and implementation differences between

local and REST APIs, the existing technique and tools for local API documentation cannot be

readily used to generate REST API documentation.

Figure 1.1: Manual REST API Documentation Steps

Currently, the process of documenting REST APIs is largely manual. Conceptually, the high

level steps involved in the manual process can be identified as shown in Figure 1.1. These steps

S1-S7 can be described as follows:

• S1 - API developer prepares an example API with the required HTTP parameters

and request body.

• S2 - API developer uses a REST API client to make the example API call.

• S3 - the API developer records the HTTP data.
3http://www.oracle.com/technetwork/java/javase/documentation/

index-jsp-135444.html

3

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

• S4 - API developer then edits the recorded data so that only relevant content is

selected for documentation.

• S5 - API developers use any custom content to describe the API example.

• S6 - API developers combine the custom content with the edited content from the

HTTP traffic into HTML to publish on the web.

• S7 - API developer adds custom overview information to explain API concepts and

general rules, and publishes the final documentation so other developers can learn

the API.

The steps S1-S6 are repeated for every API action that needs to be documented, and S1-S7

need to repeated for every version of the REST API as it evolves. As depicted here, this manual

process can be both time consuming and error-prone.

1.1 Research Goals

The overarching goal of my research is to improve the current state of the process of REST API

documentation process by automating the repeating manual steps in the aforementioned workflow.

More specifically, I aimed to solve the following research goals:

• RG1: To identify a set of REST API documentation requirements. Existing research

on API usability has derived a number of API documentation requirements primar-

ily focusing on local APIs. Due to the structural and implementation differences

between local and REST APIs, I aimed to identity REST API specific documenta-

tion requirements in my research. This has several implications as follows: having

access to a scientifically derived list of REST API documentation requirements al-

lows REST API developers to make an informed decision related to planning and

execution of their documentation efforts. The requirements provide a background

4

research that can be used by practitioners to compare and contrast existing REST

API documentation tools while selecting an appropriate tool for their API. REST

API documentation tool developers can also use the requirements to build necessary

features.

• RG2: To develop and evaluate a technique to overcome the commonly observed

challenges related to REST API documentation. I aimed to devise a reusable tech-

nique so that REST APIs can be documented following the identified REST API

documentation requirements without following manual or bespoke methods. It has

the following implications: REST API developers can utilize the technique to over-

come the common challenges with the generation and maintenance of their API

documentation, and REST API client developers can access an API documentation.

1.2 Research Objectives

Related to RG1 and RG2, I aimed to address the following research questions as my objectives:

• RO1: How are evolving REST APIs documented? This question is aimed to ana-

lyze the gap between current industry practice around the documentation of evolv-

ing REST APIs and the proposed solutions from existing literature. This objective

helped me to identify the research opportunity to work on unresolved problems

related to REST API documentation.

• RO2: What are the requirements for usable REST API documentation? This objec-

tive provides a necessary background for improving the state of REST API docu-

mentation process.

• RO3: What technique can be used to document REST APIs to meet the require-

ments? This is the central research objective. I researched to develop a new tech-

5

nique that can fill the gap between existing REST API documentation methods and

the identified requirements.

• RO4: Is the proposed technique a practical one for REST API developers? A qual-

itative evaluation of the proposed technique in a real-world setup is needed to un-

derstand the feasibility and the shortcomings of the proposed technique from the

perspective of the REST API developers.

• RO5: How does a documentation using the proposed technique impact REST API

client developers? This question investigates the impact of the proposed technique

from the perspective of the REST API client developer effort and success rate while

performing API tasks.

1.3 Cohesion and Unitary Report

To address the aforementioned research goals and objectives, my research strategy included five

sub-projects, have resulted in publications at peer-reviewed international conferences. Table 1.1

shows a high level overview of the flow of arguments between the sub-projects to meet the research

goals.

The first research project is described in Chapter 2, where I discuss a case study to summarize

the state of existing literature and industry practices related to the versioning, documentation, and

change communication patterns of evolving Web APIs [10]. The results are based on a study of

nine industrial APIs. I found a lack of reusable techniques in the existing literature to automatically

generate and maintain the documentation of multi-version evolving REST APIs with usage exam-

ples. I pursued further research to solve this problem as discussed in the following paragraphs.

In Chapter 3, I discuss my second research project where I derived a set of REST API doc-

umentation requirements and proposed a new technique to meet the requirements [11]. Here, I

present a list of REST API documentation requirements by studying the literature and applying the

6

Table 1.1: Summary and Flow of Arguments of the Sub-projects

Chapter Goal Objective Research Project Primary Outcome

Chapter 2 RG1 RO1 A case study of Web API

evolution [10].

A set of challenging problems re-

lated to evolving Web APIs. Se-

lected REST API documentation as

the problem of interest for this re-

search.

Chapter 3 RG1 and

RG2

RO2 and

RO3

SpyREST: Automated

RESTful API documenta-

tion using an HTTP proxy

server [11].

A list of requirements. A con-

ceptual design using interception to

generate REST API documentation

to meet the requirements.

Chapter 4 RG2 RO3 SpyREST in action: An

automated RESTful API

documentation tool [12].

A reusable tool that implements the

conceptual design and shows how

the identified REST API documen-

tation requirements are met.

Chapter 5 RG2 RO4 Automated example ori-

ented REST API docu-

mentation at Cisco [13].

Empirical evidence that the pro-

posed technique provides a prac-

tical documentation solution for

REST API developers.

Chapter 6 RG2 RO5 A study of the effective-

ness of usage examples in

REST API documentation

[14].

Empirical evidence that the pro-

posed technique allows REST API

client developers to perform API

tasks with less effort, higher suc-

cess and satisfaction ratings.

7

findings from Chapter 2. I discuss the available REST API documentation techniques and compare

against the requirements. I present, SpyREST, a novel technique to intercept example REST API

calls using an HTTP proxy server to collect and automatically synthesize API traffic to generate

and update API documentation to satisfy the identified requirements. The primary advantage of

the presented technique is that the documentation is generated from executable code. As a result, a

continuously updated REST API documentation with realistic usage examples is achievable with a

reduced manual effort. The remaining chapters provide evidence that the proposed technique can

satisfy the identified requirements.

I present my third research project, related to RG2, in Chapter 4, where I present a prototype

implementation of the aforementioned technique [12]. In this prototype implementation, I discuss

the process that transforms a number of example HTTP requests and responses into usable REST

API documentation. I also present an example where automated test code is used to generate and

maintain a continuously updated REST API documentation using the developed tool.

I discuss my fourth research project, related to RG2, involving an industrial evaluation of the

proposed technique and the tool in Chapter 5 [13]. The evaluation is carried out based on the

data collected from an eighteen month of production use of SpyREST at Cisco, my current em-

ployer. From the study I found that it is feasible to use the proposed interception technique and

automated tests to document evolving REST APIs satisfying the previously presented REST API

documentation requirements. Automated always-updated REST API documentation was found to

help establish a quick feedback cycle among the stakeholders. I also discuss several refinements

and limitations of the proposed technique based on the lessons learned from this case study.

I present my fifth research project, related to RG2, in Chapter 6, where I discuss a controlled

study to understand the impact of usage examples in API documentation on REST API client de-

velopers [14]. I observed that providing usage examples with data taken from API test code reduces

the obstacles and improves API client developer success rate, reduces required trial attempts, and

improves satisfaction ratings. The findings from this study provides an empirical evidence that by

8

using the proposed technique of generating REST API documentation from API test code can help

API client developers to achieve a higher level of success with a reduced effort.

In Chapter 7, I conclude by discussing how the research objectives are achieved and provide a

list of problems for future research.

1.4 Contributions

In summary, this thesis makes the following key contributions to the body of research in software

engineering:

1. A list of REST API documentation requirements derived from the existing literature

and the current state of industry practices to be used as a guideline by practitioners

and researchers.

2. SpyREST, a novel technique and a reusable tool that uses interception to automati-

cally generate and maintain evolving REST API documentation with usage exam-

ples from executable code.

3. An industrial evaluation of SpyREST to demonstrate the feasibility of the proposed

technique that REST API developers can follow to improve their REST API docu-

mentation experience.

4. An empirical evidence showing the common obstacles faced by REST API client

developers that can be reduced with usage examples to help the prioritization of

REST API documentation efforts.

1.5 References

[1] M. Robillard and R. DeLine, “A field study of API learning obstacles,” Empirical Software

Engineering, vol. 16, no. 6, pp. 703–732, 2011.

9

[2] M. Robillard, “What makes APIs hard to learn? the answers of developers,” Software, IEEE,

vol. PP, no. 99, pp. 1–1, 2011.

[3] R. T. Fielding, “Architectural styles and the design of network-based software architectures,”

Ph.D. dissertation, University of California, Irvine, 2000.

[4] J. Mangler, P. P. Beran, and E. Schikuta, “On the origin of services using RIDDL for descrip-

tion, evolution and composition of RESTful services,” in Proc. of IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 505–508.

[5] B. Myers, S. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, and D. K.

Busse, “Studying the documentation of an API for enterprise service-oriented architecture,”

J. Organ. End User Comput., vol. 22, no. 1, pp. 23–51, 2010.

[6] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining API usage examples from

test code,” in Proc. of 2014 IEEE International Conference on Software Maintenance and

Evolution (ICSME),. IEEE, 2014, pp. 301–310.

[7] J. Stylos, B. Myers, and Z. Yang, “Jadeite: Improving API documentation using usage infor-

mation,” in Proc. of Extended Abstracts on Human Factors in Computing Systems, ser. (CHI

EA). ACM, 2009, pp. 4429–4434.

[8] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting APIs with exam-

ples: Lessons learned with the APIMiner platform,” in Proc. of IEEE Working Conference on

Reverse Engineering (WCRE), 2013, pp. 401–408.

[9] D. Hoffman and P. Strooper, “API documentation with executable examples,” J. Syst. Softw.,

vol. 66, no. 2, pp. 143–156, May 2003.

[10] S. Sohan, C. Anslow, and F. Maurer, “A case study of Web API evolution,” in Proc. of IEEE

World Congress on Services (SERVICES). IEEE, 2015, pp. 245–252.

10

[11] ——, “Spyrest: Automated RESTful API documentation using an HTTP proxy server,” in

Proc. of IEEE/ACM International Conference on Automated Software Engineering, 2015, pp.

271–276.

[12] ——, “Spyrest in action: An automated RESTful API documentation tool,” in Proc. of

IEEE/ACM International Conference on Automated Software Engineering, 2015, pp. 813–

818.

[13] ——, “Automated example oriented REST API documentation at cisco,” in Proc. of

IEEE/ACM International Conference on Software Engineering, 2017, pp. 213–222.

[14] S. Sohan, C. Anslow, F. Maurer, and M. Robillard, “A study of the effectiveness of usage

examples in REST API documentation,” in to appear in Proc. of IEEE Symposium on Visual

Languages and Human-Centric Computing, 2017.

11

Chapter 2

A Case Study of Web API Evolution

2.1 Abstract

When applications are integrated using web APIs, changes on a web API may break the dependent

applications. This problem exists because old versions of the APIs may no longer be supported, a

lack of adequate documentation to upgrade to a newer version, and insufficient communication of

changes. In this paper we conducted a case study of evolving Web APIs to investigate what changes

are made between versions and how the changes are documented and communicated to the API

users. The findings are a list of recommendations for practitioners and researchers based on API

change profiles, versioning, documentation and communication approaches that are observed in

practice. This study will help inform developers of evolving Web APIs to make decision about

versioning, documentation and communication methods.

2.2 Introduction

Web APIs are used as a key interconnectivity mechanism to access software services over the

Internet. Interconnected applications can provide better service at a lower cost to their users. For

example, a business search portal can display the businesses near a user’s current location on a

map by using the Google Maps API. The actual implementation of Web APIs can follow various

protocols, such as SOAP1 and RESTful2 web services. In this paper, the term Web API is used to

describe any protocol unless otherwise specified.

Web APIs connect independently maintained applications. As a result, when a Web API

evolves, all the integrated applications using the Web API may not be able to evolve on the same

1http://www.w3.org/TR/soap/
2http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

12

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

schedule. For example, in the case of the aforementioned business search portal, if the Google

Maps API changes, it may also require the portal to change. This introduces unique challenges to

the evolution of Web APIs compared because the evolution is out of the control of the API users.

For example, API users of a local API can use a copy of an older version, but for evolving Web

APIs, API users are forced to upgrade if older versions are no longer supported. Documentation

of evolving Web APIs is an important topic for case study because of the unique challenges it

presents. Web APIs are defined by their HTTP interface, including both HTTP headers as well as

request and response data formats. As a result, for an evolving Web API, its documentation needs

to indicate changes in any of these fields, unlike the local APIs, where typically no HTTP specific

information is involved.

The primary goal of this research is to investigate the challenges that are currently faced by

developers and users of evolving Web APIs so that future research can be performed to address

the problems. To this regard, we analyzed existing literature on the topic of Web API evolution.

We analyzed the evolution of multiple Web APIs to understand the current industry trends and

challenges. The juxtaposition of current industry practices with the literature reveals insights that

are otherwise unseen when viewed from a single perspective. We use the differences between the

literature and industry practices to identify unresolved research problems.

In this case study, multiple Web APIs representing a variety of application areas are selected,

analyzed and compared to gain a broader perspective about current industry practices on Web API

versioning, documentation and communication of changes. The result of this analysis is a summary

of different approaches to Web API evolution, and a list of recommendations for developers of

evolving Web APIs.

The remainder of this paper is organized as follows: the next section is related work on Web

API evolution. Then, we discuss the case study of multiple Web API evolution. In the following

section, we list our findings, followed by a discussion about the findings. Finally, we conclude

with the contributions of this work.

13

2.3 Related Work

We look at related work in the following areas: Empirical Research on Web API evolution, tech-

niques to evolve Web APIs and, tool support for evolving Web APIs.

2.3.1 Empirical Research on Web API Evolution

Several case study papers were published on Web API Evolution. Maleshkova et al. analyzed mul-

tiple Web APIs to identify the different approaches related to Web API descriptions, data formats,

protocols, reusability, granularity, and authentication [1]. They found that a lack of a standard

format to document Web APIs and manual documentation led to API under-specification causing

confusions about how to use the APIs for different use cases. They identified a need for automated

approaches.

Fokaefs et al. performed an empirical study on Web API evolution involving multiple SOAP

web services, Amazon EC2, FedEx Rate, Bing, Paypal, and Fedex Pack., and provided an evolution

profile showing the percentage of changes between two consecutive versions of the Web APIs [2].

The same Web APIs were studied by Romano et at., but they provided an alternate evolution profile

of the Web APIs. Instead of using percentage of change, they profiled the number of operations,

parts and XML file elements from WSDL files for each version of the Web APIs [3]. These change

profiles point to the ever changing nature of Web APIs.

Jun et al. performed case studies on the evolution of Web APIs and compared the evolution of

Web APIs against local library APIs [4]. For studying Web APIs, a selection criteria was provided

as follows: Web APIs with large number of clients, covering different application areas, owned

by different companies in different countries, and well documented API reference and migration

guides. They extracted 16 patterns to describe different types of changes on the Web APIs as

follows: add or remove parameter, change type of return value, delete method, rename method,

rename parameter, change format of parameter, change format of return value, change XML tag,

combine methods, split method, expose data, unsupport request method, change default value of

14

parameter, chance default value of parameter, change upper bound of parameter, restrict access

to API. They also presented six challenges specific to Web API evolution that are not found with

library APIs such as: transformation between JSON and XML, M to N Mapping, delete method,

authorization protocol change, rate limit, and authorization of API access.

Espinha et al. looked at the growing pains with Web API evolution from the perspective of

Web API users by conducting interviews [5]. The interviewees were selected based on the activity

of their open-source projects that used Web APIs. They found that when a Web API evolves,

maintaining the integration with a Web API took more effort than integrating it the first time since

maintenance is carried out over a longer period of time. This makes the evolution of Web APIs an

important subject for a case study.

We distinguish our case study from these case studies as follows: we provide up-to-date in-

formation and include a diverse set of Web APIs. Our analysis uses new data sources such as

API user forums, and question and answer sites. We focused this study on different approaches to

versioning, documentation, and communicating changes as an API evolves.

2.3.2 Techniques to Evolve Web APIs

Kaminski et al. presented a design technique called “Chain of Adapters” to implement evolving

Web APIs [6]. Using this approach, the source code of a Web API can evolve from a version to

the next by introducing an adapter on the original version to implement any required change for

new versions. This technique allows for multiple versions to be deployed concurrently since older

versions are left unchanged.

Leskey suggests following a consistent and meaningful naming scheme to identify different

versions of APIs [7]. Such a naming scheme can be used to identify if two versions of an API

are compatible. Given the URL scheme, Leskey suggests a self documenting Web API, one that

exposes API endpoints to describe the details for each version.

Treiber et al. showed a conceptual model to capture the changes of a Web API [8]. A graphical

representation to display the evolution of SOAP Web Services is presented by Aversano et al.

15

where the differences between versions are highlighted based on their meta information found in

the WSDL files [9].

Some papers focused on automatic migration of Web API clients to newer versions. For ex-

ample, Wilde proposed a conceptual framework where WSDL can be extended so a client can be

compatible with potential Web API changes [10]. A similar approach is proposed by Fang et al.

where a fixed set of new XML nodes are used instead of arbitrary extensions [11]. Juric et al.

proposed a number of versioning related extensions to WSDL that can be applied to version SOAP

web services in multiple levels of granularity such as, service level and operation level [12]. Zuo et

al. developed a formal XML based change specification format to describe the evolution of SOAP

Web services [13].

For RESTful Web APIs, Mangler et al. introduced an XML based language called RIDDL

[14]. RIDDL allows incremental composition of Web API documentation for different versions by

adding a changelog to the documentation of an old version.

VRESCo demonstrates an approach where a router between the Web API client and server is

used to automatically route Web API calls to new API versions. The router routes API calls to

the desired version based on free form version names such as: latest, stable, and fixed version

[15]. Meng et al. compared different approaches for evolving Web APIs across multiple criteria:

granularity of evolution, terminal of evolution, type of evolution, scalability, and maintainability

[16]. They identified an aspect oriented approach, where an intermediate tier between a Web API

and its clients is used similar to VRESCo, can reduce coupling between the two.

Existing techniques to evolve Web APIs focused on finding different techniques for implement-

ing evolving SOAP based Web APIs that cannot be readily applied to RESTful Web APIs. From

our case study, we identified future research opportunities on techniques to solve the problems Web

API evolution that are also applicable to RESTful APIs.

16

2.3.3 Tool Support for Evolving Web APIs

Analyzing the available tool support for evolving Web APIs helped us identify opportunities for

future research in this area. WSDarwin introduces a layer of adapters on both the Web API and its

client to automatically migrate Web API clients to use a newer version of an API [17]. WSDarwin

uses WSDL description of the SOAP service to automatically infer the changes between versions

and uses preset default values for newly added objects to adapt the client request. VTracker,

predecessor of WSDarwin, produces a changelog between versions of WSDL files [2]. WSDLDiff

extends this by incorporating the semantic meaning of WSDL with an XML Schema Definition

into their changelog computation [3].

To identify if a new version of a Web API has any impact on a specific API client, Zou et al.

show a technique to generate client specific change logs [18]. A customized per API client change

log is generated by filtering the change log based on recorded API usage data so that only relevant

API changes can be communicated effectively to each user.

Existing research on tool support for RESTful Web API evolution is rather limited. hRESTS

is an HTML-based specification for describing RESTful Web APIs that can be used by computers

to auto-generate client code [19]. RESTdesc is another specification for describing RESTful Web

API documentation where APIs are described using pre and post conditions [20]. However, the

input to both hRESTS and RESTDesc require manual effort to produce the desired specification.

In the literature, we found multiple tools exist that rely on WSDL files. WSDL solutions have

limited applicability for RESTful Web APIs since WSDL files cannot be used to fully describe

RESTful APIs. Based on our case study, we will discuss future research problems on tool devel-

opment to support the challenges with RESTful Web API evolution.

2.4 Case Study

When companies evolve their Web APIs in practice the new changes can often break applications

that rely on these APIs. The aim of this case study is to investigate current industry practices on

17

Web API Evolution to answer the following research questions.

2.4.1 Research Questions

RQ1 Versioning: How are Web APIs versioned as they evolve?

RQ2 Documentation: How are Web API changes documented as they evolve?

RQ3 Communication: How are Web API changes communicated as they evolve?

2.4.2 Selection Strategy

To gain a broad perspective, we selected evolving Web APIs to represent each of the following

categories as shown in Table 2.1.

Industry - APIs representing different domains: social, business, and productivity.

Popularity - APIs with different number of users.

Maturity - Newer vs. established Web APIs.

Source code - Open source vs. closed source.

2.4.3 Research Method - Qualitative Analysis

The APIs in this case study are proprietary and open-source evolving Web APIs. For each API,

we collected publicly available data from the following sources: API home page, formal API

reference, and user forums and question-answer sites. A homepage provides a general introduction

to the Web API. The formal API reference described the different elements of the API. The user

forums and question-answer sites are used to communicate news and collect feedback about the

Web APIs, for example StackOverflow.com.

The first author of this paper read the API homepages and followed relevant hyperlinks to find

answers to RQ1. A summary of the strategies were presented to the co-authors, which was used

to categorize Web API versioning strategies into groups. Web API homepages contain changelogs

and links to API references which were used to find answers to RQ2.

18

Table 2.1: Case Study - Representative Sample of Web APIs.

W
eb

A
PI

U
R

L
C

ategories
N

um
of

D
ates

Industry
Popularity

M
aturity

C
ode

R
eleases

Facebook
Platform

A
PI

h
t
t
p
s
:
/
/
d
e
v
e
l
o
p
e
r
s
.
f
a
c
e
b
o
o
k
.
c
o
m
/
d
o
c
s
/

a
p
p
s
/
v
e
r
s
i
o
n
s

Social
H

igh
E

st
C

losed
11

01/2013-07/2014

Tw
itterR

E
ST

A
PI

h
t
t
p
s
:
/
/
d
e
v
.
t
w
i
t
t
e
r
.
c
o
m
/
d
o
c
s
/
a
p
i

Social
H

igh
E

st
C

losed
2

N
otA

vailable

W
ordpress

R
E

ST
A

PI
h
t
t
p
:
/
/
w
p
-
a
p
i
.
o
r
g
/

B
usiness

G
row

ing
N

ew
O

pen
8

08/2013-06/2014

Salesforce
&

C
hatter

R
E

ST
A

PI

h
t
t
p
s
:
/
/
w
w
w
.
s
a
l
e
s
f
o
r
c
e
.
c
o
m
/
u
s
/
d
e
v
e
l
o
p
e
r
/

d
o
c
s
/
a
p
i
_
r
e
s
t
/

B
usiness

Popular
E

st
C

losed
4

01/2013-08/2014

G
oogle

C
alendarA

PI
h
t
t
p
s
:
/
/
d
e
v
e
l
o
p
e
r
s
.
g
o
o
g
l
e
.
c
o
m
/

g
o
o
g
l
e
-
a
p
p
s
/
c
a
l
e
n
d
a
r
/

B
usiness

Popular
E

st
C

losed
2

N
otA

vailable

Stripe
Paym

ent
Pro-

cessorA
PI

h
t
t
p
s
:
/
/
s
t
r
i
p
e
.
c
o
m
/
d
o
c
s
/
a
p
i

B
usiness

G
row

ing
N

ew
C

losed
30

09/2011-10/2014

G
ithub

A
PI

h
t
t
p
s
:
/
/
d
e
v
e
l
o
p
e
r
.
g
i
t
h
u
b
.
c
o
m
/

Productivity
G

row
ing

N
ew

C
losed

59
09/2012-10/2014

G
oogle

M
aps

A
PI

h
t
t
p
s
:
/
/
d
e
v
e
l
o
p
e
r
s
.
g
o
o
g
l
e
.
c
o
m
/
m
a
p
s
/
w
e
b
/

Productivity
Popular

E
st

C
losed

102
01/2011-09/2014

O
penStreetM

ap
A

PI
h
t
t
p
:
/
/
w
i
k
i
.
o
p
e
n
s
t
r
e
e
t
m
a
p
.
o
r
g
/
w
i
k
i
/
A
P
I

Productivity
G

row
ing

N
ew

O
pen

1
N

otA
vailable

19

https://developers.facebook.com/docs/apps/versions
https://developers.facebook.com/docs/apps/versions
https://dev.twitter.com/docs/api
http://wp-api.org/
https://www.salesforce.com/us/developer/docs/api_rest/
https://www.salesforce.com/us/developer/docs/api_rest/
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/
https://stripe.com/docs/api
https://developer.github.com/
https://developers.google.com/maps/web/
http://wiki.openstreetmap.org/wiki/API

We used codes to annotate the API changelogs to identify the different types of API changes.

The coding scheme started with a set of codes based on the codes from Jun et al. [4]. New codes

emerged from our analysis as the existing codes did not describe an API change scenario. An

overview of the used codes is provided in Table 2.2. The codes were applied to the different API

elements as described through the following example Web API description:

“A Web API to post a comment on a photo.”

Endpoint - URLs to access the API. Resource - An input or output object. For example,

comment, photo, etc. Method - An API operation on a resource. e.g. post a comment. Field - An

attribute of the resource. e.g. timestamps of a comment. FieldValue - Possible value for a field.

For example: a timestamp value of January 1, 2015. Error - Error cases. e.g. not found error.

Authentication - Authentication methods. e.g. HTTP Basic authentication.

These codes were applied to the text from the Web API homepages and API changelogs for

multiple versions to produce a change profile. The first and second authors of this paper arrived

at the same conclusion when they independently applied the codes on 18 snippets of changelogs

randomly sampled from the studied Web APIs. The coding process was manual since the data

comprises of unstructured text that are not suitable for automated tagging. Here is an example of a

change log from WordPress API with the codes:

“Add post meta endpoints (AddEndpoint). Creating, reading, updating and deleting (AddMethod * 4)

post meta (AddResource) is now possible by using the/posts/<id>/meta endpoints.”

We analyzed the API user forums and news boards to find answers to RQ3. Messages in these

sources were filtered to focus on the evolution of Web APIs. These data sources provided the

perspectives of both the developers and users of Web APIs. To find evolution related messages,

based on trial search runs, full text search features on the forums were used to search for these

keywords: version, release, migration, breaking, deprecate, change.

20

the/posts/<id>/meta

Table 2.2: List of Codes

Category Description

Add<APIElements> New API elements introduced: Adds a new resource, field,

field value, endpoint or method

Remove<APIElements> API elements completely removed: Removes a resource,

field, field value, endpoint or method

Change<APIElements> Existing API element is replaced by another: Replaces or

renames a resource, field, field value, endpoint or method

ErrorConditionChange Changes the possible error conditions: New, changed or

removed error response

ChangeFieldDataType Changes the data type of a field: Single item to an array

or vice versa, number to strings or vice versa, required to

optional or vice versa

BehaviorChange Changes the outcome or fixes bug: Uses new formula for

computing API return values

ChangeAuthentication Changes how API clients are authenticated: New, changed

or deprecated API authentication methods

ChangeAuthorization Changes who can access which API elements: Add, re-

move or modify permissions of API user

21

2.5 Findings

In this section we present our findings for RQ1-3.

2.5.1 RQ1 Versioning

Patterns of Changes

Based on our coding scheme, we identified the following new change patterns to describe changes

between versions of Web APIs in addition to the 16 patterns described by Jun et al. [4] as follows:

Move API elements - We found 114 occurrences of element moves, where API elements are

moved under new hierarchy or renamed. For example, Stripe API moved two objects under a new

API element as found in the following change log from version 2013-08-13:

“Remove fee and fee_details properties on charge and transfer objects.

Instead, fee information is now stored on the corresponding balance trans-

action. ”

Rename API elements - We found that 31 API elements were renamed for consistency. The

following example from the Facebook API shows a rename 3:

“Facebook will be renaming the adgroup_status value ADGROUP_PAUSED

TO PAUSED to be consistent with the rest of the object’s APIs. ”

Behavior change - We have found 247 examples where Web APIs changed the resultant data

while keeping the API interfaces intact. These are commonly triggered by bug fixes. For example,

Wordpress REST API 1.1 changed as follows 4:

“Correct password-protected post handling. Password-protected posts

could previously be exposed to all users, however could also have broken

behavior with excerpts. Password-protected posts are now hidden to unau-

thenticated users.. ”
3https://developers.facebook.com/docs/apps/migrations/ads-api-changes-2014-07-02
4http://make.wordpress.org/core/2014/06/23/json-rest-api-version-1-1/

22

https://developers.facebook.com/docs/apps/migrations/ads-api-changes-2014-07-02
http://make.wordpress.org/core/2014/06/23/json-rest-api-version-1-1/

Another example that demonstrates a behavior change can be found from the 2013-10-29 ver-

sion of Stripe API 5:

“When we apply a $Y coupon to a $X dollar invoice, we are no longer

applying the remainder of the coupon to the account balance if Y > X. Ap-

plications of coupons to $0 invoices will no longer count as a redemption

of the coupon.”

Post condition change - In the studied Web APIs we found examples where the immediate

result of an API call remained unchanged but new post conditions are imposed requiring additional

work for the API users. The following change on Facebook platform API illustrates this 6:

“Starting May 13th, 2014, developers that accept payments will be re-

quired to subscribe to and honor Realtime Updates to ensure order fulfill-

ment and appropriate handling of disputes from all payers. If you do not

subscribe to and honor these updates, Facebook reserves the right, under

our Developer Payment Terms to withhold payouts and/or stop your app

from accepting payments. ”

HTTP header change - Web APIs also change the custom HTTP headers that are used as meta

data. For example, the following shows a change when the WordPress Web API introduced two

new headers to describe the pagination status of an API call 7:

“Send X-WP-Total and X-WP-TotalPages headers for information on

post/pagination counts”

Similarly, the Github API changed their custom headers about pagination in the following

example 8:

5https://stripe.com/docs/upgrades#2014-01-31
6https://developers.facebook.com/docs/apps/migrations/payments-disputes-realtime-updates-required-2014-05-13
7http://make.wordpress.org/core/2013/09/12/json-rest-api-version-0-5/
8https://developer.github.com/v3/versions/

23

https://stripe.com/docs/upgrades#2014-01-31
https://developers.facebook.com/docs/apps/migrations/payments-disputes-realtime-updates-required-2014-05-13
http://make.wordpress.org/core/2013/09/12/json-rest-api-version-0-5/
https://developer.github.com/v3/versions/

“No longer using the X-Next or X-Last headers. Pagination info is

returned in the Link header instead.”

Error condition change - Web APIs change the error conditions that may require the users to

adapt their integration. For example, in Salesforce API Version 29 the error codes were changed 9:

“...different ExceptionCode and StatusCode values are now returned

for some error conditions when saving user records. We strongly recom-

mend that you test your code and modify it accordingly if your clients rely

on specific ExceptionCode and StatusCode values being returned... ”

These extended list of change patterns need to be addressed by future work on finding tech-

niques and developing tool support for evolving Web APIs.

Version Identifiers

We analyzed different approaches to identify the versions of Web APIs to understand if the version

identifiers can be used to infer information about their evolution. We can categorize the Web APIs

into these groups: Numbered identifiers - Contiguous integers are used to identify new versions

by Salesforce and GitHub Web APIs. Such naming scheme clearly communicates the sequence

between versions but cannot be used to infer compatibility between versions.

Timestamped identifiers - Stripe Web API uses date as a version identifier. While times-

tamped versions provide the time frame of a version, they do not provide any compatibility infor-

mation between versions.

Identifiers with major and minor version numbers - Most of the Web APIs studied use

major and minor version numbers to identify a version. Facebook, Twitter, WordPress, Google

Calendar, Google Maps and OpenStreetMap follow this approach. However, an explanation of

the major and minor version numbers aren’t provided and cannot be used to infer compatibility

information.
9https://na1.salesforce.com/help/pdfs/en/salesforce_winter14_release_notes.

pdf#rn_186_api_objects

24

https://na1.salesforce.com/help/pdfs/en/salesforce_winter14_release_notes.pdf#rn_186_api_objects
https://na1.salesforce.com/help/pdfs/en/salesforce_winter14_release_notes.pdf#rn_186_api_objects

Also, web APIs often evolve with breaking changes without issuing a new version identifier.

For example, Facebook, Google Calendar and GitHub APIs often receive breaking changes without

using a new version identifier.

Upgrade Mode

From our case studies, we found the Web APIs followed several different approaches to versioning.

Single Version - Web APIs that force the API clients to migrate either because only one ver-

sion is available or deprecated older versions will be removed. These include Facebook REST API

(90 days), Twitter REST API (no specific time frame), Github API (no specific time frame), Open-

StreetMap API (no specific time frame), Google Calendar (6 months), Google Maps (no specific

time frame).

Multiple Versions - Multiple versions of the Web API are supported for longer duration. These

include Wordpress REST API, Salesforce API, Stripe API.

Both of these categories, single and multiple available versions, have their advantages and

disadvantages. Forcing API clients to use a single stable version makes it easy to maintain the

Web APIs at the expense of scheduling flexibility for API users. These APIs keep a deprecated

version for a limited period of time to provide a buffer time for the API users. For example, Google

Calendar API is supporting its deprecated version for 6 months.

Maintaining multiple versions of the Web APIs provide more scheduling flexibility to the API

clients but requires more effort from the API publisher. As a result, not all the older versions are

maintained. When API clients lag far behind the latest version, migrating to the latest version

becomes harder. For example, here is an excerpt of a comment from a Stripe Web API client

developer 10:

“...I just learned that we’re about 14 versions behind and would like to work on upgrading but there are

lots of breaking changes...”

While both the forced and on demand modes are found in practice, future work needs to be

10https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/
version/api-discuss/x8TM-yHnhYQ/y9JJKytSiUAJ

25

https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/x8TM-yHnhYQ/y9JJKytSiUAJ
https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/x8TM-yHnhYQ/y9JJKytSiUAJ

20
13

-0
1

20
13

-0
4

20
13

-0
7

20
13

-1
0

20
14

-0
1

20
14

-0
4

20
14

-0
7

0

20

40

N
o.

of
C

ha
ng

es

(a) Facebook API Changes (11 Releases)

20
11

-0
9

20
12

-0
1

20
13

-0
1

20
14

-0
1

20
14

-1
0

0

2

4

6

N
o.

of
C

ha
ng

es

(b) Stripe API Changes (30 Releases)

20
13

-0
8

20
13

-1
1

20
14

-0
3

20
14

-0
6

0

10

20

N
o.

of
C

ha
ng

es

(c) WordPress REST API Changes (8 Releases)

20
12

-0
9

20
12

-1
2

20
13

-0
3

20
13

-0
6

20
13

-0
9

20
13

-1
2

20
14

-0
3

20
14

-1
0

0

10

20

N
o.

of
C

ha
ng

es

(d) GitHub API Changes (59 Releases)

26

20
11

-0
1

20
11

-0
7

20
12

-0
1

20
12

-0
7

20
13

-0
1

20
13

-0
7

20
14

-0
1

20
14

-0
7

20
14

-0
9

0

5

10
N

o.
of

C
ha

ng
es

(e) Google Maps Web API (102 Releases)

20
13

-1
0

20
14

-0
1

20
14

-0
4

20
14

-0
7

20
14

-1
0

50

100

N
o.

of
C

ha
ng

es

(f) Salesforce REST API (4 Releases)

(g) Legend

Figure 2.1: Case Study - Change Profiles for the Web APIs.

carried out to compare and contrast the benefits of these modes in greater detail.

Change Profiles

The Web APIs evolve at different frequencies as well as the actual change that takes place during

their evolution varies from one API to another. Fig. 2.1 shows an aggregated view of the count

of different categories of changes observed for different Web APIs based on the aforementioned

coding scheme.

The APIs here show very different change trajectories. Facebook API shows an alternating

pattern of smaller and larger number of changes between subsequent versions, and each release

consists of multiple categories of changes. On the other hand, Stripe and GitHub API changes are

27

more frequent, but on the majority of the releases only include a single category of change. Word-

Press REST API releases contain multiple categories of changes, but shows only a single API

element removal for the studied period. GoogleMaps API changes are also very frequent, domi-

nated by AddAPIElement and BehaviorChange categories in a way that once new API elements

are introduced, the subsequent releases primarily focus on bug fixes. The GoogleMaps API shows

signs of stability with time. The Salesforce API changelog shows a different picture. Unlike the

other APIs studied, Salesforce API evolves quarterly and involves a larger number of API elements

with each release. We observed most Web API releases broke backward compatibility as shown

by the presence of colors in addition to the green areas on the charts. We consider API changes to

be backward compatible when changes are limited to only AddAPIElements category.

Google Calendar API, not shown in a chart, changed the format of all API request and response

data from a custom XML to JSON in a single release, effectively forcing all its users to upgrade

with a deprecation policy of one year. A plot for the Twitter and OpenStreetMap APIs could not

be produced since changelogs for these APIs were no longer available.

These change profiles have little similarity, implying the fact that a common solution to solve

their evolution related challenges may not work. Future research on Web API evolution needs to

consider these variation of change profiles to find effective solutions for the case in hand.

Implementation

In our case studies, we included two open-source Web APIs, WordPress and OpenStreetMap,

because it gave us access to their source code to study how versioning is actually implemented.

Wordpress REST API is developed as a plugin for Wordpress. As a result, a new version of the

Web API is released with a new version of the plugin and it all API clients are affected when

a new version is deployed. The source code for OpenStreetMap.org Web API shows the use of

configuration files for API Versioning. We found its implementation only allows for a single API

version.

To summarize the change profiles, version identifiers and implementation of evolving Web API

28

versions, we observed little convergence and a lack of any common scheme that was followed by

the studied Web APIs.

2.5.2 RQ2 Documentation

Web API documentation is used by API users as the primary source of information for system

integration. We analyzed the API reference documentation to understand the contents and the

presentation style of their documentation. The documentation is commonly comprised of the fol-

lowing:

Web API access information - Web API documentation includes information about the URL

where the API can be reached. The studied APIs used one of the URL, HTTP headers, or a user

interface to identify specific API versions.

Authentication - Web API documentation includes information about authentication for their

API clients. This is also used to implement client specific rules, such as rate limits and time zones.

API Interface definition - The interface definition is a major part of the Web API documenta-

tion where each API element is described with a general overview and related business rules.

Example usage - Examples that describe different use cases of the Web APIs are also com-

monly found in the documentation. The examples contain the data and HTTP headers for sample

requests and the corresponding API responses.

Some of the studied Web APIs also provide live web browser based API explorers, where API

users can make API calls without needing to write any code. However, the studied Web APIs that

offered Live API Explorer only did so for the latest API versions.

Web API documentation needs to include additional information compared to local APIs since

HTTP is used for communication. As an API evolves lack of documentation for older API versions

causes difficulties with the upgrade process as found in the following comment from a Stripe API

user11

11https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/
version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ

29

https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ
https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ

“Does the full API documentation only reflect the current version of the

API? Is there a way to access the API docs for outdated versions? ...That

would be very helpful. When you are trying to upgrade from one version

to another it’s impossible to know the implementation differences. We are

currently about 4 API versions behind and are stuck behind a version that

causes a significant amount of work on our end to support. I’d like to be

able to upgrade incrementally through each version.”

We also investigated how the API documentation is generated. We found that, Web API docu-

ments are manually generated and updated, unlike the documentation for local APIs which are are

typically auto-generated. For WordPress and OpenStreetMap, this is apparent from their source

code, as we found the use of manually edited wiki and Markdown files to generate the documen-

tation12.

In our case studies, we found one example of self-documenting Web API as discussed by

Laskey [7]. The Salesforce Web API has API endpoints that describe all available versions of the

API that can be used to programmatically determine the changes between versions.

To summarize, we found that Web API documents are manually generated and widely vary in

terms of both their contents and presentation formats.

2.5.3 RQ3 Communication

Communicating updates and changelogs is an important activity for evolving Web APIs. The

communication channels used by the studied Web APIs is categorized as follows:

API home page - Web APIs announce the API changes in their home pages. In practice, the

announcements include partial change log with the key changes that are made in a release. These

announcements are unstructured text and do not follow any standard format even for the same API.

API response - Some Web APIs use custom HTTP headers to indicate when a call is made to

a deprecated version. For example, Wordpress REST API sends the X-WP-DeprecatedFunction

12http://en.wikipedia.org/wiki/Markdown

30

http://en.wikipedia.org/wiki/Markdown

header in response to API calls made to deprecated endpoints.

Email - Facebook sends customized email alerts to its API clients based on their usage of the

API, similar to the idea as presented by Zou et al. [18]. API calls are recorded to determine if

a change has an impact on users. The granularity of the change tracking often results into false-

positives, as found in this comment by a Facebook API user 13:

...I have received the same notification for one of my apps. My app

definitely does not read or create comments on Facebook posts or objects

... Thus Facebook’s message is not relevant to every app they send it to.

The change should only affect apps which read or publish comments.

Newsfeed - To keep up-to-date with API changes, the Web API clients are requested to sub-

scribe to newsfeed, typically delivered via mailing lists and Twitter feeds. User feedback is also

collected on these platforms. For example, at the time of writing this paper there were 13,239

questions tagged against google-maps-api-314.

To summarize, we found both formal and informal channels are used to communicate Web API

changes. Most messages are primarily driven by manually edited unstructured text.

2.6 Discussion

Our case study findings such as a lack of standard approaches to deal with Web API versioning,

documentation and change communication confirms the findings from previous case studies. In

addition to the Web API change patterns identified by previous case studies, we have identified

six new change patterns: 1) move API elements, 2) rename API elements, 3) behavior change,

4) post condition change, 5) HTTP header change, and 6) error condition change. When creating

API changelog and developing related tool support, these new change patterns can be used to

communicate the changes using a shared vocabulary. In addition to these new change patterns,

13http://stackoverflow.com/questions/16270446/updating-app-for-breaking-change-non-threaded-comments
14https://stackoverflow.com/questions/tagged/google-maps-api-313.239

31

http://stackoverflow.com/questions/16270446/updating-app-for-breaking-change-non-threaded-comments
https://stackoverflow.com/questions/tagged/google-maps-api-313.239

from our case study we have compiled a list of recommendations and identified new research

problems related to RQ1-3 as discussed in the following paragraphs.

RQ1 Versioning - From our case study, we found that when a new version is released for a

Web API, the version identifiers provide little information about backward compatibility and the

impact of the new version on existing API users. As a result, the API users are left to follow

the free-form newsfeeds to understand the impact for each new API version. To improve this

situation, for practitioners, we recommend using Semantic Versioning. Semantic Versioning is a

naming technique for versioning software so that it is possible to infer if two versions are backward

compatible simply by interpreting the version identifiers15. Future research can be carried out

to automatically generate a Semantic Versioning identifier based on the compatibility between

versions.

Our change profiles show that Web APIs often evolve as fast as several times a month and

forces API clients to upgrade. Also, releases often combine both bug fixes and other breaking

changes, forcing the API users to adapt even though they only need the fixes. For practitioners,

we recommend that bug fixes and breaking changes be released under separate versions to provide

more flexibility to the API clients. Future research needs to focus on finding strategies for evolving

Web APIs so that bug fixes and other changes can be easily delivered in separate versions and

multiple versions can be made available at the same time.

RQ2 Documentation - We observed a that largely manual process is used for generating API

documentation for most RESTful APIs. Manually generating and maintaining such documentation

is expensive and error-prone. From our analysis, we showed that even when Web APIs are ver-

sioned, documentation for older versions is not always available, and the difference between two

versions of a Web API cannot be easily derived from their manually edited API references. We

also found that the changelogs and API references are two disconnected documents even though

a user needs to read both documents while upgrading. For practitioners, we recommend releasing

Web API documentation for each available version that is cross-linked with the changelog. Future

15http://semver.org/

32

http://semver.org/

research on tool development can be aimed to support automated, version-aware documentation

needs of evolving Web APIs.

Live Web API explorers are used by API users to try the APIs with little effort. However, there

is a lack of reusable approach to create Live Web API explorers and bespoke implementation of the

live API explorers are expensive since they need additional software development. We have seen

only two of the nine studied APIs to provide a live API explorer. Moreover, we found that live Web

API explorers are only offered for latest versions. Future research can focus on the implementation

of a reusable, version-aware live Web API explorer for evolving Web APIs.

Self documenting Web APIs can be used to automatically determine compatibility between

two versions of a Web API. We found Salesforce REST API to be the only example from our case

studies that implemented self documenting Web APIs. For practitioners, we recommend providing

self-documenting Web APIs. We also identify this as an opportunity for future research so that

reusable tool support can be provided to create self-documenting Web APIS.

RQ3 Communication - For communicating API changes, we found a number of different

channels that are used in practice. These channels need to be compared so that the effective chan-

nels can be used for communicating between the API developers and users.

In the change profiles we found the APIs change frequently and this requires manual effort to

understand the impact of a change on a specific API user. This can be simplified by alerting users

about an API change with a customized changelog. We also found that API related discussions

are carried out external to the API documentation sites. API users need to search multiple discon-

nected information sources when API related questions arise. For practitioners, we recommend

publishing a customized changelog for their Web APIs and providing discussion forums with API

documentation. Previous research showed a solution based on WSDL files [18]. Future research

is needed to solve this problem for RESTful Web APIs.

The open source Web APIs (Wordpress and OpenStreetMap) had limited documentation and

change log information compared to the proprietary Web APIs. This presents an opportunity for

33

researchers and industry practitioners to create reusable open source versioning and documentation

tools for evolving Web APIs.

Limitations - We recognize the number of Web APIs studied to be a threat to the construct

validity. Although our selection involves a diverse set of Web APIs, the findings may not be

generalized for all evolving Web APIs. Our selection criteria included different industry domains,

API sizes, popularity and maturity levels to minimize selection bias. The selected APIs represent

only publicly available evolving Web APIs because only publicly available data is used for the case

study. Future work need to be carried out to compare the applicability of our findings and related

implications on privately maintained evolving Web APIs. To mitigate the interpretation bias of

the coding scheme, the first two authors of this paper independently annotated randomly selected

snippets of change logs from different Web APIs and reached the same conclusion indicating the

replicability of the given coding scheme.

Given the state of practice we found a wide variety of ways to evolve Web APIs in terms of

versioning, documentation and communication of changes and no consistent way to deal with the

changes. This indicates an immature area where cost-effective solutions that are acceptable for

both API developers and users are still missing - as discussed. Further research needs to be carried

out to validate the usefulness of the aforementioned recommendations and solve the new research

problems as identified by this case study.

2.7 Conclusion

Web API evolution poses challenges since a change may break applications that are developed

by different teams and organizations. We presented a case study of Web API evolution focusing

on the challenges involved with versioning, documentation and communication of API changes.

Recommendations for practitioners from our analysis include the use of semantic versioning, sep-

arate releases for bug fixes and new features, auto generated API documentation cross-linked with

changelogs and providing live API explorers. A list of open research problems are discussed re-

34

lated to Web API evolution that we want to solve in our future work.

2.8 References

[1] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web APIs on the world wide

web,” in Proc. of European Conference on Web Services (ECOWS). IEEE, 2010, pp. 107–

114.

[2] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An empirical study on web

service evolution,” in Proc. of International Conference on Web Services (ICWS). IEEE,

2011, pp. 49–56.

[3] D. Romano and M. Pinzger, “Analyzing the evolution of web services using fine-grained

changes,” in Proc. of International Conference on Web Services (ICWS). IEEE, 2012, pp.

392–399.

[4] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api evolution affect clients?”

in Proc. of International Conference on Web Services (ICWS). IEEE, 2013, pp. 300–307.

[5] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains: Stories from client

developers and their code,” in Proc. of Conference on Software Maintenance, Reengineering

and Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 84–93.

[6] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for evolving web services,” in

Proc. of Conference on Center for Advanced Studies on Collaborative Research (CASCON).

IBM Corp., 2006, p. 23.

[7] K. Laskey, “Considerations for soa versioning,” in Proc. of Enterprise Distributed Object

Computing Conference (EDOC) Workshops. IEEE, 2008, pp. 333–337.

35

[8] M. Treiber, H.-L. Truong, and S. Dustdar, “On analyzing evolutionary changes of web ser-

vices,” in Proc. of Service-Oriented Computing Workshops (ICSOC). Springer, 2009, pp.

284–297.

[9] L. Aversano, M. Bruno, M. Di Penta, A. Falanga, and R. Scognamiglio, “Visualizing the

evolution of web services using formal concept analysis,” in Proc. of International Workshop

on Principles of Software Evolution. IEEE, 2005, pp. 57–60.

[10] E. Wilde, “Semantically extensible schemas for web service evolution,” in Web Services.

Springer, 2004, pp. 30–45.

[11] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N. Du, “A version-aware

approach for web service directory,” in Proc. of International Conference on Web Services

(ICWS). IEEE, 2007, pp. 406–413.

[12] M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “WSDL and UDDI extensions for version

support in web services,” Journal of Systems and Software, vol. 82, no. 8, pp. 1326–1343,

2009, sI: Architectural Decisions and Rationale.

[13] W. Zuo, A. Benharkat, and Y. Amghar, “Change-centric model for web service evolution,” in

Proc. of International Conference on Web Services (ICWS). IEEE, 2014, pp. 712–713.

[14] J. Mangler, P. P. Beran, and E. Schikuta, “On the origin of services using riddl for descrip-

tion, evolution and composition of restful services,” in Proc. of International Conference on

Cluster, Cloud and Grid Computing (CCGrid). IEEE/ACM, 2010, pp. 505–508.

[15] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-end versioning support for

web services,” in Proc. of International Conference on Services Computing (SCC), vol. 1.

IEEE, 2008, pp. 59–66.

[16] R. Meng and C. He, “A comparison of approaches to web service evolution,” in Proc. of

International Conference on Computer Sciences and Applications (CSA), 2013, pp. 138–141.

36

[17] M. Fokaefs and E. Stroulia, “Wsdarwin: Studying the evolution of web service systems,” in

Advanced Web Services, A. Bouguettaya, Q. Z. Sheng, and F. Daniel, Eds. Springer, 2014,

pp. 199–223.

[18] Z. Le Zou, R. Fang, L. Liu, Q. B. Wang, and H. Wang, “On synchronizing with web service

evolution,” in Proc. of International Conference on Web Services (ICWS). IEEE, 2008, pp.

329–336.

[19] J. Kopecky, K. Gomadam, and T. Vitvar, “hrests: An html microformat for describing restful

web services,” in Proc. of International Conference on Web Intelligence and Intelligent Agent

Technology (WI-IAT), vol. 1. IEEE, 2008, pp. 619–625.

[20] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. d. Walle, and J. GabarrÃş VallÃl’s,

“Capturing the functionality of web services with functional descriptions,” Multimedia Tools

and Applications, vol. 64, no. 2, pp. 365–387, 2013.

37

Chapter 3

SpyREST: Automated RESTful API Documentation using an

HTTP Proxy Server

3.1 Abstract

RESTful API documentation is expensive to produce and maintain due to the lack of reusable tools

and automated solutions. Most RESTful APIs are documented manually and the API developers

are responsible for keeping the documentation up to date as the API evolves making the process

both costly and error-prone. In this paper we introduce a novel technique using an HTTP proxy

server that can be used to automatically generate RESTful API documentation and demonstrate

SpyREST, an example implementation of the proposed technique. SpyREST uses a proxy to in-

tercept example API calls and intelligently produces API documentation for RESTful Web APIs

by processing the request and response data. Using the proposed HTTP proxy server based tech-

nique, RESTful API developers can significantly reduce the cost of producing and maintaining

API documentation by replacing a large manual process with an automated process.

3.2 Introduction

RESTful APIs, introduced by Fielding, are used as a primary interconnection mechanism among

modern day web based systems [1]. For example, the website of a restaurant can use the RESTful

API from Twitter to show the latest tweets mentioning the restaurant so that prospective customers

can read the experience shared by others. To allow others to use their APIs, Twitter and other

RESTful API developers publish documentation describing different features of their RESTful

API. The documentation of such RESTful APIs are often produced and maintained using a manual

process that is expensive and error-prone.

38

API documentation for library APIs, such as Java Standard Edition, commonly leverage reusable

tools such as JavaDoc. The documentation produced by such tools include description of objects

and methods, with custom texts primarily sourced via comments in the source code. On the other

hand, RESTful API documentation includes additional information such as HTTP headers, request

parameters, request and response data in serialized formats (e.g. JSON, XML). Using comments

for these additional information requires significant manual effort. There is a lack of reusable tools

to automate the documentation process. This makes the task of producing RESTful API documen-

tation a costly and error-prone one. API developers also need to publish and often maintain the

documentation for multiple versions as the RESTful API evolves. This requires further manual

effort.

To produce RESTful API documentation, the manual process used can be described as a six-

step process as follows: 1) craft an example call to an API endpoint with required headers, URL

parameters and request body, 2) make the call, 3) capture the response headers and data, 4) strip

any confidential data from the captured information, 5) add custom descriptions to the captured

data and 6) publish the API documentation. This six-step process is essentially repeated for all

API endpoints that are documented. With SpyREST, we have implemented an innovative solution

to largely automate the aforementioned manual process of RESTful API documentation so that

all but steps 1 and 5 are automated. Steps 1 and 5 are left to a manual process to allow for a

pragmatic solution. Our solution relies on an HTTP proxy server to intercept example API calls

to automatically capture all HTTP traffic. The collected data is then synthesized to present the

documentation for RESTful APIs. SpyREST can generate documentation for all RESTful APIs

irrespective of the technology used to implement the API since it leverages an HTTP proxy server.

The key contributions of our research are as follows: we discuss a list of requirements for tool

development by analyzing related work to automate the RESTful API documentation process and

present a new technique based on an HTTP proxy server to meet the requirements. We demonstrate

an example implementation of the proposed technique that generates automated yet customizable,

39

version-aware, collaboration enabled and reusable API documentation software as a service plat-

form that can be used to generate and maintain documentation for any RESTful API. We present a

case study of using SpyREST to compare the advantages of our proposed technique over existing

solutions for RESTful API documentation.

The remainder of this paper is organized as follows: in the next section we discuss related work

on API documentation. The requirements and implementation details of SpyREST is provided

next. Then, we present a case study to demonstrate SpyREST in action. Finally, we discuss the

implications and limitations of our work in the discussion section.

3.3 Related Work

3.3.1 General API Documentation

Several papers have studied the documentation of APIs to recommend best practices that are also

applicable to RESTful API documentation. Robillard et al. found that developers faced severe

obstacles learning new APIs due to inappropriate documentation and other learning resources [2,

3]. Robillard recommended the following for API documentation: include good examples, be

complete, support many complex usage scenarios, be conveniently organized, and include relevant

design elements. Kuhn et al. discussed the importance of examples in API documentation [4].

Hoffman et al. recommended making the API example scenarios to be executable test cases so that

a user can execute an API [5].

Nasehi et al. performed a case study based on StackOverflow discussions to find out what

makes good code examples [6]. They recommended API developers to include examples in the

API documentation and the use of wiki-like collaborative tools with online API documentation.

Parnin et al. found that using social media gives API documentation readers a chance to engage

with authors of the APIs [7]. Chen et al. recommended integrating crowdsourced frequently asked

questions into API documents so that users can easily find relevant discussions when questions

arise [8]. Subramanian et al. presented an automated approach to link API documentation of

40

different Java and JavaScript libraries with code examples that are shared on StackOverflow [9].

Stepalina identified several advantages of software as a service (SaaS) based solutions for API

documentation systems such as, cost effective yet powerful, platform agnostic and high accessi-

bility, improved document quality, content re-use, automated tools, and organization of robust and

scalable documentation process [10]. Several tools exist that help automatic generation of API

documentation for local APIs such as JavaDoc1, RDoc2, Jadeite [11]. While these tools have been

proven to work for local library APIs, they have limited applicability for documenting RESTful

APIs because HTTP specific information are not natively supported by these tools.

3.3.2 RESTful API Documentation

Several related work proposed specifications for RESTful APIs. Maleshkova et al. found that a

lack of a standard format to document Web APIs and manual documentation causes confusions

about how to use the APIs for different use cases [12]. Espinha et al. observed that most RESTful

APIs are documented manually by API developers making the documentation a less reliable one

[13]. Danielsen et al. presented a vocabulary for documenting RESTful Web APIs called Web

Interface Language (WIfL) [14]. Verborgh et al. presented RESTdesc, a Resource oriented and

Hyper-link based specification for describing RESTful APIs [15]. Mangler et al. presented RDDL,

an XML based specification for describing RESTful APIs [16]. Kopecky et al. presented hRESTS,

a machine readable micro-format to describe RESTful APIs that use an alternate representation

compared to WIfL [17]. Ning et al. presented OmniVoke, a RESTful API based invocation engine

that provides an abstraction layer for RESTful API calls to multiple APIs that follow different con-

ventions [18]. Manual configuration is required to generate these aforementioned specifications

for RESTful APIs. Myers et al. recommended providing a consistent look-and-feel with expla-

nation for the starting points and an overall map comprising of both text and diagrams, providing

a browsing experience with breadcrumb trail following a hierarchy, an effective search interface,

1http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
2http://rdoc.sourceforge.net/

41

providing example code and a way to exercise the examples online without writing code [19].

In addition to the research community, there are several custom RESTful API specification for-

mats that are observed in the industry such as, Swagger3, RAML4, and Blueprint5. In addition to

producing RESTful API documentation, there are SaaS based tools providers that can be used to

publish the documentation and auto generate API client code for RESTful APIs that are described

using one of these formats. To use these tools to generate HTML based RESTful API documen-

tation, API developers need to manually construct the intermediate documentation format such as

Swagger, Blueprint, RAML, etc. since there is no automated tool to produce this.

3.4 SpyREST

3.4.1 Requirements

The following list of requirements for SpyREST, R1-7, in priority order, is derived from analyz-

ing the aforementioned related work and current API documentation practices as observed in the

industry:

R1 - Automated RESTful API documentation: RESTful APIs are either documented manu-

ally or using custom tools to partially automate the process. The primary requirement for SpyREST

is to find a cost-effective approach to automate RESTful API documentation.

R2 - Example based: As discussed in the related work section, several authors have empha-

sized including example scenarios with API documentation can help users understand how to use

an API [2, 4, 5, 6]. SpyREST generated API documentation needs to include example scenarios.

R3 - Executable documentation: In addition to including examples, SpyREST also needs to

allow users to execute the example scenarios so that they can try the API features without having

to write code [5, 19].

R4 - Version awareness: SpyREST needs to allow API developers to publish documentation

3https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
4http://raml.org/spec.html
5https://github.com/apiaryio/api-blueprint

42

for multiple versions of a Web API as it evolves. The following comment from an API client

developer of Stripe, an online payment processing company, shows the importance of a version-

aware documentation tool6 :

“Does the full API documentation only reflect the current version of the

API? Is there a way to access the API docs for outdated versions? ...That

would be very helpful. When you are trying to upgrade from one version

to another it’s impossible to know the implementation differences...”

R5 - Customizable: It is important to customize the overview information about how to use an

API to reduce API learning obstacles and describe complicated business rules[2]. SpyREST needs

to allow API developers to add customized content to auto generated RESTful API documentation.

R6 - Reusable: SpyREST needs to work as a reusable platform so that multiple REST API

documentations can be generated and published on a single platform to get the advantages of a

SaaS platform [10].

R7 - Collaborative: SpyREST needs to allow people to collaborate on the API documentation

so that questions and answers about APIs can coexist with the API documentation to to overcome

the knowledge fragmentation [8].

3.4.2 Design

From our research, we identified an HTTP proxy server based solution as a novel approach for

generating RESTful API documentation meeting requirements R1-7. Our approach works as fol-

lows: API developers make example API calls using a proxy −→ the proxy records and processes

HTTP traffic −→ a Web App generates RESTful API documentation. SpyREST, an example im-

plementation of this approach7, is composed of three main components as follows:

The Spy: The Spy component in SpyREST is an HTTP proxy server. The Spy is named so

because it records the HTTP traffic for example API calls that are made using it as a proxy server.
6https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/

version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ
7https://github.com/smsohan/demo_paper/raw/master/SpyREST_tool_demo.pdf

43

https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ
https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ
https://github.com/smsohan/demo_paper/raw/master/SpyREST_tool_demo.pdf

For example, when using Spy as an HTTP proxy to make the following HTTP request:

Method GET

URL https://api.github.com/repositories?since=100

Headers accept: application/vnd.github.v3+json

that produces the following response:

Headers status: 200 OK

content-type: application/json; charset=utf-8

...

Body [

{

" i d " : 1 ,

" name " : " g r i t " ,

" f u l l _ n a m e " : " mojombo / g r i t " ,

. . .

}

]

Spy automatically saves the raw request and response data with HTTP headers. Additionally, the

Spy synthesizes the data and saves the following meta data about this example API call:
version v3

resource repositories

action GET /repositories

query since: 100

strippedResponseBody a subset of the response body

description blank

digest base64 hash value of the version, resource, url and description

requiresAuth false

apiToken blank, used when a SpyREST API token is provided

userId blank, used when a user is found for given apiToken

As shown in this example, the version “v3” is automatically detected by parsing the accept

request header. Next, the resource field is also auto detected as “repositories” by parsing the request

44

URL. The action “GET /repositories” is automatically detected by combining the request HTTP

method with request path. The strippedResponseBody field automatically saves a shorter version

of the actual response where large response body is truncated to a smaller one to reduce noise

from the generated documentation. These meta fields allow SpyREST to structure the example

API calls for a given API host in a hierarchical model as follows: an APIHost (e.g. GitHub.com)

has many APIVersions (e.g. v3), each APIVersion has many APIResources (e.g. repositories),

each APIResource has many APIActions (e.g. GET /repositories), and each APIAction has many

APIExamples.

(a) API documentation summary section (b) API documentation examples section

Figure 3.1: SpyREST Screenshots Showing Auto Generated API Documentation

The Database: The database component saves the data that is captured by the Spy and the

Web App. The Spy saves the recorded data about the API examples and the auto-computed meta

data in the database. The Web App saves data about SpyREST users and custom modifications on

auto-generated API documentation on the same database.

45

The Web App: The Web App component further processes and presents auto generated docu-

mentation that is captured by Spy in the database. The Web App also allows the API developers to

edit or add custom content to the auto generated documentation. The source code for both the Spy

and Web App components are released as open source projects.

3.4.3 Features

Now that we have explained the design and implementation of SpyREST, we discuss how SpyREST

meets the aforementioned requirements R1-7.

R1 - Automated RESTful API documentation: The work flow for automated RESTful API

documentation can be explained by the following steps: 1) API developer uses the Spy HTTP

proxy to run example API calls, 2) The Spy records example API calls, 3) The Spy extracts meta

information about the API call, 4) The Web App displays the auto generated documentation, 5)

API developers can optionally customize the auto generated documentation.

Fig 4.2 shows screenshots (shortened) from SpyREST auto generated documentation that is

solely based on an example API call to URL https://api.github.com/search/repositories?

q=tetris+language:assembly&sort=stars&order=desc with a custom header “x-

spy-rest-description” to provide the short description for the example.

The auto generated API documentation features two sections, a summary section as shown

in Fig. 4.2a and an examples section as shown in Fig. 4.2b. The summary section includes

breadcrumbs to show hierarchy of the API objects related to each API action to help API client

developers easily navigate the API documentation. This section also includes three tables that

display the structure of query parameters, and request and response payloads. In addition to the

structure, automated type detection is used to show the data type and example values for each

field in these tables. The examples section on the API documentation shows all the recorded API

examples for a given API action. For each example, it shows a description, the request URL,

query parameters, and request and response headers and bodies. Spy filters out the “authorization”

request header before saving the examples in the database and the documentation rendered by the

46

https://api.github.com/search/repositories?q=tetris+language:assembly&sort=stars&order=desc
https://api.github.com/search/repositories?q=tetris+language:assembly&sort=stars&order=desc

Web App displays this header with a placeholder text as “FILTERED”.

R2 - Example based: SpyREST generated RESTful API documentation includes both the

structure of the API objects and concrete examples for different use cases. The API examples

are annotated with user provided descriptions through a custom HTTP request header “x-spy-rest-

description” that is otherwise hard to automatically infer. To record the examples in SpyREST, any

REST API client can be used as long as it supports an HTTP proxy to call the API.

R3 - Executable documentation: SpyREST keeps a copy of the API request information

including URL, headers and request body. As a result, SpyREST can also recreate the example API

calls that can be executed by users of the generated API documentation. SpyREST automatically

generates executable test cases that can be run using cURL8.

R4 - Version awareness: SpyREST allows API developers to publish the documentation for

multiple versions of their RESTful APIs. To organize API documentation and examples under

multiple versions, SpyREST has an automatic version detection algorithm that parses the “accept”

request header or the URL. The auto version detection algorithm can be suppressed by specifying

the version in the custom “x-spy-rest-version” header when running example API calls through the

Spy.

R5 - Customizable: SpyREST allows API developers to modify and add custom free-form

contents to the auto generated summary section of the documentation using Markdown9 syntax.

Custom content can be used to provide overview information and explain complicated business

rules about the APIs that are not derivable from simply synthesizing the examples. We consider

this as a pragmatic solution to augment manual effort with the largely automated solution to the

RESTful API documentation effort. The custom edits are persisted in the database and are not

overridden when the API examples are replayed unless the user decides to revert back to automated

summaries.

R6 - Reusable: SpyREST relies on an HTTP proxy to auto generate RESTful API documen-

8http://curl.haxx.se/
9http://en.wikipedia.org/wiki/Markdown

47

http://en.wikipedia.org/wiki/Markdown

tation. To feed SpyREST with data, any REST API client can be used as long as it supports using

a proxy server. This technology agnostic feature allows SpyREST to be a reusable RESTful API

documentation tool. SpyREST is offered as a SaaS tool at http://spyrest.com that can be

used to auto-generate and publish documentation of multiple RESTful APIs. For APIs where a

SaaS solution is not acceptable, SpyREST can also be installed and used as a self-hosted solu-

tion. Because SpyREST is an open-source application, users can modify the source to support any

unique requirements that are not supported by SpyREST.

R7 - Collaborative: SpyREST allows the API developers to comment and discuss API re-

lated questions with API client developers right next to the documentation so that crowdsourced

documentations can coexist with the officially published API documentation. Each API documen-

tation page on SpyREST features its own discussion thread to help users easily locate relevant

information.

3.5 SpyREST Case Study

In this section we discuss a case study of using SpyREST to auto generate documentation for 25

API actions randomly sampled from three RESTful API providers. These 25 API APIs are docu-

mented using 272 lines of code10. These three API providers are: GitHub.com, KISSMetrics.com

(Online analytics tool), and LiquidPlanner.com (Online project management tool).

3.5.1 SpyREST Documentation vs. Official Documentation

We found SpyREST generated documentation for 5 of the 25 API actions from the case study in-

cluded fields that are found from actual API responses but not included in their official documen-

tation. For example, the SpyREST generated documentation for Github GET /notifications

API action included 34 additional fields, such as: forks_url, keys_url, collaborators_url,

and 29 more that were not mentioned in the official API documentation even though actually re-

10https://github.com/smsohan/spyrest_examples

48

http://spyrest.com
https://github.com/smsohan/spyrest_examples

turned as API response. Similarly, the official documentation for GitHub.com GET /search/code

API action did not include the releases_url API response field. Official documentation of

KISSMetrics.com GET core/accounts and GET core/accounts/:account_id API

actions did not mention the data field that is found in the actual response as documented by

SpyREST. The official documentation for GET /api/account action on LiquidPlanner.com

did not mention the fields workspaces, last_workspace_id, and disabled_workspaces_count

that were included in the SpyREST documentation. These examples show the error-prone nature

of a manual process that requires API developers to ensure the documentation is updated to reflect

any change in the API. We consider the proxy based solution to solve this problem since the API

documentation can be updated by replaying the example API calls.

The official documentation of these three API providers did not include integrated collaboration

features. We found 172 unanswered questions out of 662 questions with the tag github-api on

StackOverflow.com. We found 123 questions about LiquidPlanner API on their developer forum

that are not linked to officially generated documentation published as a PDF file. On StackOver-

flow.com, we found 4 unanswered questions out of 9 questions on KISSMetrics API. SpyREST

provides the collaboration features with auto generated API documentation so that API developers

and users can discuss and locate related discussions when browsing RESTful API documentation

on a single web interface. SpyREST includes executable API examples, support for multiple ver-

sions and presents the auto generated documentation for different RESTful APIs using a consistent

look and feel that are not provided by these studied APIs.

3.6 Discussion

RESTful API documentation is expensive, error-prone, and often incomplete because of the man-

ual effort involved in the process. Our core contribution is a novel approach where an HTTP

proxy server is used to largely automate the process for RESTful API documentation. There is

a lack of tool support for automatically generating documentation of RESTful APIs. We pre-

49

sented SpyREST as an example implementation of the HTTP proxy server based solution to fill

this need. The requirements for SpyREST are derived from analyzing the existing literature and

industry practices as well as our own professional experiences developing RESTful APIs and their

documentation. In the literature, several papers provided lists of recommendations for API doc-

umentation based on studying the existing tools and techniques and feedback collected from API

developers. We found a lack of available tool support to generate RESTful API documentation

following those recommendations and designed SpyREST to provide a solution. As a result,

SpyREST features automated documentation with executable examples, customizable contents,

collaboration, version awareness and reusability to provide a ready to use tool support for REST-

ful API documentation following the recommendations.

The novel approach of using an HTTP proxy sever offers some unique benefits over existing

tools from academia and industry. For example, tools that rely on user provided comments on

source code and code inspection, such as JavaDoc, require the user to write formatted comments

that are often applicable to a single programming language. The comments are not executable, and

manual effort is required to ensure the comments and the API that it describes are kept in sync.

SpyREST generated documentation can reflect the latest information since the documentation is

generated after executing the example API calls. The verbose nature of RESTful API documenta-

tion makes it difficult to write and maintain the documentation as comments in source code. Using

an HTTP proxy server, SpyREST offers a language agnostic solution so that RESTful APIs written

in any programming language can be documented using a single tool.

Another key feature of SpyREST is the shared platform for publishing RESTful API documen-

tation. A similar shared platform is provided by several other tools such as Swagger, Blueprint.

We identify the key advantage of SpyREST over these tools to be the fact that SpyREST relies on

example API calls instead of relying on a custom API specification that are required by these tools.

The suggested API specifications can be used to define the structure of API objects but do not

capture examples of API usage. The work flow for using these API specification formats can be

50

described as follows: (1) execute example API calls −→ (2) manually generate API specification

−→ (3) automatically generate API documentation. SpyREST does not rely on any custom API

specification, so the associated manual effort can be largely avoided resulting in a smaller work

flow as follows: (1) execute example API calls −→ (2) automatically generate API documenta-

tion. We consider this process to be a cost effective approach for APIs with several endpoints

or APIs that evolve. Unlike other available SaaS only solutions such as Swagger, and Blueprint,

SpyREST can be used both as a SaaS and a self-hosted platform. The self-hosted mode can be

used for documenting internal RESTful APIs that cannot be released on the internet or modifying

the open-sourced code of SpyREST to fit unique API specific needs. We have demonstrated us-

ing SpyREST with automated test code. Using the test code helps automatically testing different

use-case scenarios of the API actions in addition to generating the API documentation.

While SpyREST offers an automated solution for documenting RESTful APIs, API developers

can customize the auto generated content. Several researchers have identified the need for rich con-

tent comprising of text and diagrams to explain complex business rules about APIs. To achieve this

goal, we consider augmenting auto generated documentation with user contributed documentation,

when necessary, to provide a pragmatic solution. To summarize, from our example implementa-

tion of SpyREST and the case-study, we have shown the advantages of the proposed HTTP proxy

server based solution over the existing techniques for RESTful API documentation.

3.6.1 Threats to Validity

Internal Threats. Our proposed technique uses an HTTP proxy server that can only intercept

and record the data when it is either in clear text or trusted to be decrypted by SpyREST. Because

SpyREST can be used as a shared platform, any secrets used in the example API calls get decrypted

in memory, even though not saved by SpyREST. To overcome these threat, we recommend API

developers to use disposable secrets so that the secrets used to run an API call are valid for a

single API call. For use cases where this is unacceptable, the self-hosted mode can be used as an

alternative. SpyREST currently only supports JSON based APIs for their widespread use among

51

popular RESTful APIs such as Twitter, Facebook, Google Maps.

External Threats. We used SpyREST to auto generate documentation for APIs randomly

sampled from three RESTful API providers as a proof of concept and found the proxy server based

solution met the requirements R1-7. Further evaluation is needed involving a larger set of RESTful

APIs to evaluate the effectiveness of the proposed technique of using an HTTP proxy server for

RESTful API documentation.

3.7 Conclusion

In this paper, we have presented a novel technique of using an HTTP proxy server to automate the

RESTful API documentation process that otherwise requires a largely manual process. The proxy

server based solution supports integrated features such as automated RESTful API documentation

with executable example API calls, support for multiple versions, customization and collaboration

that are offered both as a SaaS and self-hosted platforms. These features have been recommended

by existing research on the documentation of APIs. Overall, we conclude that a proxy server based

approach shows a pragmatic solution to the RESTful API documentation problem. In the future,

we will perform a qualitative user study involving RESTful API developers to evaluate the effec-

tiveness about the aforementioned HTTP proxy based RESTful API documentation approach.

3.8 References

[1] R. T. Fielding, “Architectural styles and the design of network-based software architectures,”

Ph.D. dissertation, University of California, Irvine, 2000.

[2] M. Robillard, “What makes APIs hard to learn? the answers of developers,” Software, IEEE,

vol. PP, no. 99, pp. 1–1, 2011.

[3] M. Robillard and R. DeLine, “A field study of API learning obstacles,” Empirical Software

Engineering, vol. 16, no. 6, pp. 703–732, 2011.

52

[4] A. Kuhn and R. DeLine, “On designing better tools for learning APIs,” in Search-Driven

Development - Users, Infrastructure, Tools and Evaluation (SUITE), 2012 ICSE Workshop

on, 2012, pp. 27–30.

[5] D. Hoffman and P. Strooper, “API documentation with executable examples,” Journal of

Systems and Software, vol. 66, no. 2, pp. 143 – 156, 2003.

[6] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?: A

study of programming Q&A in StackOverflow,” in IEEE International Conference on Soft-

ware Maintenance, 2012, pp. 25–34.

[7] C. Parnin and C. Treude, “Measuring API documentation on the web,” in Proceedings of

the International Workshop on Web 2.0 for Software Engineering, ser. Web2SE ’11. ACM,

2011, pp. 25–30.

[8] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced faqs into api documen-

tation,” in Companion Proceedings of the International Conference on Software Engineering,

ser. ICSE Companion 2014. ACM, 2014, pp. 456–459.

[9] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documentation,” in Proceedings

of the International Conference on Software Engineering, ser. ICSE 2014. ACM, 2014, pp.

643–652.

[10] E. Stepalina, “SaaS support in software documentation systems,” in Software Engineering

Conference (CEE-SECR), 2010 6th Central and Eastern European, 2010, pp. 192–197.

[11] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: Improving API documentation using usage

information,” in CHI ’09 Extended Abstracts on Human Factors in Computing Systems, ser.

CHI EA ’09. ACM, 2009, pp. 4429–4434.

[12] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web APIs on the world wide

53

web,” in Proc. of European Conference on Web Services (ECOWS). IEEE, 2010, pp. 107–

114.

[13] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains: Stories from client

developers and their code,” in Proc. of Conference on Software Maintenance, Reengineering

and Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 84–93.

[14] P. Danielsen and A. Jeffrey, “Validation and interactivity of web API documentation,” in

International Conference on Web Services. IEEE, 2013, pp. 523–530.

[15] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés, and R. Van de Walle,

“Functional descriptions as the bridge between hypermedia APIs and the semantic web,” in

Proceedings of the Third International Workshop on RESTful Design, ser. WS-REST ’12.

ACM, 2012, pp. 33–40.

[16] J. Mangler, P. Beran, and E. Schikuta, “On the origin of services using riddl for descrip-

tion, evolution and composition of restful services,” in Cluster, Cloud and Grid Computing

(CCGrid), IEEE/ACM International Conference on, 2010, pp. 505–508.

[17] J. Kopecky, K. Gomadam, and T. Vitvar, “hrests: An html microformat for describing restful

web services,” in Proc. of International Conference on Web Intelligence and Intelligent Agent

Technology (WI-IAT), vol. 1. IEEE, 2008, pp. 619–625.

[18] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue, “Omnivoke: A framework

for automating the invocation of web apis,” in IEEE International Conference on Semantic

Computing, 2011, pp. 39–46.

[19] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, and

D. K. Busse, “Studying the documentation of an api for enterprise service-oriented architec-

ture,” J. Organ. End User Comput., vol. 22, no. 1, pp. 23–51, 2010.

54

Chapter 4

SpyREST in Action: An Automated RESTful API

Documentation Tool

4.1 Abstract

RESTful APIs are often manually documented. As a result, the process of maintaining the doc-

umentation of RESTful APIs is both expensive and error-prone. In this demonstration paper, we

present SpyREST as an automated software as a service tool that can be used to document REST-

ful APIs. SpyREST leverages an HTTP Proxy server to intercept real API calls to automatically

collect and generate RESTful API documentation by processing HTTP traffic involved in API

calls. SpyREST provides an automated yet customizable example based documentation solution

for RESTful APIs. RESTful API developers can use SpyREST to automatically generate and

maintain updated API documentation.

4.2 Introduction

Fielding introduced RESTful APIs as a versatile mechanism for connecting internet based applica-

tions [1]. For example, a hotel web site may use the Google Maps API to provide driving directions

to the hotel. RESTful API developers need to provide and maintain API documentations when re-

leasing the APIs so that the APIs can be used. Maintaining API documentation manually is less

efficient and often less reliable than automated documentation [2].

Automated solutions exist for documentation of local APIs within the context of classes, and

methods. For example, JavaDoc can automatically generate the documentation for Java APIs. For

RESTful APIs, instead of classes and objects, the context of APIs are defined by API endpoints,

resources, actions, and example API calls in terms of the HTTP headers, request and response

55

payload formats [3]. The existing tools for documenting local APIs do not natively support the

different context for RESTful APIs and cannot be readily used to document RESTful APIs.

In this paper we present SpyREST which provides the necessary tool support to address the

unique needs for RESTful API documentation. To this regard, in the next section we have discussed

the design goals followed by a HTTP proxy server based prototype implementation to demonstrate

an automated RESTful API documentation tool. We then present two use cases to show how API

developers can use SpyREST to automatically generate and maintain RESTful API documentation.

In the discussion, we compare SpyREST against other tools. We provide an analysis of how the

requirements for SpyREST are derived in the related work section.

4.3 SpyREST

4.3.1 Design

SpyREST is a web-based software as a service tool1 [4]. The design goals of SpyREST is to

provide an automated, technology agnostic, and example driven solution for documenting RESTful

APIs so that SpyREST can be used a reusable tool to document multiple RESTful APIs . To auto-

generate documentation for RESTful APIs, SpyREST relies on HTTP traffic information captured

while example API calls are made using a HTTP proxy. The high level process can be described

as a three step process: API developers make example API calls using a HTTP proxy server, the

HTTP proxy server captures the HTTP headers, request and response data, the collected data is

synthesized and presented on a web application.

The proxy server used in SpyREST is a specialized server for RESTful API documentation.

A typical HTTP proxy server can intercept and record the HTTP traffic for example API calls

but further processing is required to generate a usable RESTful API documentation out of the

raw HTTP data. For example, API reference documentations need to be version aware so that

the documentation can clearly refer to the relevant API versions. To provide human readable

1http://SpyREST.com

56

http://SpyREST.com

descriptions to the example API calls, relevant information needs to be captured in addition to the

raw HTTP traffic. Post processing is required to generate the structure of request and response

payloads by parsing and consolidating raw HTTP data from multiple example API calls since the

optional fields may not be obvious when looked at individual example calls.

To generate usable documentation, SpyREST automatically parses the captured HTTP request

and response data and presents summary tables showing the structure for HTTP query parameters,

headers, request and response data. For each field, SpyREST displays the name of the field, ex-

ample values and automatically inferred data type information such as integer, date time, boolean,

and string. To reduce verbosity from large API responses, SpyREST automatically strips large

responses to only show representative samples from repeated values in arrays. SpyREST does not

capture and strip off any authorization headers used in the example API calls to prevent confidential

information from being part of the documentation.

Figure 4.1: SpyREST Design

By using an HTTP proxy server, SpyREST enables the documentation of different RESTful

57

APIs independent of the implementation technology behind the APIs. SpyREST can be used both

as a software as a service tool or as a self-hosted tool when isolation is desired. SpyREST is

released as an open-source product and for self-hosted solutions it can be customized to fit unique

requirements.

The web interface of SpyREST provides a hierarchical navigation for RESTful API documen-

tation as follows: each API host has one or more API versions, each API version has one or more

resources, each API resource has one or more API actions, each API action may have a structure of

HTTP query parameters, headers, request and response payloads as well as many API examples,

each API example may have HTTP query parameters, headers, request and response payloads. The

web interface also provides a wiki-like editor to allow API developers to override auto generated

API documentation. On each page, the web interface includes collaboration features so that API

developers can discuss questions and collect feedback about specific API documentation pages.

For each API example, SpyREST generates a cURL command that can be run to execute the API

examples without writing any code.

4.3.2 Implementation

SpyREST is composed of three main components as shown in Fig. 4.1. The “Spy” component is

the customized HTTP proxy server. This component is written using NodeJS. The Spy has internal

logic to decode HTTP request URL and headers and auto-detect API versions for the commonly

used version identifier patterns. Table 4.1 shows examples of auto detected versions from accept

HTTP header and URLs.

The Spy also parses the URL to auto detect the API resources, API actions and query pa-

rameters for the example API calls. For example, given an example API call made to GET

https://api.github.com/repositories?since=100, the Spy automatically detects

the API resource as repositories, the API action as GET /repositories, and a query

parameter since with an example value of 100.

Even though the auto detected API version, resource and actions cover the commonly ob-

58

https://api.github.com/repositories?since=100

Table 4.1: Examples of Auto Detected Versions

Type Example Value Detected version

“accept” header application/vnd.ex.ca.v3+json v3

“accept” header application/vnd.ex.ca.v3.1+json v3.1

URL /v2/x v2

URL /v2.1/x v2.1

URL /v2.1-pre/users v2.1-pre

served patterns, API developers can override the auto-detections of any of these fields by us-

ing custom Spy specific HTTP headers when making the example API calls. The HTTP head-

ers x-spy-rest-version, x-spy-rest-resource, and x-spy-rest-action can be

used to override auto-detection of these respective fields. Additionally, API developers can use

x-spy-rest-desc header to attach human readable descriptions for each API example so that

the web interface can tag the examples against meaningful descriptions.

The “Web App” component is implemented using Ruby on Rails. To allow RESTful API

developers to edit auto generated documentation, the Web App uses the Markdown Syntax. To fa-

cilitate collaboration across all the API documentation pages, the Web App uses Disqus, a popular

third-party collaboration service, for commenting.

The Spy writes the captured and synthesized API example data into a MongoDB “Database”.

The Web App reads and saves custom edits on the same database.

All three SpyREST components are released as Docker containers. Docker is a lightweight

virtualization solution that can either be hosted in-house or using many of the popular cloud hosting

providers. The public instance of SpyREST has been tested with the three components in three

separate docker containers running on a single Linux server with 512MB memory, 1 core processor,

and 20GB disk space.

59

/v2/x
/v2.1/x
/v2.1-pre/users

(a) API documentation summary section (b) API documentation examples section

Figure 4.2: SpyREST Screenshots Showing Auto Generated API Documentation

4.4 Use Cases

In this section, we describe two different use cases from the perspective of initially generating

a RESTful API documentation for the first time and maintaining the documentation as the API

evolves over time.

4.4.1 Initial API Documentation

When releasing a RESTful API, API designers need to publish the API documentation so that

other developers can use the APIs. For demonstration, consider generating documentation for the

60

“GET /notifications (List your notifications)” API that is exposed by GitHub2. Using this API a

developer can paginate through the list of all public repositories within GitHub. This API action

takes an optional parameter “since” that can be used to specify a time filter.

To manually generate documentation for the GET /notificationsAPI, a developer needs

to follow these steps: S1) make example authenticated API calls to GET/noti f ications, S2) record

the HTTP headers with request and response data, S3) remove duplicate information, S4) remove

authentication information, S5) format and stylize the reduced information, S6) add custom con-

tent, S7) organize multiple formatted documents together on a web site with navigation, and S8)

publish the documentation website. Steps S1-S7 need to be repeated for each of the API endpoints.

Since these steps are manually performed, there is also a room for human errors in the aforemen-

tioned steps. SpyREST aims to minimize the potential for human errors by automating steps S2-S5

and S7-S8.

To use SpyREST for auto-generating documentation of an API, a developer only needs to make

the example API calls via the Spy proxy server with custom HTTP headers for human readable

descriptions for the API example. Custom edits to the auto generated documentation may be made

by using the Markdown editor. Fig 4.2 shows a partial screen shot of SpyREST generated docu-

mentation for this API given four example API calls. SpyREST fully automates the steps S2-S5,

and S7-S8 as follows: S2) the Spy proxy server records the HTTP traffic, S3) the Spy automati-

cally strips off repeated items from the arrays in the response body, S4) the Spy does not save any

Authorization header, S5) the Web App renders the documentation for all APIs following a

consistent look and feel, S7) the Web App provides breadcrumbs for hierarchical navigation of the

API objects, and S8) the recorded data is automatically published by the Web App in real-time.

The API developers only need to focus on finding good example API calls for S1 and describing

the complex rules about APIs that are not otherwise derivable from looking at the request and

response data alone for S7. In addition to automating the RESTful API documentation process,

2https://developer.github.com/v3/activity/notifications/
#list-your-notifications

61

https://developer.github.com/v3/activity/notifications/#list-your-notifications
https://developer.github.com/v3/activity/notifications/#list-your-notifications

SpyREST also displays a cURL command for each recorded API example so that developers can

try the API examples without having to write any code. Using in page collaboration developers

can discuss API related questions and find past conversation all in one place. In this specific ex-

ample, we see the official documentation of GET/noti f ications provided by GitHub was outdated

and missing several fields (e.g. subscription_url, repository.releases_url, repository.labels_url,

repository.noti f ications_url and 28 more) that are automatically documented by SpyREST. API

developers can also customize the auto generated summary information using a wiki-like editor on

SpyREST. This allows API developers to explain behaviors that cannot be derived from analyzing

the individual example API calls. For example, users can edit the table of Query Parameters to

explain any parameter that is not used in the example API calls or explain validation rules (such as

required, interdependent fields) about the query parameters.

4.4.2 Maintaining API Documentation for Evolving APIs

Maintenance of RESTful API documentation is another use case of interest since the documen-

tation for RESTful APIs need to evolve with the APIs to reflect the updated information. The 8

steps mentioned previously need to be repeated every time any of the API objects changes when

a manual process is followed. Since APIs continue to evolve throughout their lifetime, manu-

ally maintaining their documentation incurs further costs or documentation can quickly become

outdated.

SpyREST automatically updates the recorded information for each example API call, so re-

running the API examples automatically updates the auto-generated documentation. To uniquely

identify each example API call, the Spy computes a digital signature of each example API call

based on its API version, resource, URL and custom description. To replay the example API calls,

API developers can use automated scripts so that once an API example is scripted, it can be run

repeatedly. Moreover, the automated scripts can be written as functional tests where the generation

of API documentation becomes a side-benefit of running the tests. Running the automated scripts

to exercise the API examples frequently can prevent out of date API documentation as shown on

62

the previous use case.

Listing 4.1 shows an example script written using the Ruby based test framework Minitest. In

this example script, on line 1 the class Github is setup so that the Spy proxy server is used to

make example API calls. HTTParty used on line 3 is a third-party library for making RESTful

API calls. Then the required headers are setup for using GitHub API on line 6. Finally, we

setup the proxy connection to SpyREST server. Then, on lines 17-25, we define an example API

call as an automated test script to generate documentation for the GET /notifications API

action with three query parameters all, participating, and since. The results of the

API call can be used to test against expected results. Using this script SpyREST will generate the

documentation for this API and auto-update the documentation by rerunning the script anytime the

API changes while still providing test coverage. If custom edits are made to the summary section

of the SpyREST generated documentation, then a re-run of the same API example will only update

the example section of the documentation with new data leaving the summary section unchanged.

Thus, the custom edited content sustains over multiple runs of the API examples.

4.5 Discussion

With SpyREST we have aimed to provide a solution to RESTful API documentation. A manual

approach is both expensive and susceptible to human errors. SpyREST offers several benefits over

existing API documentation tools. We performed a preliminary evaluation of SpyREST by gen-

erating documentation of 25 RESTful API actions from 3 different APIs providers (Github.com,

KISSMetrics.com, LiquidPlanner.com) using 272 lines of test code3. Comparing SpyREST gener-

ated documents against the official documentation (manually generated) we found that the official

documentation for 5 of the 25 API actions had outdated response information that did not match

with the actual API responses as captured by SpyREST. This is an expected advantage of au-

tomation, since updated documentation can be produced by replaying existing scripts instead of

3https://github.com/smsohan/spyrest_examples

63

https://github.com/smsohan/spyrest_examples

Listing 4.1: Example API call using SpyREST

c l a s s Gi thub

i n c l u d e HTTParty

b a s e _ u r i ' h t t p s : / / a p i . g i t h u b . com '

h e a d e r s (' Accept ' => ' a p p l i c a t i o n / vnd . g i t h u b . v3+ j s o n ' ,

' User−Agent ' => ' c u r l / 7 . 3 7 . 1 ' ,

' c o n t e n t−t y p e ' => ' a p p l i c a t i o n / j s o n ' ,

' A u t h o r i z a t i o n ' => " t o k e n GITHUB_API_TOKEN ' "

)

hos t , p o r t = ' s p y r e s t . com ' , 9081

h t t p _ p r o x y hos t , p o r t

end

d e s c r i b e ' N o t i f i c a t i o n s ' do

i t ' L i s t a l l n o t i f i c a t i o n s f o r t h e c u r r e n t use r , where t h e y a r e

p a r t i c i p a t i n g , s i n c e a t ime ' do

r e s p o n s e = Gi thub . g e t ' / n o t i f i c a t i o n s ? a l l = t r u e&p a r t i c i p a t i n g =

t r u e&s i n c e =2014−01−01T00 : 0 0 : 0 0 Z '

a s s e r t _ e q u a l 200 , r e s p o n s e . code

end

end
64

requiring any manual efforts.

Using automated tests to generate documentation serves a dual purpose for maintaining a test

suite since the documentation of the RESTful API becomes an artifact from the execution of tests.

This is a unique advantage of SpyREST over other API documentation tools that translate manually

edited API descriptions into API documents instead of executing actual API calls.

Most general purpose API documentation tools such as JavaDoc extract documentation based

on formatted comments from the source code. Since comments are not executable code, man-

ual effort is required to keep the comments updated as the underlying API changes. RESTful

API documentation typically includes additional information about HTTP headers, request and re-

sponse payloads as well as example API calls that are not natively supported by general purpose

API documentation tools. Also, API documentation tools for library APIs are often programming

language specific. SpyREST overcomes these limitations of code comments based API documen-

tation tools by leveraging a HTTP proxy server where executable API examples are converted into

API documentation that can be used to document RESTful APIs independent of independent of

what programming languages are used to implement the RESTful APIs..

SpyREST offers unique features compared to other RESTful API documentation services.

Swagger4 and Blueprint5 are two software as a service tools for RESTful API documentation.

The key difference between SpyREST and these tools is in the underlying approach used. These

tools require the API developers to follow custom vendor specific API specification formats to

describe the API objects. Once the APIs are described, the tools can auto-generate the documen-

tations for the APIs. There is no automated tool support to generate the required API description

in the vendor specific formats. Thus manual effort is required to produce the required API speci-

fications and maintain it over time. SpyREST does not require any intermediate API specification

as data is sourced for the documentation based on live API calls. Swagger and Blueprint do not

support a self-hosted service to document RESTful APIs whereas SpyREST allows a self-hosted

4https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
5https://github.com/apiaryio/api-blueprint

65

service to document RESTful APIs that cannot be externally shared for confidentiality issues.

The technology choice behind for our implementation of SpyREST components is based on

our past experience of using these tools but the concepts behind SpyREST is not dependent on the

aforementioned technology choice. As a proof of concept, SpyREST only analyzes JSON based

API request and response payloads.

SpyREST is a proof of concept implementation for a novel RESTful API documentation tech-

nique. We identify the following limitations. SpyREST has yet to be evaluated. We plan to evaluate

SpyREST with a large number of RESTful APIs as well as conduct a user evaluation involving API

developers to understand the strengths and weaknesses of our tool. The current implementation of

SpyREST only works on JSON based RESTful APIs. SpyREST needs to be enhanced to support

other data types such as XML, and CSV. SpyREST, like other HTTP proxy servers, performs an

intentional “man in the middle attack” to intercept HTTP traffic for example API calls over SS-

L/TLS. We consider the security impact of this approach to be low since the data is commonly

meant to be included in documentation for public use. Otherwise, API developers can use the

self-hosted mode and provide SpyREST with the required SSL keys. Web APIs often include a set

of commonly used error responses across a variety of API endpoints. Additional work is required

on SpyREST to automatically provide a summary of error responses based on example API calls.

SpyREST also needs to be extended to support auto-linking between different API endpoints so

that API developers can navigate between related API documentations.

4.6 Related Work

Several papers have studied API documentation to understand and recommend requirements for

effective API documentation tools. Robillard recommended the following requirements for API

documentation: include good examples, be complete, support many complex usage scenarios, be

conveniently organized, and include relevant design elements [5, 6]. Kuhn et al. discussed the

importance of examples in API documentation as a key recommendation based on a survey of

66

software developers using APIs [7]. They identified trustworthiness, confidentiality, and limit-

ing information overload as other key recommendations for API documentation. Hoffman et al.

recommended providing executable test cases with API documentation [8]. Nasehi et al. recom-

mended the use of wiki-like editing features for online API documentation to foster collaboration

[9]. Parnin et al. and Chen et al. also recommended incorporating collaborative features with API

documentations [10, 11]. Stepalina identified several benefits of using software as a service model

for API documentations as follows: cost effective yet powerful, platform agnostic and high acces-

sibility, improved document quality, content re-use, automated tools, and organization of robust

and scalable documentation process [12].

Several papers have discussed the topic of RESTful API documentation. Espinha et al. found

most RESTful API documentations to be less reliable because they are manually generated [2].

Danielsen et al. proposed a vocabulary called Web Interface Language (WIfL) for documenting

RESTful APIs so that different APIs can be described using a standard terminology [3]. RESTdesc,

RDDL and hRESTS have been proposed as custom specifications to describe RESTful APIs [13,

14, 15]. For RESTful API documentation, Myers et al. recommended providing a consistent look-

and-feel and an overall map comprising of both text and diagrams, providing a browsing experience

with breadcrumb trail following a hierarchy, an effective search interface, providing example code

and a way to exercise the examples without writing code [16].

Our work on SpyREST is a result of following the recommendations as found on the afore-

mentioned related work as well as critically analyzing existing API documentation tools such as

JavaDoc, Swagger, and Blueprint, to identify the unmet requirements. Based on our analysis, we

incorporated the following recommendations as requirements for SpyREST: automated RESTful

API documentation, executable examples, consistent navigation and look and feel, software as a

service model, wiki-like editing, automatic stripping of confidential data, reducing information

overload, and in place collaboration.

67

4.7 Conclusion

In this paper we have presented SpyREST as a prototype tool to demonstrate an automated solution

to RESTful API documentation. Our main contribution is a novel tool that leverages a HTTP

proxy server to intercept and automatically extract API documentation from example API calls.

SpyREST provides an integrated tool for RESTful API documentation by providing features for

automated generation, customization, maintenance, collaboration and executable examples under a

single cloud based software as a service platform. By automating the repeated parts of the RESTful

API documentation process, SpyREST provides a more effective alternative to the manual process.

API developers can use SpyREST to save time and costs for generating and maintaining RESTful

API documentation. In the future we plan to conduct a quantitative evaluation by using SpyREST

to auto generate documentation for a large set of RESTful APIs. We will also conduct a qualitative

user study involving API developers to collect feedback about the strengths and weaknesses of

SpyREST.

4.8 References

[1] R. T. Fielding, “Architectural styles and the design of network-based software architectures,”

Ph.D. dissertation, University of California, Irvine, 2000.

[2] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains: Stories from client

developers and their code,” in Proc. of IEEE Conference on Software Maintenance, Reengi-

neering and Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 84–93.

[3] P. Danielsen and A. Jeffrey, “Validation and interactivity of web API documentation,” in

Proc. of International Conference on Web Services (ICWS). IEEE, 2013, pp. 523–530.

[4] S. Sohan, C. Anslow, and M. Frank, “SpyREST: Automated RESTful API documentation

using HTTP proxy server,” in Proc. of IEEE/ACM International Conference on Automated

Software Engineering, 2015.

68

[5] M. Robillard, “What makes APIs hard to learn? the answers of developers,” Software, IEEE,

vol. PP, no. 99, pp. 1–1, 2011.

[6] M. Robillard and R. DeLine, “A field study of API learning obstacles,” Empirical Software

Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[7] A. Kuhn and R. DeLine, “On designing better tools for learning APIs,” in Search-Driven

Development - Users, Infrastructure, Tools and Evaluation (SUITE), 2012 ICSE Workshop

on, 2012, pp. 27–30.

[8] D. Hoffman and P. Strooper, “API documentation with executable examples,” Journal of

Systems and Software, vol. 66, no. 2, pp. 143 – 156, 2003.

[9] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?: A

study of programming Q&A in StackOverflow,” in IEEE Proc. of International Conference

on Software Maintenance (ICSM), 2012, pp. 25–34.

[10] C. Parnin and C. Treude, “Measuring API documentation on the web,” in Proc. of the Inter-

national Workshop on Web 2.0 for Software Engineering, ser. Web2SE ’11. ACM, 2011,

pp. 25–30.

[11] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced faqs into api documen-

tation,” in Proc. of the International Conference on Software Engineering Companion, ser.

ICSE Companion 2014. ACM, 2014, pp. 456–459.

[12] E. Stepalina, “SaaS support in software documentation systems,” in Proc. of Central and

Eastern European Software Engineering Conference (CEE-SECR), 2010, pp. 192–197.

[13] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés, and R. Van de Walle,

“Functional descriptions as the bridge between hypermedia APIs and the semantic web,” in

Proc. of the Third International Workshop on RESTful Design, ser. WS-REST ’12. ACM,

2012, pp. 33–40.

69

[14] J. Mangler, P. Beran, and E. Schikuta, “On the origin of services using riddl for description,

evolution and composition of restful services,” in Proc. of IEEE/ACM International Confer-

ence on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 505–508.

[15] J. Kopecky, K. Gomadam, and T. Vitvar, “hrests: An HTML microformat for describing

restful web services,” in Proc. of International Conference on Web Intelligence and Intelligent

Agent Technology (WI-IAT), vol. 1. IEEE, 2008, pp. 619–625.

[16] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu,

and D. K. Busse, “Studying the documentation of an API for enterprise service-oriented

architecture,” J. Organ. End User Comput., vol. 22, no. 1, pp. 23–51, 2010.

70

Chapter 5

Automated Example Oriented REST API Documentation at

Cisco

5.1 Abstract

Generating and maintaining an up-to-date API documentation is a challenging problem for evolv-

ing REST APIs. At Cisco, we’ve used SpyREST, an automated REST API documentation tool, via

our functional tests to solve this problem with one of our APIs for a cyber security application over

the past eighteen months. Using this approach, we’ve avoided the need for extensive manual ef-

fort by leveraging our test code to also generate a continuously updated API documentation as the

API evolved. Our always-updated API documentation has helped creating a fast feedback loop be-

tween the developers and QA engineers. The findings from this paper can be used by practitioners

to introduce automation to reduce the manual effort associated to their REST API documentation

process.

5.2 Introduction

Researchers identified the documentation of APIs as both the primary source of information as well

as the key obstacle for API usability [1]. To this regard, researchers have identified the qualities

of “good API documentation” as follows: complete, correct, includes thorough explanations and

code examples, provides consistent presentation and organization [1, 2]. In our previous work, we

introduced a novel technique and SpyREST, an implementation, based on an HTTP proxy server

to automatically intercept example REST API calls and synthesize the data to produce REST API

documentation to meet the aforementioned qualities [3].

The primary motivation of this paper is to share the results of an evaluation of SpyREST and

71

it’s underlying REST API documentation technique based on its production use at Cisco. While

REST APIs are published and documented by a large number of today’s Internet based software

companies, we see a lack of published literature on the topic of reusable and automated documen-

tation techniques for evolving APIs. By sharing our lessons learned from a production use of a

new technique in an industry setting we aim to help practitioners and researchers with a practical

approach to generate and maintain example oriented REST API documentation.

The team at Cisco was tasked to develop a REST API such that it could frequently evolve to

support incremental releases and addition of new features with backward compatibility as needed

by the business. We compared several existing REST API documentation tools to evaluate the

features against the documentation requirements for this evolving API. SpyREST was selected be-

cause the team found it to provide better automation support to achieve the requirements compared

to the alternatives. We expect the information on this paper to be of use for other evolving REST

APIs that need to maintain an up-to-date documentation without duplicating developer effort.

SpyREST is being used in production at Cisco for the documentation of a commercial REST

API of a cloud based Cyber security product. The first author of this paper is affiliated with the

team behind the product. It provides us with a unique opportunity to analyze the impact of the

industry adoption of a tool developed in research. Production usage over an eighteen month period

also allows us to understand the problem and opportunities presented by SpyREST in depth.

Our core contributions from this case study are as follows:

• Test driven REST API documentation. For practitioners, we discuss a reusable

technique for producing example oriented REST API documentation as a byproduct

from automated API test code.

• Evolution of API documentation. For practitioners, we discuss a viable process

to support evolution of API documentation as the API evolves without duplicating

effort.

• Evaluation of SpyREST at Cisco. We present an industrial evaluation of SpyREST

72

and its underlying technique of generating API documentation by intercepting API

examples based on our case study at Cisco. Using this as evidence, researchers

can extend the interception based the API documentation technique to improve tool

support for the documentation of other forms of APIs beyond REST.

The remainder of this paper is organized as follows: in the following section we present related

work to discuss the current state of research on REST API documentation. Then, we provide a

brief overview of our REST API documentation technique and the tool, SpyREST, followed by a

case study of using SpyREST at Cisco. Then, we discuss our lessons learned and the limitations

of this case study.

5.3 Related Work

5.3.1 API Usability and Documentation

Several papers in the existing literature have focused on identifying the characteristics that make

an API usable based on case studies. Robillard studied API usability by surveying 83 software de-

velopers at Microsoft [4]. They found that 78% of the survey participants read API documentation

to learn the APIs, 55% used code examples, 34% experimented with the APIs, 30% read articles,

and 29% asked colleagues. Robillard et al. found that the most severe API learning obstacles are

related to the API documentation. They suggested the following requirements as must-have for

API documentation: include good examples, be complete, support many example usage scenarios,

be conveniently organized, and include relevant design elements. Myers et al. also recognized the

documentation as a key component for API usability and suggested using examples in the doc-

umentation to answer API related questions [5]. Zibran et al. found that 27.3% of the reported

bugs are API documentation bugs studying repositories for 562 API usability related bugs from

five different projects [6]. Scheller et al. provided a framework for measuring API usability based

on the number and types of different objects and methods that the API provides [7].

Kuhn et al. performed a user study with 19 professional software developers to understand re-

73

quirements for tool development to support API learnability [8]. They recommended the following

as requirements for API documentation: trustworthiness, confidentiality, lack of information over-

load and the need for code examples as first-class documentation artifacts. Shi et al. recommended

API documentation tools to support editors for custom content to provide simple ways to include

API usage examples without syntax errors [9]. Ko et al. found that thorough introductions to the

concepts, standards and ideas in API documentation are a prerequisite for API usability [10].

Because REST APIs are a category of APIs, the strong relationship between the documentation

and usability of the API as discussed in the aforementioned papers also applies to the context of

REST APIs.

5.3.2 Usage Examples in API Documentation

Several authors introduced tool support for including usage examples with API documentation.

Hoffman et al. recommended using executable examples in API documentation [11]. They in-

troduced the Roast test as tool support to combine prosaic descriptions of Java APIs along with

executable code examples. Montandon et al. developed APIMiner as a search tool for Java APIs

and recommended providing production-like API usage examples in the API documentation [12].

Zhu et al. developed UsETeC to extract API usage examples by automatically synthesizing JUnit

test code of the APIs [13]. Stylos et al. presented Jadeite to provide developers with faster access

to relevant API documentation by using placeholders for API methods [14].

Several authors presented techniques for linking official API documentation with crowd-sourced

API usage examples that is otherwise fragmented. Nasehi et al. recommended mining knowledge

repositories such as StackOverflow and developer forums should be considered for retrieving use-

ful code examples [15]. Parnin et al. found that examples of 87.9% of all jQuery API methods

are found by searching software development blogs and forums [16]. Wu et al. presented an

Eclipse plugin called CoDocent that can automatically find code examples using various online

code search engines and link with the relevant official API documentation [17]. Chen et al. pre-

sented a technique to automatically link official documentation with crowd-sourced documentation

74

by recording the API related web searches that are performed by developers [18]. Dagenais et al.

presented a tool called RecoDoc to link code-like elements from API mailing lists and developer

forums with their corresponding code elements [19]. Treude et al. presented a machine learning

based technique called SISE to augment useful information from StackOverflow to API documen-

tation by using text similarity of API elements and StackOverflow content [20].

We observed that the research on usage examples in API documentation related tools have

focused on local APIs such as Java library APIs. While local APIs are defined by programming

language specific constructs such as classes, and methods, REST APIS are defined by HTTP ter-

minology such as HTTP request, response, and headers. We found a lack of published work on the

tool support for including usage examples with REST API documentation.

5.3.3 REST API Documentation

The concept behind RESTful API was introduced by Fielding [21]. Maleshkova found that most

REST APIs are manually documented which results in API underspecification, and a lack of sup-

port for common tasks and reusable tools [22]. Myers et al. performed a user study on the usability

of a complex API for enterprise SOA [2]. They recommended providing a consistent look-and-feel

with explanation for the starting points and an overall map comprising of both text and diagrams,

providing a browsing experience with breadcrumb trail following a hierarchy, an effective search

interface, providing example code and a way to exercise the examples online without writing code.

In a previous case study, we found the documentation of REST APIs are generated manually or

using bespoke tools [23].

Several authors have suggested machine readable specification languages for REST APIs that

can be used to transform into API documentation and auto generated API client code such as

WADL (Web Application Description Language), RIDDL, hRESTS, RESTdesc, and WIfL (Web

Interface Language), OmniVoke [24, 25, 26, 27, 28, 29]. Polak proposed a specification format for

REST API using the Model-Driven Architectural principle [30]. In addition to the existing litera-

ture, several REST API description languages have been proposed by industry practitioners such

75

as RAML, API Blueprint, and Swagger1. Listing 5.1 shows a fragment of REST API specification

following swagger 2.

Listing 5.1: Example Swagger REST API Specification

1 b a s e P a t h : / v1

2 schemes :

3 − h t t p

4 consumes :

5 − a p p l i c a t i o n / j s o n

6 p r o d u c e s :

7 − a p p l i c a t i o n / j s o n

8 p a t h s :

9 / p e t s :

10 g e t :

11 summary : L i s t a l l p e t s

12 o p e r a t i o n I d : l i s t P e t s

13 t a g s :

14 − p e t s

15 p a r a m e t e r s :

16 − name : l i m i t

17 in : que ry

The primary advantage of these specification languages is code generation and automatic trans-

formation into REST API documentation. For some strongly typed programming languages, such

as Java, it is possible to extract a schema representation of the API objects from the code. However,

for dynamically typed languages, such as Ruby, the lack of type information prevents automated

API specification. As a result, manual effort required from the developers to maintain a sepa-

rate API specification. Even when API schema automatically extracted, API developers need to

manually maintain usage examples because the examples don’t exist in the API code.

1 http://raml.org/ https://apiblueprint.org/ http://swagger.io/
2https://github.com/OAI/OpenAPI-Specification

76

http://raml.org/
https://apiblueprint.org/
http://swagger.io/
https://github.com/OAI/OpenAPI-Specification

Table 5.1: REST API Documentation

Desirable Property Current State

Detailed introduction Manually edited contents are commonly used.

Includes Examples Commonly include manually generated API examples.

Executable Examples Bespoke tooling is used to provide API explorers.

Automated Tools rely on manually written specifications.

Consistent Presentation Includes access information, resources, actions, request and

response structures and API examples.

Table 5.1 contrasts the current state of tool support for REST API documentation against a set

of properties that researchers identified as required for API usability. In summary, practitioners

and researchers have attempted to solve the problem of REST API documentation by proposing

specifications for describing REST APIs. Manual work is needed by REST API developers to

generate and maintain the API specifications. These specification formats describe the structure of

different API elements (the syntax), but lacks support for automatically generated executable API

usage examples with realistic data (the semantics). We found a lack of published papers on the

effectiveness of the aforementioned specification languages in an industry setting. In this research,

we aim to fill this gap by sharing our experience of using an automated REST API documentation

technique in the industry.

5.4 REST API Documentation Tool Selection

5.4.1 Requirements

Tulach summarized developer feelings about writing API documentation as follows: “Everyone

who ever tried to convince a developer to write documentation knows how hard that is. As

a result, the general feeling is that developers don’t like and are not able to provide docu-

mentation for their own code.” [31]. At Cisco, a focused group was formed involving five API

77

developers and two QA engineers to select an appropriate REST API documentation tool that they

would actually use. The group collected the following requirements: R1. support multiple ver-

sions, R2. support multiple environments, R3. easy to maintain, R4. include executable API usage

examples, R5. use familiar tools, and R6. allow customization.

5.4.2 Evaluation of Tools

A list of REST API documentation tools were selected for “spikes”, a practice used by the soft-

ware engineers to better understand how a tool fits a problem in context. The API developers

and QA engineers shared opinions based on their spikes about three different tools, Swagger, API

Blueprint, and SpyREST. Swagger and Blueprint were researched because of their maturity and in-

dustry adoption information as found through online searches. The authors of this paper previously

developed SpyREST based on their past experience outside the context of this specific Cisco API.

The focused group participated in the “spike” and discussed the pros and cons of each selected

tool. Table 5.2 summarizes the findings:

As shown in Table 5.2, the verdict to use SpyREST was based on the observation that using

Swagger or API blueprint required us to manually maintain the REST API documentation as a

separate static artifact from the API related code. SpyREST was found to provide better support

for R3, R4, and R5 over Swagger or API Blueprint as the developers could auto-generate the

documentation from the functional test suite instead of “writing separate documentation” that are

required to be written and maintained with the code. A round of informal feedback on SpyREST

was collected after the first production release of the API and the team decided to continue using

SpyREST.

5.5 SpyREST – Overview

We provide a brief overview of SpyREST, the REST API documentation tool and the underlying

technique used in this case study [3, 32]. At the heart of the technique is a pass-through HTTP

78

Table 5.2: Comparison of Tools against the Requirements

Req. Swagger API Blueprint SpyREST

R1 (version) Separate file / version Separate file / version API example / version

R2 (env.) Separate file / environ-

ment

Separate file / environ-

ment

Automated

R3 (maint.) Manually maintain

separate artifact from

code

Manually maintain sepa-

rate artifact from code

Derived from auto-

mated tests

R4 (exe. ex-

ampl.)

Automated (Web UI

and cURL)

Manual Automated (cURL)

R5 (familiar-

ity)

Swagger API Spec

and code inspection

Markdown Automated tests

R6 (custom.) Manual Manual Automated tests and

Manual

proxy server which acts as an interceptor between an API client and the API. This allows the proxy

server to inspect the raw HTTP request and response data from the example API calls. However,

for usable API documentation the raw HTTP data needs to be further processed and enriched with

meta data. For example, given the following HTTP request and response data from an example

API call to create a Blog post:

Reques t Verb : POST

Reques t URL: / v2 / p o s t s

Reques t Headers :

Conten t−Type : a p p l i c a t i o n / j s o n

A u t h o r i z a t i o n : B a s i c dXNlcjpwYXNzd29yZA==

Reques t Body :

{

" t i t l e " : "My New Blog p o s t " ,

79

" c o n t e n t " : " Th i s i s a new b log p o s t "

}

Response Headers :

L o c a t i o n : " / v2 / p o s t s / 1 "

h o s t : " b log . example . com"

A series of transformation needs to take place to produce usable API documentation. The

proxy server used by SpyREST is customized to record and synthesize such example API calls.

The transformation process involves the following analyzers:

• API version analyzer. The version analyzer automatically infers the API version used by the

example API call. From the aforementioned example, the version analyzer auto-detects the API

version as “v2” based on the URL.

• API resource analyzer. To generate a hierarchical representation of the API elements, it’s im-

portant to group multiple API actions that correspond to a single API resource under a single

hierarchy. API resource analyzer automatically detects post as the API resource for this exam-

ple.

• API action analyzer. The API action analyzer automatically infers the API action on a resource

from example API calls. For the given example, the action analyzer identifies POST/v2/posts

as the API action.

• API query parameter analyzer:. The query parameter analyzer records each query parameter

that is used by the example API calls and automatically infers the data types such as integer,

string, timestamp, etc.

• API request header analyzer: The request header analyzer removes standard authorization cre-

dentials from the API documentation. For the given example, the API requests header analyzer

transforms the Authorization header’s value as Authorization : BasicFILT ERED.

80

• API body analyzer: The body analyzer captures the request and response bodies and infers the

structure of the body as an object with auto-detected field names and data types. The request

body analyzers produces the following information from the given example for API documen-

tation:

Field Data Type Example

title String My New Blog post

content String This is a new blog post

• API response header analyzer: The response header analyzer automatically removes noisy

headers such as (Server, Pragma, etc.) from the documentation.

• Custom content analyzer: SpyREST automatically infers a human readable description for

each API action. For the given example, the auto detected description is as follows: CreateaPost.

The custom content analyzer allows API developers to override the auto-detected attributes such

as the API version, resource, action and description by using a set of SpyREST specific HTTP

headers.

Fig. 5.1 shows SpyREST screenshots of the production REST API documentation at Cisco.

Fig. 5.1a shows a fragment of the manually written overview information juxtaposed to the auto-

generated index of the API resources. Fig. 5.1b shows the output of the different analyzers within

SpyREST proxy server that automatically detects the version (v1), API resource (Computer), ac-

tion (PATCH /v1/compouters/...), and the structure of the response fields from the single example

API call. Fig. 5.1c shows the transformed example API request headers, body, and an executable

cURL command that can be used to exercise the API call. Fig. 5.1d shows the API response

headers and body for the example.

To summarize, SpyREST provides tool support to improve the process of REST API documen-

tation with usage examples, automatic updates, executable examples and a consistent hierarchical

representation of the API.

81

(a) API Overview in SpyREST

(b) SpyREST Analyzed API Structure

82

(c) SpyREST Recorded API Request (d) SpyREST Recorded API Response

Figure 5.1: Screenshots of the REST API Documentation from Cisco using SpyREST

83

5.6 Case Study: SpyREST at Cisco

5.6.1 Methodology

For this case study, we use a specific REST API within Cisco. SpyREST has been used over the

past eighteen months and is being used at the time of writing this paper to document the REST

API for a cloud delivered cyber security application at Cisco named Advanced Malware Protection

for Endpoints. The API allows the customers of the cyber security application to extract and

modify security related data specific to their businesses from the cloud to facilitate automation and

custom third-party integration. For example, some customers use the API to automatically create

an investigation ticket on their ticketing system for each malware detection event.

The REST API is documented using SpyREST via automated tests. To evaluate the outcome

of the documentation process using SpyREST, we’ve incorporated stakeholder feedback as well

as collected metrics from the various log files associated with the development and deployment of

API docs and the actual API changes. 25 API stakeholders from Cisco were invited via email to

provide free form feedback about the API documentation and its underlying process via emails to

the first author of this paper.

5.6.2 Context

The Stakeholders

The REST API has several stakeholders as follows: customers, API client developers, customer

support team, product management, API developers, and quality assurance engineers. Customers

and potential customers are interested in an API so that custom tooling and business specific inte-

gration can be performed. API client developers are often employed by the customers to implement

API integrations. At present, over a hundred unique customers use the API at least once a month

as per the API usage logs.

Inside Cisco, the stakeholders are the customer support team, product management team, API

developers (including the first author) and quality assurance engineers. At present, a total of 25

84

people are involved as the Cisco stakeholders in this case study.

Participants

We received a total of 9 feedback emails comprising of the following: one project manager (PM),

one customer support engineer (SE), five API developers (D1-5) and two QA engineers (QA1-2).

Developer D2 has 5 years, and the rest of the participants each have more than 10 years of software

industry experience.

API Properties

At present, the API is currently available under two different versions, v0 and v1. The API is also

served from three different Cisco managed cloud environments for North America, Europe, and

Asia Pacific. Additionally, the API is shipped with a private cloud appliance, where customers

can host the software on-premise. Even though the environments are designed to eventually serve

the API with identical features, the deployment of the API to each environment is independently

managed. The underlying application, introduced in 2010, uses Ruby on Rails 3 web framework,

and has a total of 120K lines of custom code with a code to test ratio of 1:1.3.

In the latest version, v1, the API has nine different API resources, and a total of twenty API

actions, with multiple variants per action, to be performed on those resources. For example, the

API has a resource named “Computer,” and an action PATCH/v1/computers/: connectorguid for

updating a computer. The older version, v0, has 6 resources and 10 API actions. Currently, v1 is

backward compatible with v0, but backward compatibility is not guaranteed with future versions.

API Evolution

The API was first launched with version v0 in February 2015, and a fully compatible version v1

was released in May, 2016. The monthly release notes have mentioned at least one API related

change for 12 times out of a total of 18 publicly announced releases of the software. Internally, the

automated functional tests for the API documentation have changed 95 times by 6 contributors (as

3http://rubyonrails.org

85

http://rubyonrails.org

Figure 5.2: API Development workflow using SpyREST at Cisco

per the version control logs). The actual number of internal API evolution before they are released

is unknown since they often happen several times a day, and don’t always involve a change in the

functional tests. The version numbers v0 and v1 were left unchanged to release backward com-

patible new features and bug fixes. At present, the API serves 80,000 API calls on an average per

day (as per the API call logs) and is used by over a hundred enterprise customers that are globally

distributed. The customers use the SpyREST generated documentation as the sole information

source for learning the API features. The actual number of API client developers is not known at

this time since multiple API client developers can be involved in writing an API client application

for the customers.

5.6.3 The API Development Process

Documentation of a new API Action

The REST API developers and quality assurance engineers of the cyber security product at Cisco

use SpyREST to generate the API documentation throughout the lifecycle of an API from the

developer workstation to a production instance as shown in Fig 5.2. When a new API action is

introduced, the API developers write one or more functional tests against the API to show an

intended usage example. If the functional test is run using SpyREST proxy server, it automatically

generates the API documentation. Listing 5.2 provides an example of an automated test fragment

from the case study that renders part of the documentation as shown in Fig. 5.1c 5.1d.

86

Listing 5.2: Functional Test Code

1 c o n t e x t ' v1 ' do

2 d e s c r i b e ' Computer ' do

3 i t ' Moves compute r t o a group wi th g i v e n c o n n e c t o r _ g u i d and g r o u p _ g u i d '

do

4 r e s p o n s e = API . p a t c h (" / v1 / compu te r s / # { c o n n e c t o r _ g u i d } " , {

5 h e a d e r s : ' x−spy−r e s t−a c t i o n ' => ' / v1 / compu te r s / { : c o n n e c t o r _ g u i d } ' ,

6 body : { g r o u p _ g u i d : g r o u p _ g u i d } . t o _ j s o n

7 })

8 e x p e c t (r e s p o n s e . code) . t o e q l (2 0 2)

9 #more a s s e r t i o n s

10 end

11 end

12 end

This example code is written using RSpec4, a Ruby based test framework. Line 1 mentions

the API version, line 2 mentions the API resource of interest, and line 3 shows a human read-

able description of the test. On lines 5-7, an example HTTP patch API request is made using the

method API.patch. Then, an example assertion is added on line 8. the API class has capabilities

to make the patch HTTP request over an HTTP Proxy server. While using the proxy server, the

API class also sends the test description “Moves computer to a group with given connectorguid

and groupguid” with a SpyREST specific header to automatically map test description as the de-

scription of the API usage example. As discussed earlier, the SpyREST analyzers can inspect the

HTTP request and response information with the custom headers to produce usable REST API

documentation from this automated test code.

This practice of using tests for documentation was mentioned as an advantage by 4 of the

9 participants. For example, QA2 mentioned the following: “SpyREST was a useful tool for

us... as the (API) endpoints were documented using unit tests, (API) developers would write
4http://rspec.info

87

http://rspec.info

the documentation for a similar audience (API client developers).” The PM mentioned the

following feedback about the executable API examples in the documentation: “The embedded

examples are great for allowing users to try API calls quickly and easily to get a feel for how

the API works.”

The next step in the life cycle of the API documentation is in the automated build server where

the test suite is executed against a deployed API on a staging server through a SpyREST proxy.

This promotes the REST API documentation from the developer workstation to a shared instance

that is used by the quality assurance engineers, product management, and the peer developers to

verify against the acceptance criteria. This often results in several loops between the developer

workstations and the staging servers until the API and its documentation meets the acceptance cri-

teria. During the team retrospective following the API production release, the following comment

was captured in the meeting notes by one of the QA engineers (QA1): “Up-to-date documenta-

tion using SpyREST helped developing and collecting lots of input about the API in small

pieces during the weekly meetings before production release”. The API developers and qual-

ity assurance engineers add any custom content as needed to describe complex API concepts and

prerequisites that aren’t captured in the automated examples.

The next step in the life cycle of the API is a release to one or more of the production envi-

ronments that customers use. With the production release of an updated API, its documentation is

automatically promoted from the staging environment to production. The promotion of the docu-

mentation is a three-step process. First, the data from the staging server is exported in a portable

archive file. Then, a transformation is performed to update staging specific data such as URLs,

email domains, and host names within the archive to match the desired production environment.

Finally, the transformed archive is published to production as a read-only artifact.

Documentation of a new Version for an Existing API Action

When API version v1 is launched, all the functional tests for v0 are run on a loop, once per version.

This code reuse minimizes the effort required to document multiple versions of the same API

88

action when the API versions are backward compatible. The rest of the life cycle steps follow

similar process as the documentation of a new API action.

Documentation of an updated API Action

When an API update requires a new example, a new automated test case is written. For example,

an API action was updated to receive a new query parameter to support an additional operation.

When an API update doesn’t require a new API example to describe the change, the API

documentation is automatically updated by the build server. For example, in the case study an API

action was updated to include a new field with the response body and the API documentation was

automatically updated without needing a change in the test code.

REST API Evolution

In the case study we have observed the evolution of the API and it’s documentation is triggered

by the following: new requirements, and internal reviews of the API. For example, the primary

difference between v0 and v1 of the API is the addition of a new requirement to allow API client

developers the features to modify API objects in v1 that only allowed read-only access on v0.

While the new requirements are developed, before they are released to production, the API

undergoes a more frequent evolution, several times a day, triggered by internal reviews of the API

by the peer API developers and the quality assurance team. The auto-generated API documentation

using SpyREST is used in the internal reviews to suggest alternatives and verify API acceptance

criteria.

API evolution before and after the production release of the API has two opposing forces, yet

one helps achieve the other. After an API is published to production, we are unable to make any

breaking changes without affecting customers. To support this feature, we found it important to be

able to evolve the API frequently before the API is published. The always up-to-date API docu-

mentation with SpyREST has helped establish a quick feedback loop between the API development

and QA teams throughout the life-cycle of the API.

89

5.7 Discussion

5.7.1 REST API Documentation from Test Code

API developers are required to write the tests for the APIs even if not used for documentation. At

Cisco, we have learned that the documentation of the REST API from its functional test code to be a

welcome side-effect. Developer D3 mentioned the following feedback: “Using a set of functional

tests to both ensure correctness of the API, as well as a source of documentation is an excellent

strategy”. When the data from the tests are intercepted to generate API documentation, API

developers need to actively think about the API usage scenarios against a realistic setup. For

example, one of the Cisco developers updated the test name for an API from “Finds computers

that have connected with an IP for v0” to “Fetches list of computers that have connected to a

given IP address” to better reflect an API action for documentation based on internal review. This

enforces the need for a stable test suite since a failing or incomplete test suite also breaks the API

documentation. Eight of the nine study participants mentioned the executable API examples as a

key feature of SpyREST that helped them to review the details of the API without writing code.

Continuously updated documentation improves its correctness and verification of version com-

patibility as an API evolves. A breaking change in the API fails the underlying tests. For non-

breaking changes, such as addition of new REST API objects, the test suite helps proving backward

compatibility.

One limitation of this approach is that not all API tests are suitable to be used in the REST API

documentation. For example, even though unhappy paths are commonly written in tests, they are

seldom included in the documentation for brevity. API developers may need to select a subset of

the tests that are run through SpyREST proxy server that are meaningful for documentation.

Based on our experience at Cisco, we recommend REST API developers to utilize the auto-

mated test suite to drive API usage examples in the API documentation using SpyREST. SpyREST

can intercept REST API calls irrespective of the technology used to implement the API and the

API test client because it works as an HTTP proxy. The approach shared in this paper can be

90

applied to document REST APIs within other organizations where the technology behind the API

implementation may differ.

5.7.2 Maintaining Custom Content

Based on the feedback on SpyREST by Cisco developers, we’ve learned both the benefits and

drawbacks of using a wiki-like editor for custom content with the API documentation. The wiki

within SpyREST allows the API developers to add rich content comprising of proses, images, ta-

bles, code fragments, and web links, etc. to explain concepts that are required to understand the

API. One developer feedback (D1) mentioned the following about the wiki: “Good customization

on the overview of each resource.” Developer D3 mentioned the following: “Being able to edit

the documentation in place, similar to a wiki works really well, effectively allowing an orga-

nization to crowd-source the job.” For example, at Cisco, we’ve added an overview explaining

API access information, rate-limit, and common approaches to perform pagination within the API

actions as custom content.

The custom content using a wiki has a drawback as it’s maintained as a separate artifact within

SpyREST. Developer D4 mentioned the following feedback: “Tests are great for examples and

showing lists of available endpoints and parameters, but there also needs to be some expla-

nation of how to use the API in general.” Since the wiki-edited custom content lives outside the

code repository, manual effort is needed to maintain the evolution of custom content when needed.

One of the Cisco developers (D2) mentioned the following in the feedback about SpyREST: “It

is helpful for deployment if the content in the overview section on the home page can be

auto-generated through SpyREST code.”

We identify this as an opportunity to continue further research to improve the collaborative

editing of rich customized content with auto-generated API documentation such that the custom

content can be put into the version control systems.

91

5.7.3 Handling Flexible API Elements

The API elements within REST are not restricted to follow a strict structure. For example, in

the case study, we have a flexible API element of type “Event” to denote a malware detection

event. The actual structure of the “Event” API element can be widely different based on the

type of the event. For example, a file detection event contains several file specific data such as

the fingerprint, name, path on disk, size. On the other hand, a network detection event contains

network specific data such as the remote host, URL, IP, protocol. A single API call may return

a list of “Events” of such different types. Incomplete list of API response attributes caused a

confusion to a customer and the SE mentioned the following feedback: “The only criticism I

have is making sure that all of the returnable data that is available in the Response Fields,

because I have found some instances where this data was missing”. We’ve incorporated this

feedback and changed SpyREST so that the “Event” API element is documented as a union of all

the different attributes of the different event types (fingerprint, name, path on disk, size file, remote

host, URL, IP, protocol) from the intercepted example API calls.

We have learned the main advantage is, merging the attributes of different types of API ele-

ments in an Array provides a list of all possible attributes that are observed in an API element. An

API client developer reading the API documentation gets a complete picture of the API element.

On the other hand, it may not clearly communicate the fact that only a subset of the documented

attributes may be returned by an API call for each API element. In our case-study at Cisco, the

API usage examples captured by SpyREST shows specific examples with different “Event” types

to provide the context around the event types. We recommend practitioners to follow this pattern

since it allows API client developers to understand the implied structure of flexible API elements

with specific use cases.

92

5.7.4 API Documentation Life-cycle

We’ve learned that it is a critical feature that the API documentation follows the API throughout

its life-cycle stages such as development, staging, and production environments for each available

API version. In our case study at Cisco, we’ve achieved this requirement from the test suite that

is maintained under the same version control as the REST API code. As a result, for any version

of the API, corresponding documentation can be generated from test code. The PM provided the

following feedback about the customer impact of this auto-updated API documentation: “One of

the great values of a self-documented API is that it’s always current and up to date. This

simple, but valuable fact is not lost on our customers who feel like companies often forsake

documentation and leave it as an afterthought.”

We’ve also learned that when REST API documentation is published from a staging environ-

ment to production, the data from the API examples may need to be obfuscated and transformed.

This need was mentioned on the feedback from developer D5: “It would be cool if you could

dynamically re-write the hostname within the rails app (SpyREST), so you could hit an in-

ternal server but show docs for a public one.”. This idea was incorporated within SpyREST to

automatically rewrite all URLs and email domains within the documentation during the production

release process. However, there may be other confidential information auto-captured by SpyREST

that may need to be obfuscated. For example, at Cisco, one of our API examples show the user

login name on a computer as an API response. To prevent the leakage of such confidential data, we

run the tests against a sandbox API environment that serves dummy data. We suggest practition-

ers to incorporate this idea of continuous API documentation while working on APIs to improve

collaboration and feedback.

5.7.5 API Changelog

We found the manual process of generating API changelog to be both error-prone and time con-

suming. For an evolving API, a changelog is the primary information source for existing API client

93

developers to learn about the API changes. To verify the changes during rapid development, we’ve

found a changelog to be a necessary communication artifact between stakeholders. SpyREST can

automatically detect API changes when API objects such as query parameters, headers, request,

and response objects are introduced or removed between versions because it records the API ob-

jects for each version. We have used the data from SpyREST and version control history of the

tests as interim changelogs before a production release.

For production release, we manually inspect the API documentation and the interim changelogs

to write a new changelog for customers. The manually written changelogs show the high level API

changes leaving out the details. For example, the v1 changelog includes the following “Move

a computer from one group to another”, but further details were absent in the changelog. The

underlying data model within SpyREST can be utilized to bridge the API reference documentation

with relevant changelog for each version. Future work needs to be done to extend automation

support for API changelog generation for evolving REST APIs.

5.7.6 Cross-Referencing API Elements

The primary navigation offered by SpyREST automatically presents a hierarchical view of the API

elements comprising of API version, resources, actions on resources, and specific examples for

each action. While this allows API client developers to get a quick index into the API elements, it

may not provide the conceptual cross-references between API elements. Developer D2 suggested

following enhancement about the SpyREST generated API Index: “Is it possible to manually

order the resources on the API doc site? Right now, the ordering is ensured in the SpyREST

code.”

We’ve learned that cross-referencing the API elements may provide useful alternative navi-

gation experiences. For example, the API in the case study has the API resources “Group” and

“Computer,” where a “Computer” belongs to a “Group”. This nesting relationship is not captured

in the SpyREST generated navigation. Similarly, the “Group” resource is related to a “Policy”

resource since a “Policy” is applied on a “Group.” In the API documentation for both “Group”

94

and “Policy” resources there are references to one another in the API response example. This

dependency relationship is not captured within the SpyREST generated API navigation. Future

work needs to be carried out to automatically surface such dependency relationships among API

elements to help the API client developers.

5.7.7 Extending beyond REST API Documentation

From this case study, we’ve learned that it is feasible to use interception to generate REST API

documentation with examples. While an HTTP proxy server cannot intercept non-HTTP APIs, the

core concept of interception can be applied to such APIs. For example, to document a local API, an

interceptor can be written to intercept example API calls in memory to generate API documentation

with examples.

We identify several benefits of this approach over publishing the existing unit test code as doc-

umentation. First, organizations may not allow publishing their test code to external API users due

to intellectual property issues. Second, even if unit tests are published as API documentation, the

API client developers may not be familiar with the unit test framework and external dependencies.

Third, unit tests often use test specific code such as complex setup, tear down, stubs and mocks,

that may not be useful in the documentation. Fourth, the use of interception technique transforms

task of documentation to writing executable code, a welcome change for developers. Researchers

can extend the interception based documentation technique on non-REST APIs to document such

APIs with executable examples.

5.7.8 Limitations

The first author on this paper is a member of the team at Cisco where the case study is performed.

While it provides us with a unique insights, it also introduces a confirmation bias. Our results may

include a selection bias since the results are based on a single single set of REST APIs. While the

aforementioned feedback shows that REST API documentation process is effective for us, we have

a lack understanding of the impact of the documentation on the API client developers. This case

95

study needs to be replicated against REST APIs that are implemented by other organizations using

different technologies to reduce our limitations.

5.8 Conclusion

In this research, we presented the results of using SpyREST at Cisco to maintain an up-to-date

documentation with usage examples for an evolving REST API. Our primary findings provide an

evidence that SpyREST can be used as a practical REST API documentation tool. By leveraging

automated functional tests to document REST APIs, we have reduced human efforts with automa-

tion in the API documentation process while improving the test suite. We discussed techniques to

deal with custom content, flexible API elements and including the documentation of the REST API

with every life-cycle step to establish a quick feedback loop. We presented our case for extending

the interception based API documentation technique beyond REST APIs. In future, we plan to

improve SpyREST by incorporating the ideas from this case study. We will perform an experiment

to evaluate the impact of usage examples on REST API client developers.

Acknowledgments

We express our gratitude to Cisco Systems Ltd. and the University of Calgary.

5.9 References

[1] M. Robillard, “What makes APIs hard to learn? the answers of developers,” Software, IEEE,

vol. PP, no. 99, pp. 1–1, 2011.

[2] B. Myers, S. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, and D. K.

Busse, “Studying the documentation of an api for enterprise service-oriented architecture,” J.

Organ. End User Comput., vol. 22, no. 1, pp. 23–51, 2010.

96

[3] S. Sohan, C. Anslow, and F. Maurer, “Spyrest: Automated restful API documentation us-

ing an HTTP proxy server,” in Proc. of IEEE/ACM International Conference on Automated

Software Engineering, ASE, Lincoln, NE, USA, 2015, pp. 271–276.

[4] M. Robillard and R. DeLine, “A field study of API learning obstacles,” Empirical Software

Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[5] B. Myers and J. Stylos, “Improving API usability,” Commun. ACM, vol. 59, no. 6, pp. 62–69,

May 2016. [Online]. Available: http://doi.acm.org/10.1145/2896587

[6] M. F. Zibran, F. Z. Eishita, and C. K. Roy, “Useful, but usable? factors affecting the usability

of APIs,” in Proc. of IEEE Working Conference on Reverse Engineering (WCRE), 2011, pp.

151–155.

[7] T. Scheller and E. Kühn, “Automated measurement of api usability: The API concepts frame-

work,” Information and Software Technology, vol. 61, pp. 145–162, 2015.

[8] A. Kuhn and R. DeLine, “On designing better tools for learning APIs,” in In Proc. of

ICSE Workshop on Search-Driven Development - Users, Infrastructure, Tools and Evalua-

tion (SUITE), 2012, pp. 27–30.

[9] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution of API documentation.”

in Proc. of Conference on Fundamental Approaches to Software Engineering (FASE), vol.

6603. Springer, 2011, pp. 416–431.

[10] A. Ko and Y. Riche, “The role of conceptual knowledge in api usability,” in Proc. of IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2011, pp. 173–

176.

[11] D. Hoffman and P. Strooper, “API documentation with executable examples,” J. Syst. Softw.,

vol. 66, no. 2, pp. 143–156, May 2003.

97

http://doi.acm.org/10.1145/2896587

[12] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting APIs with exam-

ples: Lessons learned with the APIMiner platform,” in Proc. of IEEE Working Conference on

Reverse Engineering (WCRE), 2013, pp. 401–408.

[13] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining api usage examples from

test code,” in Proc. of 2014 IEEE International Conference on Software Maintenance and

Evolution (ICSME),. IEEE, 2014, pp. 301–310.

[14] J. Stylos, B. Myers, and Z. Yang, “Jadeite: Improving API documentation using usage infor-

mation,” in Proc. of Extended Abstracts on Human Factors in Computing Systems, ser. (CHI

EA). ACM, 2009, pp. 4429–4434.

[15] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?: A

study of programming Q&A in StackOverflow,” in Proc of. IEEE International Conference

on Software Maintenance, 2012, pp. 25–34.

[16] C. Parnin and C. Treude, “Measuring API documentation on the web,” in Proceedings of the

International Workshop on Web 2.0 for Software Engineering, ser. (Web2SE). ACM, 2011,

pp. 25–30.

[17] Y.-C. Wu, L. W. Mar, and H. C. Jiau, “Codocent: Support api usage with code example

and api documentation,” in Proc. of IEEE International Conference on Software Engineering

Advances (ICSEA), 2010, pp. 135–140.

[18] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced faqs into api documen-

tation,” in Companion Proc. of the ACM International Conference on Software Engineering,

ser. ICSE Companion 2014, 2014, pp. 456–459.

[19] B. Dagenais and M. Robillard, “Recovering traceability links between an api and its learn-

ing resources,” in Proc. of 2012 International Conference on Software Engineering (ICSE).

IEEE, 2012, pp. 47–57.

98

[20] C. Treude and M. Robillard, “Augmenting api documentation with insights from stack over-

flow,” in Proc. of ACM International Conference on Software Engineering, ser. ICSE ’16,

New York, NY, USA, 2016, pp. 392–403.

[21] R. T. Fielding, “Architectural styles and the design of network-based software architectures,”

Ph.D. dissertation, University of California, Irvine, 2000.

[22] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Proc. of ieee investigating web APIs on

the world wide web,” in Proc. of European Conference on Web Services (ECOWS), 2010, pp.

107–114.

[23] S. Sohan, C. Anslow, and F. Maurer, “A case study of Web API evolution,” in Proc. of IEEE

World Congress on Services (SERVICES). IEEE, 2015, pp. 245–252.

[24] M. J. Hadley, “Web application description language (WADL),” 2006.

[25] J. Mangler, P. P. Beran, and E. Schikuta, “On the origin of services using RIDDL for descrip-

tion, evolution and composition of RESTful services,” in Proc. of IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 505–508.

[26] J. Kopecky, K. Gomadam, and T. Vitvar, “hRESTS: An HTML microformat for describing

RESTful web services,” in Proc. of International Conference on Web Intelligence and Intel-

ligent Agent Technology (WI-IAT), vol. 1. IEEE, 2008, pp. 619–625.

[27] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. d. Walle, and J. Gabarro Valles,

“Capturing the functionality of web services with functional descriptions,” Multimedia Tools

and Applications, vol. 64, no. 2, pp. 365–387, 2013.

[28] P. Danielsen and A. Jeffrey, “Validation and interactivity of web API documentation,” in

International Conference on Web Services. IEEE, 2013, pp. 523–530.

99

[29] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue, “OmniVoke: A framework

for automating the invocation of web APIs,” in Proc. of IEEE International Conference on

Semantic Computing, 2011, pp. 39–46.

[30] M. Polák and I. Holubová, “REST API management and evolution using MDA,” in Proc. of

ACM International Conference on Computer Science & Software Engineering, ser. C3S2E

’15, New York, NY, USA, 2008, pp. 102–109.

[31] J. Tulach, “Teamwork,” in Practical API design: Confessions of a java framework architect,

C. Andres, Ed. Berkeley, CA: Apress, 2008, pp. 291–302.

[32] S. Sohan, C. Anslow, and F. Maurer, “Spyrest in action: An automated RESTful API doc-

umentation tool,” in Proc. of IEEE/ACM International Conference on Automated Software

Engineering, ASE, Lincoln, NE, USA, 2015, pp. 813–818.

100

Chapter 6

A Study of the Effectiveness of Usage Examples in REST API

Documentation

6.1 Abstract

Generating and maintaining REST API documentation with usage examples can be a time con-

suming and expensive process for evolving APIs. Most REST API documentation tools focus on

automating the documentation of the API objects, but require manual effort for capturing usage

examples. Consequently, REST API developers need to know the cost vs. benefit of providing

usage examples in the documentation to prioritize the documentation efforts. To this end, we have

performed a controlled study with 26 experienced software engineers to understand problems that

REST API client developers face while using an API without usage examples. We found that

REST API client developers face productivity problems with using correct data types, data for-

mats, required HTTP headers and request body when documentation lacks usage examples. By

following the REST API documentation suggestions from this paper, REST API developers can

reduce the errors, improve success rate and satisfaction of API client developers.

6.2 Introduction

REST APIs are used as the predominant application integration mechanism over the Internet. Gen-

erating and maintaining REST API documentation with usage examples can be an expensive pro-

cess because most API documentation tools do not support effective usage examples. Researchers

have emphasized API documentation as a key factor that impacts API usability both positively and

negatively. To improve API documentation, researchers have recommended incorporating usage

examples in the API documentation.

101

In a resource constrained environment, it is important to understand the value of usage ex-

amples on REST API usability to allocate sufficient attention and efforts towards incorporating

examples in the API documentation. While it is expected that examples help API client develop-

ers, API developers need to know what to include in the examples and why.

The documentation of REST APIs has distinctive features compared to the documentation of

local APIs such as Java libraries. For example, local API documentation commonly comprises

the description of classes and interfaces with their methods. In contrast, REST API documenta-

tion needs to include information about HTTP headers, request and response body and the data

representation formats such as JSON, XML. The existing research on API usability areas have pri-

marily focused on local APIs. In our work we have focused on understanding the impact of usage

examples within the realm of the distinctive REST API features.

We designed and performed a controlled study with experienced software engineers to un-

derstand how REST API client developers are affected while using an API documentation that

describes the API elements but lacks usage examples. Participants were divided into two groups

and given the same set of API tasks to complete. One group was given the official WordPress REST

API documentation and another group was given an enhanced version of the documentation where

three usage examples were added. Using a novel technique, we collected 539 API calls made by

the participants. We analyzed the data and observed recurring obstacles faced by the participants

while performing the API tasks using the official documentation that lacks usage examples. Our

contributions on this paper are as follows:

• We provide a list of obstacles that REST API client developers face while perform-

ing API tasks using documentation that lacks usage examples.

• We provide a list of recommendations for REST developers to be used as a guideline

to incorporate usage examples in API documentation.

• We provide empirical evidence that usage examples in REST API documentation

help API client developers perform API tasks with higher developer satisfaction,

102

less time, and better success rate.

The remainder of this paper is organized as follows: In Section 6.3 we present our research

question. In Section 6.4 we discuss our methodology in terms of the study requirements, the

selected API of the study and the participant selection, the study setup, data collection and analysis

methods. In Section 6.5 we discuss the results of our analysis. We discuss the threats to validity

and provide a summary of the related work in Sections 6.6 and 6.7 respectively.

6.3 Research Question

This research is aimed at answering the following question:

• RQ. What obstacles do API client developers face when using a REST API docu-

mentation that lacks usage examples?

6.4 Methodology

To answer the aforementioned research question, the study has the following requirements:

• R1. Representative API. We had to choose an existing REST API that is currently

used by API client developers. Selecting a mature REST API for this study reduces

the possibility that the obstacles we observe in the study are the results of insignif-

icant accidental problems symptomatic of an immature technology. We selected a

familiar domain so that participants are able to relate to the API features without

requiring upfront training. In addition to selecting the API, we had to select tasks

that are related to the core features provided by the API to represent a common

usage area of the API.

• R2. Open source. To be able to understand the impact of usage examples, we

needed to select an open-source API where we can add new examples to the docu-

mentation for performing this study.

103

• R3. Time bound. We applied a maximum time constraint for each participant

to measure the rate of success within a limited time frame. As a result, the study

needs to be setup such that participants are able to focus on performing the tasks

minimizing any overhead.

• R4. Participant Selection. Developers with prior experience on REST APIs need

to be recruited as study participants to perform the study within a limited amount

of time and in a realistic setup. Furthermore, to reduce a learning bias, only partic-

ipants with no prior experience of using the WordPress REST API V2 are accepted

for this study.

6.4.1 Study API

We selected the WordPress REST API V2 for this study. WordPress is a blog-like open-source

(R2) framework used by over 409 million people to visit 23.6 billion pages each month 1. The API

allows programmatic access to list, create, update, and delete WordPress data such as blog posts,

comments, users, images, and tags.

The WordPress REST API V2 has been published and maintained since May 2015. Before

January 2017, the WordPress REST API V2 was distributed as a plug-in where WordPress users

could optionally install the API component. The following statistics are for the plug-in installation

numbers between May 2015 and October 2016:2

• Total installations: ≈ 248K installs of the plug-in.

• Average daily installations: ≈ 500.

Starting January 2017, the WordPress REST API V2 is no longer required to be installed as a

separate plug-in since it is bundled with WordPress installation. According to the code repository,

there are a total of 99 and 46 contributors that had at least one commit to the code repository of the

1https://wordpress.com/activity/
2https://wordpress.org/plugins/rest-api/stats/

104

https://wordpress.com/activity/
https://wordpress.org/plugins/rest-api/stats/

API and its documentation, respectively. These properties satisfy R1 and R2, our requirements for

using a representative API. By selecting an open-source project we are able to access the source-

code to inspect the implementation and documentation technique of the WordPress REST API.

The API implements a self-documenting feature where API developers expose API endpoints over

HTTP OPTIONS verb to explain the API elements. To implement this feature, the API developers

describe the API elements in the code. For example:

Listing 6.1: Example of self-documenting API Code in PHP

1 public function get_item_schema() {

2 $schema = array(

3 '$schema' => 'http://json-schema.org/draft-04/schema#',

4 'title' => $this->post_type,

5 'type' => 'object',

6 /*

7 * Base properties for every Post.

8 */

9 'properties' => array(

10 'date' => array(

11 'description' => __("The date the object was published, in

the site's timezone."),

12 'type' => 'string',

13 'format' => 'date-time',

14 'context' => array('view', 'edit', 'embed'),

15),...

On Listing 6.1, line 4 specifies that this is a schema definition for the API element Post 3. On

Line 10, it defines date, one of the properties of Post, followed by a human readable description

and type information. On line 14, the context of this property is mentioned as view, edit, embed

, meaning that this property will be returned when the Post object is returned, embedded, or can

be used as an input for editing.

3https://github.com/WP-API/WP-API

105

https://github.com/WP-API/WP-API

Figure 6.1: Screenshot of Documentation for Post/date

The WordPress team leverages this self-documenting feature to generate and publish the of-

ficial API documentation as an HTML website. Fig. 6.1 shows a screenshot of the published

documentation for the date attribute of the Post API element.4

In addition to the auto-generated documentation of the the schema and API actions, contribu-

tors add custom content to provide prosaic overviews and usage examples.

6.4.2 Study Design

Tasks

The participants are requested to perform a total of six tasks using the API including one practice

task. All of the tasks are related to a single API element, Post5. The tasks get progressively more

difficult, and all but the last task can be performed independently of each other. Participants are

requested to limit the total time on the study to a maximum of one hour (R3). Participants are

encouraged to proceed to the next task when they are either satisfied with their answer or feel stuck

and unable to make progress.

To use a REST API, the API client developers need to work with the following four inputs over

HTTP:

• I1. Request method

4http://v2.wp-api.org/reference/posts/
5A Post identifies a blog post within WordPress

106

http://v2.wp-api.org/reference/posts/

• I2. Request URL

• I3. Request headers

• I4. Request body

To verify the response of an API call, the API client developers can use HTTP response headers

and/or HTTP response body. To perform the tasks, the participants are required to use one or more

of the inputs I1-4. In the following paragraphs, we describe each task with its description and the

study observation goals against the aforementioned API input and output information. For each of

the tasks, the participants are required to use the same WordPress REST API and one of the two

variants of accompanying documentation.

T1: List all posts task. We asked the participants to use the WordPress REST API to get a list

of the blog posts from a given WordPress site. This is the practice task, and the inputs to answer

this task are pre-filled for the participants. It allows the participants to understand the tools used

for this study as well as get familiarity with the Post API. The answer for this task makes use of I1

and I2.

T2: Filter posts by author task. The participants are asked to use the API to filter the list

of posts obtained in T1 by an author given the author’s user name. To answer this correctly, the

participants are required to first make an API call to get the numeric ID of the author given the

string based user name. Then, the ID needs to be used on the Post API to filter posts by the author.

This task allows us to understand the impact of usage examples on API client developers when

multiple API calls need to be made to perform a task using the API. Inputs I1-2 are required to

complete this task successfully.

T3: Exclude posts by IDs task. We ask the participants to use the API to get a list of all

posts excluding posts with IDs 1 and 4. Participants need to use the inputs I1-2, and use a desired

format on I2 to pass an array of IDs as a parameter. This task allows us to understand how API

client developers identify the format for using an array within the URL with respect to the usage

examples in the API documentation.

107

T4: Find total posts task. This task requires the participants to use the API to find a total

number of posts. Participants need to use the inputs I1-2 and inspect the HTTP response headers

to successfully complete this task. This task allows us to understand how API client developer

productivity is affected with respect to missing examples about HTTP response headers in the API

documentation.

T5: Publish post task. We ask the participants to use the API to publish a blog post with a

specific title, content, and a published date. To successfully complete this task, the participants are

required to use all four input types and inspect both the HTTP response header and the response

body. Additionally, the participants are required to use a specific date format that the API accepts

as a valid format for date specification. Answers to this task allows us to study API client developer

productivity with respect to the usage examples lacking details about the inputs I3-4.

T6: Update post task. We ask the participants to use the API to update a blog Post that

they published in T5 with a new excerpt. Similar to T5, this task requires the use of inputs I1-4,

but with different values for the inputs. This task allows us to understand API client developer

productivity on inter-dependent tasks with respect to usage examples.

To summarize, the tasks allow us to understand how REST API client developers approach API

tasks of different complexity levels involving various input types and available output information

with respect to the usage examples in the API documentation.

Participant Selection

To satisfy the requirement of developers with REST API experience (R4), we used the following

criteria for recruiting the study participants:

• Currently working as a software engineer.

• At least 1 year of industry experience as a developer.

• At least 1 year of industry experience with REST APIs.

• No prior experience with WordPress REST API.

108

Figure 6.2: Screenshot of the Custom-built Web-based REST API Explorer Used by Study Partic-

ipants

We recruited a total of 26 participants from sixteen different companies and six different coun-

tries (Canada, USA, Germany, Ireland, Brazil, and, Bangladesh) through online announcements

posted on Twitter, Facebook, and software developer focused mailing lists. Table 6.1 shows a

summary of the experience level of the participants in each group.

Pilot Studies

We conducted two pilot studies to develop a process for performing this study. The first pilot

study involved four participants that joined the first author in-person or over video conferencing.

The study involved tasks using the WordPress REST API V2 and the GMail REST API. Each

participant was given one of the two APIs and and a set of API tasks and online answer forms

to complete using the API within an hour. The primary findings from this pilot are as follows: 1)

109

(a) Original API Documentation

(b) API Documentation Enhanced with an Example

Figure 6.3: Screenshots of Original vs. Enhanced API Documentation

110

Table 6.1: Participant Profile

Group 1 Group 2

Number of Participants 16 (P1.1-P1.16) 10 (P2.1-P2.10)

Industry Experience

1-5 years 5 1

5-10 years 6 5

10+ years 5 4

Average 9.1 10.6

REST API Experience

1-3 years 5 3

3-5 years 7 4

5+ years 4 3

Average 4.5 4

Number of Companies 10 8

participants required significant overhead time to setup a development environment with the proper

API credentials, 2) the intermediate trial attempts of using the API are potentially more valuable

than the final answer as it allows us to study what obstacles the participants face, 3) the number

of tasks for the study had to be reduced to fit within the one hour limit, and 4) for the GMail API,

participants used up a large portion of their time on learning about how to use OAuth.

To overcome the shortcomings found from the first pilot study, we decided to develop a web-

based REST API explorer as shown on Fig. 6.2 that allows participants to use their browser to

make the API calls without setting up any development environment. The web-based API explorer

records the inputs I1-4, and displays the API response on the click of a button. Thus the participants

could focus on using the right input and verifying the output without writing code. The web-

base REST API explorer also allowed us to automatically collect all the trial API calls that the

participants make for each API task. A second pilot study involving seven new participants was

111

performed to collect usability related feedback about the web-based REST API explorer. We only

used WordPress since it did not require knowledge about OAuth. From this study, we observed

patterns of mistakes that API client developers make that can be reduced by adding usage examples

in the API documentation.

Protocol

Learning from the pilot studies, we designed the main study protocol as follows: we enhanced

the original WordPress REST API documentation and added a total of 3 API usage examples to

show listing of blog posts with query parameters for filtering, a request to create a blog post and a

request to update a blog post. We used the WordPress API unit tests to find relevant data for these

examples. Fig. 6.3a shows a screenshot of the original API documentation related to T4 where

the API client developers are provided with a reference table describing the different properties

that can be used to create a Post object6. Fig. 6.3b shows a screenshot of the enhanced API

documentation with a cURL7 based usage example. cURL is used because it is used elsewhere

in the original API documentation. In the enhanced API documentation, the example shows one

possible API call with realistic values for the data that is described in the reference table and

associated API response headers and body.

We divided the participants into two groups, G1 and G2. The participants in the pilot are

not counted towards G1 and G2 for the study. G1 participants were provided with a link to the

official API documentation on the web-based API explorer, and G2 participants were provided

with a link to the enhanced API documentation with usage examples. We designed the the web-

based API explorer to allocate more participants to G1 compared to G2 because we wanted to

better understand the impact of the lack of usage examples on API client developer productivity.

However, each individual participant was randomly assigned to a group by the web-based API

explorer. All participants were given the same set of API tasks and were requested to limit their

participation time to a maximum of one hour. No task specific time limit was imposed except an

6http://v2.wp-api.org/reference/posts/
7https://curl.haxx.se/

112

http://v2.wp-api.org/reference/posts/
https://curl.haxx.se/

overall limit of one hour for the entire study because we wanted participants to spend sufficient

time on each task without forcing them to move to the next one. Participants were allowed to

access the internet and external resources alongside the provided API documentation to perform

the tasks as they would normally use on a typical work day. We used the web-based API explorer

to also collect an experience rating on a scale of 0-10, 10 being the best possible, of using the given

REST API documentation and a free-form feedback from each participant as an exit survey.

Data Collection

The data collected by the web-based REST API explorer for each participant is exported into a

text file as the raw data artifact. For each API task and each participant that attempted the task, the

exported text file contains the request inputs I1-4 and associated API response headers and body

for each API call made by the participant. For each participant, we recorded all trial API calls

with timestamps. Additionally, the demographic information, experience rating and the free-form

feedback for each participant is also included in the artifact.

Data Analysis

We analyzed the data artifact qualitatively to understand the obstacles that REST API client de-

velopers face when using an API documentation that lacks usage examples. We exported a table

of data from the web-based REST API explorer. For each row, the table contains the following

columns: API task, participant identifier, timestamp, API trial number, I1-4, response headers and

body. The values for I1-4 used by the participants were manually coded to group the participant

responses into categories. The categories help us determine the information type that API client

developers need in the API documentation to perform API tasks. The analysis started with an

empty set of codes and new codes were introduced to describe scenarios that did not fall under

existing codes. The first author applied the codes on the raw data artifact and provided a coding

scheme comprising 11 codes to a co-author. The co-author applied the codes to 82/539 API calls

(10% confidence interval with 95% confidence level). The two authors validated the codes against

each other to evaluate consistency. The initial coding from the co-author had discrepancies in 4 /

113

11 codes for 27 / 82 API call samples. After discussing the coding scheme, the discrepancies were

resolved as the definition of the terms became clearer.

For each API task attempted by each participant, we annotated the artifact with one of the

following labels: successful, partially successful, and unsuccessful. Task participations are marked

successful when I1-4 matches the required values for performing the given task. If a participant

is able to use the correct I1-4 for one of the two tasks required to complete a single task (T2),

we marked it as partially successful. Otherwise, it’s marked as unsuccessful. Based on these

annotations, the following formulas were used to compute the quantitative results:

Success Rate (Task, Group) = (No. of participants that successfully completed Task) / (No.

of participants in Group)

Average Trial API Calls (Task, Group) = (No. of API calls made by Group on Task) / (No.

of participants in Group).

Average Time Spent (Task, Group) = (Time spent by Group on Task) / (No. of participants

in Group)

6.5 Results

6.5.1 Quantitative Analysis

We present a summary of the quantitative results as found by analyzing a total of 539 API calls

(385 from G1, 152 from G2) made by the participants from this study in Fig. 6.4. Fig. 6.4a

juxtaposes the average number of trial API calls made by each group against their rate of success

in performing the given tasks T2-T6. The average number of trial API calls and success rate for

each group is computed using the aforementioned formulas.

Even though it is expected that G2 would outperform G1 with an enhanced documentation,

we were surprised to see the extent of the difference in effort vs. success of the two groups. In

Fig. 6.4a and 6.4b we see that, for the simpler tasks, T2 and T3, G1 required more time and more

trial API calls and reached successful answers with a lower percentage compared to G2. For T4,

114

T2 T3 T4 T5 T6

2

4

6

8

A
vg

.T
ri

al
A

PI
C

al
ls

(F
re

qu
en

cy
)

G1 Avg. Trial API Calls G2 Avg. Trial API Calls

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

G1 Success Rate
G2 Success Rate

(a) Trial vs. Successful API Calls

T2 T3 T4 T5 T6
0

5

10

A
vg

.T
im

e
Sp

en
t(

m
in

ut
es

)

G1 Avg. Time Spent G2 Avg. Time Spent

(b) Average Time Spent

Figure 6.4: Quantitative Comparison between G1 and G2

where the participants are required to inspect an HTTP response header, G2 executed more API

calls on average due to P2.7 who made 11 API calls even though reached the successful call on the

3rd attempt. For the more complex tasks T5 and T6, we see that participants in G1 had very low

success rate and very high number of average API trials compared to G2. We observed a p-value of

0.0003 for the success rates using Fisher test, and p-values of 0.017 and 0.051 for the trial API calls

and time spent using Wilcoxon rank sum test. The data here confirms that without usage examples

developers spend more time and execute more trial attempts yet have lower success rates.

115

2 4 6 8
G1
G2

Figure 6.5: Participation Satisfaction Ratings on a Scale of 0-10

In Fig. 6.5, we see that the G2 participants provided higher satisfaction rating compared to G1

participants (with a p-value of 0.003 using Wilcoxon rank sum test). P1.1 provided a satisfaction

rating of 9, and analyzing the participant feedback against the success, we see a false positive case,

where the participant perceived that the tasks were successfully completed even though only 2 of

the 5 tasks were correctly answered. Other than this case, the satisfaction ratings provided by G1

participants consistently fall behind the G2 participants’ ratings.

These results support using a more qualitative approach due to our limited number of partici-

pants. The results provide an initial quantification of the impact of examples for typical REST-API

usage tasks. This quantification is preliminary evidence that can help justify future investment in

API documentation.

6.5.2 Qualitative Analysis Results

In their free-form feedback, 11 of the 16 G1 participants mentioned the lack of examples with

HTTP headers, request and response as the primary problem with the API documentation. On

the other hand, 7 out of the 10 G2 participants mentioned the examples being helpful from the

enhanced documentation. We identify usage examples as the most frequent and central topic of

interest from our participants as per their feedback. This is also supported by our quantitative

analysis results. In the remainder of this section, we provide our observations related to each task

and their implications.

Observation 1. Use of Data Type. Without usage examples, we observed 10 of the 16 G1

participants used incorrect data type of String instead of Integer. To successfully complete T1,

participants had to use an integer ID representing an Author object given the author name. In

the original API documentation, the following is mentioned about the author parameter: “author:

116

Limit result set to posts assigned to specific authors.” The documentation does not mention that the

data type required is the numeric author ID, not the author name. P1.12 mentioned the following:

“...to find posts for the author, I had to inspect the response to see that indeed the author_id was

in there”. The enhanced documentation showed one example of using numeric ID. 3 of the 10

participants from G2 ran into the same error. When faced with this error, participants used trial

and error to eventually complete the task.

Recommendation 1. REST API documentation needs to include examples of data types such

as Integer, String, and Array for each API field to satisfy API client developer information

need.

Observation 2. Use of Data Format. We observed participants in G1 faced obstacles using

correct data formats for Date and Array type data in API requests without usage examples. Tasks

T3 required the use of a correct format to represent an array of numeric post IDs to be excluded

using the API. The original documentation mentions the following about this API query parameter:

“exclude: Ensure result set excludes specific IDs.” Participants attempted to solve this task using

multiple different formats for specifying the array. For example: they tried with exclude=[1,4],

exclude=1&4, exclude=4&&exclude=1, id!=1&id!=4 and other alternatives before eventually

finding the right format as follows exclude=1,4. Participant P1.6 mentioned the following: “It

was difficult to figure out whether some of the inputs needed to be arrays or just a comma-separated

list.”. Seven of the 16 participants in G1 faced this error. The enhanced documentation showed

one example of using multiple IDs and all G2 participants could use the right format.

Task T5 also required the participants to use an the ISO8601 formatted date for publishing a

post with a specific date. Even though the original documentation mentions ISO8601 format, it

does not provide an example. Instead of using 2016-01-01T00:00:00-00:00, participants from

G1 used date formats as follows: January 1, 2016, 2016-01-01T12:00:00, 20160101. P1.8

mentioned the following: “Got hung up trying to figure out the formatting of the date (which

117

doesn’t appear to be ISO8601, despite what it says)”. After analyzing the response, we found that

P1.8 used the ISO8601 formatted date in the API calls, but did not provide the required second

portion of the time. Eight of the 16 participants in G1 had an error in the date formats. With an

example, 1 of the 10 participants had the same error from G2.

Recommendation 2. REST API developers need to include examples showing the valid data

format for the API elements.

Observation 3. Use of Request Headers. We were surprised to see that 14 of the 15 G1

participants that tried T5 and T6 faced problem using correct request headers without usage exam-

ples. Tasks T5 and T6 required the use of a HTTP request header named Content-Type. In the

original API documentation, the following was mentioned: “The API uses JSON exclusively as

the request and response format, including error responses.”. Experienced software engineers still

had problem using this HTTP header as we found from the participants in G1. P1.12 mentioned

the following: “I didn’t know how to specify application/json so that I could send POST data via

the body instead in the URL parameters... Examples would really help - with a sample request and

a sample response.” Even though G1 participants have years of experience with REST APIs, only

one of them could use the Content-Type header correctly without example. In contrast, 2 out of

the 10 participants from G2 failed to use this header correctly as indicated in the example in the

enhanced documentation. Moreover, 1 of the 2 G2 participants that did not use the header the first

time, later used it correctly on a subsequent attempt.

Recommendation 3. If API requests need to use HTTP Request headers, in addition to

the request method and body, REST API develpers need to include examples of the HTTP

headers.

Observation 4. Use of Interdependent API Calls. We observed the G1 participants had

problem completing API tasks that require multiple API calls without usage examples. Tasks T2

118

and T6 required the use of multiple API calls to complete successfully. Both tasks require an

initial API call to find data using the API that is needed make a second API call. For example, P1.5

mentioned the following about T6, “The post I created is not visible and not editable, though I got

201. Not sure why”. After analyzing the response, we observed that P1.5 was able to create a blog

post, but failed to publish it because it did not have the publish status. As a result, the post was

not returned via the API for T6. P2.2 mentioned the following about T2: “In case of search posts

by author, it’s not clear how to find the author_id. Although, I realized that users and authors are

same in this case.”

Recommendation 4. If there are prerequisites for making an API call, REST API developers

need to provide examples showing how to get the prerequisites in the API documentation.

To summarize, we recommend API developers to consider usage examples as an essential re-

quirement for REST API documentation. As such, sufficient resources and a high priority should

be devoted to generate and maintain the usage examples. Based on our observations, we recom-

mend REST API documentation tools to provide first-class support for including usage examples

with realistic data.

6.6 Threats to Validity

The selection of the API, the tasks, and the participants may introduce selection bias. It is possible

that there are obstacles we do not know about that could be more severe, but were not observed

because of our task selection. The analysis of the raw data may introduce a bias. To reduce this,

we have involved multiple researchers and a repeatable coding scheme. A more complete API

documentation without adding usage examples may provide insights from our findings.

119

6.7 Related Work

In this section, we discuss the existing research on the relationship between API usability and

usage examples. To this regard, we summarize the related work on APIs from the sub-areas of API

learning obstacles, using crowd-sourced API examples, measuring API usability, and controlled

studies on the impact of usage examples on API usability.

API Learning Obstacles

Robillard et al. used a mixed approach of surveys and in-person interviews with professional soft-

ware engineers to understand the API learning obstacles [1] [2]. They found that many obstacles

for API learnabilty were related to API documentation. They identified five impactful factors for

API documentation as follows: documentation of intent, code examples, matching APIs with sce-

narios, penetrability of the API, and format and presentation. Uddin and Robillard surveyed 323

professional software engineers to understand the different ways in which a piece of documenta-

tion can be unfit for purpose [3]. They identified ambiguity, incompleteness, and incorrectness as

the three severest problems that lead API documentations to fail to answer the information needs

of developers. Duala-Ekoko and Robillard performed a study with 20 programmers to understand

the types of questions that developers have while using an unfamiliar API [4]. They categorized

the API related information needs into twenty generic questions that can be used to analyze the

quality of API documentation. Myers et al. found that participants had limited success finding the

relevant API elements to perform an API task using an enterprise API [5]. Among other factors,

they recommended providing code examples in the API documentation to help API client devel-

opers. Our work fits in the general space of studies of API documentation obstacles. We focus on

problems related to the absence of examples within the area of REST APIs.

Crowd-Sourced API Usage Examples

Wang et al. performed an exploratory study to understand the current state of API related knowl-

edge available on the Internet [6]. They searched the web for usage examples related to the API

120

of five popular Java libraries and found that on average API examples could be found for 77% of

the 4,637 APIs from the libraries. Moreover, they found that the crowd-sourcing sites accounted

for 93.7% of the usage examples compared to 6.13% that were officially published. An eval-

uation of Jadite showed that developers were three times faster to complete API tasks with ac-

cess to auto-referred crowd-sourced usage examples [7]. Nasehi et al. analyzed StackOverflow

threads to understand the characteristics of good and bad code examples [8]. They found that com-

monly down-voted API related answers lacked code examples, explanations, and shortcoming of

solutions. Treude et al. proposed a machine learning based approach to find relevant API doc-

umentation from StackOverflow using both the text and metadata found from the questions and

answers [9]. Kim et al. presented a technique to automatically augment code examples from the

web using code search tools to Java APIs [10]. Jiau et al. observed a severe inequality within the

context of crowd-sourced API usage examples where most of the content were related to the pop-

ular APIs [11]. Existing research on crowd-sourced API documentation mostly focused on finding

usage examples of local APIs. In this paper, we focused on REST APIs, where the API client

development programming language is agnostic to API implementation language. This distinction

with local APIs makes it hard to use the techniques proposed in the aforementioned papers for

finding crowd-sourced REST API usage examples.

Measuring API Usability

Rama et al. presented a set of formulas for computing a measure of API usability based on the

API’s structural components such as classes, methods, parameters, return values, thread-safety [12].

Scheller et al. presented a framework for automatically measuring the complexity of an API [13].

They identified a list of measurable API properties and provided formulas to compute complex-

ities related to the interfaces, implementation and setup of an API. Grill et al. suggested using

a combination of expert opinion and developer workshops to identify and collect feedback about

API and its documentation related problems [14]. Farooq et al. recommended using peer reviews

of API code in addition to API usability studies to uncover API related bugs and incorporate feed-

121

back [15]. In our work, instead of measuring API usability, we have focused specifically on the

relationship of REST API usability with respect to usage examples.

Controlled Studies

Nasehi et al. performed a controlled study to understand if API unit tests can be used to provide as

usage examples to facilitate API client developers [16]. The researchers found that the examples

from the unit tests helped understanding the API concepts better but it was challenging for the par-

ticipants to locate relevant examples. Endrikat et al. performed a controlled study with four groups

of participants to understand the impact of API documentation on APIs that are implemented using

programming languages with static and dynamic type systems [17]. Participants were given a set

of failing unit tests and were asked to make them pass by writing code using the studied API. They

found that the participant group using a statically typed API with explicit documentation could get

the tests to pass in less time than the other groups. Our work in this paper is based on a controlled

study and shares part of the setup that were used by the aforementioned controlled studies with

the following differences: our goal is to understand the obstacles faced by API client developers

without usage examples; we focus on REST APIs instead of local APIs; and, the participants are

all professional software engineers.

6.8 Conclusion

In this paper, we presented a set of problems that experienced REST API client developers face

while performing API tasks using API documentation that lacks usage examples. We identified

that, without examples, REST API client developers have trouble using the correct data types, cor-

rect data formats, and required HTTP headers and request body. We’ve also presented empirical

evidence that by adding usage examples makes it possible to reduce mistakes, improve success rate

and developer satisfaction of using the API. REST API developers can follow our recommendation

as a set of guidelines while documenting REST APIs to improve API usability. REST API docu-

mentation tool developers can leverage our findings to improve reusable tool support for software

122

developers.

Acknowledgment

We are grateful to our participants for their valuable time on this study. We thank our university

for funding this research.

6.9 References

[1] M. Robillard, “What makes APIs hard to learn? the answers of developers,” Software, IEEE,

vol. PP, no. 99, pp. 1–1, 2011.

[2] M. Robillard and R. DeLine, “A field study of API learning obstacles,” Empirical Software

Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[3] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE Software, vol. 32, no. 4,

pp. 68–75, July 2015.

[4] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions about unfamiliar

APIs: An exploratory study,” in Proc. of the International Conference on Software Engi-

neering. IEEE Press, 2012, pp. 266–276.

[5] B. Myers, S. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, and D. K.

Busse, “Studying the documentation of an API for enterprise service-oriented architecture,”

J. Organ. End User Comput., vol. 22, no. 1, pp. 23–51, 2010.

[6] L. Wang, Y. Zou, L. Fang, B. Xie, and F. Yang, “An exploratory study of API usage examples

on the web,” in 2012 19th Asia-Pacific Software Engineering Conference, vol. 1, Dec 2012,

pp. 396–405.

123

[7] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving api documentation using API

usage information,” in 2009 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), Sept 2009, pp. 119–126.

[8] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?: A

study of programming Q&A in StackOverflow,” in Proc of. IEEE International Conference

on Software Maintenance, 2012, pp. 25–34.

[9] C. Treude and M. Robillard, “Augmenting api documentation with insights from stack over-

flow,” in Proc. of ACM International Conference on Software Engineering, ser. ICSE ’16,

New York, NY, USA, 2016, pp. 392–403.

[10] J. Kim, S. Lee, S.-w. Hwang, and S. Kim, “Adding examples into java documents,” in Pro-

ceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineer-

ing, ser. ASE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 540–544.

[11] H. Jiau and F.-P. Yang, “Facing up to the inequality of crowdsourced API documentation,”

ACM SIGSOFT Software Engineering Notes, vol. 37, no. 1, pp. 1–9, 2012.

[12] G. M. Rama and A. Kak, “Some structural measures of API usability,” Software: Practice

and Experience, vol. 45, no. 1, pp. 75–110, 2015.

[13] T. Scheller and E. Kühn, “Automated measurement of API usability: The API concepts

framework,” Information and Software Technology, vol. 61, pp. 145–162, 2015.

[14] T. Grill, O. Polacek, and M. Tscheligi, Methods towards API Usability: A Structural Analysis

of Usability Problem Categories. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.

164–180.

[15] U. Farooq, L. Welicki, and D. Zirkler, “API usability peer reviews: A method for evaluating

the usability of application programming interfaces,” in Proc. of the SIGCHI Conference on

Human Factors in Computing Systems. ACM, 2010, pp. 2327–2336.

124

[16] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,” in Proc. of International

Conference on Software Maintenance. IEEE, Sept 2010, pp. 1–10.

[17] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do API documentation and static

typing affect api usability?” in Proc. of the International Conference on Software Engineer-

ing. ACM, 2014, pp. 632–642.

125

Chapter 7

Conclusion

In this thesis, I presented a set of five primary research objectives related to the topic of REST API

documentation. I have addressed the first research objective, RO1, of finding the gap between the

current industry practices and existing research on REST API documentation by performing a case

study in my first research sub-project. I started by reviewing the existing literature on Web API

evolution. From the existing empirical research on Web API evolution, I found that researchers

have focused on profiling SOAP based web services to identify the common change patterns. They

suggested focusing on the maintenance efforts related to Web API evolution because of its lingering

effects. In the existing literature, I found several techniques proposed by researchers related to

supporting the evolution of SOAP APIs. Analyzing the existing literature on tool support for Web

API evolution, I found tools developed by researchers that primarily rely on custom formatted API

specification documents that require a manual effort to generate and maintain. In this sub-project, I

have also analyzed the evolution of nine Web APIs in production, selected based on their industry,

popularity, maturity, and source code access, to understand the current state of practice around

Web API versioning, documentation, and change communication patterns. By comparing and

contrasting the findings from the literature review and the industry practices, I observed that it was

important to carry out further research to find techniques to support versioning, documentation,

and change communication needs for evolving REST APIs.

I addressed RO2, finding REST API documentation requirements, in my second research sub-

project. I started by analyzing the existing literature on API usability to summarize a list of general

API documentation requirements as derived by other researchers. Then, I analyzed the existing

literature on REST API documentation. Based on these two analyses, I derived the following

list of documentation requirements specific for evolving REST APIs: automated, example based,

126

executable, version aware, customizable, reusable, and collaborative. These requirements are used

as a background work to address my subsequent research objectives.

RO3, the primary objective of finding a new technique to satisfy the documentation require-

ments of evolving REST APIs, is addressed in my third and fourth sub-projects. I observed that

most existing techniques for REST API documentation relied on custom API specification formats

as an input. This approach requires manual effort to generate and maintain the API specifica-

tion as a separate artifact with the API as the API evolves and fails to satisfy the identified REST

API documentation requirements. I proposed a novel technique called SpyREST to automatically

intercept and transform example REST API calls into usable API documentation following the

identified requirements. An HTTP proxy server is used to collect data from example API calls.

The collected data is then synthesized to automatically infer the structural elements of the API

such as the version, API resource, HTTP verb, API action, query parameters, request and response

body, and HTTP headers. In addition to the structure, executable API examples are automatically

re-constructed with realistic data from the recorded API calls. I developed a prototype tool to

demonstrate a concrete implementation of the proposed concept. In a preliminary case study with

three evolving REST APIs, I have shown that it is possible to use the proposed technique to gen-

erate a more accurate documentation of REST APIs compared to their official documentation that

are manually maintained.

I addressed RO4, an evaluation of the proposed technique from the perspective of REST API

developers, in my fourth sub-project using an industrial case study. I presented the proposed tech-

nique and the prototype tool to a team of software engineers at Cisco when we were in the process

of selecting a documentation method for a suite of new REST APIs to be built. I discussed the

selection process behind choosing SpyREST as documentation tool for this project. In this case

study, I discussed how the proposed technique of using test code to drive REST API documentation

has been leveraged in Cisco to create and maintain an always-updated and accurate documentation

for an evolving REST API in production for a period of eighteen months. I gathered feedback

127

from the stakeholders including the API developers, QA engineers, project managers, and cus-

tomer support engineers to evaluate the merits and shortcomings of the proposed technique based

on their production use. The evaluation results show that it is feasible to use API test code to

generate and maintain REST API documentation for an evolving API with the identified REST

API documentation requirements. From this evaluation, I also found that different stakeholders are

able to establish a fast and continuous feedback loop about the API and its documentation while

developing the API features when the API documentation is auto updated from executable code.

Additionally, from this evaluation, I found a list of limitations of the proposed technique related to

the lack of support for using version control features for custom edited API documentation con-

tent and automatically generated changelogs showing the differences between API elements of

different API versions. Future research can be carried out to address these limitations.

My last research objective, RO5, to evaluate the impact of the proposed technique on REST

API client developers, was addressed in my fifth sub-project. I performed a controlled study with

26 professional software engineers with prior REST API experience. The participants were asked

to perform tasks using a REST API following its accompanying documentation. I enhanced an ex-

isting API documentation with usage examples leveraging the API’s test code. This enhancement

mimics the outcome of the proposed technique but does not use the proposed tool. Participants

were mapped into two groups. One of the groups used the original API documentation and the

other group used the enhanced documentation. I provided a web based API explorer so that partic-

ipants could only focus on the required API inputs instead of writing a full API client application to

perform the tasks. I observed that participants using the original API documentation faced similar

patterns of obstacles involving the use of correct data types, data formats, HTTP headers, and re-

quest body. Participants using the enhanced documentation were able to reduce these obstacles to

perform API tasks with a higher success rate, requiring less trial API calls and effort, and a higher

satisfaction rating. This provides empirical evidence that the proposed technique has a positive

impact on the REST API client developers. I also derived a list of recommendations related to

128

the content of usage examples for REST API documentation that can be used by practitioners as

a guideline to prioritize their documentation efforts. From this study, I also observed that partici-

pants used more trial API calls for API tasks that involve multiple dependent API calls even while

using the enhanced documentation. Future research is needed to generate API documentation with

examples for complex API usage scenarios to reduce this obstacle.

In summary, through the sub-projects, I have derived a set of REST API documentation require-

ments, and proposed a novel technique of using interception to automatically document REST

APIs with usage examples from executable code. I have presented evaluations of the proposed

technique from the perspectives of both the developers that write the APIs and the developers that

use the APIs. Practitioners and researchers can leverage the findings from this thesis to improve

the current state of REST API documentation process.

7.1 Future Work

Based on my findings from the this research, I identified the following list of potential future

research problems.

• Extension to Support Complex Usage Scenarios. Future research needs to be car-

ried out to find techniques to automate the process of documenting usage scenarios

that require multiple API calls to perform complex API tasks. Future research is

also needed to investigate techniques for automatically cross-referencing API ele-

ments to allow API client developers with an improved navigation experience while

reading the REST API documentation.

• Automated Changelog Generation. For frequently evolving APIs, future research

needs to extend the proposed technique in this thesis to automatically compute hu-

man readable changelogs and detect version compatibility to follow a semantic ver-

sioning scheme. This would help API client developers with an accurate informa-

tion about the potential impact of an API update on their own application.

129

• Automated API Client Code Generation. Several tools exist that can convert

custom REST API description files to API client code in multiple programming

languages. Future research can be carried out to map the SpyREST data model

with the custom API description languages to leverage the interception technique

to reduce the amount of manual effort required to maintain the custom formatted

API descriptions as the API evolves.

• Extensions of the Interception Based Documentation to non-REST APIs. The

proposed technique can be extended to document usage examples for other stateless

APIs outside the realm of REST APIs. The structure of REST APIs are commonly

documented using programming language features and formatted comments. Fu-

ture research can investigate the feasibility of leveraging the interception technique

to source realistic usage examples for local stateless APIs from existing API test

code.

130

Appendix A

Source Code Fragments of the Spy from Chapter 4

1 (function() {

2 var ApiThough;

3

4 ApiThough = require('./lib/api_through');

5

6 process.env.NODE_TLS_REJECT_UNAUTHORIZED = "0";

7

8 process.on('uncaughtException', function(err) {

9 console.error('uncaughtException');

10 console.error(err);

11 return console.error(err.stack);

12 });

13

14 new ApiThough().start();

15

16 }).call(this);

Listing A.1: index.js

1 (function() {

2 var ApiThrough, PassThrough;

3

4 module.exports = function() {

5 return new ApiThrough();

6 };

7

8 PassThrough = require('stream').PassThrough;

9

131

10 ApiThrough = (function() {

11 var Proxy, SSLCert, fs;

12

13 Proxy = require('http-mitm-proxy');

14

15 SSLCert = require('./ssl_cert');

16

17 fs = require('fs');

18

19 function ApiThrough() {

20 var host, mongooose;

21 mongooose = require('mongoose');

22 host = process.env["MONGODB_PORT_27017_TCP_ADDR"] || 'localhost';

23 console.log("Connecting to mongo at " + host);

24 mongooose.connect("mongodb://" + host + ":27017/apis");

25 }

26

27 ApiThrough.prototype.start = function() {

28 var proxy;

29 proxy = new Proxy();

30 proxy.use(this);

31 proxy.onCertificateMissing = (function(_this) {

32 return function(ctx, files, callback) {

33 return _this.onCertificateMissing(ctx, files, callback);

34 };

35 })(this);

36 proxy.listen({

37 port: process.env['PROXY_PORT'] || 9081,

38 sslCertCacheDir: './scripts/certs/http-mitm-proxy'

39 });

40 return this.proxy = proxy;

41 };

132

42

43 ApiThrough.prototype.onCertificateMissing = function(ctx, files, callback)

{

44 var sslCert;

45 console.log('Looking for "%s" certificates', ctx.hostname);

46 console.log('"%s" missing', ctx.files.keyFile);

47 console.log('"%s" missing', ctx.files.certFile);

48 sslCert = new SSLCert(ctx.hostname);

49 return sslCert.create((function(_this) {

50 return function() {

51 return callback(null, {

52 keyFileData: fs.readFileSync(ctx.files.keyFile),

53 certFileData: fs.readFileSync(ctx.files.certFile)

54 });

55 };

56 })(this));

57 };

58

59 ApiThrough.prototype.onError = function(ctx, err) {

60 console.error('proxy error:', err);

61 return console.error('proxy error stack:', err.stack);

62 };

63

64 ApiThrough.prototype.onRequest = function(ctx, callback) {

65 var ApiExample, User, apiExample, responseAggregator, responseBody;

66 ApiExample = require('./api_example');

67 User = require('./user');

68 ctx.onError((function(_this) {

69 return function(ctx, err) {

70 return _this.onError(ctx, err);

71 };

72 })(this));

133

73 apiExample = new ApiExample();

74 apiExample.populateFromRequest(ctx.clientToProxyRequest);

75 apiExample.setFullUrl(ctx.isSSL, ctx.proxyToServerRequestOptions);

76 responseBody = '';

77 responseAggregator = new PassThrough();

78 responseAggregator.on('finish', function() {

79 apiExample.responseBody = responseBody;

80 apiExample.stripResponseBody();

81 return User.findOne({

82 api_token: apiExample.apiToken

83 }, function(err, user) {

84 var apiExampleRaw;

85 console.log('findOne', err, user);

86 if (user) {

87 apiExample.userId = user.id;

88 }

89 apiExampleRaw = apiExample.toObject();

90 delete apiExampleRaw._id;

91 return ApiExample.findOneAndUpdate({

92 digest: apiExample.digest

93 }, apiExampleRaw, {

94 upsert: true

95 }, function(error) {

96 if (error != null) {

97 return console.log("Failed to save due to error", error);

98 }

99 });

100 });

101 });

102 ctx.addResponseFilter(responseAggregator);

103 ctx.onRequestData(function(ctx, chunk, callback) {

104 apiExample.requestBody += chunk.toString('utf8');

134

105 return callback(null, chunk);

106 });

107 ctx.onResponse(function(ctx, callback) {

108 apiExample.responseHeaders = ctx.serverToProxyResponse.headers;

109 apiExample.statusCode = ctx.serverToProxyResponse.statusCode;

110 ctx.serverToProxyResponse.on("finish", function() {

111 return console.log("FINISH");

112 });

113 return callback();

114 });

115 ctx.onResponseData(function(ctx, chunk, callback) {

116 responseBody += chunk.toString('utf8');

117 return callback(null, chunk);

118 });

119 return callback();

120 };

121

122 return ApiThrough;

123

124 })();

125

126 }).call(this);

Listing A.2: lib/api_through.js

1

2 (function() {

3 var ApiExample, ApiExamplesSchema, CUSTOM_HEADERS, VERSION_IN_HEADER,

VERSION_IN_URL, crypto, inflector, mongoose, url, validator, _u;

4

5 mongoose = require('mongoose');

6

7 url = require('url');

135

8

9 _u = require('underscore');

10

11 crypto = require('crypto');

12

13 validator = require('validator');

14

15 inflector = require('i')();

16

17 VERSION_IN_HEADER = /v(\d|\.\d)+/;

18

19 VERSION_IN_URL = /\/(v\d[^\/]*)/;

20

21 CUSTOM_HEADERS = {

22 DESC_HEADER: "x-spy-rest-desc",

23 VERSION_HEADER: "x-spy-rest-version",

24 RESOURCE_HEADER: "x-spy-rest-resource",

25 API_TOKEN_HEADER: "x-spy-rest-api-token",

26 HOST_HEADER: 'x-spy-rest-host',

27 NO_STRIP_HEADER: 'x-spy-rest-no-strip',

28 ACTION_HEADER: 'x-spy-rest-action'

29 };

30

31 ApiExamplesSchema = new mongoose.Schema({

32 description: {

33 type: String

34 },

35 version: {

36 type: String,

37 "default": 'Default'

38 },

39 resource: {

136

40 type: String

41 },

42 action: {

43 type: String

44 },

45 url: {

46 type: String

47 },

48 templatedURL: {

49 type: String

50 },

51 query: {

52 type: Object

53 },

54 host: {

55 type: String

56 },

57 http_method: {

58 type: String

59 },

60 requestBody: {

61 type: String,

62 "default": ''

63 },

64 requestHeaders: {

65 type: Object

66 },

67 statusCode: {

68 type: Number

69 },

70 responseHeaders: {

71 type: Object

137

72 },

73 responseBody: {

74 type: String,

75 "default": ''

76 },

77 strippedResponseBody: {

78 type: String

79 },

80 recordedAt: {

81 type: Date,

82 "default": function() {

83 return new Date();

84 }

85 },

86 fullURL: {

87 type: String,

88 "default": ''

89 },

90 digest: {

91 type: String,

92 "default": ''

93 },

94 requiresAuth: {

95 type: Boolean,

96 "default": false

97 },

98 apiToken: {

99 type: String,

100 "default": ''

101 },

102 userId: {

103 type: mongoose.Schema.Types.ObjectId,

138

104 "default": null

105 },

106 authType: {

107 type: String

108 }

109 }, {

110 collection: 'api_examples'

111 });

112

113 ApiExamplesSchema.index({

114 host: 1,

115 version: 1,

116 resource: 1,

117 action: 1

118 });

119

120 ApiExample = mongoose.model('ApiExample', ApiExamplesSchema);

121

122 ApiExample.prototype.populateFromRequest = function(request) {

123 this.host = request.headers[CUSTOM_HEADERS.HOST_HEADER] || request.headers

.host;

124 this.url = this.filteredUrl(request.url);

125 this.http_method = request.method;

126 this.requestHeaders = request.headers;

127 this.description = request.headers[CUSTOM_HEADERS.DESC_HEADER];

128 this.version = request.headers[CUSTOM_HEADERS.VERSION_HEADER] || this.

guessedVersion() || 'Default';

129 this.resource = request.headers[CUSTOM_HEADERS.RESOURCE_HEADER] || this.

guessedResource();

130 this.query = this.parsedUrl().query;

131 this.apiToken = this.requestHeaders[CUSTOM_HEADERS.API_TOKEN_HEADER];

132 this.filterAuthHeaders();

139

133 this.action = this.computedAction();

134 return this.digest = this.computeDigest();

135 };

136

137 ApiExample.prototype.stripResponseBody = function() {

138 var StrippedObject, strippedObject;

139 if (!this.shouldStrip()) {

140 return;

141 }

142 StrippedObject = require('./stripped_object');

143 strippedObject = new StrippedObject();

144 try {

145 return this.strippedResponseBody = JSON.stringify(strippedObject.strip(

JSON.parse(this.responseBody)));

146 } catch (_error) {

147 return this.strippedResponseBody = this.responseBody;

148 }

149 };

150

151 ApiExample.prototype.saveWithErrorLog = function() {

152 return this.save(function(error) {

153 if (error) {

154 return console.error("Failed to save because of error", error);

155 }

156 });

157 };

158

159 ApiExample.prototype.guessedVersion = function() {

160 return this.guessedVersionFromURL() || this.guessedVersionAcceptHeader();

161 };

162

163 ApiExample.prototype.guessedVersionFromURL = function() {

140

164 if (this.url == null) {

165 return null;

166 }

167 if (this.url.match(VERSION_IN_URL)) {

168 return RegExp.$1;

169 }

170 };

171

172 ApiExample.prototype.guessedVersionAcceptHeader = function() {

173 var matches;

174 if (this.requestHeaders['accept'] == null) {

175 return null;

176 }

177 matches = this.requestHeaders['accept'].match(VERSION_IN_HEADER);

178 if (matches != null) {

179 return matches[0];

180 }

181 };

182

183 ApiExample.prototype.parsedUrl = function() {

184 return url.parse(this.url, true);

185 };

186

187 ApiExample.prototype.guessedResource = function() {

188 var parts, possibleResource;

189 parts = this.parsedUrl().pathname.split('/').reverse();

190 possibleResource = _u.find(parts, function(part) {

191 return part.match(/^[^\d].*$/);

192 });

193 if (possibleResource != null) {

194 return possibleResource.split('.')[0];

195 }

141

196 };

197

198 ApiExample.prototype.computedAction = function() {

199 if (this.requestHeaders[CUSTOM_HEADERS.ACTION_HEADER] != null) {

200 return "" + this.http_method + " " + this.requestHeaders[CUSTOM_HEADERS.

ACTION_HEADER];

201 } else {

202 this.templatizeURL();

203 return "" + this.http_method + " " + this.templatedURL;

204 }

205 };

206

207 ApiExample.prototype.setFullUrl = function(isSSL, hostPort) {

208 var host, port, scheme;

209 scheme = isSSL ? "https" : "http";

210 host = hostPort.host;

211 port = '';

212 if (hostPort.port) {

213 if (scheme === "http" && hostPort.port !== 80) {

214 port = ":" + hostPort.port;

215 } else if (scheme === "https" && hostPort.port !== 443) {

216 port = ":" + hostPort.port;

217 }

218 }

219 return this.fullURL = "" + scheme + "://" + host + port + this.url;

220 };

221

222 ApiExample.prototype.filterAuthHeaders = function() {

223 return this.requestHeaders = _u.reduce(this.requestHeaders, (function(

_this) {

224 return function(filteredHeaders, value, key) {

225 if (key === 'authorization') {

142

226 console.log("value");

227 console.log(value);

228 if (value.match(/Basic/)) {

229 console.log(value);

230 _this.authType = 'Basic';

231 filteredHeaders[key] = 'Basic FILTERED';

232 } else {

233 filteredHeaders[key] = 'FILTERED';

234 }

235 _this.requiresAuth = true;

236 } else {

237 filteredHeaders[key] = value;

238 }

239 return filteredHeaders;

240 };

241 })(this), {});

242 };

243

244 ApiExample.prototype.filteredUrl = function(rawUrl) {

245 var api_key_param, parasedRawUrl;

246 if (!rawUrl) {

247 return rawUrl;

248 }

249 parasedRawUrl = url.parse(rawUrl, true);

250 api_key_param = _u.find(_u.keys(parasedRawUrl.query), function(param) {

251 return param.toLowerCase() === 'api_key';

252 });

253 if (!api_key_param) {

254 return rawUrl;

255 }

256 return rawUrl.replace("" + api_key_param + "=" + parasedRawUrl.query[

api_key_param], "" + api_key_param + "=FILTERED");

143

257 };

258

259 ApiExample.prototype.computeDigest = function() {

260 var hash, text;

261 text = "__VERSION__" + this.version + "__RESOURCE__" + this.resource + "

__URL__" + this.action + "__DESC__" + this.description;

262 hash = crypto.createHash('sha');

263 console.log("digest for text " + text);

264 hash.update(text);

265 return hash.digest('base64');

266 };

267

268 ApiExample.prototype.shouldStrip = function() {

269 var strip_header_value;

270 if (!this.requestHeaders) {

271 return true;

272 }

273 console.log("HERE");

274 strip_header_value = this.requestHeaders[CUSTOM_HEADERS.NO_STRIP_HEADER];

275 return strip_header_value !== 'true';

276 };

277

278 ApiExample.prototype.templatizeURL = function() {

279 var parts, path, templatedParts;

280 path = this.parsedUrl().pathname;

281 parts = path.split("/");

282 templatedParts = _u.map(parts, function(part, index) {

283 var previousPart;

284 previousPart = index > 0 ? parts[index - 1] : '';

285 if (validator.isNumeric(previousPart)) {

286 return part;

287 }

144

288 if (validator.isNumeric(part)) {

289 return "{:" + (inflector.singularize(previousPart)) + "-id}";

290 } else if (validator.isUUID(part)) {

291 return "{:" + (inflector.singularize(previousPart)) + "-guid}";

292 } else {

293 return part;

294 }

295 });

296 return this.templatedURL = templatedParts.join('/');

297 };

298

299 module.exports = ApiExample;

300

301 }).call(this);

Listing A.3: lib/api_example.js

145

Appendix B

Permissions for Reusing Published Papers in PhD Thesis

146

8/1/2017 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: A Case Study of Web API

Evolution

Conference
Proceedings:

Services (SERVICES), 2015

IEEE World Congress on

Author: S.M. Sohan

Publisher: IEEE

Date: June 2015

Copyright © 2015, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users

must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line � 2011

IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original

publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the

senior author�s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year of original

publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and

month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis

online.

3) In placing the thesis on the author's university website, please display the following message in a prominent

place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or

personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License

from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies

of the dissertation.

���

Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. Email us at customercare@copyright.com

147

8/1/2017 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: SpyREST: Automated RESTful
API Documentation Using an
HTTP Proxy Server (N)

Conference
Proceedings:

Automated Software
Engineering (ASE), 2015 30th
IEEE/ACM International
Conference on

Author: S M Sohan
Publisher: IEEE
Date: Nov. 2015
Copyright © 2015, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line � 2011
IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author�s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
online.
3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

���

Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. Email us at customercare@copyright.com

148

8/1/2017 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: SpyREST in Action: An

Automated RESTful API

Documentation Tool

Conference
Proceedings:

Automated Software

Engineering (ASE), 2015 30th

IEEE/ACM International

Conference on

Author: S M Sohan

Publisher: IEEE

Date: Nov. 2015

Copyright © 2015, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users

must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line � 2011

IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original

publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the

senior author�s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year of original

publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and

month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis

online.

3) In placing the thesis on the author's university website, please display the following message in a prominent

place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or

personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License

from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies

of the dissertation.

���

Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. Email us at customercare@copyright.com

149

8/1/2017 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Automated Example Oriented

REST API Documentation at

Cisco

Conference
Proceedings:

Software Engineering:

Software Engineering in

Practice Track (ICSESEIP),

2017 IEEE/ACM 39th

International Conference on

Author: S.M. Sohan

Publisher: IEEE

Date: May 2017

Copyright © 2017, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users

must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line � 2011

IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original

publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the

senior author�s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year of original

publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and

month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis

online.

3) In placing the thesis on the author's university website, please display the following message in a prominent

place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or

personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License

from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies

of the dissertation.

���

Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. Email us at customercare@copyright.com

150

	Abstract
	Acknowledgements
	Dedication
	Contents
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Research Goals
	Research Objectives
	Cohesion and Unitary Report
	Contributions
	References

	A Case Study of Web API Evolution
	Abstract
	Introduction
	Related Work
	Empirical Research on Web API Evolution
	Techniques to Evolve Web APIs
	Tool Support for Evolving Web APIs

	Case Study
	Research Questions
	Selection Strategy
	Research Method - Qualitative Analysis

	Findings
	RQ1 Versioning
	RQ2 Documentation
	RQ3 Communication

	Discussion
	Conclusion
	References

	SpyREST: Automated RESTful API Documentation using an HTTP Proxy Server
	Abstract
	Introduction
	Related Work
	General API Documentation
	RESTful API Documentation

	SpyREST
	Requirements
	Design
	Features

	SpyREST Case Study
	SpyREST Documentation vs. Official Documentation

	Discussion
	Threats to Validity

	Conclusion
	References

	SpyREST in Action: An Automated RESTful API Documentation Tool
	Abstract
	Introduction
	SpyREST
	Design
	Implementation

	Use Cases
	Initial API Documentation
	Maintaining API Documentation for Evolving APIs

	Discussion
	Related Work
	Conclusion
	References

	Automated Example Oriented REST API Documentation at Cisco
	Abstract
	Introduction
	Related Work
	API Usability and Documentation
	Usage Examples in API Documentation
	REST API Documentation

	REST API Documentation Tool Selection
	Requirements
	Evaluation of Tools

	SpyREST – Overview
	Case Study: SpyREST at Cisco
	Methodology
	Context
	The API Development Process

	Discussion
	REST API Documentation from Test Code
	Maintaining Custom Content
	Handling Flexible API Elements
	API Documentation Life-cycle
	API Changelog
	Cross-Referencing API Elements
	Extending beyond REST API Documentation
	Limitations

	Conclusion
	References

	A Study of the Effectiveness of Usage Examples in REST API Documentation
	Abstract
	Introduction
	Research Question
	Methodology
	Study API
	Study Design

	Results
	Quantitative Analysis
	Qualitative Analysis Results

	Threats to Validity
	Related Work
	Conclusion
	References

	Conclusion
	Future Work

	Source Code Fragments of the Spy from Chapter 4
	Permissions for Reusing Published Papers in PhD Thesis

