
UNIVERSITY OF CALGARY

An Agile Framework for Variability Management in Software Product Line Engineering

by

Yaser Ghanam

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JULY, 2012

© Yaser Ghanam 2012

ii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the faculty of graduate

studies for acceptance, a thesis entitled "An Agile Framework for Variability

Management in Software Product Line Engineering" submitted by Yaser Ghanam in

partial fulfilment of the requirements of the degree of Doctor of Philosophy.

Supervisor, Frank Maurer, Department of Computer Science

Robert Davies, Department of Electrical and Computer
Engineering

Jonathan Sillito, Department of Computer Science

Internal/External Examiner, Richard Levy, Faculty of
Environmental Design

External Examiner, Robert Biddle, Carleton University

Date

iii

Abstract

During the past few years, research in agile product line engineering has been gaining

more popularity, driven by the much needed ability to combine the flexibility and high

responsiveness of agile methods with the economic advantages of reuse and mass

customization offered by software product lines. This dissertation presents a novel

framework to manage variability in software product lines in an agile context.

By leveraging agile practices such as iterative and incremental development, test-driven

development, and refactoring, this dissertation shows that a reactive approach to

variability management is indeed feasible. The findings of this research demonstrate that

acceptance tests can play an important role in variability elicitation; but they may not be

sufficient to deduce implicit constraints from requirements. This issue is addressed by

using executable acceptance tests alongside feature models in order to uncover implicit

constraints and hidden dependencies. The dissertation also discusses the role of

executable acceptance tests in supporting the evolution of variability by providing

instantaneous feedback on the impact of adding or removing features or variants. For

requirements that cannot be adequately described using acceptance tests such as usability

and portability requirements, the dissertation demonstrates how such requirements can be

treated using a lightweight and reactive approach.

At the implementation level, the results of this research show that realizing variability can

occur in a reactive manner provided that proper refactoring and testing practices are

followed. The results also illustrate how the process can be made more systematic by

using tests as a common starting point to inject variability on-demand. The efficiency of

the process can be improved by providing automated tool support. Once variability has

iv

been realized in the system, the dissertation discusses how individual products can be

built using the derivation technique or the instantiation technique.

Finally, the dissertation presents important findings on the issues and challenges likely to

arise when adopting a new software product line framework in an industrial context. The

findings reveal a number of technical challenges, but also bring to surface non-technical

issues related to the business needs, the organizational context, and a raft of human

factors.

v

“In the name of Allah, the most gracious, the most merciful”

vi

Acknowledgements

All praise and gratitude are due to Allah, God Almighty, for giving me the strength to rise

out of the most difficult circumstances to finish the journey I have started; and for

teaching me how to nurture patience with persistence, how to be strong but

compassionate, how to be confident yet humble, and how to be a good leader but also a

good follower.

A special thank you to Dr. Frank Maurer for being a mentor, a friend and a source of

inspiration; for giving me advice, support and guidance without pushing too hard; and for

being so patient and understanding all the way. Without your guidance and compassion,

this journey would have been much harder.

Many thanks go to Alberta Innovates Technology Futures for funding my doctoral

studies. I also would like to thank people in the Smart Home Program at TRLabs-

Calgary, especially: Jennifer van Zelm, Dr. Rainer Iraschko, and Dr. Robert Davies for

offering valuable collaboration opportunities.

To my family, friends and colleagues, thank you all for being there when I needed you

and for believing in me at every step of this journey. To Armin Eberlein, thank you for

providing me with the opportunity to come to Canada and realize a dream of a lifetime.

vii

Dedication

To my dear parents, Ammar and Fadwa:

For all your devotion and hard work throughout my life, and for pushing me to go

above and beyond expectations. All that I am now or ever hope to be, I owe to

both of you.

To my kind and loving wife, Maha:

For always believing in me, and for taking the best care of our son when I am too

distracted with work. I love you, not only for what you are, but for what I am

when I am around you.

To my son, Ibrahim:

For bringing a lot of happiness and joy to my life, and for welcoming me at home

with the cutest little smile after a long day of work.

To my brothers and sisters in Syria, Egypt, Tunisia, Yemen, and Libya:

For sacrificing their lives in the fight for freedom and democracy so that we and

future generations may live with dignity. May Allah bless your souls and grant

you Paradise.

viii

Table of Contents

Approval Page ... ii
Abstract .. iii
Acknowledgements .. vi
Dedication ... vii
Table of Contents ... viii
List of Tables ... xiii
List of Figures and Illustrations ... xiv

List of Listings .. xvii

CHAPTER ONE: INTRODUCTION ..1

1.1 Roots ..1

1.2 Iterative Reuse & Variability ...3

1.3 Problem Statement ...4

1.4 Dissertation Scope & Goal ..5

1.5 Significance & Contribution ..6

1.6 Dissertation Outline ...7

1.7 Terminology ...7

CHAPTER TWO: BACKGROUND ...11

2.1 Agile Software Development (ASD) ...11

2.1.1 Iterative & Incremental Development ...12

2.1.2 Continuous Testing ..13

2.1.2.1 Unit tests ..14

2.1.2.2 Acceptance tests (ATs) ..14

2.1.3 Refactoring ..16

2.1.4 Agile organizations ..16

2.2 Software Reuse ..16

2.2.1 Advantages of Software Reuse ..17

2.2.2 Reuse Granularities ...18

2.3 Software Product Line Engineering ...20

2.3.1 Example: The Smart Home System ..21

2.3.2 Variability Definition ..24

2.3.3 Variability Sources ..26

2.3.4 Variability Modeling ...26

2.3.5 Domain Engineering & Application Engineering ...28

2.4 Product Derivation ...30

2.5 Chapter Summary ..31

CHAPTER THREE: LITERATURE REVIEW ..32

3.1 Agile Product Line Engineering ..32

3.1.1 Work on utilizing both paradigms for different roles in a single
organization..33

3.1.2 Work on enhancing the agility of an already established SPL34

3.1.3 Work on lowering the barrier to adopting a SPL process36

3.2 Variability Management ..38

ix

3.3 Feature Modeling & Traceability ..40

3.4 Chapter Summary ..41

CHAPTER FOUR: RESEARCH APPROACH ..43

4.1 Research Goal ..43

4.2 Research Questions ..44

4.2.1 Stage A: Eliciting new requirements ...46

4.2.2 Stage B: Variability Elicitation ...46

4.2.3 Stage C: Variability Modleing ...47

4.2.4 Stage D: Variability Realization ..48

4.2.5 Stage E: Product Derivation ..48

4.2.6 Issues and Challenges in Industrial Contexts ..49

4.3 Evaluation Strategy ..49

4.3.1 Evaluation Challenges ...50

4.3.2 Evaluation Strategy ...51

4.4 Chapter Summary ..51

CHAPTER FIVE: VARIABILITY ELICITATION & EVOLUTION IN BUSINESS
LOGIC REQUIREMENTS ..52

5.1 Preamble ..52

5.2 Research Instruments ...52

5.3 Analysis ...55

5.4 The Proposed Elicitation Approach ...57

5.4.1 Acceptance Tests ...58

5.4.2 Introducing Variability ..60

5.4.3 Customer involvement ...64

5.5 Exploratory Study ..65

5.5.1 Goal & Questions ..65

5.5.2 Data gathering ...66

5.5.3 Results & Discussion ...68

5.5.3.1 Tutorial and Exercises ...68

5.5.3.2 Questionnaire ...73

5.5.4 Threats to Validity ...74

5.6 Chapter Summary ..74

CHAPTER SIX: VARIABILITY ELICITATION & EVOLUTION IN
PRESENTATION AND PORTABILITY REQUIREMENTS75

6.1 Preamble ..75

6.2 Research Instruments ...76

6.3 The Problem: Variability due to Presentation and Portability78

6.3.1 Presentation ...78

6.3.2 Portability ..80

6.4 Handling Variability ..80

6.4.1 Variability Analysis ...81

6.4.2 Variability Profile Update ...82

6.4.3 Variability Implementation ...85

6.5 Evaluation through Action Research ...86

x

6.5.1 Goal and Questions ..86

6.5.2 Problem Context ..87

6.5.3 Applying the Reactive Approach ..91

6.5.3.1 User Story 1 ...91

6.5.3.2 User Story 2 ...93

6.5.3.3 User Story 3 ...98

6.6 Discussion of Results ...103

6.6.1 Q1. Can the reactive approach be used to construct a variability profile in
an incremental and lightweight manner for a real software application?104

6.6.2 Q2. What are the advantages of the reactive approach over other
approaches (proactive, clone-and-own, build from scratch, ad-hoc)?105

Just-Enough Variability ..105

Opportunistic Reuse & Common Repository ...105

6.6.3 Limitations ...107

6.7 Chapter Summary ..110

CHAPTER SEVEN: VARIABILITY MODELING ...111

7.1 Preamble ..111

7.2 Research Instruments ...111

7.3 Preliminary Analysis ..113

7.3.1 Feature modeling ...113

7.3.2 Executable Acceptance Tests (EATs) ...115

7.3.3 Traceability from EATs to Code Artefacts ...115

7.4 Using Feature Models with EATs ...117

7.5 Implications of Using EATs as Traceability Links ...119

7.5.1 Consistency between the Feature Model and the Code Artefacts119

7.5.2 Supporting the Evolution of Variability in the Extended Feature Model122

7.5.3 Deriving Products using the Extended Feature Model123

7.6 Tool Support ..124

7.7 Evaluation ..128

7.7.1 Comparative Evaluation ..129

7.7.1.1 Object selection ..129

7.7.1.2 Level of comparison ..129

7.7.1.3 Conceptual comprehension ..130

7.7.1.4 Findings ...130

7.7.2 Running Example – Limitations ..135

7.8 Chapter Summary ..136

CHAPTER EIGHT: VARIABILITY REALIZATION ...137

8.1 Preamble ..137

8.2 Research Instruments ...137

8.3 Preliminary Analysis ..139

8.3.1 Variability Realization Techniques ...139

8.3.2 Premises of the Proposed Approach ..140

8.3.3 The Role of Test Artefacts ..141

8.4 The Proposed Variability Realization Approach ...142

8.4.1 Refactoring for Variability ..142

xi

8.4.2 Formalization ...145

8.4.3 Variation Initialization Function ...145

8.4.4 Call Hierarchy Function ..146

8.4.5 Variability Trace Function ..147

8.4.6 Code Manipulation Function ...147

8.4.7 Test Update function ...151

8.5 Automation ..155

8.6 Evaluation ..158

8.6.1 Feasibility Evaluation – Proof-of-Concept ..159

8.6.1.1 Procedure ...159

8.6.1.2 Assessment ...159

8.6.1.3 Findings ...160

8.6.2 Practicality Evaluation – Case Study ..161

8.6.2.1 Case selection ..161

8.6.2.2 Procedure ...162

8.6.2.3 Findings ...163

8.6.3 Limitations & Threats to Validity ...163

8.7 Chapter Summary ..164

CHAPTER NINE: PRODUCT DERIVATION ..165

9.1 Preamble ..165

9.2 Research Instruments ...165

9.3 Preliminary Analysis ..167

9.3.1 Product Derivation Techniques ...167

9.3.2 Direct vs. Indirect Configuration ...169

9.4 Derivation in the Proposed Framework ...169

9.4.1 Product Instantiation ..169

9.4.2 Product Extraction ...170

9.5 Evaluation ..172

9.5.1 Goal and Scope ..172

9.5.2 Context ..173

9.5.3 Core System Status ..173

9.5.4 Instantiation ...176

9.5.5 Discussion ..180

9.6 Chapter Summary ..181

CHAPTER TEN: ISSUES AND CHALLENGES IN INDUSTRIAL CONTEXTS182

10.1 Preamble ..182

10.2 Research Instrument ..182

10.3 Study Procedure ...183

10.3.1 Study Context ..183

10.3.2 Data Collection and Analysis ..185

10.3.2.1 Data collection ...185

10.3.2.2 Data analysis ..187

10.3.3 Findings ...187

10.4 Business Challenges ..190

10.4.1 Business strategy ...190

xii

10.4.2 Product-driven platform development ...190

10.5 Organizational Challenges ...193

10.5.1 Communication ...193

10.5.2 Organizational structure ..196

10.5.3 Agile culture ..202

10.5.4 Standardization ..205

10.6 Technical Challenges ...206

10.6.1 Commonality and variability ...207

10.6.2 Design complexity ...210

10.6.3 Code Contribution ...211

10.6.4 Technical practices ..212

10.7 People Challenges ..214

10.7.1 Resisting Change ...214

10.7.2 Technical Competency ..215

10.7.3 Domain Knowledge ...216

10.8 Threats to Validity ...216

10.9 Comparison with the Literature ...217

10.10 Chapter Summary ..220

CHAPTER ELEVEN: SUMMARY AND CONCLUSIONS ...221

11.1 Summary ..221

11.2 Conclusions ..223

11.3 Future Work ...224

REFERENCES ..225

APPENDIX A. ETHICS BOARD CERTIFICATE ..242

APPENDIX B. CO-AUTHOR PERMISSIONS ...245

APPENDIX C. EXPLORATORY STUDY ..247

xiii

List of Tables

Table 1 - Aspects and the required observations .. 65

Table 2 - Summary of the results .. 68

Table 3- Variability between a normal PC and an HP Touchsmart PC 91

Table 4 - Variability between vertical displays and horizontal displays. 94

Table 5 – Variability between horizontal displays ... 99

Table 6 - Comparison between the different approaches of traceability 132

Table 7 - Production code units for the core feature ... 176

Table 8 - AT coverage report .. 178

Table 9 - Production code units for Case I ... 179

Table 10 - Reasons for silo thinking ... 197

Table 11 - Consequences of silo thinking ... 198

Table 12 - Summary of Contributions .. 221

Table 13 – Participants’ background information .. 258

Table 14 - Time and Scores .. 260

Table 15 - Questionnaire results ... 260

xiv

List of Figures and Illustrations

Figure 1 - Releases and iterations (adapted from [Agile2011]) .. 13

Figure 2 - An example of a unit (method) and its tests ... 14

Figure 3 - Executable AT .. 15

Figure 4 - Modeling variability ... 28

Figure 5 - Domain Engineering & Application Engineering (adapted from
[Pohl2005]) ... 29

Figure 6 – Work in the literature... 38

Figure 7 - The proposed framework ... 45

Figure 8 – This chapter tackles Stage B: Variability elicitation – Business Logic 53

Figure 9 – An object model for test artefacts in a SUT .. 59

Figure 10 - A test page is composed of a number of test tables 62

Figure 11 - The initial feature model .. 62

Figure 12 - Customization requested by the customer .. 63

Figure 13 – The evolved feature model .. 64

Figure 14 – Consistency (%) in Exercise 1 to the left, and in Exercise 2 to the right 69

Figure 15 – (a) The expected model as opposed to (b) the produced model with the
[1..1] constraint between Table H and Table I .. 70

Figure 16 – The two tables with the implicit constraint ... 71

Figure 17 – (a) The expected model as opposed to (b) the produced model missing the
constraint between Table H and Table I ... 72

Figure 18 – A scenario for unnecessarily imposed constraints ... 72

Figure 19 – Reponses to the questionnaire ... 73

Figure 20 – This chapter tackles Stage B: Variability elicitation – Presentation &
Portability .. 77

Figure 21 - Reactive approach to variability due to presentation and portability 81

Figure 22 – eHome: a smart home software application .. 87

xv

Figure 23 - Initial state of the eHome architecture ... 89

Figure 24 - (a) Part of the vertical slider is blocked by the body of the finger, (b) The
horizontal slider solves this issue. ... 92

Figure 25 – The impact of the update variability profile on eHome architecture 93

Figure 26 – redundant GUI elements are needed on horizontal displays to support
multiple orientations. .. 97

Figure 27 - Circular slider to control light intensity on horizontal displays to support
multiple orientations. .. 97

Figure 28 – SMART DViT Table, new SMART Table, and MS Surface (in order). 99

Figure 29 – Refactoring due to variability in the SDKs. .. 103

Figure 30 – This chapter tackles Stage C: Variability modeling 112

Figure 31 - A feature tree for a home security system .. 113

Figure 32 - Example of an EAT .. 115

Figure 33 - Traceability through EATs ... 116

Figure 34 - The proposed extension to feature models ... 117

Figure 35 - Relationships between features, EATs, and test units.................................. 118

Figure 36 - Continuous two-way feedback ... 120

Figure 37 – Abstracting the commonality as a mandatory sub-feature 121

Figure 38 - The user can model features and their relationships 125

Figure 39 – The leaves of the feature tree can be mapped to EATs 125

Figure 40 - The tool allows the user to run ATs directly from the variability model 126

Figure 41 – Passing tests are coloured in green and failing tests are coloured in red 127

Figure 42 – The user can use the configurator window to select the wanted features ... 127

Figure 43 - The tool runs only those EATs that are relevant to a given instance 128

Figure 44 – Similarity vs. difference of the objects compared (obtained from
[Vartiainen2002]) .. 129

Figure 45 - This chapter addresses Stage D: Variability realization 138

xvi

Figure 46 - Current state of the Lock feature. ... 142

Figure 47 - The new state of the Lock feature .. 144

Figure 48 – Choosing the unit test and the type of variation .. 156

Figure 49 – Selecting the source of variation from the transitive closure results 156

Figure 50 - Expected input from the developer .. 157

Figure 51 - The developer is made aware of the refactoring steps and the potential
changes to the code ... 158

Figure 52 - This chapter addresses Stage E: Product derivation 166

Figure 53 - Product derivation from a generic base system.. 167

Figure 54 - Using EATs to select configurations .. 170

Figure 55 - Using EATs coverage reports to extract artefacts .. 171

Figure 56 - EAT for adding macros .. 174

Figure 57 - EAT for adding conditional macros ... 175

Figure 58 – Tree of challenges – a ‘-’ means the subcategory is not divided further 189

xvii

List of Listings

Listing 1 – Password criteria are checked in the Lock.isValidPassword() method 143

Listing 2 – The UT that tests the scenario where variability needs to exist 146

Listing 3 – Abstracting the method where variability will be introduced 148

Listing 4 – Generating implementation templates for the variants 149

Listing 5 – Declaring a new enumeration ... 149

Listing 6 – Creating or updating a configurator class ... 150

Listing 7 – Generating a factory to select variants ... 150

Listing 8 – Updating affected code segments ... 150

Listing 9 – Generating UTs for alternatives ... 152

Listing 10 – Generating UTs for options .. 154

Listing 11 – A sample configurator containing multiple variation points 168

Listing 12 – The contents of the fixture code layer .. 176

Listing 13 – The extracted fixture code .. 179

1

 INTRODUCTION CHAPTER ONE:

Agile product line engineering is a new area of research that has been gaining momentum

throughout the past few years. The general goal of the research in this field is to combine

two notions, namely: agility and reuse. Agility as manifested in software paradigms such

as Agile Software Development (ASD) provides the nimbleness needed to cope with

changing requirements; while reuse as practiced in paradigms like software product line

(SPL) engineering provides economic advantages through a “build-once-use-many-

times” strategy.

1.1 Roots

In its early days, software development was approached using models that were

analogues to those in other engineering disciplines such as civil engineering. As a result,

the sequential waterfall model [Royce1970] was the defacto standard in software

development until it was found to be unrealistic and incapable of coping with the fast

pace and special needs of software projects [Kruchten2004].

During the past two decades, great advancements have been made in software

development pertaining to iterative and incremental development models, which changed

the typical lifecycle of software products. In 2001, the Agile Manifesto was declared as

an umbrella under which many of the iterative approaches came together to cherish and

promote certain values and principles [Agile2010]. The four major principles behind

ASD were defined as: individual and interactions are valued over processes and tools;

working software is valued over comprehensive documentation; customer collaboration

is valued over contract negotiation; and responding to change is valued over following a

plan. The agile community has brought forward a multitude of practices and methods to

2

support such principles. Agile methods generally focus on short iterations driven by a

strong relationship with the customer and a continuous feedback throughout the lifecycle

of the project. ASD handles uncertainty differently from traditional approaches (i.e.

waterfall) by investing the bare minimum in the early stages of requirement analysis and

system design. Instead, ASD emphasizes the delivery of working software on a regular

basis to solicit early feedback and mitigate any risks [Highsmith2001]. Iterative models

in general proved to be more realistic and effective in achieving fast delivery to obtain

customer feedback and incorporate this feedback in the following cycles of development

[Bittner2006].

Another dimension of advancement in software development has been software reuse

[Jacobson1997]. Instead of building software products from scratch, assets that were

produced in previous software projects should be enhanced and reused. Reuse offered a

great potential in terms of improving productivity and quality [Mili1995]. Software reuse

opened the door for many research directions such as design patterns [Gamma1995],

component-based software engineering [Lau2004], and SPLs [Clements2001]. An SPL is

a family of software-intensive systems that share a common set of features while

allowing for a margin of variability to satisfy different customer needs [Clements2001].

Effectively, SPLs achieve reuse at the product level rather than the component level. That

is, groups of components are reused together in a prescribed way to build whole products.

SPLs deal with similar systems as a family of products sharing a library of core assets.

But since customer requirements are rarely exactly the same, shared assets have to

accommodate a certain degree of variability (aka. customizability). Commonality

between systems is what makes SPLs economically viable; whereas variability is what

3

makes mass customization possible. Companies consistently report that SPLs yield

significant improvements [Sharp2000, Linden2007, Bergey2004, Brownsword1996].

Some reported reductions in the number of defects in their products and cuts in costs and

time-to-market by a factor of 10 or more [Schmid2002]. Having said that, it is important

to realize that there is an adoption barrier to the SPL practice in its traditional form

[Kruger2002]. The amount of up-front investment needed to build the reusable assets and

get the SPL to a profitable stage is tremendous – which goes strictly against the core

principles of ASD as will be explained next.

1.2 Iterative Reuse & Variability

Having realized the advantages of ASD as an iterative paradigm and SPL engineering as

a reuse paradigm, it is interesting to determine whether the two can be combined to

achieve reuse and variability while maintaining the main themes of agility such as

iterative development and minimum up-front design. As rewarding as this sounds,

combining ASD and SPL practices in a single work environment seems to be a

complicated predicament, and even counter-intuitive. On the one hand, traditional SPL

engineering approaches put a strong emphasis on up-front domain analysis and

architecture design. On the other hand, ASD does not applaud such practices; and instead,

proponents of agile methods preach a ‘just-enough’ philosophy in which actual coding

activities start as soon as enough requirements are gathered to fill a short iteration.

The research question I address in this dissertation is whether it is possible to achieve

reuse and variability through SPL engineering in an environment where ASD practices

are common. If we can manage to wisely reconcile the conflicts between the philosophies

of the two paradigms, we will be able to amplify production capabilities without

4

compromising agility. The next section explains the different dimensions of the problem

at hand in more detail.

1.3 Problem Statement

So far, the focus of ASD methodologies has been to develop software systems that satisfy

a specific customer base, without worrying about best practices to handle variations of

requirements in the system. Recently, the agile community has been investigating ways to

scale agile up to the enterprise level rather than the team level as in [Leffingwell2007]

and [Shalloway2009]. This will eventually require that agile organizations adopt a

paradigm that supports organization-wide reuse and enables the efficient handling of

variability in the reusable assets.

Nonetheless, adopting traditional SPL reuse and variability management techniques

within an ASD process is a challenge. For one, ASD fosters a culture of minimalism in

up-front investment and process overhead including documentation. This is in direct

conflict with traditional approaches to SPL engineering where a whole phase, namely

domain engineering [Pohl2005], is dedicated up-front for domain analysis and variability

management. This phase is often demanding and entails heavyweight processes and

considerable overhead as will be explained later (in the Background section). Secondly,

organizations that adopt ASD depend heavily on fast delivery as a mechanism for quick

customer satisfaction and feedback, which is too difficult to achieve when a domain

engineering phase is to occur before delivering any products. Thirdly, the flexibility to

accommodate changes in requirements and new customer requests is an important

characteristic of ASD. Strictly adhering to a domain engineering phase where the

requirements are set for the next phases of development hinders such flexibility.

5

 To summarize, reuse and variability in traditional SPL engineering are treated

proactively by conducting an extensive domain analysis to understand the sources of

variability and design for this variability. This proactive treatment does not stand well

with the ASD philosophy of minimal investment in requirement and design up-front.

Therefore, there is a need to investigate the feasibility of a reactive approach to

variability management, which is the focus of this dissertation.

1.4 Dissertation Scope & Goal

Within the scope of this dissertation, reuse and variability management are very closely

related given that variability occurs whenever a decision is made to reuse an asset in a

context that is not identical to the original context of the reusable asset. Hence, from this

point forward, I use the term variability management with the assumption that reuse is

necessarily implied. If the old and new contexts are identical, variability becomes

irrelevant.

The goal of this dissertation is to investigate whether it is feasible to treat variability

management in a reactive as opposed to proactive manner in order to lower the adoption

barrier to SPLs in agile environments.

Through a number of research enquiries, I address the different aspects of variability

management, and I show how these aspects can be achieved by leveraging existing agile

principles and practices. Although SPL engineering has areas other than variability

management such as scoping (i.e. defining the production capabilities of the product

line), this dissertation only focuses on variability management as the main area of

interest.

6

1.5 Significance & Contribution

The significance of being able to establish and manage an agile product line is threefold.

For one, it will allow organizations to adopt SPL practices in an incremental manner

instead of a big-bang transition. Also, for organizations that cannot afford to put large

investments into proactive domain engineering, a reactive agile product line framework

can be a viable alternative to improve productivity and quality of software systems

delivered to the customers. Thirdly, for circumstances when speculation becomes too

risky such as emerging technology domains or volatile market conditions, adopting a SPL

framework that is highly flexible to changing conditions is very rewarding.

This dissertation offers a number of contributions to academics and practitioners in the

agile community as well as the SPL community. The contributions can be summarized as

follows:

x A comprehensive literature survey of significant work in the area of agile product

line engineering.

x An approach to elicit variability in business logic requirements and evolve feature

models using test artefacts that are by-products of ASD.

x An approach to elicit variability in presentation and portability requirements and

evolve variability profiles using lightweight analysis.

x A variability modeling technique that leverages executable test artefacts to

provide better traceability and communicability.

x A test-driven approach to reactively and systematically realize variability at the

code level.

7

x An approach to support the product derivation process using the extended feature

modelling technique.

x An empirical investigation of the technical and non-technical challenges that agile

organizations are likely to face when making the transition to a SPL strategy.

x A toolset that supports the contributions above by automating tedious and error-

prone aspects of the framework.

1.6 Dissertation Outline

After the introduction chapter, I use chapter 2 to lay foundational background knowledge

on topics relevant to this dissertation. In chapter 3, I present a literature review of related

work. In chapter 4, I list my research questions, discuss my research methodology and

provide a bird’s-eye view of the major components of this research. In chapters 5 through

10, I present the studies I conducted to answer the research questions (listed in Chapter

4). And finally, I summarize the results and findings of my research and draw some

conclusions in Chapter 11.

1.7 Terminology

In this section, I provide definitions for the terms frequently used throughout this

dissertation.

Agile Software Development (ASD): a group of iterative software development

methodologies that emphasize continuous customer involvement, autonomous teams,

flexibility to change, and rapid and frequent delivery of working software [Agile2010].

(The terms “Agility” and “being agile” are used throughout the dissertation to reflect this

definition).

8

Agile Organization/Environment: a software development organization/environment

that exhibits the major characteristics of ASD as in the definition above.

Software Reuse: building software products using artefacts that were used in building

other software products [Frakes1995].

Software Product Line (SPL): a family of software-intensive systems that share a

common set of features while allowing a specific margin for differentiation to satisfy

diverse customer needs [Clements2001].

Variability: the notion that the components constituting the software architecture may

vary due to a range of factors including diverse customer needs, technical constraints, and

business strategies.

Variation Point: an aspect in a certain requirement that can have multiple states of

existence in the system. Typically, it reflects why a requirement may vary from one

product to another. For example, a security requirement may vary due to the need for

different “levels of security”.

Variant: a state of existence of a certain requirement in the system. Typically, it reflects

how a requirement may vary due to a certain variation point. For example, in a security

requirement, the “level of security” can be one of three: moderate, high and very high.

Domain Engineering (DE): the first phase in traditional SPL engineering which entails

the identification of the common features and the variability of a SPL, the derivation of a

reference architecture, and the realisation of reusable components and their quality

assurance [Pohl2005].

Application Engineering (AE): the second phase in traditional SPL engineering which

entails the realisation of customised products by utilising the SPL variability and binding

9

the variation points with the predefined variants or with variants developed especially for

the customer.

Mass Customization: producing software that meets the individual needs of customers

with near mass production efficiency [Tseng2001].

Unit: a small testable part of a system, typically realized as a function, procedure or a

method.

Unit Test: a test that verifies the correctness of the behaviour of an individual unit or the

interaction between units in a software system.

Test-Driven Development: a software development technique wherein the writing of

tests occurs before the writing of production code.

Acceptance Test: a test conducted to determine whether or not a software system has

satisfied a subset of its acceptance criteria [Melnik2006].

Executable Acceptance Test: a test that is automated to run (execute) against the system

in order to test an acceptance criterion. English-like executable specifications are a

specific instantiation of executable acceptance tests.

Refactoring: the process of changing a software system in such a way that it does not

alter the external behaviour of the code yet improves its internal structure [Fowler2004].

Customer: an entity that specifies the needed features in a given system, and decides on

the acceptance of such features based on a set of acceptance criteria. This can typically be

a single person, a group of people, or a market segment represented by an account

manager.

Feature: a chunk of functionality that delivers value to the customer.

10

Feature Model: a representation of the requirements in a given system abstracted at the

feature level. If represented using a tree structure, it can be referred to as a feature tree

[Kang1990].

Requirement Traceability: the ability to describe and follow the life of a requirement,

in both forwards and backwards direction (i.e. from the specification of abstract features

to the realization in code and vice versa) [Gotel1994].

Software Module: a part of the system that encapsulates data and behaviour of a given

entity, typically realized at the code level by a class.

Software Component: an independent and cohesive part of the system that is composed

of a number of modules which effectively constitute a sub-system.

Smart Home System: a software system designed to enable the monitoring and

controlling of a closed environment (e.g. home, office) by interacting with hardware

devices connected to the system via a number of technologies (e.g. wireless protocols,

central server).

11

 BACKGROUND CHAPTER TWO:

This chapter provides the background necessary before proceeding to the subsequent

chapters of this dissertation. The chapter covers a range of concepts including agile

software development, software reuse, and software product line engineering. The depth

of coverage of each topic is commensurate with the significance of the topic within the

scope of the dissertation.

2.1 Agile Software Development (ASD)

ASD includes a collection of iterative software development methodologies that,

according to the Agile Manifesto [Agile2010], give customer involvement and

satisfaction the highest priority. Agile practitioners preach an iterative development

approach that encourages values and practices such as stakeholder communication, early

feedback from customer, test-driven development, short iterations, just-in-time design

and continuous integration.

The field of software engineering has matured enough to realize that getting the customer

requirements right is key to the success of any software project. This is why traditional

software engineering approaches invest so much time at the beginning of the project life

cycle to elicit these requirements, clarify any vagueness around them, document them and

produce designs that attempt to satisfy them. However, given the high level of

uncertainty of customer requirements at the beginning of the project and the frequent

changes of the requirements throughout the lifetime of a software system, agile methods

discourage large investments in up-front analysis and design. Big-design-up-front

(BDUF) is seen by many agile practitioners as the antithesis of agility. Agile methods

12

tackle requirements in a different manner through a number of fundamental practices.

The following subsections cover some of these practices.

2.1.1 Iterative & Incremental Development

Before kicking off the development activities in a project, agile teams are naturally

inclined to undergo an initialization phase in order to share a project vision, define a

rough scope, and discuss high-level aspects of planning and estimation. However, agile

teams do not spend but a few weeks in this phase before iterative development actually

starts. Detailed requirements are only determined during development iterations and only

for features that are part of the current increment. Requirements are elicited from the

customer in the form of user stories [Cohn2004] and made more concrete by defining

their acceptance tests (ATs) [Reppert2004]. These user stories are prioritized and

assigned to releases, each of which includes a number of short iterations (typically two to

four weeks). A number of user stories are implemented during the iteration; and at the

end of the iteration, a working version (aka. increment) of the system is delivered to the

customer. The customer gets the final say on how well those requirements were satisfied

and what needs to be done in the next iteration in terms of new features, bug fixes,

usability issues and other tasks as depicted in Figure 1. If ATs were defined, those tests

are used as evaluation criteria.

13

Figure 1 - Releases and iterations (adapted from [Agile2011])

The architecture of the system evolves gradually in a bottom-up fashion as the project

needs become clearer. Design decisions are agreed upon by the members of the

development team who talk to each other in their daily stand-ups.

While scientific data on agile methods is not yet conclusive, they seem to work well

according to a growing number of case studies, experience reports and controlled

experiments investigating individual agile practices (e.g. business organizations are

reporting success in adopting agile practices like Test Driven Development

[Melnik2007b]).

2.1.2 Continuous Testing

Continuous testing is one of the main characteristics of iterative development which aims

for early and less expensive defect detection [Highsmith2001]. Agile methods adopt this

concept wholeheartedly by making tested and running software the primary measure of

progress in an agile project. Ideally, a feature is not considered “done” until it has

automated tests associated to it. In my work, I am specifically interested in two types of

tests: unit tests and acceptance tests.

14

2.1.2.1 Unit tests

A unit is defined as a small testable part of a system. A unit test verifies the correctness

of the behaviour of an individual unit, or the interaction between units. An example unit

(method) along with its tests is shown in Figure 2. Agile methods encourage developers

to test the code they write incrementally in a frequent and rapid code-and-test cycle. The

lesser the time gap between coding and testing, the better. Extreme Programming (XP

[Beck2004]) took this concept to “extreme” by promoting the idea of test-first

development where a test-then-code cycle is repeated to ensure high test coverage and

improve modularity [Beck2003]. Tests are automated to be executed frequently and to

help in the refactoring of the code base.

Figure 2 - An example of a unit (method) and its tests

2.1.2.2 Acceptance tests (ATs)

Requirement specifications – in their traditional format – exist in a number of documents

and are written in a natural language. The correctness of the behaviour of a system is

determined against these specifications using test cases or scenarios. On the other hand,

executable specifications are written in a semi-formal language that aims to reduce

15

ambiguities and inconsistencies. Executable specifications take various formats ranging

from very formal [Fuchs1992] to English-like [FIT2010]. The English-like ones are often

called scenario tests [Kaner2003], story tests [Kerievsky2010], or ATs [Perry2000].

These names highlight the role of these artefacts as:

1. Cohesive documentation of the specifications of a given feature.

2. Accurate, high-level validity tests: by being executable, these specifications can

be run (executed) against the system directly in order to test the correctness of its

behavior from the customer’s perspective.

Throughout this dissertation, I will use the general term executable AT (EAT) to refer to

the English-like specifications that can play the two roles above. EATs are usually

produced in collaboration with domain experts (e.g. customer representatives) as

acceptance criteria and feature specifications. Figure 3 shows an example of an EAT. If

the behaviour of the system matches the expected one as specified in the EAT, the test

passes. Otherwise, the test fails indicating either a technical problem in the code, or a

business problem in understanding the specifications of the system. To link the EAT to

actual production code, a thin layer of test code – called fixture – is used. EATs are

usually executed using tools like FIT [FIT2010] and GreenPepper [GreenPepper2010].

Figure 3 - Executable AT

16

2.1.3 Refactoring

As defined by Fowler et al. [Fowler2004], refactoring is the “process of changing a

software system in such a way that it does not alter the external behaviour of the code yet

improves its internal structure.” The main goal of refactoring is to improve the design of

the code that has already been written so that it may become more readable, maintainable,

testable, and reusable. Typical examples of refactoring include: extracting a method out

of a code segment, moving fields from one class to another, renaming variables and

methods, abstracting certain methods or classes, and restructuring code into a particular

design pattern.

Refactoring ideally should not change the external behaviour of the code. This can be

verified by running the tests that cover the code segment of interest before and after the

refactoring process. If the tests failed after refactoring, then the behaviour has changed

and the developers may need to retract the changes and investigate the cause of failure.

2.1.4 Agile organizations

Defining what “agility” is and what it entails has always been a controversial subject in

the software community, both in academic and industrial contexts. Therefore, defining

what constitutes an agile organization is rather challenging. In the context of this

dissertation, I label organizations as agile if they exhibit an iterative and incremental

development process, adhere to rigorous testing and refactoring practices, and lay

emphasis on minimum investment in specifications and design up-front.

2.2 Software Reuse

Simply put, software reuse is the notion of building software products using artefacts that

were used in building other software products [Frakes1995]. This definition has grown in

17

complexity as the research area expanded. The definition now encompasses other aspects

such as designing for reuse [Bieman1995], implementing reuse [Prieto-Díaz1996],

managing reusable assets [Henninger1997], searching for and retrieving reusable assets

[Frakes1994] and others. What is to be reused has also changed over time. Initially, code

reuse was the main objective. Nowadays, reuse includes other artefacts such as design

documents, use cases, test cases as well as processes and procedures [Mohagheghi2004].

The notion of reuse came later in the evolution of the software engineering field -

because in the early days, with only a few software products available, it made sense to

build new software from scratch. Nowadays, however, as millions of code bases are

available world-wide, it is hard to claim that all parts of a new software system are novel.

Some estimates suggest that 60% of the design of all business applications is reusable

[Tracz1987], and only 15% of software code is unique in a given domain or organization

[Joyce1988]. In practice, software systems in a given domain (e.g. learning management

systems) solve similar problems; and therefore, there is a high potential for reuse. Even

for software systems across different domains, similarities exist. Take the example of

architectural layers concerned with operations at the operating system level such as file

management.

2.2.1 Advantages of Software Reuse

At a first glance, the case for software reuse seems to be rather straightforward. If an

organization can reuse existing artefacts to satisfy the requirements of new products, then

the organization will potentially be able to gain a number of benefits [Sommerville1985,

Jacobson1997, Joyce1988, Gaffney1989, Pohl2005] such as:

18

1. Deliver new products faster: because less time is spent on problem-solving and

writing new code and test cases, development and testing cycles are both

shortened.

2. Reduce development and maintenance costs: this is correlated with the previous

point, because less time usually means less resource consumption and hence less

cost. Also, if a given artefact is reused in multiple products, maintaining that

artefact is cheaper than maintaining three individual ones.

3. Improve the quality of existing artefacts: the initial use of an artefact reveals bugs

and flaws that can be resolved in future products. Also, if the reuse of existing

artefacts is accompanied with quality reviews, it is likely that the number of

defects will be reduced in that artefact as more products are built.

4. Reduce risks: reusing artefacts that proved to work as expected in other systems is

associated with less risks compared to deploying newly developed ones.

5. Provide better project estimates: reusing existing artefacts to build parts of a new

system reduces the uncertainty surrounding initial estimates of time and cost.

Jacobson et al. [Jacobson1997] provides real experiences of the benefits of software

reuse. For example, Motorola reported increases in productivity by a factor of 10. Some

other organizations reported reductions of up to 10 times in defect density and

maintenance costs. Time to market was also reduced by a factor of 5. Cuts in overall

development costs were anywhere between 15% and 75%.

2.2.2 Reuse Granularities

Code reuse can be achieved at different levels of granularities. The lowest level of reuse

happens at the code fragment level when a developer copies a fragment of a method or a

19

class to reuse it in their own context. Object-oriented programming provided a new level

of reuse that has become widely common amongst practitioners [Mili1995]. Classes as a

whole can be reused across different applications. Object-oriented programming has also

enabled the concept of pattern reuse. Gamma et al. [Gamma1995] provided a handful of

design patterns that enable the reuse of object-oriented solutions to solve similar

problems. At a higher granularity, reuse may happen at the component level. Component-

based software engineering [Heineman2001] is a technique for packaging software in a

way that allows flexible reuse and composition of software. By mixing and matching

appropriate components (or sub-systems), the users may be able to assemble a complete

system [Roschelle1996]. Commercials-Off-The-Shelf (COTS) systems are a good

example of this level of granularity [Morisio2002].

Reuse can occur at a very high level of granularity when a whole system is reused to

solve a similar problem in a given domain. Reuse of systems is special, because it is an

organizational (or team) decision rather than an individual decision. When the

organization needs to develop a system that is similar to a previously developed one, this

may be an opportunity to achieve a high level of reuse by considering the architecture of

the existing system as a basis for the new one. This type of reuse is implemented

differently in different organizations. Namely, it can be ad-hoc or systematic. If an ad-hoc

approach is followed, the organization pursues this reuse opportunity by producing a

copy of the code base of the existing system, tweaking it to meet the slightly different

needs of the new system, and finally releasing it as a new product. This is often referred

to as clone-and-own [Eriksson2005]. Depending on how much the systems share in

20

common, this technique may actually provide huge savings compared to starting

development from scratch.

However, as the demand increases for new similar systems, problems of ad-hoc reuse

start to arise. With every new system, the organization adds another code base that will

need to be maintained and updated separately. This is disadvantageous because

maintaining configuration management branches (e.g. moving features between branches,

finding redundancies) usually requires significant efforts [Sillito2007]. Moreover, if any

update or bug fix takes place in the common part of these systems, the bug will need to

be fixed in all the repositories. Also, as the systems evolve, their architectures start to

deviate more from each other creating many separate development cycles – until they

eventually are seen as completely independent products. In organizations where hundreds

of customer-specific requirements are to be satisfied (e.g. Ericsson AXE

[Jacobson1997]), ad-hoc reuse simply does not work.

Realizing the need for systematic reuse of systems, there has been a strong push towards

a more planned approach. The idea was first formulated in 1976 by Parnas [Parnas1976]

who coined the term program families. Later on, the term software product lines became

more popular [Clements2001]. I dedicate the next section to elaborate on this concept.

2.3 Software Product Line Engineering

A software product line (SPL) is a family of software-intensive systems that share a

common set of features while allowing a specific margin for differentiation to satisfy

diverse customer needs [Clements2001]. The high level of reuse between systems in the

product line makes SPLs economically effective; while the flexibility to accommodate

certain variations within the reusable assets makes mass customization possible.

21

Experience reports indicate that the SPL practice can render significant improvements in

software quality, cost, and time-to-market [Schmid2002]. To illustrate the idea, I will use

an example of a smart home system.

2.3.1 Example: The Smart Home System

Choosing the smart home example stems from the fact that smart homes were the

application domain through which I tested and validated the work in this dissertation*.

Smart home systems serve as a prime example of the advantages of using a SPL practice

combined with agile principles and practices.

A smart home system encompasses a number of features such as: Energy Manager,

Security Manager, Media Controller, Automation Engine (for automatic control of

lighting and other devices), Weather Watch and many others. Customers of smart home

systems should be able to choose a subset of such features that fulfills their specific needs

and wants. For instance, tech-savvy customers consider the Automation Engine to be

essential; whereas novice customers do not trust automation and thus prefer not to have

it. Furthermore, even within a single feature, it should be possible for customers to tailor

certain aspects of the feature to satisfy their specific requirements. The Security Manager,

for example, offers different techniques to secure access control such as PIN-protected

locks, access by magnet cards and fingerprint authentication. When choosing to have the

Security Engine, customers may select one or more of these options. As a result, different

smart home systems may have different combinations of features as well as a number of

possible variations within these features – a notion that is referred to as variability.

* This work was in collaboration with TRLabs – Smart Home project.

22

Variability can be business-driven when it is due to variations in the actual business logic

or behaviour in the system like the examples mentioned above. Variability can also be

presentation-driven. For example, monitoring and controlling a smart home can occur via

different technologies such as a normal PC, a home media-center with a touch screen, or

a mobile device. These different presentation media have different characteristics such as

screen dimensions and touch capability – which will require developing different

interfaces to suit the capabilities of each device.

One way to handle these variations in requirements is to build a separate system for each

customer, and reuse what can be reused in an ad-hoc manner. However, using this

approach increases the number of systems the organization will need to support and

maintain. That is, if there were twenty customers with varying requirements, the

organization would have to support and maintain twenty different systems (also twenty

code repositories with, likely, a substantial overlap amongst them). The economic

disadvantages of this approach are inescapable taking into consideration that all these

systems are very similar to each other and that they only vary in the presentation layer or

in a particular aspect of the business layer. Another approach is to support only one

system and add configurations as needed without duplicating the code repository. This

technique overcomes the redundancy problem of clone-and-own, but as the system

evolves and more ad-hoc configurations are added, the complexity of the configurations

and their different combinations start to grow beyond what can be managed and

maintained efficiently. Without a system that defines how variations should be handled,

these variations are likely to disappear into the code without an explicit representation

that enables traceability and communication.

23

On the other hand, SPL engineering provides an interesting alternative to solve this

problem. SPL engineering looks at all these similar systems as one family of applications

that share a common base and are allowed to vary in a prescribed way. Variations and

configurations are handled systematically and explicitly through variability management

practices to control the complexity of the variations and communicate these variations

clearly across the organization. In traditional SPL approaches, variability management is

part of the up-front domain engineering phase which precedes all development of the

actual applications. For the example above, this means that before starting to build and

deliver any of the smart home applications to the customers, the organization should

conduct a domain analysis to understand what is common between smart home

applications, and what variations the smart home product line should support (e.g.

variations in access control, variations in the UI). Moreover, the organization should

design, build and test those assets that are anticipated to be reused in the applications

such as the Security Manager.

After the domain engineering phase, the application engineering phase starts as engineers

begin to assemble and tailor the reusable assets to deliver individual smart home

applications. For instance, to deliver a particular application, application engineers need

to bring together the Weather Watch module, the Media Controller, the Security

Manager, and the Automation Engine. The Energy Manger was excluded because it was

of no interest to the current customer. Based on the customer’s preferences, within the

Security Manger, application engineers will need to set the configurations so that only

access by PIN is supported; and within the Automation Engine, the engineers will choose

a lower level of automation. The systematic treatment of variability in the requirements is

24

what sets SPL engineering apart from ad-hoc approaches. In the sections to follow, I will

discuss systematic variability, domain engineering, and application engineering in more

details.

2.3.2 Variability Definition

Variability in software systems refers to the notion that the components constituting the

software architecture may vary due to a range of factors including diverse customer

needs, technical constraints, and business strategies. According to the Orthogonal

Variability Model (OVM) by Pohl et al. [Pohl2005], variability in a product line is

described by a number of variation points, a set of variants for each variation point, and

possibly some constraints. A variation point is an aspect in a certain requirement that can

have multiple states of existence in the system. Each state of existence is called a variant.

The selection criteria of variants might be governed by some constraints. For example,

let’s say that the Weather Watch feature consists of three aspects, namely: Weather

Model, Weather Trend Analyzer, and Weather UI Panel. Both the Weather Model and the

Weather UI Panel represent mandatory aspects without which the Weather Watch model

would not be useful. On the other hand, considering a number of factors such as cost and

computation capability, the Weather Watch may or may not have the Weather Trend

Analyzer aspect which makes this aspect optional. Optionality can be expressed as a

variation point for which two variants are defined:

Variation point VP1 – Inclusion of the Weather Trend Analyzer:

Variant V1 - Trend Analyzer is included.

Variant V2 - Trend Analyzer is not included.

Governed by the constraint:

25

Constraint C1 - V1 and V2 are mutually exclusive.

Besides optionality, when multiple alternatives could be selected for a given feature, this

variability can also be expressed as a variation point for which there might be two or

more variants. In the following example, depending on the type of hardware platform

running the Weather Watch feature, two variants are defined - only one of which can be

selected for a given system:

Variation point VP2 - Panel type:

Variant V1 - Handheld panel.

Variant V2 - PC panel.

Governed by the constraint:

Constraint C1 - V1 and V2 are mutually exclusive.

If more than one variant can be selected for a given feature, the constraint is defined

using a minimum-maximum format. For example, in the Security Manager feature, the

customer can select one, two or all three of the supported access control technologies -

namely, V1: PIN-protected locks, V2: access by magnet cards, and V3: fingerprint

authentication. Therefore, the constraint would be:

 Constraint C1 – [1..3] multiplicity imposed on V1, V2, V3

Mutual exclusivity can also be described using a [1..1] multiplicity constraint.

Handling variability in the software family in a prescribed way is called Variability

Management. This includes introducing new variation points and variants, updating

existing ones, modeling variation points and variants, ensuring traceability and

consistency between the model and all other artefacts in the system, implementing

variations at the code level, communicating knowledge about customization possibilities

26

to the different stakeholders, and deriving instances of the system based on the required

configuration [Chen2009].

2.3.3 Variability Sources

Variability in a system can occur due to variations in the business logic requirements

(aka. functional requirements) or due to variations in non-functional requirements.

Business logic requirements describe what a system ought to do in terms of scenarios or

workflows by a given user. On the other hand, non-functional requirements are attributes

of the system that describe how a system ought to perform its functions in terms of

usability, portability, security, and many other ‘-ilities’ [Chung1999]. In other words,

non-functional requirements capture the properties and constraints under which a system

should operate [Antón1997]. To develop a quality software system, both functional and

non-functional requirements are to be taken into account [Chung2009]. Researchers

reported a number of issues that make non-functional requirements more difficult to elicit

and manage than functional requirements. These issues include definition problems (i.e.

what constitutes a non-functional requirement), and representation problems (i.e. where

to document non-functional requirements) [Glinz2007]. This is mainly due to the fact that

non-functional requirements are generally crosscutting concerns that do not necessarily

belong to a single feature or another, but they are usually associated with the system as a

whole. In the scope of this thesis, I only discuss two non-functional aspects, namely:

presentation and portability.

2.3.4 Variability Modeling

Feature modeling has become an essential aspect of software engineering in general and

SPL engineering in particular. A feature model is a representation of the requirements in

27

a given system abstracted at the feature level [Riebisch2003]. A feature can be broadly

defined as a chunk of functionality that delivers value to the end user. In SPLs, feature

models represent a hierarchy of features and sub-features in a product line and include

information about variability in the product line and constraints of feature selection.

Throughout this dissertation, I use a common modeling technique called Feature-

Oriented Domain Analysis (FODA) [Kang1990]. FODA was one of the earliest modeling

techniques on which many other techniques were based (e.g. [Kang1998] and

[Fey2002]). FODA models features in a given system in what is called a feature tree and

uses a specific notation to describe variability as explained in the following example.

Consider the simple feature tree in Figure 4a that represents the Weather Watch feature.

Both the Weather Model and the Weather UI Panel are mandatory features, which is

denoted with a solid line. On the other hand, as discussed previously, the Weather Trend

Analyzer is optional, which is denoted with a dashed line. The Weather UI Panel can

have one of two different formats depending on whether the application is to run on a

handheld device or a normal PC. This is denoted in the tree as an arch. Unless otherwise

stated, an arch represents a mutually exclusive constraint. By looking at this tree, one can

deduce the different instances that can be produced from this generic system such as the

ones shown in Figure 4b.

28

Figure 4 - Modeling variability

2.3.5 Domain Engineering & Application Engineering

The two major phases in SPL engineering are domain engineering and application

engineering [Pohl2005]. During domain engineering, a comprehensive analysis is

conducted to specify the scope, commonalities, and variations in the prospective SPL.

Scoping is concerned with defining the limits of the family of products so that a clear cut

is made between products that belong to the family and those outside the family.

Commonality and variability analysis is concerned with determining the requirements of

the members of the software family, and defining how these requirements may vary. This

includes determining all sources of variation (i.e. variation points) as well as the allowed

values (i.e. variants). Decisions have to be made on which artefacts are expected to be

reused across different products, and how they should be designed in order to be reusable.

Domain engineering also includes activities to build a reference architecture that has to

be flexible enough to accommodate the predefined variations. This architecture is

typically documented – along with all the requirement specifications – to disseminate to

application engineers the required knowledge of how to use the architecture as a

reference in the instantiation process of individual products. Moreover, the realization of

reusable artefacts – as determined by the commonality and variability analysis – happens

29

in the domain engineering phase alongside with their quality assurance measures. As

depicted in Figure 5, the four stages in the domain engineering phase are requirement

engineering, design, realization, and testing. The outcome of this phase is domain

artefacts including the variability model.

Figure 5 - Domain Engineering & Application Engineering (adapted from

[Pohl2005])

After the domain engineering phase comes the application engineering phase. As a

starting point, application engineers use the reference architecture, the reusable artefacts,

and the variability profile – that were all defined in the domain engineering phase. Based

on the specific requirements of a certain product, application engineers make decisions

on what artefacts need to be included and what variants should be selected for each

variation point. The outcome of this phase is an instance of the system that represents a

30

specific product. If the reference architecture cannot accommodate the requirements of a

certain product, or if the product cannot be derived from the currently available domain

artefacts, application engineers ideally should provide feedback to domain engineers

pertaining to the new requirements. As shown in Figure 5, the same four stages in domain

engineering also exist in application engineering, but they produce individual product

(aka. application) artefacts.

2.4 Product Derivation

Product derivation is the process of building individual products using a base set of

assets. This process usually happens during application engineering as discussed above.

Deriving products can be done using assembly approaches or configuration approaches as

explained by Deelstra et al. [Deelstra2005]. Assembly approaches entail putting together

a subset of the artefacts available in the product line to build unique products. This

category of approaches is also described as extractive because the assets needed to build

unique products are to be extracted from an existing asset base. On the other hand,

configuration approaches involve providing a set of values to configuration parameters in

the architecture to instantiate a unique product. These approaches are also called

instantiation approaches [Bosch2000]. These approaches stem from basic concepts in

configuration management; however, configuration management systems are generally

not sufficient to support product derivation in a product line [Thao2008]. Configuration

management systems do not natively provide mechanisms to maintain derivation

relations between the core assets and derived products [Gurp2006]. This is mainly due to

the concept of branching wherein a copy of an artefact is created and subsequently

changed independently from its original – which causes unnecessary overhead when used

31

solely to manage variability and derive products [Beuche]. Therefore, in this thesis, I use

certain aspects of configuration management but in combination with common derivation

practices that are based on variability management concepts.

2.5 Chapter Summary

In this dissertation, I use a number of software engineering concepts that were explained

in this chapter. Reuse and variability can be handled in an ad-hoc way or a systematic

way. Ad-hoc approaches pose a raft of challenges when the number of products starts to

increase. SPL engineering resembles a systematic approach to manage variability across a

number of systems in a given domain. Traditionally, a SPL process entails two sequential

phases. The first is domain engineering in which requirements of the domain are

collected and analyzed, variability is defined, and reusable artefacts are built and tested.

The second is application engineering in which actual end-products are delivered to the

customers after combining and customizing the reusable artefacts. SPLs are advantageous

because they provide a systematic framework to handle variability, but at the same time

they require large investments up-front and they are not sufficiently flexible in

accommodating changing requirements. On the other hand, ASD practices such as

iterative development, continuous testing, and refactoring are effective in supporting the

evolution of software products in a fashion that allows high flexibility to accommodate

unanticipated changes.

32

 LITERATURE REVIEW CHAPTER THREE:

This chapter provides a comprehensive literature review that covers published research

on areas relevant to the work presented in this dissertation. I cover the literature on

related work in three steps. First, I survey existing research on combining ASD and SPL

engineering in general. Second, I narrow down the focus of the review to discuss key

research on variability management. Third, I cover key research on feature modeling and

traceability; because a major component of the framework I developed is concerned with

that aspect.

3.1 Agile Product Line Engineering

Research on combining ASD and SPL engineering is not abundant. This may be

attributed to the fact that both paradigms in their current manifestations are relatively

young. Although iterative and incremental development can be traced back to the 1970s

or even earlier [Larman2003], it was only a decade ago when the Agile Manifesto

[Agile2001] was declared. Since then, ASD has been increasingly gaining popularity and

acceptance. Regarding SPLs, the concept itself goes back to the 1970s when Parnas

[Parnas1976] proposed the notion of product families to manage non-functional

variability [Linden2007]. However, the term SPL and its current practices were not

introduced until the early 1990s [Linden2007]. A second factor contributing to the

shortage of studies in this area is the seemingly contradicting philosophies and

perceptions of the two paradigms in their respective communities.

One of the earliest attempts to bring together researchers and practitioners from both

areas was the Agile Product Line Engineering Workshop in 2006 [Cooper2006]. The

workshop aimed to discuss commonalities and points of variation between the two

33

practices. The theme of the discussions in the workshop was around how feasible it was

to integrate the two approaches. Other workshops on the same topic followed in 2008

[McGregor2008], 2009 [Ghanam2009b], and 2010 [Ghanam2010d].

In the following subsections, I discuss published work on combining ASD and SPL

engineering under three main categories: utilizing both paradigms for different roles in a

single organization, utilizing certain ASD practices in an already established SPL, and

lowering the adoption barrier to SPL for companies that wish to adopt a SPL strategy.

3.1.1 Work on utilizing both paradigms for different roles in a single organization

Carbon et al. [Carbon2006] proposed an integration approach in which a typical domain-

engineering-then-application-engineering process is followed. ASD plays a role only

during the application engineering phase to tailor products for specific customer needs. In

a later work, Carbon et al. [Carbon2008] looked at the issue of communicating feedback

to domain engineers by application engineers. The authors suggested that the planning

game be used where the application engineers play the role of the customer, and the

domain engineers play the role of the developers to offer their feedback on the available

core-assets. Hanssen et al. [Hanssen2008] presented a case study of a company where

SPL practices and Agile practices were both utilized. The company used a SPL approach

to manage their long-term strategic plans. For medium-term tactical concerns such as

project development, the company used an ASD approach. The two paradigms were both

present but not necessarily integrated. Navarrete et al. [Navarrete2006] conducted a

preliminary analysis on how the Capability Maturity Model (CMM) process

improvement guidelines could play a role in enhancing the maturity of a SPL, whereas

ASD principles could play a role in enhancing the agility of a SPL.

34

While work in this category is interesting, it is different from the work I present in this

dissertation. The main difference is that in my work I put more emphasis on an agile

process that is tightly integrated with product line practices as opposed to giving each of

the two paradigms a separate role.

3.1.2 Work on enhancing the agility of an already established SPL

McGregor [McGregor2008] presented an interesting theoretical attempt to reconstruct a

hybrid method. In his article, he concluded that competing philosophies of ASD and SPL

engineering make their integration difficult. But he asserts that the two paradigms can be

tailored under the condition that both should retain their basic characteristics. McGregor

identifies two ways to achieve the hybrid approach. The first is to use a skeletal SPL

framework as a starting point, then add the quality of agility where appropriate and

possible. The second is to start with an existing agile process and add product line

qualities and concepts – especially for companies where an ASD is already in place. The

majority of research efforts in the literature have so far focused on the first strategy.

Therefore, this section surveys the literature on applying certain agile principles to

enhance the agility of SPLs with the assumption that a SPL process already exists.

Kakarontzas et al. [Kakarontzas2008] discussed how Test-Driven Development could be

used to enable the evolution of software components in a SPL. O’Leary et al.

[O'Leary2007][O'Leary2010] proposed utilizing some agile practices such as agile

planning games, early and continuous delivery, and automation to improve the product

derivation process during application engineering. Noor et al. [Noor2008] proposed a

process in which some agile principles such as stakeholder involvement, rapid feedback,

and value-based prioritization can help in the planning phase of a product line. The

35

authors proposed that a product map be structured at the feature level, domain level, and

product level to facilitate the prioritization of features and the incremental development

of the product. Taborda [Taborda2004] proposed the use of a release matrix in release

planning to support the evolution and tracking of SPLs. Furthermore in the agile release

planning area, Kurmann [Kurmann2006] identified release strategies to improve the

agility of SPLs by synchronizing the platform release with the product release, and by

releasing new features in a single product during the initial phase as opposed to

integrating it fully with the product line to mitigate the risk of changing requirements.

Trinidad et al. [Trinidad2008] suggested that there is a need for an automated support for

feature model error analysis as a measure to achieve agility in a SPL. That is, for a SPL to

become more agile, it needs to be open to change in the requirements, which according to

the authors calls for an automated framework to detect errors resulting from such

changes. Raatikainen et al. [Raatikainen2008] discussed the feasibility of employing the

backlog management practice from ASD in SPL feature modeling. Feng et al.

[Feng2007] were interested in the synergies of ASD and SPL engineering in the

requirement engineering phase, and they developed a survey to collect expertise in agile

requirements engineering for SPLs.

There are also some reported experiences of the use of ASD practices in established

SPLs. For example, in a case study of a company called Salion, Clements et al.

[Clements2002] reported the use of some agile practices such as daily builds and

refactoring in a SPL-centered process. Mohan et al. [Mohan2010] contributed a second-

hand analysis of the previous case study using complex adaptive systems (CAS) as an

analysis framework. Moreover, Babar et al. [Babar2009] presented a case study of a

36

company that used XP and Scrum methods within their SPL for several years. One of the

issues that were found to be evident in the study was the need for up-front explorations.

The authors assert that agile methods did not provide a mechanism for such explorations.

While I agree that the need for up-front exploration is exacerbated in a product line

context, I argue that agile methods in practice do accommodate this need by what is

commonly called “a spike” or “iteration 0.”

The focus of the research efforts in this category is different from that of my research.

The main difference is that I am not concerned with applying certain agile principles in a

SPL process. On the contrary, I am interested in applying SPL principles in an ASD

process.

3.1.3 Work on lowering the barrier to adopting a SPL process

Research efforts in this category assume that there is no SPL process in place, and aims

to make adopting a SPL process easier for software organizations. In my research, I

stress that for an approach to fit well with agile principles and practices, being

incremental and reactive is key. By “incremental”, I exclude big-bang approaches that

require most of the software assets and processes in the organization to be redefined and

restructured in order to adopt SPL practices. And by “reactive”, I exclude proactive

approaches in which a great amount of up-front speculation is required. The quest for an

incremental and reactive approach to establishing and managing product lines is a

relatively new phenomenon. For one, organizations did not want to throw away their

investments in legacy systems and start all over again. Also, for many organizations the

transition to systematically managed variability in their systems was too big a change if

they were to follow the strict domain-then-application engineering model. Clegg et al.

37

[Clegg2002] proposed a method to incrementally build a SPL architecture in an object-

orientated environment. The method provides useful insight into realizing variability in

an incremental manner, but does not discuss other relevant issues such as how to

communicate variability from the requirement engineering phase to the realization phase.

Kruger [Kruger2002] proposed the idea that in order to lower the adoption barrier,

domain engineering and application engineering should not be separate. As a result, he

commercialized a tool that utilized the concept of separation of concerns to realize

variability in software systems in a reactive manner. At the time of writing this

dissertation, the tool was closed-source and not available for academic evaluation.

Reactive approaches, with the support of tools like the one in [Kruger2002] has been

reported to require orders of magnitude less effort compared to proactive approaches

[Buhrdorf2003]. The aim of my work is somewhat similar to Kruger’s. However, I differ

in that I am not only concerned with realizing variability in a system. Rather, I am

interested in a framework to manage the different aspects of variability as will be detailed

later (e.g. understanding variability, modeling variability). The second major difference is

that in my research I focus on contexts where ASD is common so that I can leverage

existing agile practices to manage variability. This focus is somewhat similar to the work

by Paige et al. [Paige2006] who proposed building SPLs using Feature Driven

Development (FDD). They constructed an extension to FDD where two new phases were

added: one for consideration of architecture and another for SPL component design. It is

not clear, however, how much overhead is added by the proposed phases.

The spectrum shown in Figure 6 captures the position of my work within the existing

body of literature. ASD lies at one extreme end of the spectrum, while SPL is positioned

38

at the other extreme. This positioning is not intended to suggest that the two approaches

are extremely contradictive, but rather to use the extreme ends as reference points for

integration approaches. As seen in the figure, some approaches lean more towards the

SPL end, because they effectively start form an existing SPL and then tailor certain

processes to improve agility. In the middle are approaches that achieve a certain level of

integration but not necessarily a complete assimilation. That is, both SPL and ASD

practices are being used but at different levels or for different roles. My research

(highlighted in red) leans more towards the ASD side because I start from an ASD

process and then I introduce SPL notions and practices.

Figure 6 – Work in the literature

3.2 Variability Management

Variability management is a key concept in SPL engineering. There is a fairly large body

of research investigating how to improve the analysis, modeling, and realization of

commonality and variability in SPLs. The most common approach to variability

management is called FODA, a short for Feature-Oriented Domain Analysis [Kang1990].

39

FODA aims at identifying features that define a given domain in terms of common,

optional and alternatives aspects. FODA also provides feature modeling and definition

techniques. The focus of FODA is the requirement engineering phase. Therefore, other

approaches were later built to support the design and implementation phases such as

FORM [Kang1998] and KobrA [Atkinson2000]. In my research, I use some aspects of

FODA especially feature modeling using feature trees, and feature definition forms but I

extend the idea by incorporating test artefacts to enhance traceability.

Buhne et al. [Bühne2004] proposed a variability approach (later called Orthogonal

Variability Model or OVM [Pohl2005]) that was based on an explicit representation of

variability through variation points and variants. To communicate variability to

customers, Halmans et al. [Halmans2003] proposed extensions to use-case diagrams. In

my work, I use OVM to describe variability profiles and I provide an alternative to use-

case diagrams to communicate variability. Furthermore, Coplien et al. [Coplien1999]

proposed an approach called FAST to identify, analyze and document scope,

commonality and variability. In this approach, information is to be elicited and

documented about the domain, the predicted commonalities, and the parameters of

allowed variations. They also discuss concepts such as procedures, inheritance and class

templates to realize variability in the code. Many other efforts were dedicated to the

implementation of variability at the code level such as [Sharp2000b],

[Anastasopoulos2009], and [Gacek2001]. I use some of these techniques in my approach

for illustration and evaluation purposes.

Earlier variability management approaches – including FODA and KobrA – focused on

specific phases of traditional software development such as requirement engineering and

40

architecture design. Other techniques like FAST addressed variability at different phases

but did not, however, consider the evolution of variability.

3.3 Feature Modeling & Traceability

There is a large body of research on feature modeling in software engineering in general,

and SPL engineering in particular. As mentioned previously, FODA was one of the

earliest techniques off which many other techniques were based. In my work, I use

feature trees as described in traditional modeling techniques such as FODA.

Requirement traceability is the ability to describe and follow the life of a requirement, in

both forwards and backwards direction [Gotel1994] (i.e. from the specification of

abstract features to the realization in code and vice versa). Efforts to study traceability

links between feature models and other development artefacts include the one by Filho et

al. [Filho2002] in which they proposed the integration of feature models with the UML

meta-model to facilitate the instantiation process. Another effort was the one by Ramesh

et al. [Ramesh2001] in which use cases (representing requirements) were linked to design

artefacts and from there to code artefacts. To group requirements at a more meaningful

and comprehendible level of abstraction, Riebisch [Riebisch2004] suggested the use of

feature models as an intermediate element between use cases and other artefacts. The

main issue with this approach is that in real settings a massive effort is required to

establish and maintain the traceability links due to the informal descriptions of the

requirements – which made automation impossible [Pashov2004]. To solve the language

informality issue, other techniques were proposed to establish traceability links. For

example, Antoniol et al. [Antoniol2002] proposed an information retrieval method to link

flat requirements to code artefacts. The caveat of the approach is that it is based on the

41

hypothesis that programmers use names for program items (e.g. classes, methods,

variables) that are also found in the text documents. There is also the issue of managing

and maintaining the established traceability links. In a panel report, Huang [Huang2006]

discusses the state-of-the-practice in traceability techniques. The report asserts that

requirement trace matrices (RTMs) are often maintained either manually or using a

management tool; and the amount of effort needed to keep these links up-to-date is

enormous.

Commercial tools are available to support traceability. CaliberRM [CaliberRM2010],

DOORS [DOORS2010] and other tools are used to manage and visualize traceability

links. However, these links have to be established manually, and the tools do not address

issues specific to feature models such as variability in requirement. Some SPL tools like

pure::variants [Pure::Systems2010] provide add-ins to allow requirement models in

traditional management tools to be remodelled as feature models. In my dissertation, I

show how test artefacts can be used to extend feature models and enhance the traceability

of variation points and variants in a SPL. To the best of my knowledge, this is a novel

approach that has never been discussed in the literature before.

3.4 Chapter Summary

In this chapter, I discussed the work available in the literature in three different parts. The

first part surveyed efforts to combine ASD and SPLs. The majority of the work done in

this area focused on applying certain agile practices to an already established SPL. The

purpose of my research, on the other hand, is to enable the adoption of SPL practices in

agile contexts. The second part presented the literature on variability management as the

key concept of interest in my dissertation. Finally, the third part discussed relevant

42

literature on feature modeling and traceability. I listed traditional requirement traceability

approaches, and I discussed attempts to achieve requirement tractability using feature

models.

43

 RESEARCH APPROACH CHAPTER FOUR:

In this chapter, I present the methodology I followed in my research. First, I explain the

research goal. Then, I talk about research questions. And finally, I discuss my evaluation

strategy. Details about specific research methods will be deferred to relevant chapters in

the dissertation.

4.1 Research Goal

My research aims at investigating whether it is feasible to manage the different aspects of

variability in a reactive as opposed to proactive manner in an environment where ASD is

common. Therefore, the main goal of this research is to construct a framework for agile

organizations to enable systematic variability management for similar software products.

In my work, I try to leverage existing agile practices to build such a framework.

Throughout this dissertation, I use the following definitions for the terms used in the

previous statement:

x Framework: a number of practices embraced within a defined process and

supported by a set of tools.

x Agile Organization: a software development organization that exhibits the major

characteristics of ASD.

x Systematic: provides for consistency of processes, practices, and conventions

across the different projects and teams in the organization. Ad-hoc approaches are

generally non-systematic.

x Variability management: handling variability in a software family in a

prescribed way. This includes eliciting variability from requirements (i.e.

variation points and variants) to build variability profiles, realizing variability at

44

the code level by introducing and evolving variation points and variants, modeling

variability to communicate knowledge about customization possibilities to the

different stakeholders, ensuring traceability and consistency between the model

and other artefacts in the system, and deriving instances of the system based on

the required customization [Chen2009].

4.2 Research Questions

Based on the goal of my research as stated in the previous section, and given the

evaluation considerations as will be discussed in the following section, I divided the main

problem into smaller problems that need to be tackled in order to build the proposed

framework. The proposed framework, as shown in Figure 7, entails five main stages that

repeat iteratively as more requirements come from existing or new customers. In the

following sections, I give a general overview of each stage and the relevant research

questions. I also shed a light on the research question pertaining to transferring this

framework to an industrial context.

45

Figure 7 - The proposed framework

46

4.2.1 Stage A: Eliciting new requirements

This stage is no different from the normal requirement elicitation activities that occur in a

typical ASD process as discussed in chapter two. At the beginning of every increment,

new requirements are collected from the customer in the form of user stories

[Kerievsky2010]. These user stories – in collaboration with the customer – are made

more concrete by translating them into acceptance tests (ATs) [Reppert2004]. In the

framework, I am mainly interested in the ATs that come out of this stage as input to the

following stages. The ATs can be existing ATs that have already been used to implement

the existing system, or they can be new ATs that are specified to guide the

implementation of new features in the system.

4.2.2 Stage B: Variability Elicitation

The purpose of this stage is to elicit variability from the available requirements in an

evolutionary and lightweight manner. This is traditionally done using a proactive

documentation-intensive approach. But given that in agile contexts documentation is

limited, I use ATs as an alternative. Also, a reactive as opposed to proactive approach is

sought. The inputs for this stage include the newly elicited ATs which reflect the new

requirements, as well as the existing ATs which describe the already existing

functionality in the core system. These ATs usually describe business logic aspects of the

system and can easily be automated. In every iteration, new ATs and existing ATs are

analyzed in order to determine any sources of variation in the business logic (i.e.

variation points), the different variants, and any accompanying constraints. The key

research question I address in this stage is:

47

RQ1. Can ATs be used to elicit variability due to business logic requirements in an

iterative manner?

Having used ATs to analyze variability in business logic requirements, I investigate how

variability can be iteratively analyzed in presentation and portability requirements in a

lightweight manner that does not require heavy documentation or processes. This leads to

the second research question in this stage which is:

RQ2. How can variability due to presentation and portability requirements be elicited in

an iterative and lightweight manner?

The outcome of this stage is an updated variability profile. Variability profiles resemble a

systematic way of describing the capabilities of the product line (i.e. variation points,

variants and constraints). One of the main advantages of maintaining variability profiles

is that they enable the automation of validity checks among features in the system and

product instantiation. As new variability is incrementally elicited, these variability

profiles will need to evolve in a consistent manner to support the systematic aspect of the

framework. The variability profile can also be used to produce a feature model as

discussed in the Background chapter.

4.2.3 Stage C: Variability Modleing

For all features in the system where variability exists, it is necessary that such variability

be communicated to interested stakeholders in the organization. Traditionally, feature

models (the outcome of the previous stage) are used for this purpose. However,

traditional modeling approaches use intermediary requirement and design artefcats as

48

traceability mechanisms to ensure consistency between the model and the

implementation. In my research, I investigate how such feature models can be made

executable so that traceability and consistency are improved. The question I address in

this stage is:

RQ3. Can EATs be used to model variability in a system so that variability becomes

communicable across the organization and traceable to the implementation?

4.2.4 Stage D: Variability Realization

The purpose of the realization stage is to implement the variation points and variants at

the code level to match their manifestation in the executable feature model. In addition to

the executable feature model, this stage takes as input a specific system (i.e. a system that

satisfies context-specific requirements) and redesigns this system so that the context-

specific requirements become as generic as possible to a range of contexts. The

remaining layer that is specific to the different contexts will need a configurator to

support the customization process. With the absence of requirement and design

documents in agile contexts, a different approach is sought to systemize the realization

process. Therefore, in this regard I address the following question:

RQ4. In an agile context, how can variation points and variants be realized at the code

level in a reactive and systematic manner?

4.2.5 Stage E: Product Derivation

Deriving different products from a common code base to satisfy the different needs of

customers is an essential aspect of SPL engineering. Automating this process is key to its

49

efficiency – especially when mass customization is expected. Traditionally, this process

is done during the application engineering phase. Application engineers bind the variation

points to the appropriate variants guided by the available documents and design artefacts

produced during domain engineering. In my framework, the derivation stage is

responsible for producing different instances of the system given as input the generic

system, the configurator, and the specific configurations needed by a given customer. In

this process, the question I address is:

RQ5. How can the extended feature model support the derivation process of individual

products from a common SPL base?

4.2.6 Issues and Challenges in Industrial Contexts

Having developed an agile product line framework in a research-oriented environment, I

investigate the issues and challenges associated with adopting a SPL framework in an

industrial context. For this reason, in my dissertation, I address the following question in

great detail:

RQ 6. Independent of the specifics of the proposed framework, what are the technical and

non-technical impediments that need to be taken into consideration before a new SPL

framework becomes feasible in an industrial context?

4.3 Evaluation Strategy

In this section, I discuss the evaluation strategy of my research. I begin by explaining the

alternate approaches to evaluate the research at hand and the challenges around such

approaches. Then, I talk about the specific strategy I use to overcome these challenges.

50

4.3.1 Evaluation Challenges

The fundamental premise of my evaluation strategy is that SPL adoption is generally a

long-term, organization-wide problem [Muffatto1999]. When the organization makes the

decision to develop software families using a SPL approach, explicit support for reuse

across team boundaries will be necessary [Jandourek1996]. Also, the decision to make

the leap to a SPL strategy requires a long-term commitment to allow the product line to

evolve in reaction to the market conditions and demands. These circumstances pose real

challenges to conducting a holistic evaluation of the proposed framework. For one, an

actual implementation of the framework requires that the researchers find an organization

that practices ASD, is experiencing the problem the research is trying to address (i.e.

similar products in a given domain), and is willing to make the necessary long-term

commitment with all the associated risks. Finding such a company has been a big

challenge especially given the unfortunate economic downturn in the past few years. One

of our industrial partners did have a problem that was very relevant to my research, but

they first needed to implement ASD practices in the company before they could consider

adopting a SPL strategy. The time horizon for their transformation goes well beyond a

timeline for a PhD thesis.

Another important issue in this regard is that an actual implementation of the framework

would require the researchers to have a prolonged timeframe to observe the results and

factor out the impact of external variables. For example, one opportunity I had considered

to evaluate my work was a collaboration with a medium-scale Scandinavian company.

The collaboration went relatively well (though very slow) in the first phase of collecting

data to customize the proposed framework to the needs of the organization. Nonetheless,

51

the second phase of implementing the proposed framework was interrupted multiple

times by business distractions that made it impractical to pursue further collaboration.

The other alternative to evaluate the framework in its entirety was to conduct a small-

scale controlled experiment in an academic environment. However, I firmly believe that

such experiments are not appropriate when the main research goal is to address a problem

that is large-scale by definition.

4.3.2 Evaluation Strategy

Given the challenges mentioned above, in my research I use a divide-and-conquer

strategy in which I divide the bigger problem of adopting a SPL strategy in an agile

organization into smaller and more manageable problems as described previously –

namely: elicitation, modeling, realization, and derivation. For each of these problems, I

conducted a separate research study where I use a number of different research and

evaluation methods. These methods will be explained in detail in their respective chapters

in the dissertation.

Having said that, I do realize that the sum of the parts is not equivalent to the whole, yet I

believe it is a reasonable approximation. The accuracy of this approximation is improved

by conducting an in-depth study within an industrial context to uncover the issues that

need to be taken into consideration before transferring the framework to an industrial

context.

4.4 Chapter Summary

In this chapter, I discussed my research goal, and I listed the research questions

formulated to achieve this goal. I also discussed how a divide-and-conquer strategy is

used to evaluate the different components of this research.

52

 VARIABILITY ELICITATION & EVOLUTION IN BUSINESS CHAPTER FIVE:
LOGIC REQUIREMENTS*

5.1 Preamble

The first step in variability management is to elicit variability from the available

requirements. Traditionally, this is done proactively during the domain engineering phase

and relies on documented requirements as the source of input. In ASD, one-shot

requirement elicitation up-front is considered impractical, and documentation is minimal.

Rather, requirement elicitation is strictly iterative in the sense that every release starts

with activities that aim at eliciting requirements from the customer. These requirements

are collected in the form of user stories that are then translated to acceptance tests (ATs)

as detailed in chapter two. In a product line context, this means that the first releases may

target a specific customer, but as soon as other customers demand a similar system, future

releases will need to handle the issue of variability in the collected requirements. In this

chapter, I argue that variability elicitation and analysis could be done reactively to be in

harmony with the iterative nature of ASD. I show how this can be done using AT

artefacts. Generally, it is difficult to capture non-functional requirements in an AT format

[Melnik2004]. Therefore, in this chapter, I only focus on functional aspects representing

business logic requirements. Chapter six will focus on requirements beyond business

logic.

5.2 Research Instruments

The first research instrument I use in this chapter is an analysis of traditional variability

management approaches. I choose one common approach to discuss in more detail. Then,

* This chapter is based on a published paper [Ghanam2011]. Co-author permission is attached to Appendix
B.

53

I provide an analysis of the use of AT artefacts in ASD. Afterwards, I look in more depth

at the issue of using AT artefacts to evolve variability in light of the conducted analysis

and the following high-level research question:

RQ1. Can ATs be used to elicit variability due to business logic requirements in an

iterative manner?

In the context of the framework I propose, this research question tackles the first of two

parts of Stage B: Variability elicitation in business logic requirements (as shown in

Figure 8).

Figure 8 – This chapter tackles Stage B: Variability elicitation – Business Logic

In this stage, I assume that Stage A has already been completed for the current iteration

using conventional ASD methods such as iteration planning meetings. The outcome of

Stage A consists of a set of ATs that represent the new requirements demanded by the

customer. This set along with the existing sets of ATs that have already been

54

implemented in the system serve as input for Stage B where the variability analysis is

conducted to elicit any variability sources and determine the needed variants and the

required constraints. Consequently, this yields a variability profile that provides an

updated list of the variation points in the system, the variants and their constraints (see

Figure 8). This variability profile can be modeled using a feature tree as discussed in

chapter two. As more increments take place and new ATs are written, this process is

repeated to support the evolution of the variability in the system. One of the main

advantages of maintaining variability profiles is that they enable the automation of

validity checks and product instantiation as will be discussed in chapter seven.

RQ1 is broken down into four more specific research questions, namely:

Q1. Can developers build feature models iteratively and incrementally using ATs as

proposed in the approach (Section 5.4)?

Q2. Can developers learn the six-point approach (Section 5.4.2) quickly and easily?

Q3. Does using ATs as building units for the feature model yield consistent variability

interpretations across different developers?

Q4. Are ATs sufficient for developers to deduce explicit and implicit constraints?

These research questions are investigated through an exploratory study where I train

participants to work with the proposed method, observe how participants perform in

certain tasks, and then follow up with participants to get their feedback in retrospect.

Given the lack of literature on the topic being investigated, this exploratory approach

provided a basis for understanding the problem at hand in more depth and learning about

the issues that need to be tackled in the following research efforts.

55

5.3 Analysis

Normally, SPL engineering starts off with the domain engineering phase. During this

phase, engineers proactively plan for products as a family rather than as individual

instances. Domain engineers conduct commonality and variability analysis to produce a

variability profile for the potential system. This analysis is conducted through a variety of

techniques. In this section, I analyze a common technique by Pohl et al. [Pohl2005]

which entails four major steps:

1. Define common requirements: use application requirement matrices, priority

analysis or checklist based analysis to review the requirements of systems the

organization has previously built or expects to build in the future. Extract repeated

requirements, requirements likely to become common in the future, or

strategically common requirements.

2. Define requirement variability: look at how requirements across different systems

might vary and understand why they vary. The objective of this step is to extract

variation points, possible variants, as well as any dependencies or constraints.

3. Document findings from (1) and (2): this produces domain requirement

documents that explain to application engineers how to instantiate applications.

4. Proceed to the next phases: use the documentation produced in (3) to design,

implement, and test the architecture and its constituents.

In my dissertation, I do not argue that such a proactive approach is not viable. But I argue

that this approach makes certain assumptions that are directly in conflict with core

principles and practices of ASD which makes the adoption of this approach difficult in

agile organizations. These assumptions include:

56

A. Domain knowledge: The organization has built a number of systems in the same

domain. Or sufficient knowledge is available – at the time of the variability

analysis – about the present and the future of the domain (i.e. knowing what will

be common and what will be variable). Pohl et al. [Pohl2005] assert that building

an SPL “requires sophisticated domain experience.”

Conflict with ASD: This implies that adopting a product line approach might be

infeasible for smaller organizations entering a new market. Moreover, ASD

considers acting upon predicted future requirements too risky, and thus may not

be willing to substantially invest in requirement elicitation upfront.

B. Requirement engineering: A requirement engineering phase has been dedicated

for each system including traditional practices such as requirement

documentation.

Conflict with ASD: In ASD, development starts early. As for requirements, ASD

does not dedicate a requirement engineering phase, but rather preaches a

minimalistic way of obtaining customers’ needs using story cards and direct

collaboration between all stakeholders of the project.

C. Accurate documentation: Requirement documents resulting from the

requirement engineering phase are available and up-to-date. They accurately map

to and are consistent with design, code and test artefacts.

Conflict with ASD: In ASD, unless requested by the customer, requirement,

design and test documents are considered of less value than actual

implementation. In case documentation exists, it is generally difficult to ensure

57

documents are up-to-date and consistent. Most ASD teams will not create

requirement and design documents to the extent expected in Pohl’s approach.

By looking at these assumptions and conflicts, I can summarize the main issues that need

to be addressed in an agile variability management framework in the following two

points:

1. The proactive elicitation of variability in requirements: For an agile approach, an

iterative process is to be sought for the SPL to be reactive rather than proactive.

2. The reliance on documentation in the elicitation and analysis process: This

indicates that even if Pohl’s approach was used in an iterative manner to solve the

issue of proactive treatment, the problem of significant overhead will still need to

be addressed in an agile framework.

5.4 The Proposed Elicitation Approach

The previous section showed how variability analysis is conducted in some traditional

SPL practices, and how a number of the basic suppositions underlying these practices are

not suitable for an ASD culture. In this section, I present an elicitation approach that

addresses the main two issues of proactive variability elicitation and documentation.

Proactive elicitation is addressed by enabling the evolution of the variability profile

through an iterative treatment that is lightweight enough to be repeated as many times as

need be. The approach also addresses the issue of reliance on documentation by

explicitly recognizing the notion that in ASD, documentation is not produced to describe

the system under development. ASD, however, produces test artefacts to describe the

system and act as anchor points for traceability relations. In the proposed approach, ATs

58

are utilized in the variability elicitation process as will be detailed in the following

section.

5.4.1 Acceptance Tests

In story TDD, specifications are written before writing code in the form of ATs. These

ATs are usually written collaboratively by the stakeholders to ensure a consistent

understanding of the system. ATs can be automated by tools like FIT [FIT2010], and

thereafter they are called executable ATs (EATs). Automation makes it possible to

continuously run these tests against the code developers write to measure how complete a

feature implementation is. I propose the use of ATs to elicit variability in requirements.

The benefit of using ATs is twofold. For one, no burden is added on the ASD team to

produce extra artefacts given that ATs are a natural starting point in agile iterations.

Secondly, since ASD promotes a refactor-whenever-needed notion, these tests are

continuously updated to reflect changes in the system. Hence, it can be assumed that

these artefacts represent a sufficiently up-to-date account of the system they test.

In order to use test artefacts as a basis for the proposed approach, it is important to

understand in what form these artefacts exist in the test repository. In this analysis, I

show how artefacts typically exist in a common tool for writing and running ATs called

FitNesse [FitNesse2011]. FitNesse is an AT framework based on a fully integrated

standalone wiki. With the help of the user guide provided with the FitNesse tool package,

I produced an object model that reflects how test artefacts relate to the system under test

(SUT) and to each other. As Figure 9 shows, the production of test artefacts is driven by

features requested by the customer. In this context, I use the term feature to refer to a

chunk of functionality that delivers business value [VersionOne2011]. There is no

59

restriction on how small or large this functionality is, as long as the customer thinks its

existence would add value to the delivered system. Internally, nonetheless, developers

may choose to break the feature down into sub-features to make it more manageable and

testable. While one or more test artefacts are produced to test a single feature, it is also

true that a single test artefact might cut across a number of features in the system.

Figure 9 – An object model for test artefacts in a SUT

A test artefact can exist at different granularities. Typically, developers would start by

creating a test project for the SUT. The test project has a number of test suites that are

optionally used to organize tests into a recursive folder-like structure. Grouping tests into

suites might be based on a feature breakdown or might be chronological based on

iterations. Each suite consists of one or more test pages. In FitNesse, these pages are files,

each of which has a number of tables representing user stories. Test tables can take

different formats based on the type of fixture they are linked to (e.g. column or row). In

essence, these tables are the specifications of the customer. In order for test tables to be

executed, they are linked to a thin layer of testing code called a fixture. It is within these

fixtures where the actual production code is tested. A fixture uses a number of code units

to execute specifications from the AT tables.

60

The significance of understanding this object model lies in the fact that capturing

commonality and variability in features can occur at different granularities of test

artefacts. Some test artefacts can be seen as common across different applications in the

family, and thus are considered default artefacts. Some other artefacts may be described

as optional or alternatives. For example, a customer may want to exclude a certain

scenario or include an additional one in a given feature. In this case, variability is defined

within the test page to include, exclude or add certain test tables. Some of these tables

may be in conflict; therefore, multiplicity and dependency constraints need to govern the

selection process. The following section explains through an example how this can be

achieved.

5.4.2 Introducing Variability

The use of ATs to elicit variability and evolve variability profiles occurs in six steps as

follows:

1) The very first system is built in a normal ASD process to satisfy the requirements

of the customer at hand without investing into future speculations of what may

vary.

2) An initial feature model of the system is produced using ATs as the building

units. The initial feature model is a simple decomposition of a given feature into

the different scenarios to be supported. It does not necessarily contain any

constraints.

3) Upon the demand of a similar system by a new customer, the existing feature

model with the associated ATs are made available to the new customer.

61

4) The new customer picks those ATs that meet their specific needs. The chosen

ATs represent a feature instance.

5) If the currently available ATs do not satisfy the customer’s needs, the customer

defines a change set that can include adding, removing or replacing ATs.

6) Based on the change set produced in 5, the feature model is updated.

Step 2 in the abovementioned process can preferably be delayed to be done alongside

with steps 3 to 5 (i.e. only when there is a demand for a second system that varies from

the original system). If this is the case, feature modeling can be done incrementally by

considering only those features that actually vary with the new requirements.

To illustrate the idea, I will use the example of smart home systems. Smart home systems

make it possible to monitor and control the surrounding environment. These systems

usually need to encompass a large variety of home infrastructures, devices, security

mechanisms and customer preferences. More information on smart home systems is

available in chapter two.

In an intelligent home system, test tables in a page describing an access control feature

looks like the one in Figure 10.

62

Figure 10 - A test page is composed of a number of test tables

This test page looks almost the same as a traditional FitNesse test page. The only

difference is that I denoted some tests as “default” and others as “optional.” Default

artefacts are those that are essential to reflect the value of the feature at hand. If removed,

the feature becomes meaningless or valueless. The default attribute should not constrain

the flexibility of responding to new requirements. It is only an indication, for new

customers, that this element was of special importance to previous customers, making it a

good candidate to become common across different instances.

Optional test artefacts, on the other hand, are those that can be looked at as add-ons rather

than necessities. This might be perceived differently by different customers. Therefore,

optionality is only a guide for future customers that an element might be cut out without

omitting the value of the feature. This initial assumption might be challenged later on by

other customers who deem the optional element to be an indispensible part of the feature.

Thus, an optional test artefact could be upgraded to become a default one and vice versa.

The initial state of the feature can be modeled in a feature tree as shown in Figure 11. A

solid line symbolizes a default artefact whereas a dotted line symbolizes an optional one.

Figure 11 - The initial feature model

Now, say a new customer requests a change to the access control feature via PIN. The

customer is given the test page in Figure 10. They have the option to exclude existing

63

tables or add new ones. Say the customer requests the customization shown in Figure 12.

Table C is added to the test page as one more option future customers can pick from.

However, the addition of Table D is not as straightforward due to its conflict with Table

B. That is, according to Table B, the input should be locked for 2 minutes after 2 failed

attempts. Whereas according to Table D, the user is allowed 3 attempts after which the

owner is notified.

Figure 12 - Customization requested by the customer

To solve this issue, one can impose a constraint that Table B and Table D cannot coexist.

The new version of the test page can be visualized using a feature model as shown in

Figure 13. Multiplicity constraints in the form of [min..max] may be added to govern the

selection of artefacts. In this case, a [0..1] indicates that only one element may be selected

amongst the set {Table B, Table D}.

64

Figure 13 – The evolved feature model

5.4.3 Customer involvement

One of the major aspects contributing to the success of ASD is its focus on customer

involvement and satisfaction. By using artefacts that proved to work well to communicate

requirements amongst stakeholders, our approach makes sure this principle is not

compromised. The approach is an additional interaction technique through which

customers can be aware of how a system (similar to the one they are requesting) would

typically look like. This is achieved by exposing the customer to previously built systems

represented through test artefacts. A traditional problem in requirement engineering is

that the customer may not initially be able to weigh the value of different aspects of the

system in a consistent manner with their actual needs. Through my approach, the

customer can ask questions like: “Why is this aspect of the feature of value to me while it

was not as valuable to others?” At the same time, the customer will enjoy the flexibility

to build upon existing systems, modify certain aspects of these systems to fit his needs

better, remove aspects that he may not be willing to pay for, and select from different

alternatives based on his own evaluation of what is deemed more important (e.g.

performance versus cost).

65

5.5 Exploratory Study

5.5.1 Goal & Questions

The goal of the study presented in this section is to examine the foundations of the

proposed elicitation approach with the help of independent participants. The study

explores four key aspects of the approach, namely: evolution, learnability, consistency,

and constraints. Each aspect is related to one of the following research questions:

Q1. Can developers build feature models iteratively and incrementally using ATs as

proposed in the approach?

Q2. Can developers learn the six-point approach quickly and easily?

Q3. Does using ATs as building units for the feature model yield consistent variability

interpretations across different developers?

Q4. Are ATs sufficient for developers to deduce explicit and implicit constraints?

To examine the approach in light of these questions, 16 graduate students were invited to

participate in an observational session. All participants were enrolled in computer science

or electrical & computer engineering programs and they had some background in

software engineering. As will be detailed later, participants were asked to study a written

tutorial on the approach, solve three exercises, and then fill out a follow-up questionnaire.

Table 1 lists the aspects reflected by the four questions, and the required observations to

answer these questions.

Table 1 - Aspects and the required observations

Q Aspect Required Observation

66

Q Aspect Required Observation

1 Evolution Observe if the participants will be able to start at an initial state of

the feature and incorporate new requirements as they come in the

form of ATs. The final state of the feature should be consistent with

the intended one.

2 Learnability After going through a written tutorial, observe if the participants

will be able to:

a. Distinguish between a feature instance and a generic feature

model.

b. Use ATs as building units for feature models.

c. Relate instantiation requests to the required ATs.

3 Consistency

Observe if the participants will be able to build hierarchical models

that are consistent with the ones I built and deemed to be the

intended interpretation (hence, consistent across different

participants).

4 Constraints Observe if the participants will be able to deduce all explicit and

implicit constraints from the provided ATs.

5.5.2 Data gathering

Tutorial: Participants were asked to go through a written tutorial on our approach of

eliciting variability in requirements through ATs. When they finished the tutorial,

participants had to solve a trial exercise to ensure they gained the understanding required

to complete the study.

67

Exercises: After the tutorial, participants were handed three exercises one at a time.

Exercise 1 was to measure the learnability of the approach. In this exercise, participants

were given a 3-stage scenario. The first stage included the initial customer specifications

of a feature in AT format (similar to the one in Figure 10). The two following stages

included requests by other customers for the same feature as in the previous stage, but

each having their own customizations represented through ATs (similar to the one in

Figure 12). In each stage, participants were asked to: draw a feature model representing

the state of the feature as requested by the current customer (i.e. as an application

instance), and then draw a feature tree of the evolved variability model (i.e. the generic

feature model that is used to derive instances).

Exercise 2 was similar to exercise 1 but involved more complex scenarios. It was used to

observe the deduction and applicability of constraints through ATs. These constraints

were either explicitly mentioned such as: “A and B cannot coexist,” or I implicitly

planted them within the contents of the ATs to observe if the participants would be able

to detect them. Exercises 1 and 2 jointly measured the evolution aspect of the approach.

Finally, Exercise 3 asked the participants to use the feature model built in the two

previous exercises to deduce feature instances of minimum cost (i.e. the smallest possible

feature instance) and maximum value (i.e. the largest possible feature instance). This last

exercise was used to observe the readability of the produced feature model and the ease

of determining which ATs are needed to build a certain instance. The output of each of

the three exercises consisted of: a) a feature instance tree representing the feature as an

instance for a specific customer; and b) an updated generic feature variability model.

68

Consistency was defined as the degree of similarity (i.e. the percentage of matching

edges, nodes and constraints) between the feature models produced by the participant and

the ones I built and deemed to be the intended interpretation of the provided AT-based

scenarios.

Questionnaire: At the end of the study, participants were given a questionnaire to

retrospectively capture their impressions and opinions about the exercises.

5.5.3 Results & Discussion

5.5.3.1 Tutorial and Exercises

The tutorial and exercises together lasted 41.5 minutes per participant on average ranging

from 22 minutes to 67 minutes. For each participant, I measured the time they spent on

each exercise, and the consistency of their outcome compared to the outcome I had

anticipated. Table 2 shows a summary of the results. The full results are available in

Appendix C. Participants were asked to take as much time as needed to go through the

tutorial which averaged at 13.5 minutes. Exercise 2 took almost double the time of

Exercise 1. This is normal considering that Exercise 2 was a more complex one. But what

is noteworthy is that the consistency did not change much. I attribute this to the learning

effect that is likely to have occurred during Exercise 1. Except for one participant who

could not understand Exercise 3, all participants could solve Exercise 3 with 100%

consistency.

Table 2 - Summary of the results

Averages Tutorial Exercise 1 Exercise 2 Exercise 3

Time (minutes) 13.5 ± 4.3 8.1 ± 2.9 15.8 ± 6.2 4.2 ± 1.9

69

Consistency NA 88% ± 11% 89% ± 10% 100%

Evolution: Figure 14 provides a closer look at the performance of all 16 participants in

exercises 1 and 2. Each dot represents one participant. The y-axis represents the

percentage of consistency (all data points are above 60%). In both cases, I observed that

participants were in fact able to start at an initial state of the feature and elicit variability

from new requirements as they came. The final state of the feature was consistent with

the intended one in more than 80% of the cases.

Learnability: Since Exercise 1 was the first exercise to follow the tutorial, I chose to

analyze it in more detail. I found that all participants could achieve the three objectives

mentioned under the learnability aspect.

Figure 14 – Consistency (%) in Exercise 1 to the left, and in Exercise 2 to the right

Consistency: To check for the consistency aspect, I combined the results of all three

exercises and I found that the interpretations of the contents of the ATs were mostly

consistent amongst more than 80% of the participants. I did, however, find some

discrepancies in the way participants chose to model certain parts. One example was the

modeling of two mutually exclusive optional features. I have anticipated that the

modeling would incorporate a [0..1] constraint (as shown in Figure 15a) indicating that

not selecting any of the features is permissible. Nevertheless, 10 out of the 16 participants

70

chose to model it in a different way where they used a [1..1] constraint (as shown in

Figure 15b) rationalizing that the optionality is already accounted for by the dotted line.

(a) (b)

Figure 15 – (a) The expected model as opposed to (b) the produced model with the

[1..1] constraint between Table H and Table I

Such a pattern is interesting yet irrelevant to the questions I was interested in examining

in this study.

Constraints: When looking at realizing and modeling constraints, I found little evidence

that ATs were sufficient to deduce implicit constraints. All but one participant could

realize and model explicitly mentioned constrains such as “Remove Table F as it cannot

coexist with Table G”. However, half of the participants could not deduce an implicit

constraint I had planted in Exercise 2. In this case, the two relevant tables were as shown

in Figure 16.

71

Figure 16 – The two tables with the implicit constraint

Since the two tables have different acceptance criteria for what happens when more than

one window is broken into, the two tables would be in conflict if they were both selected

in a single instance. Therefore, the expected model was as shown in Figure 17a, whereas

half of the participants modeled this as shown in Figure 17b.

72

(a) (b)

Figure 17 – (a) The expected model as opposed to (b) the produced model missing

the constraint between Table H and Table I

There were also some instances where constrains were unnecessarily imposed. For

example, in the scenario shown in Figure 18, the participant chose to impose a [1..1]

constraint between Table B and Table C for the sheer fact that the customer request

included one and excluded the other.

Figure 18 – A scenario for unnecessarily imposed constraints

73

5.5.3.2 Questionnaire

The questionnaire had seven Likert-scale items and a space for participants to jot down

their comments. Figure 19 shows the responses to the questionnaire. Every item in the

questionnaire contained a statement for which the participants chose a decision –

anywhere between strongly agree or strongly disagree.

The first 2 questions were control questions to make sure participants did not have a

problem with the concept of the feature model itself. According to the questionnaire,

participants found the approach flexible and easy to grasp and apply. Dealing with ATs

seemed to be a bit of a hassle, but only for participants who had not worked with ATs

before. One participant, who did work with ATs for a while, noted in the written

comment that he “found dealing with ATs very easy.” Other comments mainly reflected

the trickiness of dealing with constraints. As one participant put it, “I think dealing with

constraints is tricky and might cause confusion.” Some participants also commented on

the scalability of the approach for larger and more complex systems: “it is easy to handle

problems with not many conflicts, but I am not sure whether it would be still as easy

when many constraints exist.”

Figure 19 – Reponses to the questionnaire

74

5.5.4 Threats to Validity

This study was not intended to be a controlled experiment (since I did not have a control

group). Nevertheless, I did take a number of measures to mitigate foreseeable biases and

provide controls over the variables that could be at play in the study. By providing a

tutorial, I tried to ensure all participants started from a common ground. Exercises were

designed carefully and were handed to participants in a specific order. Precise wording of

questions and non-biasing responses to participants’ concerns during the study were also

important measures.

I still, however, faced some validity threats. The key-answer that was used as a

benchmark to measure the participants’ performance against had been developed by

ourselves – which might have introduced a bias in the results. The use of ATs as the only

instrument to represent specifications posed a threat to the internal validity of the study.

That is, had I used another type of requirement specifications (e.g. flat documents) with

another group of participants, I might have been more confident in drawing conclusions

about the effect of using ATs.

Moreover, in the context of this study, the hypothetical scenarios might not accurately

reflect the complexity found in real life software projects. This was intended so that the

participants could focus on the process itself as opposed to the complexity of a specific

domain. Nevertheless, this might be a threat to the external validity of the study affecting

the generalization of the findings.

5.6 Chapter Summary

In this chapter, I argued that variability elicitation and analysis should be done reactively

to support the evolutionary nature of ASD, and I proposed the use of AT artefacts to

75

achieve that. The proposed variability elicitation approach differs from traditional

approaches in two ways. First, variability elicitation in our approach happens iteratively

and incrementally and only when there is enough justification to do so (i.e. actual

customer requests); whereas traditionally variability has to be speculated and accounted

for in advance during the domain engineering phase. Second, the proposed approach

leverages existing test artefacts to elicit variability as opposed to introducing extra

overhead such as requirement documents. The exploratory study examined four aspects

of the proposed approach and provided interesting insights into its strengths and

weaknesses. Strengths included providing support for the evolutionary nature of agile

projects, easy learnability, and consistency. The main weakness the study revealed was

related to the difficulty of deducing implicit constraints from ATs. In the next chapter, I

discuss how this issue could be resolved through the use of a lightweight analysis

technique.

 VARIABILITY ELICITATION & EVOLUTION IN CHAPTER SIX:
PRESENTATION AND PORTABILITY REQUIREMENTS*

6.1 Preamble

This chapter is a continuation of the previous chapter on variability elicitation with a

focus on aspects other than business logic, specifically presentation and portability issues.

As discussed in the previous chapter, the first step in variability management is to elicit

variability from the available requirements. Elicitation is traditionally done in a proactive

manner and relies on documented requirements as the source of input. For ASD, both

issues of proactive treatment and heavyweight documentation are deemed impractical. In

* This chapter is based on published papers [Ghanam2010] and [Andreychuk2010]. Co-author permission
is attached to Appendix B.

76

the previous chapter, I showed how ATs could be used in an evolutionary manner to elicit

variability due to business logic requirements and update the feature model as needed. In

this chapter, I show how presentation and portability requirements can be dealt with in an

evolutionary and lightweight manner. I specifically focus on these two aspects because

they were the main sources of variability in our application domain (beside variability in

business logic).

6.2 Research Instruments

In this chapter, I investigate how variability due to presentation and portability

requirements can be elicited and analyzed in an iterative and lightweight manner. I

discuss this issue in light of the following research question:

RQ2. How can variability due to presentation and portability requirements be elicited in

an iterative and lightweight manner?

In the context of the framework I propose, this research question tackles the second part

of Stage B: Variability elicitation in presentation and portability requirements (as shown

in Figure 20).

77

Figure 20 – This chapter tackles Stage B: Variability elicitation – Presentation &

Portability

For this part, I hold similar assumptions to the ones in the business logic analysis part.

Namely, I assume that Stage A has already been completed for the current increment

using conventional ASD methods such as release planning meetings. Nonetheless, the

outcome that will be used in this part of the analysis does not necessarily have to be

automated ATs – because it is often challenging to automate ATs representing non-

functional aspects [Melnik2004]. Rather, ATs could exist in a simple user story format

that represents the new requirements demanded by the customer. The new and existing

sets of requirements are used as input for Stage B where the variability analysis is

conducted to elicit variability. As a result, this analysis yields a variability profile that

provides an updated list of the variation points in the system, the variants and their

constraints. Unlike business logic requirements, the variability profile for presentation

and portability may not be translatable to a feature model because these two aspects

78

usually cut across a number of features. As more increments take place and new

requirements become available, this process is repeated to support the evolution of

variability in the system.

In this chapter, I follow an action research (AR) approach which is a well established

iterative technique that is usually used to solve problems in practice following the notion

of “learning by doing” [O’Brien1998]. In AR, a problem is diagnosed first. Then, a

proposal (aka. action plan) is prepared to approach the problem. The proposal is

evaluated by applying it to the original problem. And then, the findings are identified and

incorporated in the following iterations [Susman1983]. Considering the highly practical

nature of my research, I use AR as a means to connect research and practice so that the

two are aligned well and feed input to each other.

6.3 The Problem: Variability due to Presentation and Portability

6.3.1 Presentation

Variability in presentation as a non-functional aspect can occur due to a number of

factors:

- Different users: When the same system is expected to be used by individuals with

different technical skills, the interface will need to support both basic and

advanced levels.

- Different operation modes: When the system can be operated through more than

one mode such as user mode and designer mode, the interface will need to support

both modes of operation.

79

- Different hosting devices: When the system is expected to run on different

devices with different display features and capabilities, the interaction techniques

may vary according to the operating device.

The effect of each one of the abovementioned factors is exacerbated in a product line

context due to economic opportunities availed by mass customization. However, dealing

with this kind of variability using a traditional proactive approach is associated with

many risks, especially in a domain that is still emerging or when the supportive

technologies are rapidly changing. For example, up-front investments into detailed design

based on speculations on who will use a given software system may be lost if the

speculations turned out to be inaccurate. Facebook, for instance, initially targeted an

audience of college students – a user base which is generally more tech-savvy than older

generations. However, user base statistics in 2007 have shown that the fastest growing

demographic of Facebook users is the 25 and up age group. Such fast changing markets

require nimbleness to react quickly without having to worry about huge losses in up-front

investments [MacManus2007]. Similarly, investing into software design based on

speculations on what interaction techniques will be popular in the future can pose

significant risks. As will be shown in the case study later on, display technologies have

drastically evolved in a relatively short period of time with many vendors such as

Microsoft [Microsoft2011], SMART [SMART2011], and Apple [Apple2011] coming up

with various touch and projection technologies as well as a wide range of interaction

techniques. In this domain, the agility to respond to the emergence of new technologies in

the market is a valuable asset.

80

6.3.2 Portability

As defined by Boehm et al. [Boehm1976], portability is the quality of a software system

wherein the code can be easily run on computer hardware configurations other than its

current one. The system can have more or less of the portability quality depending on

how many hardware environments it can be run on without any issues. For example, a

game written in Java can run on a Windows machine, a Mac machine, and any mobile

device with a Java virtual machine. In a software product line context, portability is

important but requires special considerations in the design process that increase the cost.

This increase in cost, however, can be justified if the hardware platforms being targeted

have known and stable specifications and the demand for them is evident. On the other

hand, if the hardware platforms are still evolving or if the market is not stable, putting

investment into portability becomes very risky. Take the example of horizontal displays.

To design a portable application that works on different horizontal display technologies, I

need to design for the aspects of these technologies that are likely to vary. Nonetheless,

as new vendors keep entering the market with various projection technologies, image

recognition techniques, and Application Programming Interfaces (APIs), speculation

becomes more challenging and error-prone. Therefore, a reactive as opposed to proactive

approach to this variability is more befitting in similar scenarios.

6.4 Handling Variability

This section presents the proposed approach to handle variability due to presentation and

portability in a reactive and lightweight manner. The general framework of the approach

is captured in Figure 21.

81

Figure 21 - Reactive approach to variability due to presentation and portability

Because this is a reactive approach, it is assumed that a system already exists that

satisfies the needs of a given customer base but does not yet satisfy a new set of

requirements. This system is denoted as S. The goal of the approach is to make the

transition between S to S` where S` is a system that satisfies all the requirements satisfied

by S in addition to satisfying the new requirements. The transition process encompasses

three steps (outlined with red): variability analysis, variability profile update, and

variability implementation.

6.4.1 Variability Analysis

The goal of this step is to translate a set of user stories into a variability profile consisting

of variation points and variants. As mentioned earlier, variability analysis is traditionally

82

conducted up-front in the domain engineering phase. Elicited requirements are analyzed

in terms of what they share in common, and in what aspects they may vary. Sources of

variations are determined, along with the allowed values for these variations. In the

proposed approach, I avoid one-shot up-front variability analysis, simply because it does

not fit within the iterative nature of requirement elicitation in agile methods. Rather, a

variability analysis is conducted every iteration between the current requirements in the

system and the newly elicited requirements. Each user story is analyzed against the

existing core assets and the current variability model in the system to determine the set of

issues that need to be taken into consideration. Each of the issues is then studied to

determine the implications of the issue at hand on the existing the system. The following

definitions are used for the concepts mentioned above:

- User story: a desired addition or change to the existing system as described by the

customer. The customer can be either external or internal to the organization.

- Issue: a reason explaining why the current system cannot – as is – satisfy the user

story. A single user story usually results in a set of issues.

- Implication: an action that needs to be taken in order to resolve the issues

resulting from a given user story.

6.4.2 Variability Profile Update

Having determined the issues and their implications in the previous step, each implication

is analyzed further to deduce its impact on the variability profile. Namely, I am interested

in uncovering:

x The sources of variability, which yields new variation points in the system or an

update to the existing ones.

83

x The possible values for each source of variability, which yield the variants for

each variation point.

x The conditions governing the selection process of variants, which yields the

constraints that need to be imposed, if any.

Variability profile refers to the representation of a system in terms of what is constant

(aka. base system) and what is variable. The variable part of the system contains a list of

all variation points in the system and their variants. A number of representation and

modeling techniques exist, but in this chapter it suffices to use a simple notation. A

system (𝑆) is composed of the union of two parts: a constant part (𝑆) representing the set

of requirements that do not change in different product instances, and a variable part (𝑆)

representing the set of requirements that may change in different product instances.

𝑆 = 𝑆 ∪ 𝑆

For each requirement 𝑟 in the set 𝑆 , there exists a nonempty set 𝑉𝑃 containing the

variation points of that requirement:

∀ 𝑟 ∈ 𝑆 , ∃ 𝑉𝑃 where 𝑉𝑃 ≠ ∅

Because this is a reactive approach, one variant is deemed insufficient for an aspect to be

considered variable. Therefore, each variation point νρ is expected to possess a set of

variants 𝑉 that includes at least two variants (ν and ν) governed by a set of constraints

(𝐶):

∀ νρ ∈ 𝑉𝑃 , ∃ 𝑉 where 𝑉 = {ν , ν , … : 𝐶}

The selection of a given variant yields a nonempty set of implications I:

ν ⎯⎯⎯ 𝐼 where 𝐼 ≠ ∅

84

Example:

The Weather Watch module can be described as:

S = {Weather Model} ∪ {Weather Trend Analyzer, UI Panel}

Accordingly, there exist 𝑉𝑃 and 𝑉𝑃 .

Take for example:

𝑉𝑃 = {νρ = 𝑃𝑎𝑛𝑒𝑙 𝑡𝑦𝑝𝑒}

𝑉 = {ν = handheld, ν = PC ∶ 𝐶 = {v1 and v2 are mutually exclusive}}

ν ⎯⎯⎯ {𝑑𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑈𝐼, 𝑡𝑜𝑢𝑐ℎ 𝑔𝑒𝑠𝑡𝑢𝑟𝑒}

ν ⎯⎯⎯ {𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑐𝑎𝑙𝑒 𝑈𝐼, 𝑚𝑜𝑢𝑠𝑒 𝑐𝑙𝑖𝑐𝑘}

Note: In this example, only one variation point exists for each requirement. It is possible

for a given requirement to have more than one variation point (as per the formulation

above).

Initially, the system 𝑆 is described as 𝑆 = 𝑆 but as more requirements are elicited in

each increment, variation points may be added to the profile. The variability profile is

also updated with any new variants arising due to the new requirements. At any point of

time, there should be only one system and a set of variation points that makes it possible

to produce different product instances.

It is important to keep a variability profile for the system to make explicit any

dependencies and constraints between variation points and variants. They also support

traceability of all aspects of variability in the requirements to code artefacts (as will be

seen in chapter eight). A variability profile also plays a role in communicating variability

85

to all stakeholders throughout and after the development process, and they help in the

product instantiation step as will be explained in chapter nine.

6.4.3 Variability Implementation

In this subsection, I go briefly over some aspects of refactoring, testing and realization to

show the direct impact of applying the reactive approach to implement variability in the

target system. All three aspects will be discussed in detail in dedicated chapters.

Refactoring: During this step, new architecture layers are introduced to abstract common

aspects. Other layers may be specialized to handle variable aspects. The goal of the

refactoring step is to merely refactor the architecture to be ready to accommodate the new

version of the variability profile, and not to realize this variability. The actual realization

of that variability happens at a later step. For instance, suppose a feature X existed in the

system before the current increment. If feature Y in the new requirements is just another

variation of feature X, then a new variation point is defined. Although there are two

different variants X and Y, at this point only the existing variant is considered, not the

new variant. Thus, the architecture is refactored to accommodate a variation point with

the variant X. This is important to separate the side effects of refactoring from those of

adding new functionality.

Testing: To make sure the refactoring process in the previous step did not have any side

effects, all the tests in the system are run. This includes executing automated unit tests

and acceptance tests as well as running all manual regression tests (usually used to test

user interfaces and hardware related functionality). If a test fails, this indicates that the

refactoring process needs to be retracted and then fixed to make the tests pass again.

86

Realization: Having refactored the architecture to be able to realize the new variation (if

any), in this step developers implement the new variation. The developers should produce

test artefacts either before (using test-driven development) or after writing the production

code. All tests for the new variants as well as the older ones have to be run in order to

verify and validate the new changes, and to make sure that the old functionality is not

impacted by these changes.

6.5 Evaluation through Action Research

6.5.1 Goal and Questions

This section presents a self-evaluation of the approach described above. The goal of the

evaluation is to validate the proposed approach against the original problem by applying

the approach to the development process of a software application that clearly manifests

the problem of interest. The context of this evaluation satisfies the main characteristics of

what constitutes AR as described by O’Brien [O’Brien1998]*, namely: the systematic and

iterative treatment of the problem at hand, taking into consideration the theoretical

foundations, aiming to solve a real problem in a real situation. In this study, the system

under change was a real system; and the managed variability was due to requirements

coming from a real customer.

Throughout the evaluation, I aim to answer the following questions to assess the

approach:

Q1. Can the reactive approach be used to construct a variability profile in an

incremental and lightweight manner for a real software application?

* The use of the term action research is sometimes restricted to research in industrial settings only. In this
work, however, I use the broader understanding of what action research is as described in [O’Brien1998].

87

Q2. What are the advantages of the reactive approach over other approaches

(proactive, clone-and-own, build from scratch, ad-hoc)?

6.5.2 Problem Context

System Overview: The application I discuss throughout this section is called eHome. It

is a software system to monitor and control smart homes. Generally, the interface of the

application consists of a floor plan representing the smart environment to be controlled, a

number of items that can be dragged and dropped on the floor plan, and a set of graphical

user interface (GUI) controls. A screenshot is shown in Figure 22.

Figure 22 – eHome: a smart home software application

Interacting with eHome occurs in two modes, namely:

88

a. User mode: which allows the dwellers to obtain information about climate

variables in the home such as temperature, humidity, CO2 levels and other

sensory information; check the current status of certain devices in the home

such as lights being on or off; change the status of devices such as turning

lights on and off; and keep track of items in containers such as a fridge or a

medicine cabinet using RFID.

b. Designer mode: which allows the users to add devices to be monitored and

controlled; drop an icon of the device onto the floor plan and attach it to the

actual device; add sensors to get climate information; add containers (e.g.

medicine cabinet) and add items to the containers (e.g. pill bottles); and

define automation triggers and steps.

Initially, the architecture of eHome looked like the one in Figure 23. The Presentation

layer included all the view-related elements, whereas the UI Controller managed the

communication between the Presentation layer and the Data Object Model. The

Hardware Controller was responsible for communication between the actual hardware

devices with the Model or the UI Controller. External Resources included the hardware

devices, XML configuration files, and web services.

89

Figure 23 - Initial state of the eHome architecture

Initial Development: The abovementioned features were all requested by our industrial

partner. The initial request was to deploy eHome on an HP TouchSmart PC [HP2009]

which has a single-touch vertical display. However, actual development of eHome was

done on normal PCs with different screen dimensions and no touch capabilities. When

we, as a development team, deployed eHome on the HP machine (which happened

frequently because we had a testing HP PC onsite), we often needed to adjust certain

scaling factors to fit the HP wide screen. We also realized that some decisions that had

been made during development on the normal PCs needed to be revisited. Examples are:

x The size and design of some GUI elements made it challenging to interact with

eHome using a finger touch because the latter is much thicker and less accurate

than a mouse pointer.

x One event in eHome was triggered by a right-click which, on a touch-screen, did

not make sense.

New Technologies: As we went along, we deployed eHome on a large-scale SMART

DViT Table [DViT2009] using the SMART Board SDK (version 4.1.100.1332 – released

on 13-06-2005). A later request from our partner was to deploy eHome on a digital

90

tabletop they had recently purchased. Specifically, it was a multi-touch SMART Table

[SMART2009] released with the SMART Table SDK (version 1.3.53.0 – released on 29-

10-2009). Later on, we obtained a Microsoft Surface device [Microsoft2011] and we

decided to include it within the hardware platforms that we should support. As more

platforms were supported, more decisions were revisited and the software design

underwent drastic yet incremental changes. These changes were mainly driven by the two

non-functional aspects mentioned previously, namely:

x Presentation: e.g. conventional GUI elements like menus and tabs assumed a

single orientation (vertical).

x Portability: e.g. three different SDKs that dealt with touch point input, one for

each hardware platform.

Sources of Variability in eHome: The presentation and portability issues were not the

only sources of variability in eHome. In fact, the first source of variability was business-

driven (i.e. due to functional requirements). Smart homes vary widely with regards to

what smart devices exist in the home, and what kind of monitoring and controlling is

requested by a given customer. This variation in requirements often results in delivering a

different application for each smart home. However, in spite of the differences between

these applications, they share a lot of underlying functionality and business logic.

Therefore, it is more economical to think of these applications as a family of systems that

are somewhat similar yet not identical – which is the general understanding of what a

SPL is. Nevertheless, in this chapter, I only focus on variability due presentation and

portability as non-functional requirements.

91

6.5.3 Applying the Reactive Approach

When dealing with a new and fast-changing technology like digital tabletops, uncertainty

about future needs can be too high. This in turn might render useless any efforts to

speculate about these needs. In the development of eHome, big design up-front was

avoided; and instead an incremental and reactive approach was followed to develop and

maintain variability in the system. On the non-functional aspect, we incrementally

embraced new variations as needed, and allowed the common platform to evolve

gradually using the approach described above. The following sections illustrate how the

approach was followed to satisfy three user stories.

6.5.3.1 User Story 1

“As a user, I should be able to use eHome on a touch-screen.”

The developers had normal PCs as their workstations to develop eHome, as opposed to

machines with a touch screen. Because the customer wanted eHome to be deployed on an

HP TouchSmart PC with a touch screen, a round of variability analysis was needed. The

analysis I conducted shows that the differences between the two groups of machines are

mainly due to the mouse-versus-touch input. Table 3 shows an issue-implication analysis

for the current user story.

Table 3- Variability between a normal PC and an HP Touchsmart PC

Issues Implications

Right-click events do not make sense on

a touch screen.

An alternate trigger is to be used. The HP

machine captures right-click events on the

touch screen using a ‘press-&-hold’ trigger.

92

Issues Implications

The tip of the mouse cursor is tiny and

accurate compared to the tip of a finger.

All GUI objects have to be larger to

accommodate the finger touch more precisely.

When applying a touch on the vertical

surface, the body of the finger covers

some content on the screen (Figure 24a).

The vertical sliders used to control the

intensity of lights should be changed into

horizontal sliders (Figure 24b).

(a) (b)

Figure 24 - (a) Part of the vertical slider is blocked by the body of the finger, (b) The

horizontal slider solves this issue.

Using the list of issues and implications mentioned above, one variation was deduced due

to differences in the “Input” requirement. Under this requirement, a single variation point

“input mechanism” was defined. The variation point has the two variants “mouse” and

“touch”. The variability profile I had so far could be described as:

S = 𝑆 ∪ {Input}

Where:

𝑉𝑃 = {νρ = input mechanism}

𝑉 = ν = mouse, ν = touch ∶
𝐶 = {v1 and v2 are mutually exclusive}

93

ν ⎯⎯⎯ {𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑥, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑙𝑖𝑑𝑒𝑟, 𝑟𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑐𝑘}

ν ⎯⎯⎯ {𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑦, ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑙𝑖𝑑𝑒𝑟, 𝑝𝑟𝑒𝑠𝑠 & ℎ𝑜𝑙𝑑}

From an architectural perspective, a conceptual layer was added to reflect the updated

variability profile as shown in Figure 25. Previously, input was managed within the

Presentation layer. At this point, 𝑆 included all the layers except those

that had sources of variability – namely: the Input Manager layer and the Presentation

layer.

Figure 25 – The impact of the update variability profile on eHome architecture

6.5.3.2 User Story 2

“As a user, I want to be able to use eHome on a large-scale SMART table.”

This user story indicates that the user would like to use eHome – which so far only

considers vertical displays – on a horizontal display (i.e. SMART table). This warranted a

second round of variability analysis. The analysis started with an initial hypothesis that

the system could be migrated to the horizontal display without any changes. The

hypothesis was rejected after a number of observations I made regarding presentation as I

went back and forth between the vertical display and the horizontal one.

94

Table 4 captures the results of the issue-implication analysis. For the purpose of this

research, I am not interested in finding whether the said implications improve usability;

but I use these findings as evidence that presentation issues do introduce usability issues

that constitute new sources of variability to be explicated and managed.

Table 4 - Variability between vertical displays and horizontal displays.

Issues Implications

Horizontal displays are, typically,

physically larger than vertical ones.

A new scaling adjustment factor should be

defined for UI objects to make them bigger,

and hence easier to interact with, on larger

displays.

Horizontal displays deal with multiple

touch points not only single touch points or

mouse clicks.

This new input mechanism needs to be

incorporated into the Input Manager layer

as a new variant.

95

Issues Implications

Conventional GUI elements like buttons,

menus and tabs were oriented in a top-

down fashion, which for a horizontal

surface did not seem natural because

people sit on different sides of the table.

The conventional GUI elements should be

replaced by panels available on each of the

four sides of the tabletop, as shown in

Figure 26.

Instead of one Exit button on the top left

corner of the screen, an Exit button should

be added on each corner of the tabletop.

The “change mode” button (user/designer)

should be removed. Instead, the change of

mode on the digital tabletop can be made

so that it is triggered implicitly when the

user opens or closes the design panel.

Feedback to the user was provided using a

status bar at the bottom of the screen,

which was not suitable for a multi-oriented

surface (i.e. horizontal display).

Alternative ways to provide feedback are

needed. For example, when a certain

operation executes successfully, the

corresponding icon on the surface glows.

96

Issues Implications

When using a slider control, vertical and

horizontal sliders seemed counterintuitive

if there were people sitting around the table

(e.g. if you go up in a vertical slider, it

seems as if you are going down for a

person sitting opposite to you).

A circular slider can be used with clearly

flagged ON/OFF positions, as shown in

Figure 27. Regardless of where you sit

around the table, if the handle of the slider

is moving towards the ON button, then the

intensity is increasing and vice versa.

Some features were not readily easy to use

for everybody around the table because the

UI controls were closer to a certain part of

the screen.

Instead of a single trash can on the bottom

right corner of the screen, redundant cans

should be made visible on the corners of

the screen when the user touches an object

while in the designer mode.

Readability of text on the horizontal

display was limited because of the

presumed top-down orientation.

The horizontal interface should include far

less text than the vertical one. Descriptive

icons and UI controls, animations, as well

as visual cues like pulsation or glowing are

needed to replace text.

With dual-touch capabilities, horizontal

displays provided new interactions that

were not possible on vertical displays.

On horizontal displays, it should be made

possible to zoom in and out of the floor

plan using two finger touches.

97

Issues Implications

On a large-scale tabletop, drag-and-drop

became difficult due to the physical

limitations on the reach of an arm.

Gestures should be made available as

additional (not substitutional) ways of

executing certain features. For example, to

delete an object, one can use a scratch

gesture.

Figure 26 – redundant GUI elements are needed on horizontal displays to support

multiple orientations.

Figure 27 - Circular slider to control light intensity on horizontal displays to

support multiple orientations.

Using the list of issues and implications, the variability profile is updated to reflect the

new variability sources. With this round of variability analysis, it was clear that

98

variability is occurring due to two factors, namely: the input mechanism being a mouse, a

single touch or dual-touch; and the orientation of the display being vertical or horizontal.

The update variability profile is as follows:

S = 𝑆 ∪ {Input, Orientation}

Where:

𝑉𝑃 = {νρ = input mechanism}

𝑉 =
ν = mouse, ν = single touch, ν = dual touch ∶

𝐶 = {ν , ν and ν are mutually exclusive}

ν ⎯⎯⎯ {𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑥, 𝑟𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑐𝑘, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑙𝑖𝑑𝑒𝑟}

 ν ⎯⎯⎯ {𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑦, 𝑝𝑟𝑒𝑠𝑠 & ℎ𝑜𝑙𝑑, ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑙𝑖𝑑𝑒𝑟}

ν ⎯⎯⎯
𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑧, 𝑝𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 ℎ𝑜𝑙𝑑, 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑙𝑖𝑑𝑒𝑟

𝑑𝑢𝑎𝑙 − 𝑡𝑜𝑢𝑐ℎ 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 (𝑧𝑜𝑜𝑚𝑖𝑛𝑔)

And:

𝑉𝑃 = {νρ = orientation}

𝑉 = ν = vertical, ν = horizontal ∶
𝐶 = {ν and ν are mutually exclusive}

ν ⎯⎯⎯ {𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑈𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘}

ν ⎯⎯⎯ {𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝐺𝑈𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 𝑡𝑒𝑥𝑡𝑙𝑒𝑠𝑠 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘}

From an architectural perspective, at this stage, new variability occurs at the same two

layers of the architecture. All the other layers are left intact.

6.5.3.3 User Story 3

“As a user, I want to be able to use eHome on the new SMART table and Microsoft

Surface.”

99

In the previous sections, I discussed variability due to differences between vertical

displays. I then discussed variability due to the migration of eHome from a vertical

display into a horizontal one. This section will discuss variability due to differences

between horizontal displays. By horizontal displays, I specifically refer to three hardware

platforms: SMART DViT table, new SMART table, and Microsoft Surface. The three

tabletops are shown in Figure 28.

Figure 28 – SMART DViT Table, new SMART Table, and MS Surface (in order).

As illustrated in Table 5 the issues that were taken into consideration are related to the

different dimensions, the number of simultaneous touch points, and the different SDKs.

Two of the SDKs were different versions from the same vendor.

Table 5 – Variability between horizontal displays

Issues Implications

The aspect ratio (AR = long side/short

side) of the SMART DViT table is 2.4

which is very high compared to 1.33 for

the new SMART table and 1.56 for MS

Surface).

This introduced challenges in treating all four

sides of the table equally. That is, on the

large-scale SMART DViT table, there are two

long sides and two short sides. Therefore,

only two control panels can be accommodated

– one on each long side of the table.

100

Issues Implications

Because of its rectangular shape, the floor

plan should not rotate with its full size on the

large-scale SMART DViT table except for a

full 180 degrees.

Each tabletop uses a different SDK to

deal with touch points (SMART SDK

old version, SMART SDK new version,

Surface SDK).

An abstraction layer is required to embrace

the different ways the SDKs deal with touch

points.

The number of simultaneous touch

points is different for each table (2 for

the SMART DViT table, 40 for the new

SMART table, and a large unspecified

number for MS Surface).

Multi-touch gestures and simultaneous

interaction with the system by more than one

user should take into consideration the touch

capabilities of the device.

The updated variability profile is as follows:

S = 𝑆 ∪ {Input, Orientation, Controller}

Where:

𝑉𝑃 = {νρ = input mechanism}

𝑉

=
ν = mouse, ν = single touch, ν = dual touch, ν = multi touch ∶

𝐶 = {ν , ν , ν , and ν are mutually exclusive}

101

ν ⎯⎯⎯ {𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑥, 𝑟𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑐𝑘, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑙𝑖𝑑𝑒𝑟}

 ν ⎯⎯⎯ {𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑦, 𝑝𝑟𝑒𝑠𝑠 & ℎ𝑜𝑙𝑑, ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑙𝑖𝑑𝑒𝑟}

ν ⎯⎯⎯
𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑧, 𝑝𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 ℎ𝑜𝑙𝑑, 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑙𝑖𝑑𝑒𝑟

𝑑𝑢𝑎𝑙 − 𝑡𝑜𝑢𝑐ℎ 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 (𝑧𝑜𝑜𝑚𝑖𝑛𝑔)

ν ⎯⎯⎯
𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑧, 𝑝𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 ℎ𝑜𝑙𝑑, 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑙𝑖𝑑𝑒𝑟

𝑚𝑢𝑙𝑡𝑖 − 𝑡𝑜𝑢𝑐ℎ 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 (𝑧𝑜𝑜𝑚𝑖𝑛𝑔)

And:

𝑉𝑃 = {νρ = orientation}

𝑉 =
ν = vertical, ν = horizontal high AR , ν = horizontal low AR, ∶

𝐶 = {ν , ν and ν are mutually exclusive}

ν ⎯⎯⎯ {𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑈𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘}

ν ⎯⎯⎯ 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝐺𝑈𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑜𝑛 𝑡𝑤𝑜 𝑠𝑖𝑑𝑒𝑠,180 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦, 𝑡𝑒𝑥𝑡𝑙𝑒𝑠𝑠 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

ν ⎯⎯⎯ 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝐺𝑈𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑜𝑛 𝑓𝑜𝑢𝑟 𝑠𝑖𝑑𝑒𝑠,𝑓𝑢𝑙𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡𝑒𝑥𝑡𝑙𝑒𝑠𝑠 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

And:

𝑉𝑃 = {νρ = SDK}

𝑉

=
ν = SMART DViT, ν = new SMART, ν = MS Surface, ν = operating system ∶

𝐶 = {ν , ν , ν and ν are mutually exclusive}

ν ⎯⎯⎯ {𝑆𝑀𝐴𝑅𝑇 𝐷𝑉𝑖𝑇 𝑆𝐷𝐾}

ν ⎯⎯⎯ {𝑁𝑒𝑤 𝑆𝑀𝐴𝑅𝑇 𝑆𝐷𝐾}

ν ⎯⎯⎯ {𝑀𝑆 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑆𝐷𝐾}

ν ⎯⎯⎯ {𝑛𝑎𝑡𝑖𝑣𝑒 𝑂𝑆 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠}

102

From an architectural perspective, the portability that was needed for eHome required a

number of refactoring steps in the architecture. The first tabletop on which eHome was

deployed was the SMART DViT Table. I utilized the dual-touch capability of this table

by adding a feature that allowed the user to place two touch points on the floor plan to

zoom in and out. This kind of interaction required the hardware platform to support at

least two simultaneous touches, which made the interaction irrelevant to the previous

hardware platforms that either did not have support for touch interactions or had support

for only one touch. For this reason, I chose not to include this interaction with the rest of

the interactions in eHome that were common to all platforms. Rather, a specialized

controller was introduced in the UI Controller layer to manage all communication

between eHome and the touch handlers in the SMART SDK, as shown in Figure 29 – A.

By this separation, it was easier to plug this feature in and out. The new controller was

responsible for managing three events, namely: TouchDown, TouchUp and TouchMove.

In case the touch events were part of a zooming interaction, the specialized controller will

handle the zooming. Otherwise, the touch events were rerouted to mouse events I had

previously defined in the UI Controller for the previous platforms in order to maximize

code reuse and avoid code redundancy.

The second step was deploying eHome on the New SMART Table. The New SMART

Table came with its own SDK, and the technology was different from the older table.

Therefore, a new specialized hardware controller was also created to manage

communication between eHome and the touch handlers in the new SMART SDK. At this

stage, I had two different controllers one for each table. These controllers, however,

shared common aspects such as the main triggering events and the zooming interaction.

103

These common aspects were abstracted in a new layer I called “Multi-Touch Library” as

shown in Figure 29 – B. The new layer was abstracted in a way so that it was completely

agnostic to the target hardware platform – all specificities were kept in the specialized

controllers.

Figure 29 – Refactoring due to variability in the SDKs.

Later on, this abstraction served well in accommodating the new digital tabletop – MS

Surface. That is, it only took about one day worth of work to deploy eHome on MS

Surface, because all I needed to do was create a new specialized controller to

communicate with the Surface SDK, while all other aspects were managed by the Multi-

Touch Library. Figure 29 – C shows the final organization. After this step,

𝑆 no longer included the UI Controller layer.

6.6 Discussion of Results

In the previous sections, I discussed an approach to reactively manage variability in

systems due to presentation and portability requirements. A detailed validation of the

104

approach was presented next against an application called eHome which clearly

manifested variability arising from presentation and portability aspects. In this section, I

discuss the results of the evaluation in light of the two assessment questions.

6.6.1 Q1. Can the reactive approach be used to construct a variability profile in an
incremental and lightweight manner for a real software application?

The proposed approach was successful in constructing a variability profile for eHome. As

seen in the case of eHome, the initial variability profile started in a very simple form

consisting of only one variation point with two variants. But as more requirements

became clearer, the variability profile was updated with more variation points, variants

and constraints. The updates were reflected on the system architecture on demand. The

incremental building of the variability profile was supported by a lightweight, issue-

implication analysis that normally did not take more than one or two sessions for the

development team to accomplish. The issue-implication analysis gave focus to the

discussions held throughout the sessions.

The produced variability profile is fully capable of being utilized in the product-

instantiation process. For instance, to produce a product that is specific to MS Surface, I

use the generic formula:

S = 𝑆 ∪ {Input, Orientation, Controller}

Where:

For νρ ∈ 𝑉𝑃 , I select: ν = multi touch ∈ 𝑉 , and

For νρ ∈ 𝑉𝑃 , I select: ν = horizontal low AR ∈ 𝑉 , and

For νρ ∈ 𝑉𝑃 , I select: ν = MS Surface ∈ 𝑉

105

This formal representation is then fed to an instantiation engine through a configuration

file or any other mechanism in order to start the instantiation of a specific product.

6.6.2 Q2. What are the advantages of the reactive approach over other approaches
(proactive, clone-and-own, build from scratch, ad-hoc)?

Just-Enough Variability

One of the main advantages of being reactive versus being proactive in building

variability profiles and acting upon them is the greater ability to justify investment in

variability. The issue-implication analysis was only conducted when there was an actual

demand to do so. It also promoted the idea of just-enough variability. That is, unless an

item could be described as an ‘issue’ with immediate variability ‘implications’, the item

would not be considered in the variability profile. This ensured that the variability profile

is not over-engineered and that it only reflected what is currently needed and is to be

implemented in the architecture. In the case of proactive treatment, there are generally no

guarantees as to what variants will actually be needed in the market. This results in lost

investments if any variant was included in the profile but never used. Also, the risk of

speculation is considerably higher when the involved technology is still emerging or the

domain is unstable. In the case of eHome, this issue was clearly evident as the horizontal

display technology was relatively new. Had we invested heavily in a variability profile

up-front, our speculations would have been unlikely to project the new changes in the

SMART SDK or the differences between MS Surface and other tabletop technologies.

Opportunistic Reuse & Common Repository

In the case of eHome, about 60% of the code (production and testing) is reused amongst

all platforms, which is a big advantage over building separate applications from scratch.

106

This figure could even be higher for systems that have a thinner presentation layer than

the one in eHome. Maximizing reuse is desirable because it lessens the time and effort to

produce new products and maintain existing ones.

Moreover, the approach is also superior to clone-and-own techniques in two ways. For

one, in clone-and-own techniques, more than one repository exists for similar products;

whereas using this approach, only one repository exists for all hardware platforms. This

is advantageous because if we need to change a feature or fix a bug in the system, we

only need to make the proper modifications once, then re-instantiate different products

for the different platforms we support. The process of product instantiation will be

discussed more concretely in chapter nine. Also, say a vendor produced a new digital

tabletop technology. All we need to do is add a new variant in the UI Controller layer. All

other parts of the system are left unchanged. The second advantage of the systematic

treatment of variability in the reactive approach over clone-and-own techniques is the

ability to combine different variants to come up with diverse products. For example,

suppose we want to support a new HP TouchSmart PC that enables two simultaneous

touches. We can come up with a new combination of variants as follows:

S = 𝑆 ∪ {Input, Orientation, Controller}

Where:

For νρ ∈ 𝑉𝑃 , we select: ν = dual touch ∈ 𝑉 , and

For νρ ∈ 𝑉𝑃 , we select: ν = vertical ∈ 𝑉 , and

For νρ ∈ 𝑉𝑃 , we select: ν = operating system ∈ 𝑉

107

That is, by choosing different variants for the variation points, we ended up with a

customized product for the new platform. Constraints are usually defined to filter out

invalid combinations.

Moreover, compared to ad-hoc techniques, treating variability in this systematic manner

has a great value. For instance, before deciding to support a new hardware platform, we

need to know what is different about the new platform that cannot be supported by the

existing product line. If there is any difference, then decisions need to be taken on where

in the architecture this variation should be accommodated and what impact it will have on

other platforms in the family. Without having an explicit variability profile of the SPL,

taking such decisions becomes more difficult and is accompanied with higher risks.

Having said that, it is important to point out that some of the advantages mentioned above

are inherited from the SPL practice in general. Nonetheless, using the reactive,

lightweight approach allows organizations to realize the same advantages in a way that is

more cost effective (because it is lightweight) and less risky (because it minimizes

speculation), and with a faster return on investment (because systems are continuously

delivered as opposed to waiting until the application engineering phase).

6.6.3 Limitations

In traditional SPL engineering, domain engineers assume the role of eliciting, managing

and updating variability. On the contrary, the approach described in this chapter lacks a

clear definition of the roles needed in the different steps. For example, who in a typical

agile organization should conduct the variability analysis? Can developers assume the

responsibility of updating the variability profile? This is vital because variability analysis

and profiling require a wide knowledge of existing requirements in the system. Therefore,

108

a developer who only worked on a certain aspect of the system may not be qualified for

this role, nor is a project manager who is not completely familiar with other projects in

the company. Unless variability management is conducted as a collaborative activity that

involves program managers, project managers, architects and developers, it is difficult to

make predictions as to how effective and practical the approach will be in an

organizational context.

Also, in the case of eHome, the number of variation points was small. If the approach is

to be applied on a large-scale system with many variation points, many variants and

many constraints, the scalability of the approach may become an issue as the variability

profile undergoes drastic increases in complexity. Scalability has always been an issue in

variability management [Chen2009b].

Another limitation of the approach is the subjectivity in the decision-making process that

might affect the systematic aspect of the approach. For example, deciding which variant

should include what presentation aspect can be tricky sometimes. In the case of eHome, I

decided that the “circular slider” should be associated with the variation due to 𝑉𝑃 .

This makes sense because the idea of a slider that is different from the vertical one is a

result of the variation coming from the different touch capabilities. Nevertheless, it can

be argued that the circular slider should be associated with the variation coming from

𝑉𝑃 to clearly communicate that the aspect is a direct implication of variability

due to differences in the orientation. Deciding where to associate a given aspect may

limit the ability to form certain combinations of products at a later stage. For example,

with the decision I made regarding the circular slider, I will not be able to support a

109

multi-touch vertical display with a horizontal slider. When the need to do so arises, the

decision will have to be revisited.

It is also important to point out that the reactive approach presented in this chapter only

considered a specific architectural style – namely, a layered architecture. For other

architectural styles including plugin-based architectures as seen in highly extensible

products such as Eclipse, Facebook, and Android phones, a proactive approach for core

features and services might be more sensible. Also, variability in the presented study was

approached by conducting small changes to the user interface in an incremental manner.

This treatment is useful in many situations; however, it does not consider cases where a

new device might warrant for a completely different design or an entirely different

approach to usability. In such cases, the user interface – in its entirety – should constitute

a variation point with a separate variant for each device. Each variant would have a

distinct user interface and a set of interaction techniques.

Furthermore, there exist some threats to the validity of the evaluation presented in this

chapter. These threats come mainly from the fact that it is a self-evaluation where bias

and subjectivity are inevitable. An attempt was made to reduce this bias by involving

individuals other than the researcher in the development and analysis of the studied case

(eHome). The second validity concern arises from the specificity of the domain which

might deteriorate the generality of the findings. The application domain used to validate

the approach is characterized by the volatility of its pertinent technologies which made it

a perfect fit for evaluating the reactive aspect of the approach. Moreover, the application

had a thick presentation layer with novel interaction techniques which also might have

exacerbated the significance of presentation as a non-functional aspect.

110

6.7 Chapter Summary

This chapter presented an approach to reactively elicit and evolve variability with a focus

on non-functional aspects. Specifically, I discussed variability arising from variations in

presentation and portability requirements. I showed how variability profiles could be built

in an incremental manner using a lightweight issue-implication analysis. Using action

research as a research tool, I presented a self-evaluation of the approach against the

original problem. The approach was in fact successful in constructing variability profiles

incrementally, and it provided advantages over other approaches but with its own set of

limitations.

111

 VARIABILITY MODELING* CHAPTER SEVEN:

7.1 Preamble

In the previous chapters, I showed how variability in business logic requirements as well

as in presentation and portability requirements can be elicited and evolved in an

incremental and lightweight manner. This chapter sheds more light on the issue of

variability modeling. That is, having constructed variability profiles in the previous steps,

we need to take further steps to make variability visible to different stakeholders in the

organization. Modeling variability with feature trees is one way this could be achieved.

Nevertheless, feature trees do not natively provide a means to trace the requirements at

the feature level to the implementation at the code level. Traditional variability

management approaches address this issue by using intermediary requirement and design

artefacts to ensure consistency between the model and the implementation. In this

chapter, I discuss why this approach is not ideal especially in an agile context. Then, I

address the problem in a different way and I provide a comparative evaluation.

7.2 Research Instruments

In this chapter, I investigate how variability can be modeled in a way that takes into

consideration the absence of traditional requirement and design documents, and ensures

consistency between the model and the implementation at all times. I specifically look at

how executable acceptance tests (EATs) can be used to serve this purpose. The research

question I address in this regard is as follows:

* This chapter is based on a published paper [Ghanam2010c]. Co-author permission is attached to
Appendix B.

112

RQ3. How can EATs be used to model variability in a system so that variability becomes

communicable across the organization and traceable to the implementation?

In the context of the framework I propose, this research question addresses Stage C:

Variability modeling as shown in Figure 30. For this stage, I assume that a variability

profile has already been constructed in the previous stage, and it can be translated into a

feature tree. This implies that the modeling approach discussed throughout this chapter is

concerned with functional requirements only – since translating non-functional variability

profiles into feature trees is a challenge as discussed in the previous chapter.

Figure 30 – This chapter tackles Stage C: Variability modeling

Two research instruments are used to evaluate the research presented in this chapter.

Firstly, I use comparative evaluation [Vartiainen2002] where a comparative framework is

built using criteria from the literature and then used to evaluate the proposed approach in

comparison to other traditional approaches. Secondly, I use a running example to

illustrate the advantages and identify the limitations of the approach. Using running

examples is a well-accepted research technique in the absence of opportunities to apply

113

large-scale research (e.g. SPL research) in an industrial context over a long term (e.g.

[Tun2009, Parra2009, Cho2008]).

7.3 Preliminary Analysis

7.3.1 Feature modeling

A feature model is a representation of the requirements in a given system abstracted at

the feature level [Riebisch2003]. In variability management, feature models are used in a

tree-like format to represent a hierarchy of features and sub-features in a product line.

Typically, the feature tree includes notations to describe where variation exists, and the

relationship between the different variants. For example, Figure 31 shows a feature tree

for a home security system. The white circles indicate that a feature is optional, whereas

the arch indicates different alternatives that might be governed by a constraint to control

their selection during the instantiation process.

Figure 31 - A feature tree for a home security system

Linking conceptual requirements in feature models to actual implementation artefacts

provides advantages such as increased program comprehension, implementation

completeness assessment, impact analysis, and reuse opportunities [Antoniol2002].

Nevertheless, traceability is a non-trivial problem. Berg et al. [Berg2005] analyzed

traceability between the problem space (i.e. the model) and the solution space (i.e. the

114

development artefacts) in a SPL context. The results suggested that the feature model

provided an excellent visualization means at individual levels of abstraction. However, it

did not improve the traceability between artefacts across development spaces.

Furthermore, in practice, as the product line evolves, traceability relationships between

the model and the code artefacts may become broken or outdated [Riebisch2004]. This

happens either because changes in the model are not completely and consistently realized

in the code artefacts; or because changes due to continuous development and

maintenance of the code artefacts are not reflected back in the model. This problem is not

unique to SPLs. In fact, outdated traceability between requirement specifications and

other development artefacts has always been an issue in software engineering

[Gotel1994, Cleland-Huang2004]. Also, in an agile context, artefacts that are typically

needed to achieve traceability (e.g. UML design documents, specification documents) are

minimal or even absent.

Traceability links provided by some commercial tools (e.g. DOORS [DOORS2010])

mitigate this issue, but leave some other problems unsolved. For example, say feature A

and feature B are independent features in the product line. During the maintenance of

feature A, the developer introduced a change that unintentionally caused a technical

conflict between feature A and feature B. Although the tool will maintain the traceability

links between each piece of code and the correspondent feature, it cannot, uncover the

newly introduced conflict in order to reflect it back in the model.

To address the issues mentioned above, I investigate the use of EATs as a direct

traceability link between feature models and code artefacts. The next section elaborates

more on EATs and their characteristics.

115

7.3.2 Executable Acceptance Tests (EATs)

In agile software development, the specifications of the system are captured in the form

of user stories. These stories are then translated to tests that specify the acceptance

criteria of a given user story [Cohn2004]. ATs aim to reduce ambiguities and

inconsistencies found in traditional specification documents, particularly when they are

made executable. An example is shown in Figure 32. The two main characteristics of

EATs that support my proposal to use them as a communication medium are the

following:

x Because EATs are essentially deduced from user stories, they exhibit a language

that is readable to non-technical stakeholders. Therefore, they serve as cohesive

documentation of the specifications of a given feature.

x Being executable, EATs can be run (executed) directly against the system in order

to test the correctness of its behaviour. Therefore, they serve as accurate and up to

date validity tests.

Figure 32 - Example of an EAT

7.3.3 Traceability from EATs to Code Artefacts

The fundamental basis of the approach I describe in this chapter is that EATs natively

provide the necessary links to code artefacts. ATs can be made executable against the

116

system by linking them to a thin layer of test code (aka. a fixture), and from there to

actual production code. Figure 33 shows an example of this traceability. At the first layer,

only one row of an EAT is shown for simplicity. This row is linked – by a test

automation framework (e.g. FIT) – to a method in the test code called

addResidentWithPIN(). This method in turns uses the addResident() method in the

production code, specifically in the HomeResidentsList class. When the test is executed,

an attempt to add a resident with the given parameters will be made. In this scenario, if

the attempt is not successful – for a variety of reasons such as the PIN being too short or

too long – the EAT will fail. Otherwise, it will pass. Usually, a suite of EATs is executed

rather than a single EAT. Moreover, with appropriate test coverage, tools generate reports

stating which methods were involved in the execution process of a given EAT. In the

remaining of this chapter, I discuss how this traceability is useful in linking features

models to code artefacts.

Figure 33 - Traceability through EATs

117

7.4 Using Feature Models with EATs

I propose extending feature models by including EATs as concrete descriptors of features

at the lowest level of the feature tree. EATs should be associated with features that

originally would be considered leaf nodes in the tree as shown in Figure 34. For instance,

the feature “Access by PIN” is associated with three EATs. These EATs describe

scenarios that need to be satisfied in the implementation of this specific feature.

Figure 34 - The proposed extension to feature models

Linking between an EAT node in the model and the actual specification happens by

associating a test unit to the EAT node. An EAT node can link to a test table, a test page,

or a test suite. No constraints are put on the granularity of the test unit to leave it flexible

for various contexts. Nevertheless, a single test table may be insufficient given that

typically more than one table is needed to specify some behaviour. This makes a single

table less cohesive than desired. On the other hand, a test suite may be too large because

it involves more than one feature creating dependencies between test units. Therefore, to

achieve reasonable cohesion and independence I suggest the use of a test page as a usual

test unit which in turn may include one or more test tables. For example, EAT G can be

118

linked to a single test page that includes three test tables. Depending on the testing tools,

test pages can take various formats such as html files or excel sheets.

Following the earlier definition of a feature as a chunk of functionality that delivers value

to the end user, one EAT generally is not sufficient to represent a feature in a system. In

practice, a group of EATs represent the different scenarios or stories expected in a given

feature in a system. This implies that in order to somehow link features in a feature model

to EATs, one-to-one relationships are not practical. Rather, each feature in the feature

model should be linked to one or more EATs as depicted in Figure 35.

Figure 35 - Relationships between features, EATs, and test units

The “Access by PIN” feature is specified using three EATs. In order for the behaviour of

this feature to be deemed correct, all three EATs should pass. Moreover, in some cases, a

single EAT can be at a level high enough to cut across a number of features in the

system. Consider, for example, a high-level EAT such as “Owner entering premises”. Say

in order for the scenario specified in this EAT to pass, more than one feature should be

119

involved (i.e. EAT X cuts across a number of features). This implies that a many-to-many

relationship is needed in order to accurately represent the relationship between EATs and

features in a feature model.

Linking features to EATs has the following consequences:

1. The selection of a feature in the product derivation phase automatically implies

the inclusion of all its EATs. For example, if the customer chooses to have the

“Access by PIN” feature, this implies that all EATs in the group {EAT E, EAT F,

EAT G} should pass.

2. EATs shall inherit all the dependencies and constraints originally imposed on

their parent nodes. For example, according to the model in Figure 34, the two

features “Access by PIN” and “Access by fingerprint” are mutually exclusive.

This implies that the groups: {EAT E, EAT F, EAT G} and {EAT H, EAT I, EAT

J} are mutually exclusive too.

7.5 Implications of Using EATs as Traceability Links

In the previous sections, I showed how features in the feature model can be linked to

EATs in order to provide traceability links between the feature model and the code

artefacts. This section analyzes the implications of using EATs by highlighting three

main ways through which EATs provide significant contribution to feature models.

7.5.1 Consistency between the Feature Model and the Code Artefacts

EATs provide a means to ensure that the problem space (i.e. the specifications), and the

solution space (i.e. the implementation) are consistent. This consistency is due to the fact

that these specifications can be executed against the implementation, and the result of

their execution gives an unambiguous insight of whether or not the intended requirements

120

currently exist in the system. Within a SPL context, the following advantages are

identified:

Continuous two-way feedback. Maintaining a practice where every feature in the

feature model has to be associated with some EATs provides certain advantages. Changes

due to continuous development and maintenance of the code artefacts are reflected back

in the model, because – at any point of time – the EATs are either in a passing state

(visualized as green) or a failing state (visualized as red). For instance, Figure 36 shows

how a change in the code (e.g. bug fix) caused EAT B to fail – also causing the “Motion

Detector” to be denoted as incomplete.

Figure 36 - Continuous two-way feedback

The opposite direction of feedback occurs when introducing a new feature to the model.

The accompanied EATs will initially be in a failing state indicating that the feature is not

implemented yet.

Exploiting hidden variability concerns. Using EATs helps in revealing unwanted

feature interactions that otherwise might be hidden. It also supports the realization of

common aspects of features. I illustrate these points further by going through a number of

scenarios.

121

Scenario 1: In some cases, the same EAT can be used as part of the specifications of two

different features. If the features are originally mutually exclusive, and the same EAT

passes in both, then this EAT is agnostic to the source of variation in the features. This

means that the specifications in this EAT are part of the common portion of the parent

node, which exploits a commonality aspect that was not originally apparent. Figure 37

shows that because EAT G and EAT J are the same (I use a dashed line to denote this – it

is also possible to give them the same name), it is possible to abstract the commonality as

a mandatory sub-feature under “Access Control”.

Figure 37 – Abstracting the commonality as a mandatory sub-feature

Scenario 2: Using EATs allows finding unwanted feature interactions. EATs for

independent features may pass when the features are selected separately; but fail when

selected together. This is indicative of an unwanted feature interaction. This conflict is

either a problem in the implementation and should be resolved, or an unavoidable real

conflict that should then be reflected in the model as an “excludes” dependency or using

a multiplicity constraint.

122

Scenario 3: Some EATs for independent features fail when these features are selected

separately, but when selected together, they pass. This is indicative of a dependency

between the features. It can be either due to unnecessary coupling in the implementation

itself that should be resolved, or due to a necessary “requires” dependency that should

then be reflected in the model.

7.5.2 Supporting the Evolution of Variability in the Extended Feature Model

Using EATs as a basis for evolving variability in the feature model is rewarding in a

number of ways. Consider the following scenarios:

Scenario 1: A new feature or sub-feature is added to the feature model. In case the newly

added feature causes EATs of other features that were originally passing to fail, this is a

sign that a new conflict was introduced by the new feature. Without the direct feedback

of failing tests, it is less likely for this conflict to be immediately exposed.

Scenario 2: An existing feature or sub-feature is removed from the feature model. If this

feature was originally related to other features, then all dependencies are to be resolved

before removing the feature safely. However, in case there was a hidden (unexploited)

dependency between this feature and other features, removing this feature and its

corresponding code might have a destructive effect on the other features. The fastest way

to discover such effects is by looking for EATs that started to fail only after removing the

feature.

Scenario 3: A new variant is to be added to a group of variants under a given feature. For

developers, using EATs provides guidance on where and how this new variant should be

accommodated in the system. For example, suppose we want to add a new alternative

“Access by Magnet Card” under “Access Control”. First of all, we may be able to reuse

123

the EATs of the other sibling alternatives and tweak them to reflect the requirements of

the new alternative. And because EATs are traceable to code artefacts, one can look at

the implementation of the sibling alternatives in order to have a better understanding as to

where in the code the new variant should be incorporated, and how it should be handled.

With appropriate tool support, we can also automate the process of adding a variant by

using the sibling nodes as templates, and directing the developer to the exact place in the

code base where the new logic should be added (as will be explained in chapter eight).

This is particularly important for legacy systems with poor or outdated design

documentation or for development environments where design documentation might not

be available at all.

Scenario 4: Abstracting a variability aspect to the common layer. Say an EAT is used as

part of the specifications of two mutually exclusive features, and this EAT passes in both.

This means that the specifications in this EAT can be abstracted to become part of the

common layer of the parent node as a mandatory sub-feature (this was also mentioned in

the previous section).

7.5.3 Deriving Products using the Extended Feature Model

In a SPL context, feature models are used to select features and variants that constitute a

product instance. The selection process should take into consideration the constraints and

dependencies between features and variants, as conveyed in the feature model.

Nowadays, tool support is available to make this process easier, faster and less error-

prone. Once the features and configurations have been selected, an instance is derived

that has the required feature composition and configuration.

124

The extended feature model described in this chapter provides great benefits in this

regard. It provides support for two different methods of product derivation, namely:

selecting configurations, and extracting required artefacts. A dedicated chapter on

product derivation (chapter nine) will elaborate on these methods in greater detail.

7.6 Tool Support

In order to realize the benefits discussed in the previous sections, we built a tool that

supports traceability links between the feature model and code artefacts via EATs

[Riegger2010]*. To avoid reinventing the wheel, an open-source modeling tool was

chosen in order to be extended. We used Feature Model DSL as the basis (available

online [André2010]). The tool provides a feature modeling toolbox integrated in the

Visual Studio environment. It includes a visual designer to create and modify models. It

also provides a configuration window that allows the creation of configurations based on

the feature model. We extended the tool in two ways, namely: allow the linkage between

features and EATs, and define a course of action to complete the derivation process of

individual instances after the configuration process. The remaining of this section will

explain the currently available features.

The user can model features and the relationships between them following the typical

feature modeling notation as shown in Figure 38. Each node in the tree represents a

feature or a sub-feature including options and alternatives.

* The implementation of the tool was done collaboratively with Felix Riegger [Riegger2010].

125

Figure 38 - The user can model features and their relationships

In our extension of the tool, the leaves of the feature tree can be mapped to EATs. When

the user clicks on a leave node, a new dialogue pops up showing a list of all EATs found

in the solution as shown in Figure 39. Tests that have already been mapped are shown in

grey. The user then selects an EAT to accomplish the mapping.

Figure 39 – The leaves of the feature tree can be mapped to EATs

126

Through the use of a Visual Studio extension that executes GreenPepper

[GreenPepper2010] acceptance tests, the tool allows the user to run EATs directly from

the feature model as shown in Figure 40. This action runs all EATs in the feature model

regardless of their relationship to each other. This implies that mutually exclusive EATs

can be run together but they cannot pass simultaneously. Nodes that have passing tests

are coloured in green and those with failing tests are coloured in red as shown in Figure

41.

Figure 40 - The tool allows the user to run ATs directly from the variability model

127

Figure 41 – Passing tests are coloured in green and failing tests are coloured in red

To run the tests for a specific instance of the product line, the user can use the

configurator window to select the wanted features as shown in Figure 42.

Figure 42 – The user can use the configurator window to select the wanted features

128

After feature selection (i.e. defining a new product instance), the tool checks the

constraints to ensure the validity of the selected subset of features. This includes checking

that all mandatory features have been selected. But as a proactive measure, the tool – by

default – selects mandatory features and does not allow deselecting them. The tool then

runs only those EATs that are relevant to the new instance. This is shown in Figure 43.

Figure 43 - The tool runs only those EATs that are relevant to a given instance

7.7 Evaluation

In this chapter, I showed how EATs can be used to link feature models to code artefacts.

This section presents an evaluation of the proposed approach. I evaluate the approach in

two different ways. First, I compare the approach with traditional requirement traceability

approaches and other approaches that involve feature models. Then, I use the running

example presented throughout this thesis to list the limitations of the approach. To avoid

redundancy, I do not list the advantages of the approach as they have already been

discussed in section 5. Using a running example for validation and evaluation purposes is

a well-accepted technique in the SPL community [Tun2009, Parra2009, Cho2008].

129

7.7.1 Comparative Evaluation

For the purpose of this evaluation, I use the comparative evaluation framework provided

by [Vartiainen2002] which consists of four steps, namely: selecting the objects to be

compared, identifying the level of comparison, providing a common conceptual

comprehension, and discussing the findings.

7.7.1.1 Object selection

In this evaluation, I conduct the comparison between my approach on one hand and two

categories of approaches on the other hand. One category includes general requirement

traceability approaches that are not necessarily specific to SPL contexts. The second

category includes traditional approaches that use feature models to achieve traceability.

7.7.1.2 Level of comparison

The evaluation presented in this section lies on the extreme left of the continuum

provided by Vartiainen [Vartiainen2002] as shown in Figure 44. That is, I am more

interested in looking at the differences between approaches that are fundamentally similar

in their purpose (i.e. achieving traceability).

Figure 44 – Similarity vs. difference of the objects compared (obtained from

[Vartiainen2002])

130

I use five units of comparison as evaluation criteria, namely: the number of links, the

quality of links over time, system evolution, impact analysis, and program

comprehension. These criteria are based on guidelines obtained from previous work in

the literature such as [Riebisch2004] and [Antoniol2002] except that I apply them in a

SPL context.

7.7.1.3 Conceptual comprehension

The goal of this step is to provide a common understanding of the concepts used in the

comparative evaluation. The “number of links” criterion refers to how many links need to

be maintained to achieve traceability for a given feature in the system. The “quality of

links over time” criterion refers to how well the established traceability links cope with

the inevitable changes in the system to stay relevant and up-to-date over time. The

“system evolution” criterion describes how traceability links are affected with the

evolution of a system such as adding or removing requirements. In the case of feature

model approaches, I am more concerned with the evolution of variability such as adding

or removing variation points and variants. The “impact analysis” criterion describes the

depth of the information an approach can provide in regards to the impact a change in one

part of the system has over other parts of the system. The “program comprehension”

criterion is used to describe the ability of the developers to form a mental model of the

variability definition as described in the feature tree as well as the realization of that

variability at the code level.

7.7.1.4 Findings

The findings of the comparative evaluation conducted as per the framework described

above are captured in Table 6. The evaluation in general is limited by the subjectivity

131

arising from the criteria being considered. Also, the fact that the researcher cannot

guarantee full impartiality in self-evaluation may introduce some bias in the findings.

132

Table 6 - Comparison between the different approaches of traceability

 Traditional Requirement Traceability Traceability through Feature Models Traceability through Feature Models

and EAT

Number of links Very large, because every requirement is

linked to relevant design, code and test

artefacts.

Somewhat large, because every feature is

linked to relevant design, code and test

artefacts.

Fairly small, because every feature is

only linked to the EATs files specifying

that feature. The links to code artefacts

are embedded within the EATs

themselves.

Quality of links over

time

Links become broken or/and outdated

without appropriate manual revisions and

updates.

Links become broken or/and outdated

without appropriate manual revisions and

updates.

It is easier to keep links consistent and

up-to-date because of the immediate

feedback on broken or outdated links as

there is a clear indication where/when

revisions and updates are needed.

133

System evolution

If a feature is added, we need to provide

the links to all the relevant requirements

and other artefacts manually (because one

requirement may be used in more than

one feature). If a feature is removed, we

need to check if the linked artefacts are

still relevant to other requirements.

If a feature or a variation is added, we

need to provide links to all the relevant

requirements and other artefacts

manually. If a feature or a variation is

removed, we need to check if the linked

artefacts are still relevant to other

requirements. Also, there are no

automatic checks for new hidden

conflicts in the feature model.

The addition or removal of features and

variations is supported by a safety net of

EATs. Also, failing EATs may indicate

newly introduced conflicts.

Impact analysis Provides information on the artefacts that

can be potentially impacted by a change.

No details on the actual impact.

Provides information on the artefacts that

can be potentially impacted by a change.

No details on the actual impact.

Provides information on the artefacts that

are actually impacted by a change, and

provides immediate feedback on the

actual impact of that change.

134

Program

comprehension

Improved over systems with no

traceability. But requires an effort for

developers to link requirements with

code tasks (reading requirement trace

matrices is not simple). Also, given that

variability is not modeled explicitly,

handling each type of variation in code is

not straightforward.

Reasonable, because requirements are

conceptualized at a more comprehendible

level of abstraction (i.e. features), and

variability is modeled explicitly.

Good, because features are linked

directly to code artefacts, and hence

variants can be traced to code easily.

Also, developers get instant feedback on

changes to the code.

135

7.7.2 Running Example – Limitations

Having illustrated the advantages of our approach in comparison to other traditional

approaches, there is a raft of issues that limit the practicality of the approach. For one, it

is currently difficult to predict how scalable this approach is – especially when dealing

with a large number of variation points and variants. This problem is inherited from the

scalability issues associated with feature modeling in general [Chen2009b]. Furthermore,

despite the fact that EATs provide an elegant way to specify functional requirements in

software systems, they have not yet been widely used in specifying non-functional

attributes such as presentation and portability as explained in the previous chapter*. For

feature models that contain variability due to non-functional aspects, this approach may

not be sufficient. Moreover, the most common practices involving EATs focus on code

artefacts much more than other development artefacts. For organizations that consider

design artefacts, for instance, to be essential, the adoption of this approach may result in

these artefacts becoming rapidly outdated – mainly because from a developer’s

perspective there will be no need to maintain their details anymore. However, the

organization can solve this problem by requiring that some EATs be used as placeholders

to associate important information such as links to design documents, standards or data

files [Park2008]. Another critical point that may be a real challenge in some

organizations is the commitment and discipline needed to provide sufficient EAT

coverage for all features in the system in a sustainable manner. Adopting test-driven

development practices is one way to deal with this issue.

* other non-functional attributes like performance can be specified and executed as described in
[Marchetto2010].

136

It is important to point out that contrary to the initial impression that this approach may

lead to architectural drift, the approach may actually improve adherence to the

architecture. This is because of the transparency and traceability between the model

artefacts and the code artefacts, which provide the developers with a holistic and

consistent understanding of the product line. This, however, is still an open issue to

investigate.

7.8 Chapter Summary

This chapter discussed the use of EATs as a means to link feature models to code

artefacts. Linking conceptual requirements in feature models to actual implementation

artefacts provides for many advantages such as increased program comprehension,

implementation completeness assessment, impact analysis, and reuse opportunities. The

approach proposed in this chapter provides traceability links in a way that ensures

consistency between the feature model and the code artefacts, enables the evolution of

variability in the feature model, and supports the product derivation process (explained in

detail in chapter nine). The valuable implications of these three characteristics on SPLs

were illustrated in detail. The approach was compared to traditional approaches and a

number of advantages and limitations were identified.

137

 VARIABILITY REALIZATION* CHAPTER EIGHT:

8.1 Preamble

In the previous chapter, I showed how EATs could be used to achieve traceability links

between the feature model and the code artefacts in a SPL context. This chapter

elaborates on how variability can be realized (i.e. implemented) at the code artefact level

to reflect variability in the feature model so that the relevant EATs pass. The work

presented in this chapter is motivated by two reasons. The first is related to the minimal

documentation or even the absence of it in an agile context. This triggers the quest for an

approach to systemize the realization process that is different from traditional approaches

which generally rely on requirement and design documents. The second reason is related

to the reactive aspect of the SPL framework I propose in this dissertation. That is, as

variability has not been proactively accounted for in the architecture, there is a need to

investigate a bottom-up approach that allows injecting variability on-demand.

8.2 Research Instruments

In this chapter, I investigate how variability can be introduced at the code level in a

systematic and reactive manner. The research question I address in this regard is the

following:

RQ4. In an agile context, how can variation points and variants be realized at the code

level in a reactive and systematic manner?

* This chapter is based on a published paper [Ghanam2010b]. Co-author permission is attached to
Appendix B.

138

In the context of the framework I propose, this research question addresses Stage D:

Variability realization as shown in Figure 45. That is, upon the demand to introduce a

new variation point or variant in the system, a process will need to take place to change

the system from a specific system (i.e. one that satisfies a specific set of requirements), to

a generic system (i.e. one that satisfies more than one set of requirements) with

configuration capabilities.

Figure 45 - This chapter addresses Stage D: Variability realization

The first research instrument I use in this chapter is a preliminary analysis to articulate

the different variation types and the different ways these variations are usually handled. I

then build my proposal upon this analysis to address reactive and systematic variability

realization in agile contexts.

The tool support provided to automate the proposed approach is evaluated in two phases

for feasibility and practicality. In the first phase, I conduct a proof-of-concept evaluation

to study a mock-up system and iteratively refine the provided automation. In the second

phase, I use a case study approach to examine the practicality of the automated approach

on an independent third-party system. The design of the study includes a number of

139

components, namely: the selection criteria of the case to be studied, the procedure

followed to conduct the study, the assessment questions used to evaluate the results, and

an analysis of the findings.

8.3 Preliminary Analysis

8.3.1 Variability Realization Techniques

In a SPL, variability in a given feature occurs in two different ways:

a. The feature requires various implementations for different customers (aka.

alternatives). For example, the same “Secure Connection to Server” feature may

need to be implemented using two different security protocols to satisfy the

different needs of the customers. One way* to implement this is by using a

factory pattern [Gamma1995]. This pattern provides a mechanism to create

different concrete classes through a single factory.

b. The feature has optional extensions that are needed by some but not all products

(aka. options). For example, the “Access Control” feature supports “Fingerprint

Authentication” but only for those customers who want this kind of

authentication. For options, I use a decorator pattern [Gamma1995] which allows

extending the behaviour of an existing object at runtime.

When a SPL practice is not adopted, embracing variability is usually done by one of three

techniques, namely:

* There are other techniques and patterns to realize variability for alternatives as well as options. Choosing
the appropriate technique for each case is beyond the scope of this thesis. Our approach, however, should
work fine with any code-based variability implementation technique.

140

a. Building the application from scratch. Some code can be reused in an ad-hoc

manner, but this practice results in multiple repositories that need to be

maintained and supported separately which is highly inefficient and error prone.

b. Clone-and-own techniques where the base code is copied and then customized to

satisfy the new variation. This practice has the same problems as in (a).

c. Ad-hoc refactoring, where it is left up to the developer to refactor existing code to

satisfy both the new as well as the existing variation. In this case, there is neither a

systematic way to refactor the code nor a way to convey knowledge about the

existence of variation points. This causes variability in the system to become too

cumbersome and expensive to maintain, and may render the instantiation process

vague.

On the other hand, SPL engineering deals with variability in a systematic manner through

variability management practices. Traditional SPL approaches manage variability in a

proactive manner in order to make the architecture capable of accommodating the

different variation points and their variants.

8.3.2 Premises of the Proposed Approach

The fundamental premise of the approach I propose in this chapter is that variability in an

agile context should be handled in a reactive manner. Being reactive means that unless

requirements about variations in the system are available up-front, the agile organization

should not proactively invest into architectural design to accommodate what might vary

in the system. Rather, the normal course of development should take place to satisfy the

current needs of the customers. Later on, should a need to introduce a variation point

141

arise – whether during development or after delivery – agile teams should have the tools

to embrace this variability.

Having said that, the approach addresses the problems found in ad-hoc refactoring by

emphasizing the systematic aspect. This means that the variability realization process

should not be left completely up to the developer’s intuition as practiced in ad-hoc

approaches. Rather, the developers should be guided by a certain procedure that ensures

consistency in the implementation of different variation points and variants in the system,

and that provides a systematic way to configure and instantiate products. The proposed

approach utilizes test artefacts in the existing system to achieve the abovementioned

objectives.

8.3.3 The Role of Test Artefacts

In agile approaches like Extreme Programming [Beck2004], automated tests are deemed

essential. There usually exist two types of tests: unit tests (UT) and acceptance tests (AT).

In the previous chapter, I discussed the role EATs can play in a SPL context. In this

chapter, I focus on the use of UTs. UTs verify the correctness of the behaviour of an

individual unit, or the interaction between units. In test-driven development [Beck2003],

UTs are written before writing production code. UTs are automated to be executed

frequently and help in refactoring the code.

In the proposed approach, using EATs in the feature model is a step that comes before

implementation. That is, EATs serve as a high-level, customer facing representation of

the needed variability. After that, UTs become relevant in three ways:

142

x UTs are used as a starting point to drive the variability realization process to

implement the variability prescribed in the relevant EATs. This point will be

discussed further in the upcoming sections.

x When a variation point is realized along with its variants, UTs ought to exhaust all

the different variants, and therefore they are part of the variability realization

process.

x UTs serve as a safety net to make sure the variability realization process did not

cause any destructive side effects.

8.4 The Proposed Variability Realization Approach

8.4.1 Refactoring for Variability

To illustrate the proposed approach, I use a simple example. Say, within a smart home

security system, we have an electronic lock feature on every port (door or window). The

diagram in Figure 46 illustrates the current state of the system. The Lock class is tested

by the LockTest class. Arrows show the call hierarchy. For instance,

LockTest.testSetPassword() calls the public method Lock.setPassword(), which in turn

calls the private method Lock.isValidPassword(String).

Figure 46 - Current state of the Lock feature.

143

Currently, the system allows the user to set a 4-character password for the locks. The

password criteria are checked in the Lock.isValidPassword() method shown in Listing 1.

Say we need to introduce a variation point to the lock feature to allow customers to

choose the desired security level needed on the locks before they purchase the system.

Variants include a 4-char lock (the original lock), an 8-char lock (a new alternative), or a

non-trivial 8-char lock (another new alternative - characters cannot be all the same and

cannot be consecutive).

Listing 1 – Password criteria are checked in the Lock.isValidPassword() method

To implement this, I use a factory pattern as mentioned previously to reach the

configuration shown in Figure 47. In this case, this pattern was chosen because I am

dealing with a feature that provides a common implementation of two of its methods

across all product instances (implemented as an abstract class), but the third method will

class Lock {
 String currentPassword="";

 public boolean setPassword(String password) {
 if(isValidPassword(password)) {
 this.currentPassword = password;
 return true;
 }

 return false;
 }

 boolean isValidPassword(String password) {
 if(password.length()== 4) return true;
 return false;
 }

 public boolean isAuthentic(String password) {
 if(password == currentPassword) return true;
 return false;
 }

}

144

vary according to the chosen alternative (implemented differently in the inheriting

classes).

One can abstract the method that is responsible for password validation (i.e.

Lock.isValidPassword(String)) and provide three different implementations for it.

Refactoring the code to reach the configuration in Figure 47 has consequences. First of

all, UTs need to be written to reflect the new changes. Also, we need to change all

instantiations of the old Lock class to use the new factory instead. And before every

instantiation of the Lock class, a specific implementation is to be selected. For this to

work, an implementation selector class is needed to return the proper implementation.

Figure 47 - The new state of the Lock feature

To support the refactoring process and all its consequences, I leverage the readily

available traceability between UTs and production code.

145

8.4.2 Formalization

Formalizing the variability realization process is important in order to automate it. Given

that this realization process is test-driven, the process starts with an existing system that

consists of a set of UT classes 𝐶 . Each testing class 𝑐 has a set of testing methods.

𝐶 = {𝑐 , 𝑐 , 𝑐 , … } 𝑤ℎ𝑒𝑟𝑒 𝑐 = {𝑚 ,𝑚 ,𝑚 ,… }

Each testing method 𝑚 may instantiate or use a number of classes in the system – set

𝐶. Each class 𝑐 consists of a set of methods.

𝐶 = {𝑐 , 𝑐 , 𝑐 ,… } 𝑤ℎ𝑒𝑟𝑒 𝑐 = {𝑚 ,𝑚 ,𝑚 ,… }

Each method in 𝑐 may instantiate or use a number of other classes in the system. Over

the previous sets, I define a process to introduce a variation point to the system. The

process consists of five functions as described in the following sections.

8.4.3 Variation Initialization Function

This function determines two attributes:

1. The UT of interest as a starting point 𝑚 ∈ 𝑐 . This feeds into the next

function.

2. Variation details needed for code refactoring and generation. This includes

providing a name for the new variation point, selecting one of two variation types:

alternatives or options, and providing names for the wanted alternatives or

options.

These two attributes should be determined by the developer. The developer chooses the

UT that tests the scenario where variability needs to exist. In the example above, it is the

146

LockTest.testSetPassword() method shown in Listing 2*, because this is mainly where the

setting password part of the feature is tested.

Listing 2 – The UT that tests the scenario where variability needs to exist

The developer then decides whether the new variability is due to the need to provide

alternate implementations or to add options to the feature at hand. In the example, I

choose alternatives. The developer provides the names of the wanted variants. For

example, “low”, “medium” and “high”. The first variant is assigned by default to the

original implementation (i.e. before variability existed).

8.4.4 Call Hierarchy Function

This function determines the transitive closure of the UT in 𝑚 (the first attribute in the

previous function). This includes all methods in the system that are invoked due to the

invocation of 𝑚 . The transitive closure is calculated by searching for declarations of

all methods that are called within the test method. This also includes searching in the

hierarchies of the declaring types to look for overriding methods because with static code

analysis it is not possible to know which method is invoked when a method is called

using a base class reference. The obtained methods are added to a list of candidates to be

considered for refactoring. Then, within each of the obtained methods, I search for

* This UT is for illustration only. It is understood that in real life best practices like one-assert per test should be
observed.

public void testSetPassword() {
 Lock lock = new Lock();
 Assert.assertFalse(lock.setPassword(""));
 Assert.assertFalse(lock.setPassword("Hello"));
 Assert.assertTrue(lock.setPassword("Helo"));
}

147

declarations of methods being called and so on until no more methods are found. All of

the obtained methods are also added to the list of candidates. The search ignores methods

that cannot be candidates for refactoring such as methods that are external to the

application (e.g third party library). Abstract methods (declared in interfaces and abstract

classes) are not added to the list of candidates per se, but the methods that implement

them are added [Salbinger2010].

In the example above, the call hierarchy of LockTest.testSetPassword() includes the

methods: Lock.setPassword(String) and Lock.isValidPassword(String). At this stage,

developer’s input is needed to identify where in the call hierarchy the variation point

should exist. This determines the method that is causing the variation to happen. For

example, because the variation point I need to inject is pertaining to the validation of the

password criteria, I choose Lock.isValidPassword(String).

8.4.5 Variability Trace Function

Given the method m determined in the call hierarchy function, the variability trace

function determines all the classes and methods that can potentially be affected by

introducing the variation point.

In the example above, say there is a class Port that instantiates the Lock class. This

instantiation needs to be updated to use the new factory.

8.4.6 Code Manipulation Function

This function performs the refactoring and the code generation needed to introduce the

variation point and the variants based on the variation type determined in the call

hierarchy function. Given the method 𝑚 ∈ 𝑐 from the variability trace function, the

following code manipulations take place:

148

x Refactoring 𝑐 so that 𝑚 is abstracted as a variation point as in Listing 3. The

original class name and method name are left unchanged. The class and the

selected method are made abstract, and the definition of the method is removed.

Listing 3 – Abstracting the method where variability will be introduced

x Generating implementation templates for the variants as in Listing 4. The first

generated implementation is the same as the original implementation before

variability existed. The other generated implementations are empty templates

representing the other variants needed. All implementations extend the abstracted

class. The name of each implementation takes the form

VariantNameAbstractClassName.

abstract class Lock {
 String currentPassword="";

 public boolean setPassword(String password) {
 if(isValidPassword(password)) {
 this.currentPassword = password;
 return true;
 }

 return false;
 }

 abstract boolean isValidPassword(String password);
 public boolean isAuthentic(String password) {
 if(password == currentPassword) return true;
 return false;
 }

}

149

Listing 4 – Generating implementation templates for the variants

x Declaring a new enumeration to explicate the variation point and its variants as in

Listing 5. The enumerations take the form VP_VariationPointName, whereas

variants are named in the form V_VariantName.

Listing 5 – Declaring a new enumeration

x Creating or updating a configurator class as in Listing 6. The configurator serves

two purposes. For one, it enables easy configuration and instantiation of products.

Every variable in this class represents a variation point. The value assigned to

each variable represents the variant of interest. Secondly, the configurator helps

explicate the variability profile of the system so that it is visible to the

stakeholders. The generated VariantConfiguration class has static fields that

enable the selection of variants for all the variation points in the system. There

class LowLock extends Lock {
 boolean isValidPassword(String password) {
 if (password.length() == 4)
 return true;
 return false;
 }

}

class MediumLock extends Lock {
 boolean isValidPassword(String password) {
 // TODO Auto-generated method stub
 return false;
 }

}

class HighLock extends Lock {
 boolean isValidPassword(String password) {
 // TODO Auto-generated method stub
 return false;
 }

}

public enum VP_SECURITY_LEVEL { V_LOW, V_MEDIUM, V_HIGH }

150

should be only one VariantConfiguration class that encompasses all introduced

variation points. Therefore, whenever a variation point is introduced, I first look

for an existing VariantConfiguration class before creating a new one.

Listing 6 – Creating or updating a configurator class

x Generating an implementation selector as in Listing 7. In this case, the selector is

a factory class with the naming convention AbstractClassNameFactory. The class

has a static method createAbstractClassName(). This method is responsible for

instantiating the right subclass according to the configurations set in the

VariantConfigutation class.

Listing 7 – Generating a factory to select variants

x Updating affected code segments found in the variability trace function to use the

new factory as in Listing 8.

Listing 8 – Updating affected code segments

public class VariantConfiguration {
 public static VP_SECURITY_LEVEL securityLevel =

VP_SECURITY_LEVEL.V_LOW;
}

public class LockFactory {
 public static Lock createLock() {
 if (VariantConfiguration.securityLevel ==
VP_SECURITY_LEVEL.V_LOW) return new LowLock();
 if (VariantConfiguration.securityLevel ==
VP_SECURITY_LEVEL.V_MEDIUM) return new MediumLock();
 if (VariantConfiguration.securityLevel ==
VP_SECURITY_LEVEL.V_HIGH) return new HighLock();
 else return null;
 }

}

Lock lock = LockFactory.createLock();

151

8.4.7 Test Update function

This function updates affected UTs and generates UTs for the new variants. This not only

makes sure the new changes did not have a destructive effect on the original system, but

also encourages test-driven development because it generates failing tests for developers

to write before writing the logic for the new variants.

For each implementation, a UT is generated under the same test class where the method

𝑚 has been selected as the starting point. Test cases adhere to the following naming

convention OriginalTestClassName.originalTestMethodName_VariantName(). In the

example, the LockTest.testSetPassword() method is refactored to

LockTest.testSetPassword_Low() as a test for the first (original) variant. Two more tests

are added to test the other two variants. In each test, the first statement selects the variant

to be tested.

Then what follows is the body of the original test method 𝑚 copied as is in all

generated test cases (the only change in the body is the change made by the code

manipulation function to update how objects are instantiated). This provides a template

for the developer to change as required. The test case that tests the original

implementation (i.e. before variability existed) should pass without any issues. However,

the newly generated tests are initially forced to fail as a reminder for the developers to

edit the test and its corresponding production code. The effect of the test update function

is shown in Listing 9.

152

Listing 9 – Generating UTs for alternatives

In the case of options, I generate tests for all combinations of options. An example is

shown in Listing 10. In this example, the original test method used as a starting point was

testAlarmOff(). A new variation point ALARM_ACTION_OPTION was introduced. The

two options that were added were NotifyPolice and CloseAllPorts. Therefore, four

different combinations were produced, namely:

1) The default implementation without any extra options.

2) The default implementation with the NotifyPolice option.

3) The default implementation with the CloseAllPorts option.

@Test

public void testSetPassword_Low() {
 VariantConfiguration.securityLevel = VP_SECURITY_LEVEL.V_LOW;
 Lock lock = LockFactory.createLock();
 Assert.assertFalse(lock.setPassword(""));

 Assert.assertFalse(lock.setPassword("Hello"));

 Assert.assertTrue(lock.setPassword("Helo"));

}

@Test

public void testSetPassword_Medium() {
 // TODO Auto-generated method stub

 VariantConfiguration.securityLevel =
VP_SECURITY_LEVEL.V_MEDIUM;
 Lock lock = LockFactory.createLock();

 Assert.assertFalse(lock.setPassword(""));

 Assert.assertFalse(lock.setPassword("Hello"));

 Assert.assertTrue(lock.setPassword("Helo"));

 org.junit.Assert.fail();

}

@Test

public void testSetPassword_High() {
 // TODO Auto-generated method stub

 VariantConfiguration.securityLevel = VP_SECURITY_LEVEL.V_HIGH;
 Lock lock = LockFactory.createLock();

 Assert.assertFalse(lock.setPassword(""));

 Assert.assertFalse(lock.setPassword("Hello"));

 Assert.assertTrue(lock.setPassword("Helo"));

 org.junit.Assert.fail();

}

153

4) The default implementation with the NotifyPolice option as well as the

CloseAllPorts option. The | operator is used to select multiple options for a

given variation point.

In the current state of the implementation, there are no checks for invalid combinations if

there were any constraints on variant selection.

154

Listing 10 – Generating UTs for options

@Test

public void testAlarmOff_Default(){
 OptionConfiguration.ALARM_ACTION =

ALARM_ACTION_OPTION_CONSTANTS.DEFAULT;
 BurglaryDetector burgDetector =

BurglaryDetectorFactory.createBurglaryDetector();

 String returnValue = burgDetector.setAlarmOff();

 Assert.assertEquals("Burglary Detected", returnValue);

 }

@Test

public void testAlarmOff_NotifyPolice() {
 // TODO Auto-generated method stub

 OptionConfiguration.ALARM_ACTION =
ALARM_ACTION_OPTION_CONSTANTS.NOTIFY_POLICE;

 BurglaryDetector burgDetector =

BurglaryDetectorFactory.createBurglaryDetector();

 String returnValue = burgDetector.setAlarmOff();

 Assert.assertEquals("Burglary Detected", returnValue);

 org.junit.Assert.fail();

 }

@Test

public void testAlarmOff_NotifyPolice_CloseAllPorts() {
 // TODO Auto-generated method stub

 OptionConfiguration.ALARM_ACTION =
ALARM_ACTION_OPTION_CONSTANTS.NOTIFY_POLICE |
ALARM_ACTION_OPTION_CONSTANTS.CLOSE_ALL_PORTS;

 BurglaryDetector burgDetector =

BurglaryDetectorFactory.createBurglaryDetector();

 String returnValue = burgDetector.setAlarmOff();

 Assert.assertEquals("Burglary Detected", returnValue);

 org.junit.Assert.fail();

 }

@Test

public void testAlarmOff_CloseAllPorts() {
 // TODO Auto-generated method stub

 OptionConfiguration.ALARM_ACTION =
ALARM_ACTION_OPTION_CONSTANTS.CLOSE_ALL_PORTS;

 BurglaryDetector burgDetector =

BurglaryDetectorFactory.createBurglaryDetector();

 String returnValue = burgDetector.setAlarmOff();

 Assert.assertEquals("Burglary Detected", returnValue);

 org.junit.Assert.fail();

 }

155

8.5 Automation

The abovementioned process to introduce a variation point in a system entails nontrivial

refactoring and code generation steps. We built an eclipse plug-in that automates the

whole process assisted by input from the developer [Salbinger2010]*. The tool is open

source and is available online [PLD2011]. When a variation point is to be introduced into

the system, the following sequence of steps take place:

1. The developer navigates to the UT corresponding to the aspect of the feature

where the variation point should be added as shown in Figure 48.

2. The developer chooses to add a variation point of a certain type as shown in

Figure 48.

3. The tool finds the transitive closure of the chosen test method. The developer

selects the method that is considered the source of variation as shown in Figure

49.

4. The developer provides a name for the new variation point. Then the developer

adds new variants as shown in Figure 50. The tool assumes that the first variant

represents the original implementation (i.e. before variability existed).

* The implementation of the tool was done collaboratively with Steffen Salbinger [Salbinger2010].

156

Figure 48 – Choosing the unit test and the type of variation

Figure 49 – Selecting the source of variation from the transitive closure results

157

Figure 50 - Expected input from the developer

5. The tool performs the proper refactoring and code generation as described in the

previous section. Namely, the tool will:

x Abstract out the source of variation.

x Provide an implementation class for each variant.

x Provide a factory to select the proper implementation.

x Define an enumeration to enable easy configuration of the system at

instantiation time. All variation points will be packaged nicely in a

configuration file to convey knowledge about variability in the system and

the decisions that need to be made.

158

As shown in Figure 51, before any refactoring takes place, the developer is

made aware of all the tentative changes.

Figure 51 - The developer is made aware of the refactoring steps and the potential

changes to the code

6. The tool updates all references to the old class to the correct object instantiation

technique.

7. The tool provides UTs for every variant. In case of options, UTs will be provided

to test all possible combinations of extensions.

8.6 Evaluation

So far in this chapter, I described a reactive and systematic approach to realize variability

in software systems at the code level. To automate the approach, an eclipse plug-in has

been built. This section provides an evaluation of the plug-in over two phases. The first

phase is a feasibility evaluation, and the second is a practicality evaluation.

159

8.6.1 Feasibility Evaluation – Proof-of-Concept

In this phase, the goal is to determine whether it is feasible to automate the proposed

approach to inject variability into a system through systematic refactoring given all the

complications of object-oriented design.

8.6.1.1 Procedure

In this part of the evaluation, I study the capabilities and limitations of the plug-in.

Initially problems were diagnosed by applying the tool to different code snippets that

vary in complexity. As a starting point, I used the simple mock-up system presented

earlier in this chapter. Then, I extended the system in a number of ways including:

x Adding more classes, or adding more UTs.

x Using different types of constructors like parameterless constructors,

parameterized constructors and super constructors.

x Applying object-oriented techniques like subclasses and interfaces.

8.6.1.2 Assessment

After each extension to the mock up system, I tried to apply a number of operations,

namely:

x Adding variation points as alternatives.

x Adding variation points as options.

x Adding variants to existing variation points.

The assessment questions I used to evaluate the outcome were as follows:

Q1. Was the plug-in able to handle both types of variations (i.e. alternatives and

options)?

160

Q2. Did the refactored code for each operation match the expected outcome in

different object-oriented contexts including different types of constructors,

abstract classes, subclasses, interfaces, and existing design patterns?

Q3. Did the tool generate new code as prescribed in the approach in different object-

oriented contexts including different types of constructors, abstract classes,

subclasses, interfaces, and existing design patterns?

Q4. Did the process have any negative side effects such as compilation errors or test

failures?

Q5. How did the tool perform throughout the whole process?

8.6.1.3 Findings

The feasibility evaluation enabled the iterative refinement of the automation plug-in

before it was actually used on a real system in the second phase of the evaluation. Over a

number of iterations, some issues were found such as dealing with instantiations where

parameterized constructors were used (Q2), resolving call hierarchies (Q1) for some

variations, refactoring instantiations where there already is a design pattern in use (Q2),

and dealing with classes that already are abstract (Q3). These issues were then resolved in

the following iterations. Another issue that came up in the next iterations, as far as

inheritance is concerned (Q2 & Q3), was that the static code analysis we used did not

provide a means to know which specific method was invoked when a method is called

using a base class reference. This problem was solved by searching the hierarchies of the

declaring types downwards for overriding methods.

161

After resolving the issues above, the tool showed to be reliable in making changes

without any negative side effects (Q4). Performance wise, no delays have been observed

in any of the steps throughout the process (Q5).

In summary, the results of the proof-of-concept evaluation showed that the approach was

feasible with the support of the automation tool after refinements had been made to

handle systematic refactoring in certain object-oriented designs as explained above.

8.6.2 Practicality Evaluation – Case Study

The practicality check aims to evaluate how practical the proposed approach is in terms

of introducing variability to a real system that was not originally developed with

variability in mind. For this part of the evaluation, I used a real open source system

available at SourceForge as a case study.

8.6.2.1 Case selection

The following protocol was used to select the case to be studied. First, a list of all

projects in sourceforge.net was obtained with “Java” as a programming language filter.

This filter was applied because our plug-in is written for Eclipse, and it only supports

refactoring in Java. The projects were sorted by the number of downloads in a descending

order to make it easier to select a system that is actually in use (to avoid experimental

projects). Then, the projects were examined one by one to identify those projects that

already had UTs and were easy to import to Eclipse Ganymede 3.4.2 (the version the

plug-in has been written for). The availability of UTs was important because I wanted to

avoid the bias coming from producing my own UTs.

As a result, I selected a system called Buddi [Buddi2011]. Buddi is a financial

management program targeted for users with little or no financial background. It allows

162

users to set up accounts, create spending and income categories, record transactions, and

check spending habits. Up till the end of April 2011, Buddi has been downloaded

911,042 times. Buddi has about 24,775 lines of code and 227 classes. This size puts

Buddi in the medium-scale category which was a reasonable, yet not intended, size for

evaluation purposes.

8.6.2.2 Procedure

Buddi was originally intended for personal use. In order to introduce variability to Buddi,

I asked the question: what do I have to do to make Buddi suitable for small businesses?

As a result, I developed the following scenarios:

1) Buddi usually accepts credit payments (transactions). To use this feature to support

store-credit, one needs to provide the possibility of assessing risks. This yields the

first variation point Risk Assessment with the variants (alternatives): None, Flexible

and Strict. The None variant represents the original implementation of Buddi that

did not have the notion of risk assessment. The Flexible variant puts some

restrictions on the credited amount, and checks balance status for the past few

months. The Strict variant adds more restrictions on any store-credit such as

considerations of when the account was opened.

2) Buddi updates the balance of a customer after each transaction. For fraud-detection,

one might need to take some security measures. This yields the second variation

point Security Measures with the variants (options): Log Balance Updates, and

Send SMS to Customer.

For assessment, I used the same five assessment questions as in the previous phase of

evaluation.

163

8.6.2.3 Findings

The automation plug-in was used to refactor the code systematically as per the scenarios

mentioned above. The plug-in was in fact able to handle both types of variations (i.e.

alternatives and options) without any human interference – except for input from the

developer wherever it was prescribed in the approach (Q1). The output of using the

approach for each variation was as expected. That is, relevant code was refactored (Q2)

and new code was generated as prescribed (Q3). The process did not create any

compilation errors or cause a test to fail (Q4).

However, when observing the performance of the tool, I noticed a noticeable delay of

about 9 seconds on average during the execution of the call hierarchy function (Q5). This

was not an issue in the feasibility evaluation due to the small-scale of the mock up

system. Although this delay might not limit the usefulness of the tool, it might, for larger

projects with millions of lines of codes, limit its practicality.

8.6.3 Limitations & Threats to Validity

Beyond the five assessment questions discussed in the previous section, a number of

limitations were found during the evaluation. For example, the transitive closure for some

tests was too large to navigate. This warrants research into better visualizations of large

call hierarchies. Also, the current implementation of the plug-in does not support

combining variation points in a hierarchical manner. For example, currently the tool does

not support scenarios where a variation point of type alternatives need to be defined, and

one or more of these alternatives have a number of options to select from. This issue can

be resolved with more sophisticated code analysis and refactoring. Moreover, the tool

164

does not support dependencies between variation points and variants. For example,

multiplicity constraints between alternatives and options are not taken into account.

The evaluation of the approach with the automation support faced some validity threats.

The cases that were developed to be used in the feasibility evaluation might have been

subject to internal bias. Also, although attempts were made to cover a wide range of

object-oriented configurations, it is understood that the evaluation for feasibility did not

exhaust all possible cases, which makes it hard to generalize that the approach is

completely feasible for any project and under any circumstances.

Moreover, the evaluation considered two projects of small and medium sizes, which may

cause a threat to the generalizability of the findings on other projects – especially large-

scale ones. Also, the scenarios used in the practicality evaluation were developed by the

investigator which might have introduced confirmation bias.

8.7 Chapter Summary

In this chapter, I presented a reactive and systematic approach to introduce variability to

existing systems on-demand. I proposed a test-driven, bottom-up approach to introduce

variability in software systems by means of refactoring. Systematic refactoring is used in

order to inject variation points and variants in the system, whenever needed. I also

presented an Eclipse plug-in to automate this process. An evaluation of the feasibility and

practicality of the approach was discussed. The approach, supported by the plug-in was

found to be feasible and practical, but suffered some limitations.

165

 PRODUCT DERIVATION* CHAPTER NINE:

9.1 Preamble

The previous chapters showed how variability can be elicited, analyzed, modeled, and

realized in a lightweight and reactive manner. This chapter sheds more light on the

process of deriving individual products in a given SPL. This process is also known as

product instantiation. Deriving different products from a single code base is an essential

aspect of SPL engineering. Automating this process is key to its efficiency – especially

when mass customization is expected. The reason I look at this issue within the scope of

my dissertation is that the derivation process varies according to the variability

management approach being used. That is, in traditional variability management,

derivation happens during the application engineering phase as a later step in a sequential

process that starts with domain engineering. Also, the derivation process traditionally

relies on the documents and models produced during the domain engineering phase.

However, in the framework proposed in this dissertation, product derivation can happen

any time during the development process, and there is considerably less emphasis on

documents and models. This chapter provides alternate ways to derive products using the

artefacts produced in the previous steps.

9.2 Research Instruments

In this chapter, I look at how products can be derived from a code base given that

variability has been realized and modeled as per the proposed approaches discussed

previously. The research question I address is as follows:

* This chapter is based on published paper s [Ghanam2009] and [Ghanam2010c]. Co-author permission is
attached to Appendix B.

166

RQ5. How can the extended feature model support the derivation process of individual

products from a common SPL base?

In the context of the framework I propose, this research question addresses Stage E:

Product derivation as shown in Figure 52. The derivation stage is responsible for

producing different instances of the system given as direct input the generic system, the

configuration engine (aka. configurator), and the specific configurations needed by a

given customer. These configurations can be projected on the executable feature model

which serves as indirect input that is typically used at a higher business level to select

features.

Figure 52 - This chapter addresses Stage E: Product derivation

The evaluation of this step is done by selecting a specific implementation technique and

using it as proposed in the approach to derive products from a core system built in-house.

An automation tool has been built to be used as an instrument in this evaluation.

167

9.3 Preliminary Analysis

9.3.1 Product Derivation Techniques

In a SPL, the product derivation process requires at least the following components:

1. A generic base system S that includes all the reusable components that can be

used to compose different products.

2. A set of configurations C that reflects the desired customization.

3. A configurator E that, given S and C, allows the binding of the variation points

and variants as described in the variability profile.

In the example shown in Figure 53, the “Weather Watch” module would be the generic

base system S. Say we need to produce the instance A (Figure 53b) that supports the

weather trend analyzer on a handled device.

Figure 53 - Product derivation from a generic base system

The wants captured in the instance A constitute a configuration set C. The set is then used

by the configurator E to bind the variation points to the variants. A sample configurator is

provided in Listing 6.

168

Listing 11 – A sample configurator containing multiple variation points

Once the variation points are bound to certain variants, the derivation process starts using

one of two techniques:

1. Instantiation: in this approach, there is only a single system for the whole

product line that behaves differently based on the variants chosen. There is no

separate engine to control the derivation process. The variables in the configurator

are used directly by creational classes in the system as decision variables in

conditional blocks to choose specific implementations of the classes. Compiling

the code and building a release is sufficient to instantiate a customized product.

That is, in this case, the full code base is compiled and delivered as the product

instance and the actual instantiation is done at run time based on the bindings

specified in the Configurator class.

2. Extraction: in this approach, variability is not managed at run time. Rather, a

sub-system is derived from a core system by extracting the reusable assets needed

for a given configurations. This process requires a separate engine to control the

derivation process so that the relevant assets are extracted to compose a sub-

system which then is compiled and built to produce a customized product.

public class Configurator {
 public static VP_TREND_ANALYZER trendAnalyzer =

VP_TREND_ANALYZER.V_EXISTS;
 public static VP_UI_PANEL uiPanel =

VP_UI_PANEL.V_HANDHELD;

}

169

9.3.2 Direct vs. Indirect Configuration

Direct configuration happens when the configurator is used without any intermediary

steps. That is, the stakeholders can alter the configurator by directly assigning variants to

the different variation points. This level of customization is suitable for tech-savvy

stakeholders who have a basic understanding of the programming language and

conventions being used. In the example shown in Listing 6, Java is used as a

programming language and a number of naming conventions are used.

On the other hand, indirect configuration occurs when a high-level model is used as a

facade for the configurator in a way that is accessible to non-technical stakeholders (such

as customers). In a SPL context, this facade is usually a feature model. Feature models

are used to select features and variants that constitute a product instance. The selection

process should take into consideration the constraints and dependencies between features

and variants, as conveyed in the feature model. Nowadays, tool support is available to

make this process easier, faster and less error-prone.

9.4 Derivation in the Proposed Framework

In this section, I show how the proposed framework supports the derivation techniques

discussed above.

9.4.1 Product Instantiation

During the derivation process, certain parameters (e.g. compiler directives, configuration

classes) need to be set in order to select the desired configurations for the product

instance at hand. I use the extended feature model (as described in chapter seven) to

provide support for this process. EATs can be used to automatically set up the

configuration parameters. This is possible because for an EAT to pass (independently of

170

other EATs), it needs to set the correct parameter before it can execute the production

code. When the selection process of features from the feature model is finished, all the

EATs that are relevant to the current selection are run. Given that all EATs have passed

for the current instance, this means that all parameters in the system have been set

properly, and the system is now ready to produce the right instance (Figure 54). Another

role of EATs in this context can be described as “configuration by example.” That is,

EATs provide a good starting point for the developers to learn how to configure a certain

feature.

Figure 54 - Using EATs to select configurations

9.4.2 Product Extraction

In some derivation techniques, a subset of code artefacts are extracted from a core system

based on the features selected using the feature model. A core system is one that

continuously accumulates assets produced towards the satisfaction of previous customer

requests. It is from the core system that family members are produced as instances in the

product line.

In this section, I show how the extended feature model as proposed in the framework can

play an important role in supporting this process. After the selection process of features

171

in the feature model, all the EATs that are relevant to the current selection are run as

shown in Figure 55. Static code analysis can provide details on which code artefacts are

needed to produce the desired instance by computing the transitive closure of all calls in

the fixture classes used in the EATs of the instance.

Figure 55 - Using EATs coverage reports to extract artefacts

The discussion to follow assumes that a core system is available and is represented

through a library of EATs. The derivation process requires a number of steps, namely:

1. Select EATs: upon a new request of the system, the customer is provided with

EATs that embody the different features currently available in the core system.

Customers are to select only those EATs that match the scenarios they are looking

for (highlighted in green in Figure 55). The outcome of this step is a subset of

EATs.

2. Execute ATs: the selected subset of EATs is run against the core system; and a

test coverage report is obtained using a test coverage tool. The coverage report

172

provides information about what code units or fragments were used to execute the

given subset of EATs. This includes modules, namespaces, classes, methods, and

files in both the testing code (fixture code) and the tested code (production code).

3. Extract code: based on the coverage information provided in step 2, relevant

code units and fragments will be extracted from the core system. Any fragments

that are not needed in the current instance are eliminated. This is the most

complex and crucial step and will need special tool support. The outcomes of this

step are two, namely: a subsystem that represents a variant of the core system, and

a new test suite that possesses the fixture code needed to provide test coverage for

the new system.

4. Verify and build: in this step, the newly derived system is compiled and built to

make sure the extraction step did not produce any flaws in the code or the

references. Then, by utilizing the test suite extracted in the previous step, the

selected subset of EATs (from step 1) is run against the new system to verify the

satisfaction of acceptance criteria within the new variant.

9.5 Evaluation

9.5.1 Goal and Scope

In the previous section, I showed how the proposed extended feature model can be used

to derive products. This section aims at evaluating the strengths and weakness of the

proposed derivation approach. Specifically, the evaluation focuses on the second

derivation technique which relies on code extraction based on selected EATs. The reason

behind this focus is that the extraction technique is significantly more complex and less

173

straightforward than the instantiation technique. A proof-of-concept tool has been

developed to aid in this evaluation. The evaluation addresses the following questions:

Q1. Can EAT artefacts be used as feature descriptors for the extraction process?

Q2. Does the coverage report yield accurate results (i.e. no false negatives or false

positives)?

Q3. Does the coverage report provide indicators that are sufficiently accurate to make

safe extraction and exclusion decisions?

9.5.2 Context

The approach is evaluated against the smart home application previously introduced as

eHome. eHome is the system that I have used throughout this dissertation as an

application domain. At the time of this evaluation, eHome had around 100 classes

divided into model, view, controller, hardware, and communication layers. There were

about 70 test cases covering approximately 90% of the model code. Throughout the

eHome lifecycle, I encountered a number of variation points such as: interface touch

capabilities (e.g. single touch versus multiple touch), interface orientation (e.g. vertical

vs. horizontal), required modules (e.g. light control modules, RFID item tracking).

9.5.3 Core System Status

Our customer requested a feature that would enable the end user to define macros to

control devices at the home. A macro is a sequence of actions to be executed on demand.

The feature was defined as per the EAT shown in Figure 56.

174

Figure 56 - EAT for adding macros

A later request from the customer was to extend the previous feature so that it is possible

to optionally constrain the execution of some macros by a set of conditions. These

conditions are to be defined by the end user. Figure 57 shows the EAT for this request.

This EAT was added to the same test page as the previous EAT because there was a lot of

overlapping functionality. A thin layer of fixture code was developed to execute both

tables. Listing 12 shows what the contents of this layer look like. Production code units

that made both test cases pass are shown in Table 7*. To summarize, the “macro

addition” feature existed in the core system in such a way that the two EATs were

supported. Both the fixture code and the production code incorporated the requirements

of both scenarios.

* Primitive getters and setters, constructors and other auto-generated units are removed.

175

Figure 57 - EAT for adding conditional macros

176

Listing 12 – The contents of the fixture code layer

Table 7 - Production code units for the core feature

9.5.4 Instantiation

The fact that a customer requested to add a certain extension to the feature (as per the

second EAT) does not necessarily mean that the feature has to exist in its fullest version

in all variants of the system. Some customers would not like the complication of dealing

177

with rules to constrain macros, and thus they are satisfied with the simpler version

represented by the first EAT only. In the proposed approach, customers communicate

their preferences through the selection of EATs. That is, customers can choose the

scenarios they would like to see in the feature, and may exclude some other scenarios that

are unneeded. Therefore, for this feature a variation point has been defined that

minimally yields two variants: one that supports the addition of unconditional macros

only (i.e. simple version), and another that supports the addition of both unconditional

and conditional macros (i.e. complex version).

The goal is to extract just-enough code to instantiate each variant. According to the

proposed approach, the selection of EATs is the first step towards this objective. I

distinguish two cases:

- Case I: the customer only chooses the EAT shown in Figure 56.

- Case II: the customer chooses the two EATs shown in Figure 56 and Figure 57.

Table 8 shows the coverage results of executing the tests in both cases. The table only

shows method coverage to simplify the analysis. Having access to the coverage

information, the next step in the instantiation process is extracting the needed code units

for the specific variant of interest.

178

Table 8 - AT coverage report

‘9’ means the method was visited when the EAT was executed.

‘P’ stands for production code;; and ‘T’ stands for test code.

To illustrate, consider Case I where some methods are not needed for a successful

execution of the selected EAT. In this case, the required production code units are shown

in Table 9 and the extracted fixture code will be as in Listing 13.

As shown in the table, in some cases, all the methods in a given class are not needed.

This might imply that the class itself is to be abandoned. Nevertheless, as will be

discussed later, this is not always a trivial decision. The current implementation of the

tool enables the user to select the tests; and then the tool automatically runs the tests,

179

produces a coverage report, and extracts the relevant units. Automatic compilation and

building of instances are not supported.

Table 9 - Production code units for Case I

Listing 13 – The extracted fixture code

180

9.5.5 Discussion

The results of this evaluation indicate that it is indeed possible to use EAT artefacts as

feature descriptors for the extraction process (Q1). As observed, the most important

characteristic that made EATs a good fit for this purpose is their ability to reflect the

involved functionality in a concrete and readable manner. By examining different EATs,

the customer can decide which scenarios are likely to be needed in their specific context.

Less complex scenarios may sometimes be preferable over more complex ones.

Nonetheless, an important issue has been revealed in the evaluation in relation to the UI

layer. The implementation of the approach as discussed in the evaluation only handled

model classes. Therefore, extracting relevant UI widgets was not possible. It is likely that

similar challenges will arise when dealing with communication interfaces and hardware

layers. This is because the testing tools currently available do not automate tests for these

layers as effectively as they do for model classes.

As seen in the evaluation, using the coverage report provided accurate results (Q2). That

is, methods that were actually needed to execute the feature of interest were all included

in the report (i.e. no false negatives); and none of the methods included in the report was

unnecessary (i.e. no false positives). Also, the coverage provided by the tool (visit

coverage for methods) was sufficient to make safe extraction and exclusion decisions

(Q3). However, in hindsight, I realize that the accuracy of the code extraction step could

be improved – especially when treating fairly complex code. As seen in Table 9, some

methods and even classes were not needed anymore. For the specific case studied in the

evaluation, simple removal to exclude the artefacts did the job. But in some other cases,

the decision to exclude these units and remove their references from the code assembly

181

may not be straightforward. For example, the method might be shown to be uncovered

because it is referenced in a condition block that was not executed. This tends to indicate

that the uncovered branch is not needed anymore because there is no match for the case

in the test artefacts. Still, however, taking into consideration coverage reports at different

granularities (e.g. classes, methods, namespaces) and in different forms (e.g. branch

coverage, visit coverage, sequence coverage) may be necessary to enhance our trust in

such indications.

This evaluation is limited by the fact that it is a self-evaluation which might have

introduced some bias in selecting the scenarios to be treated. Another issue comes from

using a single case to evaluate the approach, which may limit the generalizability of the

findings.

9.6 Chapter Summary

This chapter presented an approach to derive individual products from a given SPL using

the proposed framework described throughout this dissertation. The proposed approach

takes into consideration the minimal documentation (or the absence of it) in agile

environments. Instead, EATs are used in the extended feature model to select those

scenarios the customer is interested in. The derivation process can then be achieved in

two different ways depending on the implementation technique being followed. The

chapter provided an evaluation for the approach using a proof-of-concept tool. The

approach has shown to be sufficiently accurate, but certain improvements are needed to

make it more practical and trustworthy.

182

 ISSUES AND CHALLENGES IN INDUSTRIAL CONTEXTS* CHAPTER TEN:

10.1 Preamble

This dissertation has so far presented a novel product line framework that takes into

consideration the philosophies and practices of agile software development. The different

parts of the framework have been discussed in detail and assessed through a number of

research techniques. Independent of the specifics of my framework, this chapter

investigates the issues and challenges associated with adopting a SPL framework in an

industrial context. That is, I look more into the issues and challenges that arise should a

company decide to adopt a new SPL framework such as the one proposed in this

dissertation. The goal of this research inquiry is to construct a comprehensive

understanding of the transferability impediments of frameworks developed in academic

environments. This chapter tackles this issue in two parts. The first part is concerned with

the general issues that are associated with adopting a new SPL practice. The second part

is concerned with the specific issues arising from combining agile methods with SPL

practices.

10.2 Research Instrument

This chapter addresses the following question:

RQ 6. Independent of the specifics of the proposed framework, what are the technical and

non-technical impediments that need to be taken into consideration before a new SPL

framework becomes feasible in an industrial context?

* This chapter is based on a journal article currently under review [Ghanam2011b]. Co-author permission is
attached to Appendix B.

183

Under the general research question above, the study addresses the following questions:

Q1. What are the general issues and challenges that organizations are likely to face

when making the transition to a new SPL framework?

Q2. What are the specific issues and challenges imposed by recent trends in modern

software engineering such as agile methods, distributed development, and flat

management structures within the context of SPLs?

In the study, data was collected using an ethnographic approach [Hammersley1983].

Ethnography is a data collection approach that involves spending time in the field to

make first-hand observations. The researcher interacts with the subjects of interest in a

natural (as opposed to controlled) setting in order to obtain a holistic view of the context

pertaining to the problem under investigation. The rich data collected over the course of

the study – including observations, questionnaires and interviews – requires a methodical

qualitative approach to analyze [Dittrich2007]. The collected data was analyzed using

Grounded Theory [Strauss1997]. Grounded Theory is a qualitative research method in

which the generation of a theory occurs by looking into the collected data for patterns and

concepts. The use of Grounded Theory as a powerful tool in qualitative research has been

abundant in the past few decades.

10.3 Study Procedure

10.3.1 Study Context

The study was conducted in a software company in Scandinavia. To comply with the

non-disclosure agreement signed with the company, I use the pseudonym “Scandin” to

refer to the company thereafter. In its domain, Scandin is considered one of the most

influential players in Europe, and it has a significant impact on the market in North

184

America and other parts of the world. The company provides solution packages to

individuals as well as corporations and third-party service providers. Scandin has over

800 employees – about half of them work in software development. Scandin can be

described as a medium-scale organization (compared to larger organizations in

Scandinavia like Nokia). In addition to its headquarters in Scandinavia, the company has

four other locations (aka. business units) in other parts of Europe and Asia. The company

uses outsourcing for some software projects. Scandin has a flat management structure in

the sense that they have cut middle-management layers and provided a less-authoritative

organizational structure to ensure the direct involvement of employees in the decision

making process. About eight years ago, Scandin took its first steps to adopt agile software

development. Software projects were mainly centered on the development and

maintenance of a single solution that required high responsiveness to market needs in

order to be able to compete globally. Recently, the company – driven by its new business

strategy – decided to build a portfolio of products to target new markets and provide a

range of service packages to online customers. For that purpose, the technical strategy

was to implement a SPL approach where all products in the portfolio are to be built using

a common infrastructure. This infrastructure consists of a number of software platforms

built in-house. The term platform generally refers to a set of subsystems and interfaces

from which a set of related products can be developed [McGrath1995]. Being a SPL

technique, using a platform strategy involves reusing relevant artefacts in the platform,

and then a customization process to produce unique products [Pohl2005]. Some parts of

the platforms are derived from existing products, and other parts are to be built from

scratch. That is, the company needed to build platforms on top of which teams across the

185

company should build products and services. For any given product, there is a backend

side and a client side. Products in the portfolio have common aspects in both the backend

(e.g. licensing, updating) as well as the client (e.g. user interface library). Therefore,

platforms were needed on both sides.

There is a raft of factors that made Scandin a good fit for the purpose of my study. For

one, Scandin is an agile organization that was trying to implement a SPL strategy.

Secondly, in their implementation of SPL practices, technical leads in Scandin were

interested in a reactive approach to leverage their existing artefacts. And finally, Scandin

had the willingness to share their data and processes for research purposes (under a non-

disclosure agreement). At the time of this study, the company was in the transitional

phase – some parts of the platform had already been built and used while some other

parts were still being constructed.

10.3.2 Data Collection and Analysis

10.3.2.1 Data collection

Data for this study was collected by conducting 3 to 4 full-day visits in the company

every week, over a period of 6 weeks. During these visits, I adopted non-participant

observation by attending presentations, demos, planning meetings and status-update

meetings (aka. scrum meetings). Furthermore, in order to get a first-hand impression of

the interactions and communication channels, I arranged with the company to stay in

close proximity to people of different roles in the organization, namely: senior managers,

architects, team leads, and developers. Over the course of the study, I conducted 16 in-

186

depth interviews with individuals of different teams and roles. The interviews lasted

between 25 and 72 minutes each. The interviews were audio-taped and transcribed.

In the selection process of interviewees, the set goal was to get a sample of individuals

that covered the different aspects related to my research interest. Specifically, I was

interested in the following aspects: management (directors influencing platform-related

decisions), platform development (teams developing the platforms), and product

development (teams building on top of the platform). The initial group of interviewees

was selected collaboratively by myself and a liaison in the company. During this initial

phase, I used snowball sampling to prepare for the second round of interviews. That is, I

used the collected data as well as suggestions from the interviewees to guide the selection

process of other interviewees. I interviewed representatives of 8 different teams, 3 of

which were working on 3 separate platforms as part of the common infrastructure.

The interviews were semi-structured and took various directions based on the

interviewee’s responses. The role of the interviewee was also vital in determining the

direction and focus of the interview (i.e. managers focused on high level issues, whereas

team leads and architects focused on technical details). Generally, interviewees were

asked questions to describe their role and team responsibilities, how they relate to other

teams, what issues or blockers they have been facing when building or using the

platforms, and what things they thought were missing but would be beneficial to have.

The interviewees were also asked to explain certain aspects of the platform and

sometimes to draw diagrams and figures to illustrate their understanding of the overall

architecture. The artefacts produced by the interviewees helped in understanding the

187

problem and the context better and revealed important issues underlying communication

within and across teams. These artefacts also helped in the interpretation of the data

collected during the interviews. I was also granted access to documented material

communicated among the upper management to obtain a better understanding of the

company’s vision and strategy. Data from the interviews, the documents, as well as my

observations and diaries (consisting of hundreds of field notes) were all used to complete

this study. The data collection phase stopped when I started to get no new insights from

new rounds of interviews.

10.3.2.2 Data analysis

As mentioned previously, Grounded Theory was used as an analysis instrument for the

collected data. I started by iterating over the collected data to assign codes, and I refined

these codes as more data was coded. This involved renaming, merging, or splitting some

codes multiple times. The codes were grouped into larger representative concepts and

categories that evolved through multiple iterations by going back and forth between

different interviews and the other data sources. The data that had been collected and

analyzed during the initial phase of the study was used to conduct selective sampling (as

opposed to random sampling) when recruiting participants for the interviews that

followed. The taxonomy of issues started to saturate after having analyzed about 70% of

the data. Having this taxonomy developed, I compared my findings to the existing body

of literature in relevant research areas.

10.3.3 Findings

This study revealed a raft of issues and challenges that medium sized, distributed, agile

organizations are likely to face when reuse becomes a strategic objective – especially

188

when their context is similar to the context of Scandin as described earlier. The

challenges as manifested in the data are captured in the tree shown in Figure 58. The tree

was kept at a manageable size by merging similar concepts and limiting the depth of the

tree to three levels. The challenges were classified under four main categories, namely:

business challenges, organizational challenges, technical challenges, and people

challenges. Each of the categories is divided further into subcategories. The richness of

some subcategories as evident in the collected data required that they be divided further,

while other subcategories are kept at the second level. In the following sections, I discuss

the findings in more detail.

189

Figure 58 – Tree of challenges – a ‘-’ means the subcategory is not divided further

190

10.4 Business Challenges

By “business” I refer to the many aspects involved in running a profitable organization

including the organization’s vision and strategy, sales and marketing, and competition.

The findings show that there are two main issues that can introduce major challenges to

introducing a platform strategy, namely: the business strategy, and product-driven

platform development.

10.4.1 Business strategy

Scandin’s new business strategy to target a new segment of customers in their market had

a huge impact on platform development. The common platforms needed to adjust the

services they had previously provided to products in order to accommodate the new

scenarios those products were required to support (e.g. by the marketing department).

This resulted in considerable reengineering of some existing components. When asked

why a specific component of the platform was undergoing major reformation, one of the

platform architects responded that it was due to:

“… the new way [Scandin] wants to make business with customers on the retail

and OEM level but also with operators…”

Although this issue is not specific to platform-centric development, the experience of

Scandin shows that when adopting a platform-centric approach, the amount of rework

and testing that needs to be done is usually multiplied because changing a platform

component has consequences on all products that rely on that component.

10.4.2 Product-driven platform development

In traditional models of building platforms, a platform-then-product philosophy is

dominant as evident in practices like software product line engineering where there is an

191

emphasis on developing domain artefacts and then application artefacts [Pohl2005]. This

sequence means that an organization does not start building products until development

of the platforms underlying these products has made considerable progress. On the other

hand, in Scandin, I noticed that platform development was product-driven in the since

that some platforms were derived from a number of existing products as well as from the

requirements of an ongoing project that was considered the first adopter of the platform.

In that project, the product that relied on the platform was being developed at the same

time as the platform. As explained by technical leads, product-driven platform

development was their strategy to:

a) reduce the conceived risk of lost investments due to over-engineering aspects of the

platform that cannot be reused later – either because they turn out to be unnecessary or

too complex to reuse, and

b) achieve a faster return-on-investment by delivering products to end-customers more

quickly than they would have been delivered if a sequential approach had been used.

However, the findings show that the latter approach introduces its own risks and

challenges, such as:

Instability. Some components in the platform may not be mature enough when they are

used in products, which causes products depending on them to be unstable. As one of the

managers put it:

“[Some products]break every second build… the platform is not stable enough in

which they are building their architectures.”

The dominance of a mainstream product. If the platform development is driven by one

product that is considered a main revenue stream, which is the case in Scandin, then the

192

priorities in the platform development are likely to be coupled tightly to the needs of such

a product:

“… we tightly plan our sprints only based on the [mainstream] project

priorities… Now it’s about the [mainstream] product but then we know that we

need to be able to serve the [other] products later on.”

This may cause the platform to become under-engineered – meaning that the components

may become too specific to the needs of the mainstream product (e.g. a specific operating

system) rendering component reuse challenging across other products. In Scandin, some

components – that were supposed to be cross-platform* – became specific to the

operating system that was required by the mainstream product:

“… to further develop [the platform] we have to take it to cross-platform and

operating-system platforms... That’s not there.”

Furthermore, focusing too much on the needs of the mainstream product causes other

teams who have dependencies on the platform-to-be to become ignored and uninvolved.

“… because we [platform team] are fully allocated in the [mainstream] project, it

is tough to get the time to actually take the other parties into consideration.”

In Scandin, this issue had strong effects on some teams who chose to start implementing

their own components resulting in redundant code.

Competing goals. Product teams are pressured by their technical leads to start using the

platform as soon as possible (to avoid any redundancy). One of the technical leads

explains that:

* The term “cross-platform” in the context of this study means that the implementation is agnostic to the
operating system.

193

“… the roadmap and goal [set for the product teams] would be to [reuse] all the

[platforms] that have been built for the [mainstream] project.”

On the other hand, other product-specific goals such as fast delivery are pushed by the

business leads. Considering the overhead associated with making the transition to the

platform (e.g. learning, asking for changes, customizations), some teams in Scandin

perceived that it was faster (or less burdening) to create their own artefacts than to reuse

somebody else’s.

10.5 Organizational Challenges

A wide range of issues and challenges arise due to the nature of platform development

that requires participation and involvement at the organizational level as opposed to the

team or business unit level. In the following subsections, I discuss the organizational

issues encountered in the data.

10.5.1 Communication

Platform development introduces more dependencies in the organization than what would

normally exist without such a strategy. In Scandin, these dependencies exist between the

platform teams themselves, the platform teams and the product teams, and the different

business units in the organization. Distributed development exacerbates this

communication challenge as will be explained.

Communication among platform teams. Our findings show that platform teams need to

communicate for a number of reasons such as: 1) assigning responsibilities to

components, 2) resolving dependencies between components, 3) agreeing on protocols

and internal interfaces, 4) synchronizing releases, and 5) arranging for resources that need

to be shared. In the case of Scandin, one of the main challenges is to motivate the

194

individual teams to talk to each other beyond formal meetings (if any) where things might

have been overlooked or misunderstood, and beyond reading documents (if any) that

might be outdated. When this motivation is not there, developers resort to their hunches

to resolve a dependency or may integrate with other components in a less than ideal way.

“The biggest challenge [is] to get people motivated when they have a dependency

for outside … to get the communication started. And even though we have things

like scrum of scrums.. but it still does not mean that everything will be brought up

there.”

Also, in cases where this communication is not effective, teams may work on overlapping

areas of the platform causing redundancy and rework as I observed in the company.

Communication between platform teams and product teams. Teams in Scandin need

to communicate at this level because platform teams provide services that are consumed

by product teams. For one, product teams need to know how to access and integrate with

the platform. Also, product teams provide feedback to platform teams on existing features

and report missing ones. As one of the platform developers pointed out:

“… for various reasons there might be a product level feature [requested of the

platform teams]. There have been a few [cases] where something is needed [from

the platform teams] by [the product teams.]”

Achieving this communication, however, can sometimes be tricky. As I noticed in the

company, when an issue arose in product development, some developers found it easier

and quicker to find workarounds which might be redundant to what already existed in the

platform. This not only caused a lot of rework and redundancy in the code, but it also

made testing and maintenance cumbersome in the future. Therefore, for this

195

communication to be effective, product teams need to understand the value of keeping

communication channels active at all times (i.e., realize the technical problems associated

with redundancy).

Communication in distributed development. In addition to the inherent challenges of

communication in collocated development, distribution of teams over the world

introduces further challenges. When some distributed teams in Scandin used tools like

instant messaging and shared desktop to hold meetings, the communication did not

always serve its purpose:

“… [name of a unit in the company] seems not to have too much problem using

this communicator and shared desktop and so forth. Some other units have

serious problems with that.”

In addition to discussing this issue with individuals in the organization, I also attended an

online meeting to have a better understanding of the problem. One of the factors that

made this communication a challenge was the different time zones which made arranging

meetings more difficult, and sometimes resulted in the meeting time being inconvenient

to one party. Other factors included the absence of non-verbal cues such as body gestures

and facial expressions especially during screen sharing, and the cultural differences

between Scandinavia and other parts of the world where the language or social protocols

were a barrier. For instance, in Scandinavia where the management structure is mostly

flat, a verbal agreement on the phone was sufficient for developers to start executing a

plan. On the other hand, in other parts of the world where authority is very hierarchical,

the teams could not execute their plans until they got approval from the relevant line of

management in their business unit.

196

Communication between business units. Because business units shared common

platforms, they needed to communicate. I will talk about this aspect of communication

when discussing “silos” in the next subsection.

10.5.2 Organizational structure

In this section, I discuss the impact of how the organization is structured in terms of

business units, teams, and management on platform development. I focus on three main

issues that I found evident in the data as follows.

Silos. The analogy to a silo is often used to describe the state of a certain part of the

organization that seems to stand alone and not interact enough with the other parts. As

illustrated in this study, silo thinking is a result of an organizational structure where

business units or teams act as independent entities with their own local management and

no motivation to adhere to a centralized decision-making body or to share information

with other units. In the context I studied, the silo could be a single team or a whole

business unit. The findings show that the silo problem is by far the most serious challenge

that faces the organization’s transition to a global reuse strategy. Individuals of both

management roles and technical roles repeatedly mentioned the term “silo” and

complained about the matter almost equally, for instance:

“we have business units… How do they communicate today.. not too well. These

silos they don’t talk too much [to each other]."

The data revealed a number of reasons for silo thinking as shown in Table 10, and a raft

of consequences they have on platform development as shown in

Table 11.

197

Table 10 - Reasons for silo thinking

Reasons for silo thinking in the organization

Resource
allocation

Business units would rather allocate
their limited resources to meet their
local deadlines unless they are forced to
participate in a corporate level project.

“And the business units are
not forced unless there is a
big project that forces them
to put their resources aside
for this kind of activity.”

Specialization Specialization in a certain domain
makes it difficult to understand the
benefits of communicating platform
related issues to others (e.g. promoting
reusable components).

“… if it’s a business-specific
platform there is no
communication outside of
that business unit.”

Lack of
motivation

Unless the business unit sees a direct
value of sharing a platform at the
corporate level, they are not willing to
do so.

“They don’t have any
interest whatsoever in taking
this [platform] to corporate
level unless they have a cost
saving reason.”

Competing
targets

Focusing on meeting unit targets and
disregarding corporate targets makes
platforms too specific to the business
unit.

“[the business units] will just
build for business target, and
when business units
disassemble, the assets might
be useless.”

Apathy Some component teams are indifferent
about anything outside the locality of
their team. The quote is the response of
a senior software engineer in a
component team when asked who drives
the requirements of their component.

“I really haven’t spent that
much time to really figure out
how this thing goes from up
to down.”

Evaluation
apprehension

The fear of being criticized, supervised
or controlled inhibits sharing and
communication.

“[the business units] feel
unease when they have to
come and present their plans
to the [corporate].”

198

Table 11 - Consequences of silo thinking

Consequences of silo thinking

Missing the
big picture

This results in not having a
common understanding of the
platform architecture which in turn
causes other problems such as
redundancy and false assumptions.

“they’re working in their silos and
the changes are so, that only the
projects [they] have been working
on lately have good common
view.”

Redundancy Business units and component
teams run the risk of duplicating
an existing component that has
been developed somewhere else.
Sometimes the duplication is a
result of not being aware of assets
outside the silo, or not willing to
reuse something that was invented
somewhere else.

“We also have three systems for
that, [and] two systems to update
the databases, that’s awful.. and
this is because of the business unit
silos.”
“… because somebody thinks they
can’t use it because it doesn’t have
their business unit label on it…”

No long-term
thinking

The challenge here is to strike a
balance between meeting the
short-term goals of the business
unit and the long-term
sustainability goals of the
platform.

“Business units have to balance
their business drive [with] the
long-term sustainable
architectural base. There is no
decision on that.”

No visibility
of reusable
assets

Platform assets get buried within
the business unit or a certain
component team which results in a
lot of duplication and missed reuse
opportunities.

“we have been digging the assets
of the company here for the last
year trying to hire and elaborate
those platforms, get them on the
map...”

199

Consequences of silo thinking

False
assumptions

Poor communication with other
business units or teams results in
false assumptions about assets. In
this case, an internal decision
could have cost the company a
fortune.

“Later, [a business unit] wanted to
do [a service] and proposed doing
a new system... The reason was
because mobile protocol cannot
work the same as Win protocol...
which wasn’t true. It was an
assumption.”

Platform
divergence

A given platform can initially be
used by different business units
but then internal decisions result in
different branches of that platform.
After a while, the branches diverge
so much causing the platform to
become too specific to a certain
operating system or product, or
even causing the loss of a common
underlying model.

“in the common library there are
OS adaptations in the code
branching which is not too
healthy... when they have been
building this current architectural
base, they have been building it in
silos.”
“there was actually separate
business units that worked
independently and resourced
independently… So we have kind
of the same base model but there is
added [parts]. Many flavors from
the same model.”

Decision-making. This issue is partially related to the silos problem, but it encompasses

other aspects as well. When the teams and business units have a sense of federalism

(which is very evident in the data), making decisions related to the platform becomes a

challenge. One case I came across in Scandin involved decisions that needed to be taken

on whether to reuse an existing platform or take a different direction such as building an

independent variant to satisfy a certain business concern. On the one hand, the corporate

had economical reasons to push reuse, but at the corporate level it was often hard to see

all the intricate details of the specific business concerns, hence making such decisions

200

challenging. On the other hand, when these decisions were left to the concerned teams

and business units, a number of issues caused the decision making process to go astray.

For one, the individual units tended to choose the direction where they saw short-term

gains as opposed to thinking about the long-term goals (e.g. sustaining the platform). And

there was also the “not-invented-here” mentality that biased business units to develop

their own components as opposed to reusing others’.

An attempt by the company to have a centralized decision-making body did not solve this

problem. Business units were likely to assume ownership of products and therefore they

deemed such decisions an internal matter. As a corporate manager explained:

 “And then if [the business unit’s decisions] don’t get approved [by the

centralized body], they kind of tend to think that well.. this is our internal

decision…”

Moreover, when the corporate made a decision to invest into building a platform,

political challenges arose when trying to kill ongoing projects that might have been

redundant to the services provided by the platform. Or even more challenging was the

attempt to get a business unit to retire their old systems and migrate to the new platform:

“This is of course an organizational issue to say to somebody that this thing that

you have been building for five years is actually going to be discontinued.”

Stakeholder involvement. Due to the fact that platforms are an enterprise-level concern

as opposed to product or team level concerns, it seems to be a challenging matter to get

all stakeholders involved from the business side and the technical side. For a medium-

scale organization like Scandin with hundreds of engineers and other personnel in sales

and marketing, the challenge was to first identify who had a stake in a given platform.

201

That is, who should actually be involved in planning, building or using the platform? This

became more difficult when the platform was to serve different business units with

various concerns and competing goals. Distributed development and outsourcing were

other factors that added to the complexity of this issue.

For example, in order to build a platform for licensing in a unified way across all

products in a given portfolio, the company first needed to involve all the parties

responsible for the older licensing models, and the parties responsible for merging these

models into a single unified licensing component in the platform. This meant getting on-

board the technical leads and architects representing products using the older models,

products that will use the new model, and products that are specific to certain operating

systems. From the business side, solution managers and business analysts were also

involved to make sure the technical solution did not affect a business case in a negative

way (e.g. affecting a revenue stream or an agreement with a third-party).

One way the company tried to overcome this issue was by holding workshops to allow

teams to discuss common issues and understand their different needs from the platform:

 “we have had several workshops with [business unit name] guys and the

[another business unit name] guys and we have mapped all the differences.”

Unfortunately, in some cases involving all stakeholders at once was infeasible due to

scalability issues. In such cases, the company chose to postpone the involvement of some

parties to a later stage:

“we have [team’s name], I don’t think [they are] going to be [involved]in the

project... at least not right now.”

202

10.5.3 Agile culture

In the data, I found that there is a need to adjust agile principles and practices before they

can be employed in a software platform context. In this section, I list some of the

challenges imposed by the agile culture in the organization.

Feature versus component teams. Feature teams usually assume end-to-end

responsibilities in a given system by orienting their work around features (aka. stories);

whereas component teams focus more on delivering a sub-system (aka. component) that

interacts with other sub-systems in order to be useful [Larman2009]. Due to the focus on

delivering tangible value to the end-customer, agile advocates promote the idea of

building teams around features rather than components [Larman2009]. For some people

in Scandin, this idea created the perception that component teams are always

disadvantageous. As one of the technical leads denotes:

“It’s been told to me that it’s bad to have component teams in the agile world

which cannot be end-to-end responsible.”

However, in the context of platform development in this company, there seemed to be a

need for a combination of both. The interviewee here explains that certain services are so

fundamental and expensive that they may require a dedicated component team as

opposed to being maintained by a feature team as part of an ongoing project:

“End-to-end responsibility, very tough to implement... One thing we need to

accept as an agile organization is that there are certain services that are too

expensive to develop [as part of] the project.”

Team autonomy. The other issue that was evident in the data is high team autonomy.

When members of highly autonomous teams stayed together for a long time, those teams

203

gradually turned into silos. This phenomenon often resulted in the consequences of silo

thinking as discussed previously. Moreover, in some teams, high autonomy had an

impact on decision-making where the team considered certain issues internal without

paying much attention to the consequences of their decisions on the underlying platform.

The decision-making aspect has already been discussed in more detail in a previous

section.

Business-value thinking. In agile organizations, there is a strong emphasis on delivering

business value [Schwaber2004]. The challenge, however, is that business value is not

always immediately visible or may not influence the customer directly as I saw in

Scandin. That is, the transition to a platform strategy provided advantages for Scandin as

a business, but from an end-customer’s perspective, nothing has changed. The findings

show that in an environment where there is strong business-value thinking, it is a

challenge to motivate certain teams and individuals to invest into adopting the platform.

In this quote, a lead architect explains why some teams could not see the business value

in transitioning to the platform strategy:

“[The platform strategy] is new for us, but it’s not producing any new stuff for the

customers... The whole stuff is invisible for them.”

Product ownership thinking. Some interviewees in the study raised the issue that some

teams and product owners in different business units had been very protective of their

assets and products making the transition to a platform strategy more difficult. This is

mainly because teams owning a certain component preferred dealing with that component

rather than retire it and maintain a shared component in the platform. A technical

executive explains his strategy in dealing with duplicate components:

204

“before [platforms] become de-facto, it requires killing duplicate systems and

preventing them from coming up again.”

Another issue was that when it came to some platform components, product ownership

was not as explicit and clear as it was in individual products. That is, in many cases it was

not clear who owned a component in the platform that was shared across different teams

and products.

Agility versus stability. As described earlier, in Scandin’s case, the platform is product-

driven which means that some platforms were derived from a number of existing

products as well as from the requirements of an ongoing project. I noticed that this notion

introduced the challenge of striking a balance between the stability of the platform and

the ability to change often and add features. On the one hand, platform stability was key,

because many products relied on the platform as a common foundation and therefore it

had to be trusted and not changed very often. Especially for critical components, being

part of an ongoing product development with changing requirements imposed certain

risks:

“… One thing we need to accept as an agile organization is that there are certain

services that are too expensive to develop [as part of] the project.”

On the other hand, it was also important for the company to respond to the need of the

products in an agile manner in order to be able to compete in their specific market.

Another issue under this category was raised by some participants. When a specific

product requests a change in the platform that involves a cross-cutting concern such as

usability, it will be challenging to make a choice from the two possible options. The first

is to honour the change request to satisfy the customer at hand (following agility

205

principles), in which case all products relying on that aspect would be affected (i.e.

causing instability). The other option is to ignore the request until it proves to be an issue

in other products too, but that may come at the expense of the satisfaction of the customer

at hand. This challenge, however, was not supported by a specific example, so I consider

it more of a concern than an actual problem.

10.5.4 Standardization

Some of the challenges I came across in the data were related to the lack of

standardization in the organization which affected communication and made reuse more

difficult.

Standardization of documents. Some documents are circulated among platform teams,

and between platform teams and product teams. When the documentation practices were

not consistent, individuals were less likely to refer to these documents. As one of the

interviewees stated, standardizing the retrieval process of documents plays an important

role:

“if I have to find how this works, I know where to go find the information and

everything is in one place.”

Other interviewees pointed out that the inconsistency across teams in the format of their

documents and the level of details made finding information more difficult.

Standardization of practices. When different teams and business units contributed to a

shared platform, the lack of standard practices such as code conventions and testing

practices appeared to have a detrimental effect on collaboration and made reuse difficult.

One of the interviewees asserted that the lack of code conventions was one of the reasons

it was difficult for his team to reuse others’ code:

206

“there is actually nothing really that would be [considered] program wide like

code conventions.”

Standardization of tools and technical solutions. When each team in the organization

makes their own decisions on what tools and technical solutions they want to use in a

given project, as the case in Scandin, platform development and use seems to become

more challenging. For example, developers in Scandin need to deal with a number of

version control systems and a wide range of testing and continues integration tools before

they could contribute to the platform:

“I wouldn’t know where to find all of these guys’ code… It’s still not company-

wide that there would be even like a nice recommendation that everybody

[should] use SVN not GIT or CVS.”

Standardization of acceptance criteria. Teams in Scandin often defined a list of criteria

that needed to be met before a feature or a task was considered done. I noticed a range of

things that were considered in different teams such as: successful compilation, passing

regression tests, having a predefined bare minimum amount of test coverage, and

updating relevant documents. The fact that these criteria were not standardized across the

organization caused some teams to lose confidence and trust when reusing components

developed by others or when referring to documents written by different business units.

For example, one team that put a significant emphasis on reliability in their engines

refrained from using other code that did not adhere to the same quality standard.

10.6 Technical Challenges

Developing software platforms is an engineering problem that imposes many technical

challenges. The collected data shows that many of these challenges are due to the fact

207

that a platform needs to satisfy a range of varying requirements in a certain domain, and

that many products rely on the platform as the foundation of their functionality. The

major challenges that are identified under this category include: commonality and

variability, architectural complexity, code contribution, and practices.

10.6.1 Commonality and variability

As a reuse strategy, platforms provide a common infrastructure on top of which different

products can be built. However, components in the platform need to accommodate

possible variants so that customization is possible for different business and technical

needs [Jianhong2006]. Managing commonality and variability is not always

straightforward, and that is why commonality and variability management is a topic by

itself in fields like software product line engineering [vanGurp2001]. I discuss

commonality and variability challenges around three axes: reuse, variation sources, and

cross-cutting concerns.

Reuse. Managing reuse in the organization is essential for a successful platform

development. In the study, I found that this entails not only finding opportunities for

reuse in new products, but also dealing with existing redundancy. One of the main

challenges I came across in this regard was to detect redundancies in legacy code.

Developers often use ad-hoc techniques to reuse code such as copy-and-paste (i.e. code

cloning); and research has shown that code clones are difficult to trace and often

introduce bugs in the system [Li2006]. In Scandin, a particular problem with clones was

that if a critical change was made to the original code, the duplicates did not get the

208

update, and when they did, they had to be maintained separately. One of the platform

teams explained the problem as follows:

“we kept having these pieces of code that were copied [from our platform] and

pasted somewhere else [in different products]... then we optimized [the code] and

nobody gets to use [the optimized version] because it wasn’t in any common place

and there was no process [to trace reuse instances].”

As I noticed, redundancy also resulted from poor communication between teams, which

yielded multiple implementations of similar services at times.

After detecting redundancy, the next challenge in managing reuse is actually dealing with

redundant solutions. As one of the technical leads explained, the process of retiring

redundant components and replacing them with a common foundation requires

meticulous care to ensure a smooth and stable transition:

“first you need to unify [the solutions]... If we cannot make those [duplicate

solutions] coexist, then one of those need to take the whole responsibility, but it

means one of those systems continues in production and others are retired and

taken to maintenance only.”

After the duplicate solutions have been abstracted into a reusable component in the

platform, there is one more challenge of making the new asset visible for future projects.

In Scandin, visibility was an issue:

209

“we are not sharing all the code we could, because it wasn’t under [business unit

name] before this. So I am not sure if they would even know as well what we

already would have available.”

Variation sources. Assets in Scandin’s platforms had to deal with multiple dimensions

of variability in the product portfolio, which imposed a real challenge. Some variations

were due to business needs which required different models for different types of

customers:

“we have different license models depending on the business case. We have one

model that goes into the stores. Then we have the [third-party] model where we

actually sell through the [third-party]… Then for corporate, we have a couple of

different models.”

Operating systems were another dimension of variation:

“…you have Androids, iPod, iPad, Mac, Mobile Win … if each OS has a different

client code, you might have a different backend.. it becomes very tedious to

maintain, it becomes a burden.”

In Scandin, variation also occurred due to the concept of combinations of services where

every product team (or sometimes every customer) should be able to package their own

combination of services from the platform.

Cross-cutting concerns. Things that cut across different products that use the platform

(e.g. usability in the case of Scandin) become a challenge in scenarios where a change is

210

needed only in a subset of the products but not all. This may require treating this concern

as a new variation point which adds to the complexity of variability in the platform.

10.6.2 Design complexity

This issue has been brought up by lead architects as one of the main technical challenges

in platform design. I investigated this issue further by looking at design artefacts to

identify the reasons of added complexity, namely:

Different actors. When variability in the platform was driven by the business trying to

target different markets or customer bases, this yielded multiple actors, each with their

own needs of the platform.

The requirement of combinations. Due to the requirement of being able to combine

Scandin’s components and services to build unique products (aka. suites), ensuring a

smooth integration between these components and resolving their dependencies in the

different combinations was not straightforward. Therefore, when a software platform

strategy was adopted in Scandin, stronger emphasis was given to modularity and clean

interface definitions during the design process.

The requirement of maximizing reuse. In the design of the architecture, architects also

needed to consider the requirement of being agnostic to the hardware platform, operating

system, and other sources of variation as much as possible. As described by one

interviewee:

“[the components] are not related to any operating system. And we chose them in

a way that whatever language on the client side is used there is always the

possibility to create clients for the services.”

211

10.6.3 Code Contribution

This became a real challenge when Scandin decided to not completely separate platform

development from product development. That is, in the product-driven platform

development model that was adopted, both platform teams and product teams needed to

contribute to the platform. This was especially the case in situations where the platform

teams could not keep up with the increased number of feature requests by product teams.

In the context of this study, the company had adopted an internal open-source model

where product teams could assume the responsibility of building features into certain

parts of the platform in order to support their products if they did not want to wait in the

queue. Other parts that were considered too risky to be open were kept closed within the

platform teams. Some of the challenges associated with the internal open-source model

were as follows:

Retrievability. Depending on the organizational boundaries between business units,

component teams and distributed teams, the platform code were less or more difficult to

find. The participants attributed this to poor visibility of the assets, poor communication

between teams and business units, and the lack of standardization in source code control

solutions.

Platform quality. Because the quality of the platform could be significantly affected

when different teams change different parts of the platform on regular basis, Scandin had

put an auditing program in place where changes were audited by a code guardian before

they could take effect. One of the technical leads explains the process:

212

“Projects delivering the features [product teams] can go and modify [the

platform] as long as the [platform team] audits that and makes the release based

on that [audit].”

An issue was raised by some participants regarding this model which is that with a lack

of standardization of acceptance criteria, the auditing process might become a bottleneck

at certain times.

Platform stability. Ideally, the impact of any change to the platform ought to be tested

against all products and combinations that use the platform before it could be released.

As a technical lead in Scandin explained, in order to assign this responsibility to product

teams, it required a technical solution that duplicated the build environment of the

platform locally on their machines so they could see its impact before submitting it for an

audit.

10.6.4 Technical practices

Some technical practices that had been successfully implemented in the previously

single-product-centered culture in Scandin did not scale well when the transition was

being made to platform-development. The data revealed some challenges in such areas as

testing, automation, continuous integration, and releases.

Testing. To ensure the stability of the platform in the liberal environment of Scandin

with their open-source model, rigorous testing practices were needed. One of the

challenges associated with that was to be able to populate the different product instances

that had been built on top of a given platform, and test the impact of a certain change set

213

on these instances. When this process was in place, it needed to be highly and efficiently

automated in order to be effective:

“[teams needed to] test the functionality of the [platform] in all supported

product contexts… they can automatically - before releasing products - repeat

testing on all supported products and platforms.”

Another challenge that often arises when testing products that share a common platform

is identifying what should be tested in the platform and what should be tested in the

separate products [Engstrom2011]. Scandin was not any different in this regard. One of

the problems I noticed was the diffusion of responsibility among platform teams and

product teams. Some product teams assumed that platform teams should be the ones

taking care of testing changes in the platform, while some platform teams made similar

assumptions about product teams. When I asked a platform team member about the

comprehensiveness of the test suites in a certain engine, he noted:

“We are partly relying on that common base of code being linked into other

engines that are then again tested, and that code [in the platform] is tested in that

[reuse] process.”

Continuous integration. Teams contributing to the platform needed to ensure that

changes – in the most part – are agnostic to the operating system or hardware platform.

Therefore, a practical build process needed to be setup in such a way so that the changes

were automatically propagated to all the different relevant build environments in the

organization. This required a lot of sharing and effective communication among teams

and business units, and at the time of the study, it was still not achieved.

214

Release synchronization. One of the challenges raised by some architects had to do with

managing the versions and synchronizing the releases of different components in the

platform to ensure a trouble-free integration at the product level. As for different

versions, sometimes the company needed to maintain older versions of components that

were still in use by some of their customers. And at any given point of time, it had to be

clear to the maintenance and support teams which versions of component A were

supported by which versions of component B. This had to be clear also to product teams

to ensure they made the transition to newer versions in time for their new product

releases. One of the team lead explains why these versions existed:

“If we change the logic it shouldn’t break the integration. And if we are going to

break the integration, then it’s a new version here that should be in sync… there

will be several [versions] to be able to give time to the client … to migrate and to

take the latest version.”

10.7 People Challenges

Software engineering is one of the fields where the human aspect plays an essential role

in the success of any practice. As evident in the collected data, making the transition to a

software platform strategy is challenged by a number of factors related to individuals in

the organization, namely:

10.7.1 Resisting Change

As I saw in Scandin, making the leap to a software platform strategy required major

changes in the organizational culture. While some people found it easier to adapt and take

the ride, others seemed to struggle for different reasons as reported by the participants

215

such as: not seeing the value of the change, perceiving the change as inconvenient, and

having to make adjustments for the new work environment:

“Some people are very set in their ways and these might be reluctant to change

the way they work.”

There were also political factors that inhibited adopting changes proposed by others. For

example, some business unit managers resisted the decision to join forces with other units

to develop a certain component because for them that meant letting go of their own

existing components:

“Convincing business unit heads to let go of their own asset which they control

fully to one joint module is challenge number one.”

10.7.2 Technical Competency

The importance of the technical experience, knowledge and skills that usually play an

important role in software teams is exacerbated in the context of platform development.

Developers in Scandin needed to be able to cope with the complexity of the platform

architecture, write cross-platform code, and contribute sound technical solutions to

support testing and continuous integration in a cross-platform environment. When I asked

one of the technical leads about some components that were specific to certain operating

systems, he attributed that to missing skills such as writing cross-platform code:

“We don’t really have a large experience - at least in this site office - of writing

cross-platform code.”

216

10.7.3 Domain Knowledge

I noticed in the case of Scandin that a good understanding of the domain is vital in

developing a useful and reusable platform. Without sufficient domain knowledge,

engineers could not make decisions as to what was common and what was variable in a

given component. This also affected decisions pertaining to the discontinuation of certain

components if the impact of such decisions on the customer base was not understood.

10.8 Threats to Validity

In the study, I considered three different platforms and interviewed individuals of a wide

range of roles in the company to get a holistic view of the subject matter and expand the

generality of the findings. Nevertheless, analyzing a single company is in itself a threat to

the generality of the findings. Moreover, some reported issues may be specific to the

cultural context of Scandinavian companies or the domain of the studied company.

Furthermore, although I assumed that the participants were truthful and honest in their

responses and narrations, I noticed that at times the participants were reporting their

personal concerns with what might happen as opposed to what was actually happening. I

mitigated this issue: 1) by trying to ask for examples and specific incidents whenever an

issue was raised, and throughout this chapter I make it clear when such examples were

not provided; and 2) by attending meetings and talking to people from other teams to

verify certain claims.

Moreover, the validity of the findings might have been biased by my interpretations. This

bias usually comes with all qualitative studies. While qualitative studies typically do not

strive for statistical significance, they depend on crosschecking and triangulation of

217

different data sources to verify the findings and draw conclusions. In this case, to mitigate

this bias as much as possible, I tried to diversify the sources of information used in the

analysis such as interview transcriptions, field notes taken during meetings and field

visits, and other artefacts provided by the company. I also verified the findings and

interpretations with a number of people in the company to check for any

misunderstandings.

10.9 Comparison with the Literature

In this section, I discuss literature relevant to the findings of the study presented in this

chapter, and I compare my findings with those of previous studies and highlight

differences if any. The literature is abundant on success stories of adopting a software

platform strategy (e.g. [Cusumano1995], [Romberg2007]). But in this section, I only

focus on literature discussing challenges.

In the broader context of the topic, there is a large body of research on platform

development in fields other than software engineering. Muffatto [Muffatto1999] analyzed

the introduction of a platform strategy in the automobile industry and identified a raft of

issues. Some issues are related to the organizational structure, namely: the need for an

effective communication structure among platform teams as well as between platform

teams and product innovation teams, and the issue of the collocation of platform teams.

This goes hand in hand with my findings under the organizational challenges category.

Another identified challenge was in regard to the derivation process of platforms from

existing products which I also visited in multiple occasions in this chapter. In the

218

manufacturing context, Sundgren [Sundgren1998] points out that the architectural

reconfiguration of elements in platform development imposes a real challenge.

Moving closer to the software field, Lynex et al. [Lynex1998] identified nontechnical

inhibitors of reuse adoption and suggested possible solutions. The authors mention issues

such as competition amongst business units, unwillingness to share, overlapping

responsibilities, quality of components, and other issues. The authors also suggested

some solutions such as introducing central coordination of development. The findings of

my study, however, clearly show that centralization by itself is not an effective solution,

especially in flat organizations. Halman et al. [Halman2003] discussed some risks and

challenges in platform-driven development, namely: integrating existing assets into the

platform, the challenge of meeting the needs of all target markets, added complexity in

the development process, the need to have a good understanding of the market, and the

issue of the flexibility in responding to the market needs versus platform stability. While

the findings of the study presented in this chapter are consistent with all of these

challenges, the author argues that product families (which are based on platforms) make

communication easier. In my findings, on the other hand, communication was found to be

a major challenge introduced by platform thinking. This is also confirmed by Jiao et al.

[Jiao2007] who highlights communication among the different players in platform

development as an issue to be addressed. In the context of Hewlett-Packard, Jandourek

[Jandourek1996] mentions that one of the key factors in the platform development

practice is an organizational structure that supports interdependencies between platform

teams and product teams. The author also addresses concerns similar to ours regarding

quality criteria and test procedures, and regarding common development environments

219

and processes which I discussed under standardization. Mili et al. [Mili1995] visits the

issue of team structure in the organization and asserts that a combination of feature and

component teams may be necessary. Similar to our findings regarding the downside of

highly autonomous teams, Whitworth et al. [Whitworth2007] asserts that agile teams tend

to become overly differentiated or isolated from the rest of the organization.

In the discussion of component-based software engineering, Crnkovic [Crnkovic2001]

addresses the issue of the sensitivity of platforms to changes. Cusumano et al.

[Cusumano1999] offers a thorough discussion on issues pertaining to cross-platform code

such as: synchronizing code bases, keeping track of all variations, and exhaustively

testing all versions. Moreover, Greenfield et al. [Greenfield2003] addresses issues such as

standardization and automation in production processes. Barnes et al. [Barnes1988]

provided an economic foundation for software reuse in which they mention two source

control model: a pure producer-consumer model, and an open source model. In the

context of my study, both models were part of the discussion under the code contribution

subsection.

Some of the challenges found in the literature that I did not stumble upon include: finding

a balance between the goal of maximizing reuse at one end and the goal of delivering

distinctly unique products to the market to drive innovation at the other end

[Sundgren1998], customer integration in platform development, and economic

justification of platforms [Jiao2007].

220

10.10 Chapter Summary

This chapter provided a comprehensive taxonomy of the challenges that arise when

organizations decide to adopt software platforms as a SPL technique. The study also

reveals how new trends in software engineering - especially as agile methods, distributed

development, and flat management structures interplay with the platform strategy. I used

an ethnographic approach to collect data by spending time at a medium-scale company in

Scandinavia. The collected data was analyzed using Grounded Theory. The findings

identify four classes of challenges, namely: business challenges, organizational

challenges, technical challenges, and people challenges. To the best of my knowledge,

the work presented in this chapter provides the most comprehensive list of issues and

challenges, both technical and nontechnical within the context of software engineering in

general and modern software development in particular.

221

 SUMMARY AND CONCLUSIONS CHAPTER ELEVEN:

11.1 Summary

This dissertation presented a research inquiry on whether it is feasible to treat variability

management in a reactive as opposed to proactive manner in order to lower the adoption

barrier to SPLs in agile environments. The main goal of the dissertation was to construct

a framework for agile organizations to enable systematic variability management for

similar software products. Towards achieving this goal, six different studies were

conducted to examine the different areas of variability management and how they can be

incorporated within an ASD practice. Five studies spanned over a range of variability

management aspects, namely: variability elicitation for business logic requirements,

variability elicitation for presentation and portability requirements, variability modeling,

variability realization and product derivation. The sixth study aimed to provide an

understanding of the challenges surrounding transferring the framework to an industrial

context. The main contributions of this dissertation are summarized in Table 12.

Table 12 - Summary of Contributions

Contribution Areas Method Tool
Support

Publication

Literature
Review

APLE, variability
management,
feature modeling,
traceability

Literature
Survey

NA Distributed in different
publications based on
the topic
[Ghanam2008],
[Ghanam2008b],
[Ghanam2011],
[Ghanam2010],
[Ghanam2010c],
[Ghanam2010b],
[Ghanam2009],

222

[Ghanam2011b] –
under review

Variability
elicitation &
evolution in
business logic
requirements

Elicitation,
evolution

Exploratory
study

- [Ghanam2011]

Variability
elicitation &
evolution in
presentation
and portability
requirements

Elicitation,
evolution

Action
research

- [Ghanam2010]

Variability
modeling

Feature modeling,
traceability

Comparative
evaluation,
running
example

Yes [Ghanam2010c]

Variability
realization

Implementation Proof-of-
concept, case
study

Yes [Ghanam2010b]

Product
derivation

Extraction,
instantiation

Self-
evaluation

Yes [Ghanam2009]

Transferability Adoption issues,
technical
challenges, non-
technical
challenges

Ethnography,
grounded
theory

NA [Ghanam2011b] –
under review

223

11.2 Conclusions

The research presented throughout this dissertation provides an in-depth understanding of

the feasibility of an agile framework for SPL engineering. The findings of this research

show that ATs can play a valuable role in the variability elicitation process. Nonetheless,

ATs alone may not be sufficient to deduce implicit constraints from requirements. This

issue is addressed further in my work on leveraging EATs to extend feature models and

support traceability between the model and the implementation. Using this traceability

approach, hidden constraints and dependencies can be exposed. Moreover, EATs,

assisted by proper tool support, enable the evolution of variability by providing

instantaneous feedback on the impact of adding or removing features or variants.

Furthermore, the dissertation demonstrated examples of non-functional aspects that can

be treated in a reactive rather than proactive manner. The significance of this kind of

treatment lies in the ability to cope with the volatility of a given market or the instability

associated with emerging technologies. The example I showed tackled the digital tabletop

market which is still emerging and unpredictable.

At the implementation level, the results of my research show that realizing variability can

occur in a reactive manner provided that proper refactoring and testing practices are

followed. The results also illustrate how the process can be made more systematic by

using tests as a common starting point to inject variability on-demand. The efficiency of

the process can be improved by providing automated tool support. Once variability has

been realized in the system, the dissertation shows that individual products can be built

using the derivation technique or the instantiation technique.

224

The last study in the dissertation provides important findings on what challenges to

expect when adopting the new framework in an industrial context. The findings show that

there is a number of technical challenges to address, and there is also a great deal of non-

technical issues related to the business needs, the organizational context, and a raft of

human factors.

11.3 Future Work

A key finding I have encountered throughout this dissertation is that the need for

automated tool support cannot be overstated if we were to implement a successful agile

product line practice. Such tool support is needed in the different stages of the proposed

framework to improve the efficiency of repetitive tasks, provide automated measures to

support error-prone activities, and to help preserve and communicate the necessary

knowledge to the different stakeholders. Moreover, building a reliable economic model is

essential in order to evaluate the added economic value of the proposed framework in

relation to other frameworks. Future research also includes taking the proposed

framework to practice to conduct a longitudinal holistic evaluation in order to determine

how the different components of the framework interplay. Furthermore, the

transferability study provides grounds for numerous research questions to be examined

more thoroughly.

225

References

[Agile2001] Agile Manifesto, 2001, http://www.agilemanifesto.org, last
accessed February 22, 2010.

[Agile2011] Agile Hallmarks, VersionOne, available at:
http://www.versionone.com/Agile101/Agile_Hallmarks.asp,
last accessed on July 6, 2011.

[Ambler2008] Ambler, S., Agile Adoption Rate Survey Results, 2008,
http://www.ambysoft.com/surveys/agileFebruary2008.html, last
accessed on March 2, 2011.

[Anastasopoulos2009] Anastasopoulos, M., Muthig, D., An Evaluation of Aspect-
Oriented Programming as a Product Line Implementation
Technology, 141-156, Proceedings of the 8th International
Conference, ICSR 2004, Madrid, Spain, July 5-9, 2009.

[André2010] André, F., http://featuremodeldsl.codeplex.com/. Feature
Model DSL Homepage, 2009. Accessed February 10, 2010.

[Andreychuk2010] Andreychuk, D., Ghanam, Y., and Maurer, F., Adapting
Existing Applications to Support New Interaction Technologies
- Technical and Usability Issues. The ACM SIGCHI
Symposium on Engineering Interactive Computing Systems
(EICS) - Late Breaking Results, Germany, 2010.

[Antón1997] Antón, A., Goal Identification and Refinement in the
Specification of Information Systems, 1997, PhD Thesis,
Georgia Institute of Technology.

[Antoniol2002] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo,
E., Recovering traceability links between code and
documentation, IEEE Transactions on Software Engineering,
vol.28, no.10, pp. 970- 983, Oct 2002.

[Apple2011] Apple iPad, http://www.apple.com/ipad/, last accessed July 6,
2011.

[Atkinson2000] Atkinson, C., Bayer, J., and Muthig, D. "Component-based
product line development: the KobrA approach," in 1st Int’l
Software Product Line Conference Denver, Colorado, United
States: Kluwer Academic Publishers, 2000, pp. 289-309.

http://www.versionone.com/Agile101/Agile_Hallmarks.asp
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/yghanam_lbr162.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/yghanam_lbr162.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/yghanam_lbr162.pdf
http://www.apple.com/ipad/

226

[Babar2009] Babar, M., Ihme, T., and Pikkarainen, M., An industrial case of
exploiting product line architectures in agile software
development, 2009, proceedings of the 13th International
Software Product Line Conference (SPLC '09). Carnegie
Mellon University, Pittsburgh, PA, USA, 171-179.

[Barnes1988] Barnes, B., Durek, T., Gaffney, J., and Pyster, A., A framework
and economic foundation for software reuse, Software Reuse:
Emerging Technology (1988), 77-88.

[Beck2003] Beck, K., Test-Driven Development: By Example. Addison
Wesley, 2003.

[Beck2004] Beck, K., and Andres, C. (2004) Extreme Programming
Explained: Embrace Change (2nd Edition). Addison-Wesley
Professional.

[Berg2005] Berg, K., Bishop, J., and Muthig, D., “Tracing Software
Product Line Variability — From Problem to Solution Space,”
presented at 2005 annual research conference of the South
African institute of computer scientists and information
technologists on IT research in developing countries, White
River, South Africa, 2005.

[Bergey2004] Bergey, J., Cohen, S., Jones, L., Smith, D., Software Product
Lines: Experiences from the Sixth DoD Software Product Line
Workshop. Technical report CMU/SEI-2004-TN-011, 2004.

[Beuche2011] Beuche, D., What’s the difference? A Closer Look at
Configuration Management for Product Lines, 2010. Available
at http://productlines.wordpress.com/2010/03/13/whats-the-
difference-a-closer-look-at-configuration-management-for-
product-lines/, last accessed on September 8, 2011.

[Bieman1995] Bieman, J., and Kang, B., Cohesion and reuse in an object-
oriented system. SIGSOFT Software Engineering Notes, 20,
259-262, August, 1995.

[Bittner2006] Bittner, K., and Spence, I. (2006) “Managing Iterative Software
Development Projects,” Addison Wesley Professional.

227

[Boehm1976] Boehm, B., Brown, J., and Lipow, M., 1976. Quantitative
evaluation of software quality. In Proceedings of the 2nd
international conference on Software engineering (ICSE '76).
IEEE Computer Society Press, Los Alamitos, CA, USA, 592-
605.

[Bosch2000] Bosch, J., Hogstrom, M., 2000. Product instantiation in
software product lines: a case study. In: Second International
Symposium on Generative and Component-Based Software
Engineering, pp. 147–162.

[Brownsword1996] Brownsword, L., Clements, P., A Case Study in Successful
Product Line Development. Technical report CMU/SEI-96-TR-
016, 1996.

[Buddi2011] Buddi, http://sourceforge.net/projects/buddi, last accessed July
6, 2011.

[Bühne2004] Bühne, S., Lauenroth, K., and Pohl, K., “Why is it not
Sufficient to Model Requirements Variability with Feature
Models?” Proceedings of AURE`04, 2004, Japan, pp. 5-12.

[Buhrdorf2003] Buhrdorf, R., Churchett, D., and Krueger, C., Salion’s
Experience with a Reactive Software Product Line Approach,
Revised Papers of the 5th International Workshop, PFE 2003,
Siena, Italy, November 4-6, 2003.

[CaliberRM2010] CaliberRM,
http://www.borland.com/us/products/caliber/index.html,
accessed March 1, 2010.

[Carbon2006] Carbon, R., Lindvall, M., Muthig, D., Costa, P.: Integrating
product line engineering and agile methods: Flexible design up-
front vs. incremental design. In: APLE ’06: 1st International
Workshop on Agile Product Line Engineering (In conjunction
with SPLC 2006).

[Carbon2008] Carbon, R., Knodel, J., Muthig, D., Meier, G.: Providing
feedback from application to family engineering – the product
line planning game at the Testo AG. In: SPLC ’08: Proceedings
of the 12th International Software Product Line Conference,
IEEE Computer Society (2008) 180-189.

http://sourceforge.net/projects/buddi
http://www.borland.com/us/products/caliber/index.html

228

[Chen2009] Chen, L., M. A. Babar, et al. (2009). Variability Management
in Software Product Lines: A Systematic Review. 13th
International Software Product Line Conference, San
Francisco, CA, USA.

[Chen2009b] Chen, L., Ali Babar, M.: A Survey of Scalability Aspects of
Variability Modeling Approaches. In: Workshop on Scalable
Modeling Techniques for Software Product Lines at SPLC
2009, San Francisco, CA, USA (2009).

[Cho2008] Cho, H., Lee, K., and Kang, K. C. 2008. Feature Relation and
Dependency Management: An Aspect-Oriented Approach.
Proceedings of the 2008 12th international Software Product
Line Conference (2008). IEEE Computer Society, Washington,
DC, 3-11.

[Chung1999] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-
Functional Requirements in Software Engineering.
International Series in Software Engineering, vol. 5, p. 476.
Springer, Heidelberg (1999).

[Chung2009] Chung, L., and do Prado Leite, J., On Non-Functional
Requirements in Software Engineering, Conceptual Modeling:
Foundations and Applications (LNCS), 2009, pp. 363-379.

[Clegg2002] Clegg, K., Kelly, T., and McDermid, J., Incremental Product-
Line Development, International Workshop on Product Line
Engineering, Seattle, 2002.

[Cleland-Huang2004] Cleland-Huang, J., Zemont, G., and Lukasik, W. 2004. A
Heterogeneous Solution for Improving the Return on
Investment of Requirements Traceability. In Proceedings of the
Requirements Engineering Conference, 12th IEEE
international(September 06 - 10, 2004). RE. IEEE Computer
Society, Washington, DC, 230-239.

[Clements2001] Clements, P., and Northrop, L., Software Product Lines:
Practice and Patterns, Addison-Wesley, US, 2001.

[Clements2002] Clements, P. and Northrop, L. (2002) Salion, inc.: A software
product line case study. Software Engineering Institute,
Carnegie Mellon University.

[Cohn2004] Cohn, M., User Stories Applied: For Agile Software
Development: Addison-Wesley, 2004.

229

[Cooper2006] Cooper, K., and Franch, X., APLE: 1st International Workshop
on Agile Product Line Engineering, International Conference
on Software Product Line Engineering, 2006.

[Coplien1999] Coplien, J., Hoffman, D., and Weiss, D., “Commonality and
Variability in Software Engineering,” IEEE Software, 1999, pp.
37-45.

[Crnkovic2001] Crnkovic, I., Component-based software engineering – new
challenges in software development, Software Focus (2001),
2(4), 127- 133.

[Cunnigham2011] Cunnigham, W. FIT: Framework for Integrated Test. Available
at: http://fit.c2.com. Last accessed on June 13, 2011.

[Cusumano1995] Cusumano, M., Selby, R., Microsoft Secrets: How the World's
Most Powerful Software Company Creates Technology, Shapes
Markets, and Manages People, New York: Free Press, 1995.

[Cusumano1999] Cusumano, M., Yoffie, D., What Netscape learned from cross-
platform software development. Communications of the ACM
(1999), 42(10), 72-78.

[Deelstra2005] Deelstra, S., Sinnema, M., and Bosch, J., 2005, Product
derivation in software product families: a case study, The
Journal of Systems and Software, 74, pp. 173–194.

[Dittrich2007] Dittrich, Y., John, M., Singer, J., and Tessem, B., For the
Special issue on Qualitative Software Engineering Research,
Information and Software Technology (2007), 49 (6), 531-539.

[DOORS2010] DOORS, http://www-01.ibm.com/software/awdtools/doors/,
accessed March 1, 2010.

[DViT2009] DViT Technology, available at: http://smarttech.com/DViT,
last accessed June 18, 2009

[Engstrom2011] Engstrom, E., Runeson, P., Software product line testing - A
systematic mapping study, Information and Software
Technology (2011), 53(1), 2-13.

[Eriksson2005] Eriksson, M., Börstler, J., and Borg, K., The PLUSS Approach
- Domain Modeling with Features, Use Cases and Use Case
Realizations, In Proceedings of the International Conference
on Software Product Lines, 33-44, 2005.

http://www-01.ibm.com/software/awdtools/doors/

230

[Feng2007] Feng, K., Lempert, M., Tang, Y., Tian, K., Cooper, K., Franch,
X.: Developing a survey to collect expertise in agile product
line requirements engineering. In: RWASE’07: International
Research-in-Progress Workshop on Agile Software
Engineering.

[Fey2002] Fey, D., Fajta, R., and Boros, A., Feature Modeling: A Meta-
Model to Enhance Usability and Usefulness. In Software
Product Lines (SPLC2): Springer, 2002, pp. 198-21.

[Filho2002] Filho, I., Oliveira, T., Lucena, C., 2002. A proposal for the
incorporation of the features model into the UML language.
Proceedings of the 4th International Conference on Enterprise
Information Systems (ICEIS2002), Ciudad Real, Spain.

[FIT2010] FIT, http://fit.c2.com, accessed Nov, accessed March 1, 2010.

[FitNesse2011] FitNesse, http://www.fitnesse.org/, last accessed July 6, 2011.

[Fowler2004] Fowler, M., and Beck, K. (2004). Refactoring: improving the
design of existing code. Addison Wesley.

[Frakes1994] Frakes, W., and Pole, T., An empirical study of representation
methods for reusable software components, IEEE Transactions
on Software Engineering, 20(8), 617-630, 1994.

[Frakes1995] Frakes, W., Fox, C., Sixteen Questions about Software Reuse,
Communications of the ACM, 38(6), 75-87, 1995.

[Fuchs1992] Fuchs, N., Specifications are (Preferably) Executable. IEE/BCS
Software Engineering Journal 7(5) (1992) 323–334.

[Fuchs1992] Fuchs, N., Specifications are (Preferably) Executable. IEE/BCS
Software Engineering Journal 7(5) (1992) 323–334.

[Gacek2001] Gacek, C. and Anastasopoules, M., 2001. Implementing
product line variabilities. SIGSOFT Software Engineering
Notes 26, 3 (May. 2001), 109-117.

[Gaffney1989]
Gaffney, J., and Durek, T., Software reuse-key to enhanced
productivity: some quantitative models, Information and
Software Technology, 31(5), 258–267, 1989.

[Gamma1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995) “Design Patterns: Elements of Reusable Object-
Oriented Software,” Addison-Wesley.

231

[Ghanam2008] Ghanam, Y., and Maurer, F., An Iterative Model for Agile
Product Line Engineering. The SPLC Doctoral Symposium,
2008 - in conjunction with the 12th International Software
Product Line Conference (SPLC 2008), Limerick, Ireland.

[Ghanam2008b] Ghanam, Y., Park, S., and Maurer, F., A Test-Driven Approach
to Establishing & Managing Agile Product Lines. The 5th
Software Product Lines Testing Workshop (SPLiT 2008) in
conjunction with SPLC 2008, Limerick, Ireland.

[Ghanam2009] Ghanam, Y., and Maurer, F., Extreme Product Line
Engineering: Managing Variability & Traceability via
Executable Specifications. Agile Conference 2009, Chicago.

[Ghanam2009b] Ghanam, Y., Maurer, F., Abrahamsson, P., and Cooper, K., A
Report on the XP Workshop on Agile Product Line
Engineering. SIGSOFT Software Engineering Notes 34, 5 (Oct.
2009), 25-27.

[Ghanam2010] Ghanam, Y., Andreychuk, D., and Maurer, F., Reactive
Variability Management Using Agile Software Development.
Proc. of the international conference on Agile methods in
software development (Agile 2010), Orlando, USA, 2010.

[Ghanam2010b] Ghanam, Y., and Maurer, F., Extreme Product Line
Engineering – Refactoring for Variability: A Test-Driven
Approach. The 11th International Conference on Agile
Processes and eXtreme Programming (XP 2010), Trondheim,
Norway, 2010.

[Ghanam2010c] Ghanam, Y., and Maurer, F., Linking Feature Models to Code
Artifacts using Executable Specifications. Proc. of the 14th
International Software Product Line Conference (SPLC 2010),
Jeju Island, South Korea, 2010.

[Ghanam2010d] Ghanam, Y., Cooper, K., and Maurer, F., The Second XP
Workshop on Agile Product Line Engineering. In conjunction
with the 11th International Conference on Agile Processes and
eXtreme Programming (XP 2010), Trondheim, Norway.

[Ghanam2011] Ghanam, Y., and Maurer, F., Using Acceptance Tests for
Incremental Elicitation of Variability in Requirements: An
Observational Study. Proc. of the international conference on
Agile methods in software development (Agile 2011), Salt
Lake City.

http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/splc2008.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/splc2008.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/split_workshop.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/split_workshop.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/ACMNotes.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/ACMNotes.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/ACMNotes.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/yg_agile2010.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/yg_agile2010.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/workshop.pdf
http://ase.cpsc.ucalgary.ca/ase/uploads/Publications/workshop.pdf

232

[Ghanam2011b] Ghanam, Y., Maurer, F., and Abrahamsson, P., Making the leap
to software platforms. Journal submission under review.

[Glinz2007] Glinz, M., On Non-Functional Requirements, 15th IEEE
International Requirements Engineering Conference, 2007,
pp.21-26.

[Gotel1994] Gotel, O., and Finklestein, A., An analysis of the requirements
traceability problem, Proceedings of ICRE94, 1st International
Conference on Requirements Engineering, Colorado Springs,
Co, IEEE CS Press, 1994.

[Gotel1994] Gotel, O., and Finkelstein, A., An Analysis of the Requirements
Traceability Problem, 1st International Conference on
Requirements Eng., 1994, pp. 94-101.

[Greenfield2003] Greenfield, J., Short, K., Software factories: assembling
applications with patterns, models, frameworks and tools,
Companion of OOPSLA (2003).

[GreenPepper2010] GreenPepper, http://www.greenpeppersoftware.com, accessed
March 1, 2010.

[Gurp2006] Gurp, J., and Prehofer, C., 2006, Version management tools as
a basis for integrating product derivation and software product
families, Proceedings of the Workshop on Variability
Management at SPLC 2006, pp. 48–58.

[Halman2003] Halman, J., Hofer, A., Van Vuuren, W., Platform-driven
development of product families: Linking theory with practice,
Journal of Product Innovation Management (2003), 20(2), 149-
162.

[Halmans2003] Halmans, G., and Pohl, K., Communicating the variability of a
software-product family to customers, Software System Model,
2003, vol. 2, pp. 15–36.

[Hammersley1983] Hammersley, M., Atkinson, P., Ethnography: principles in
practice, Tavistock - London, 1983.

[Hanssen2008] Hanssen, G., Faegri, T., Process fusion: An industrial case
study on agile software product line engineering, Journal of
Systems and Software, Volume 81, Issue 6, Agile Product Line
Engineering, June 2008, Pages 843-854.

233

[Heineman2001] Heineman, G., and Councill, W., Component-based Software
Engineering, Putting the Pieces Together. Addison-Wesley,
2001.

[Henninger1997] Henninger, S., An evolutionary approach to constructing
effective software reuse repositories. ACM Transaction on
Software Engineering, 6(2), 111-140, 1997.

[Highsmith2001] Highsmith, J., Cockburn, A., Agile Software Development: The
Business of Innovation, Computer, vol. 34, no. 9, pp. 120-127,
Sept. 2001.

[HP2009] HP TouchSmart IQ770 PC datasheet, available at:
http://www.hp.com/hpinfo/newsroom/press_kits/2007/ces/ds_p
c_touchsmart.pdf, last accessed June 18, 2009.

[Huang2006] Huang, J., Just enough requirement traceability, Proceedings of
the 30th Annual International Computer Software and
Applications, Chicago, September 2006, pp. 41– 42.

[Jacobson1997] Jacobson, I., Griss, M., and Johnson, P., 1997, Software Reuse:
Architecture, Process and Organization for Business success,
Addison-Wesley.

[Jandourek1996] Jandourek, E., A model for platform development - HP's
software development strategy - Company Operations, Hewlett-
Packard Journal (1996), available at:
http://www.hpl.hp.com/hpjournal/96aug/aug96a6.pdf, last
accessed on March 2, 2011.

[Jandourek1996] Jandourek, E., A model for platform development - HP's
software development strategy - Company Operations, Hewlett-
Packard Journal (1996), available at:
http://www.hpl.hp.com/hpjournal/96aug/aug96a6.pdf, last
accessed on March 2, 2011.

[Jianhong2006] Jianhong, M., Runhua, T., Handling Variability in Mass
Customization of Software Family Product, Knowledge
Enterprise: Intelligent Strategies in Product Design,
Manufacturing, and Management (2006), 207, 996-1001.

[Jiao2007] Jiao, J., Simpson, T., and Siddique, Z., Product family design
and platform-based product development: a state-of-the-art
review, Journal of Intelligent Manufacturing (2007), 18(1), 5-
29.

http://findarticles.com/p/articles/mi_m0HPJ/
http://findarticles.com/p/articles/mi_m0HPJ/
http://www.hpl.hp.com/hpjournal/96aug/aug96a6.pdf

234

[Joyce1988] Joyce, E., Reusable software: passage to productivity,
Datamation, 34 (18), 97–102, 1988.

[Kakarontzas2008] Kakarontzas, G., Stamelos, I., and Katsaros, P.: Product line
variability with elastic components and test-driven
development. In: CIMCA ’08: Proceedings of the International
Conference on Computational Intelligence for Modelling
Control & Automation, IEEE Computer Society (2008) 146-
151.

[Kaner2003] Kaner, C., Cem Kaner on Scenario Testing: The Power of
‘What-If…’ and Nine Ways to Fuel Your Imagination, Better
Software, 5(5):16–22, 2003.

[Kang1990] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.,
Feature-Oriented Domain Analysis (FODA) Feasibility Study,
SEI Technical Report 1990.

[Kang1998] Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M.,
FORM: A feature-oriented reuse method with domain specific
reference architectures, Annals of Software Engineering, vol. 5,
pp. 143-168, 1998.

[Kerievsky2010] Kerievsky, J., Storytesting, http://industrialxp.org/
storytesting.html, accessed March 1, 2010.

[Kruchten2004] Kruchten, P., 2004, Going Over the Waterfall with the RUP,
available at:
http://www.ibm.com/developerworks/rational/library/4626.h

tml#N100AF

[Kruger2002] Kruger, C., Easing the Transition to Software Mass
Customization, in Proceedings of the 4th International
Workshop on Product Family Engineering, Germany, 2002.

[Kurmann2006] Kurmann, R., Agile SPL-SCM Agile Software Product Line
Configuration and Release Management. In: APLE ’06: 1st
International Workshop on Agile Product Line Engineering (In
conjunction with SPLC, 2006).

[Larman2003] Larman, C., Basili, V., Iterative and Incremental Development:
A Brief History, IEEE Software, 2003.

http://industrialxp.org/%20storytesting.html
http://industrialxp.org/%20storytesting.html
http://www.ibm.com/developerworks/rational/library/4626.html#N100AF
http://www.ibm.com/developerworks/rational/library/4626.html#N100AF

235

[Larman2009] Larman, C., Vodde, B., Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum,
Addison-Wesley, 2009.

[Lau2004] Lau, K., 2004, Component-based software development: case
studies, World Scientific Publishing.

[Leffingwell2007] Leffingwell, D., Scaling Software Agility: Best Practices for
Large Enterprises, Addison-Wesley Professional, 2007.

[Li2006] Li, Z., Lu, Myagmar, S., Zhou, Y., CP-Miner: finding copy-
paste and related bugs in large-scale software code. IEEE
Transactions on Software Engineering (2006), 32(3), 176-192.

[Linden2007] Linden, F., Schmid, K., Rommes, E., Software Product Lines in
Action: The Best Industrial Practice in Product Line
Engineering, Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2007).

[Lynex1998] Lynex, A., Layzell, P., Organisational considerations for
software reuse. Annals of Software Engineering (1998), 5, 105-
124.

[MacManus2007] MacManus, R., Facebook Grows Up - An Analysis of Today's
News, 2007, http://www.readwriteweb.com/archives/
facebook_grows_up.php, last accessed July 6, 2011.

[Marchetto2010] Marchetto, A., http://selab.fbk.eu/swat/slide/2_Fitnesse.ppt,
accessed March 10, 2010.

[Martin2002] Martin, R., Agile Software Development, Principles, Patterns
and Practices, Prentice Hall, 2002.

[McGrath1995]
McGrath, M., Product Strategy for High-Technology
Companies, IL: Irwin, 1995.

[McGregor2008] McGregor, J., Agile software product lines - a working session.
In: SPLC ’08: Proceedings of 12th International Software
Product Line Conference, IEEE Computer Society (2008) 364-
364.

[Melnik2004] Melnik, G., Read, K., and Maurer, F., Suitability of FIT User
Acceptance Tests for Specifying Functional Requirements:
Developer Perspective, Extreme Programming and Agile
Methods - XP/Agile Universe, 2004, pp. 638-663.

http://www.readwriteweb.com/archives/facebook_grows_up.php
http://www.readwriteweb.com/archives/facebook_grows_up.php
http://www.readwriteweb.com/archives/%20facebook_grows_up.php
http://www.readwriteweb.com/archives/%20facebook_grows_up.php

236

[Melnik2006] Melnik, G., Maurer, F., and Chiasson, M., "Executable
Acceptance Tests for Communicating Business Requirements:
Customer Perspective," Proc. Agile 2006 Conf., IEEE CS
Press, 2006, pp. 35–46.

[Melnik2007] Melnik, G., Jeffries, R., Test-Driven Development – The Art of
Fearless Programming, IEEE Software, 24(3): 24-30, 2007.

[Melnik2007b] Melnik, G., Empirical Analysis of Executable Acceptance Test
Driven Development, Ph.D. Thesis, University of Calgary,
Department of Computer Science, Aug 2007.

[Microsoft2011] Microsoft Surface, http://www.microsoft.com/surface, last
accessed July 6, 2011.

[Mili1995] Mili, H., Mili, F., and Mili, A., Reusing software: issues and
research directions. IEEE Transactions on Software
Engineering, 21(6), 1995, pp. 528–562.

[Mohagheghi2004] Mohagheghi, P., The Impact of Software Reuse and
Incremental Development on the Quality of Large Systems,
Doctoral Thesis, Department of Computer and Information
Science, Norwegian University of Science and Technology,
2004.

[Mohan2010] Mohan, K., Ramesh, B., and Sugumaran, V. (2010). Integrating
software product line engineering and agile development. IEEE
Software, 27(3), 48–55.

[Morisio2002] Morisio, M., and Torchiano, M., Definition and Classification
of COTS: A Proposal, In Proceedings of the First International
Conference on COTS-Based Software Systems, 165-175, 2002.

[Muffatto1999] Muffatto, M., Introducing a platform strategy in product
development. International Journal of Production Economics
(1999), 145-153.

[Navarrete2006] Navarrete, F., Botella, P., and Franch, X. (2006). An approach
to reconcile the agile and cmmi contexts in product line
development. In APLE ’06: Procceedings of the 1st
International Workshop on Agile Product Line Engineering in
conjunction with SPLC 2006, Baltimore, Maryland, USA.

http://ase.cpsc.ucalgary.ca/uploads/Publications/MelnikPhD.pdf
http://ase.cpsc.ucalgary.ca/uploads/Publications/MelnikPhD.pdf
http://www.microsoft.com/surface

237

[Noor2008] Noor, M., Rabiser, R., Grünbacher, P., Agile product line
planning: A collaborative approach and a case study, Journal of
Systems and Software, Volume 81, Issue 6, Agile Product Line
Engineering, June 2008, Pages 868-882.

[O’Brien1998] O'Brien, R, An Overview of the Methodological Approach of
Action Research, 1998, available at: http://www.web.net/
~robrien/papers/arfinal.html, last accessed on July 18, 2011.

[O'Leary2007] O'Leary, P., Babar, M., Thiel, S., and Richardson, I., Product
Derivation Process and Agile Approaches: Exploring the
Integration Potential, Proceedings of 2nd IFIP Central and East
European Conference on Software Engineering Techniques,
Poznań, Poland, 2007, pp. P. 166--171.

[O'Leary2010] O’Leary, P. McCaffery, F., Thiel, S., and Richardson, I. (2010).
An Agile process model for product derivation in software
product line engineering. Journal of Software Maintenance and
Evolution: Research and Practice. John Wiley & Sons, Ltd.

[Paige2006] Paige, R., Xiaochen, W., Stephenson, Z., and Phillip J.,
“Towards an Agile Process for Building Software Product
Lines”, LNCS: XP 2006, pp. 198 – 199.

[Park2008] Park, S.S., Maurer, F.: The benefits and challenges of
executable acceptance testing. In: APOS 2008: Proceedings of
the 2008 international workshop on Scrutinizing agile practices
or shoot-out at the agile corral, pp. 19–22 (2008).

[Parnas1976] Parnas, D., On the Design and Development of Program
Families, IEEE Trans. Software Engineering, 2(1), 1-9, 1976.

[Parra2009] Parra, C., Blanc, X., Duchien, L.: Context Awareness for
Dynamic Service-Oriented Product Lines. Proceedings of 13th
International Software Product Line Conference (SPLC), San
Francisco, CA, USA (2009).

[Pashov2004] Pashov, I., Feature Based Method for Supporting Architecture
Refactoring and Maintenance of Long-Life Software Systems.
PhD Thesis, Technical University Ilmenau, 2004.

[Perry2000] Perry, W. Effective Methods for Software Testing, 2/e, John
Wiley & Sons: New York, NY, 2000.

238

[PLD2011] PLD, https://fitclipse.svn.sourceforge.net/svnroot/fitclipse
/trunk/ProductLineDesigner, last accessed July 6, 2011.

[Pohl2005] Pohl, K., Böckle, G., and Linden, F., Software Product Line
Engineering: Foundations, Principles and Techniques, Springer,
Germany, 2005.

[Prieto-Díaz1996] Prieto-Díaz, R., Reuse as a New Paradigm for Software
Development, In Proceedings of the International Workshop on
Systematic Reuse, London, 1996.

[Pure::Systems2010] Pure::Systems, http://www.puresystems.com/
DOORS.102+M54a708de802.0.html, accessed March 1, 2010.

[Raatikainen2008] Raatikainen, M., Rautiainen, K., Myllärniemi, V., Männistö, T.:
Integrating product family modeling with development
management in agile methods. In: SDG ’08: Proceedings of the
1st international workshop on Software Development
Governance, (2008) 17-20.

[Ramesh2001] Ramesh, B., Jarke, M., Toward Reference Models for
Requirements Traceability. IEEE Transactions on Software
Engineering, vol. 27, Issue 1 (January 2001) pp. 58 – 93.

[Reppert2004] Reppert, T., “Don’t Just Break Software, Make Software: How
Story-Test-Driven-Development is Changing the Way QA,
Customers, and Developers Work”, Better Software, 6(6): 18–
23, 2004.

[Riebisch2003] Riebisch, M., Towards a more precise definition of feature
models. Position Paper, in: M. Riebisch, J.O. Coplien, D,
Streitferdt (Eds.), Modelling Variability for Object-Oriented
Product Lines, 2003.

[Riebisch2004] Riebisch, M., Supporting Evolutionary Development by
Feature Models and Traceability Links. Proceedings of the 11th
IEEE international Conference and Workshop on Engineering
of Computer-Based Systems (May 24 - 27, 2004). ECBS. IEEE
Computer Society, Washington, DC, 370.

[Riegger2010] Riegger, F., Test-based Feature Management for Agile Product
Lines, Diploma Thesis (conducted at ASE Group), HS
Mannheim, Feb 2010.

https://fitclipse.svn.sourceforge.net/svnroot/fitclipse%20/trunk/ProductLineDesigner
https://fitclipse.svn.sourceforge.net/svnroot/fitclipse%20/trunk/ProductLineDesigner
http://www.puresystems.com/%20DOORS.102+M54a708de802.0.html
http://www.puresystems.com/%20DOORS.102+M54a708de802.0.html

239

[Romberg2007] Romberg, T., Software platforms – How to win the peace, The
40th Annual Hawaii International Conference on System
Sciences (2007).

[Roschelle1996] Roschelle, J., and Kaput, J., Educational software architecture
and systemic impact: The promise of component software,
Journal of Educational Computing Research, 14(3), 217-228,
1996.

[Royce1970] Royce, W., "Managing the Development of Large Software
System." Proceedings of IEEE WESCON (August 1970), pp.1-
9.

[Salbinger2010] Salbinger, S., Product Line Designer – A Refactoring Tool for
Extreme Product Lines, 2010, available at:
http://ase.cpsc.ucalgary.ca/uploads/Publications/PLD.pdf

[Schmid2002] Schmid, K., Verlage, M., “The Economic Impact of Product
Line Adoption and Evolution,” IEEE Software, vol. 19, no. 4,
pp. 50-57, July/August, 2002.

[Schwaber2004] Schwaber, K., Agile Project Management with Scrum,
Microsoft Press - Redmond, 2004.

[Shalloway2009] Shalloway, A., Beaver, G., and Trott, J., Lean-agile software
development: achieving enterprise agility. Addison-Wesley,
Upper Saddle River, NJ, 2009.

[Sharp2000] Sharp, D., Donohoe, P., Reducing Avionics Software Cost
Through Component Based Product Line Development,"
Proceedings SPLC1, Kluwer Academic Publishers, 2000.

[Sharp2000b] Sharp, D., “Containing and Facilitating Change Via Object
Oriented Tailoring Techniques,” to appear in Proceedings of
The First Software Product Line Conference Denver, Colorado,
August, 2000.

[Sillito2007] Sillito, J., and Wynn, E., The Social Context of Software
Maintenance, In Proceedings of the International Conference
on Software Maintenance, 2007.

[SMART2009] SMART Table datasheet, available at:
www2.smarttech.com/st/en-US/Products/SMART+Table, last
accessed June 12, 2009.

240

[SMART2011] SMART Table,
http://smarttech.com/ca/Solutions/Education+Solutions/-
Products+for+education/Complementary+hardware+products/S
MART+Table, last accessed July 6, 2011.

[Sommerville1985] Sommerville, I., Software Engineering, Addison-Wesley, 1985.

[Strauss1997] Strauss, A., Corbin, J., Grounded Theory in Practice, London,
1997.

[Sundgren1998] Sundgren, N., Product Platform Development, Managerial
Issues in Manufacturing Firms (1998), Chalmers University of
Technology.

[Susman1983] Susman, G., Action Research: A Sociotechnical Systems
Perspective, Ed. G. Morgan. London: Sage Publications, 1983,
pp. 95-113.

[Taborda2004] Taborda, L., Generalized Release Planning for Product-Line
Architecture. In: Proceedings of Software Product Line
Conference. Volume 3054 of LNCS, Springer-Verlag (2004)
238-254.

[Thao2008] Thao, C., Munson, E., and Nguyen, T., Software Configuration
Management for Product Derivation in Software Product
Families, the 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems,
2008, pp. 265-274.

[Tracz1987] Tracz, W., 1987. Software reuse: motivators and inhibitors,
Proceedings of the Thirty Second IEEE Computer Society
International Conference, 358–363, 1987.

[Trinidad2008] Trinidad, P., Benavides, D., Durán A. Ruiz-Cortés, A., and
Toro, M., Automated error analysis for the agilization of
feature modeling. Journal of Systems and Software, 81(6):883–
896, 2008.

[Tseng2001] Tseng, M., Jiao, J., 2001, Mass Customization, in: Handbook of
Industrial Engineering, Technology and Operation
Management (3rd ed.). New York, NY: Wiley. ISBN 0-471-
33057-4.

241

[Tun2009] Tun, T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.,
2009, Relating Requirements and Feature Configurations: A
Systematic Approach, International Software Product Line
Conference (SPLC 2009).

[vanGurp2001] van Gurp, J., Bosch, J., Svahnberg, M., On the Notion of
Variability in Software Product Lines, The Working IEEE/IFIP
Conference on Software Architecture (2001), 45–54.

[Vartiainen2002] Vartiainen, P., On the Principles of Comparative Evaluation,
Evaluation, July 2002, vol. 8, no. 3, pp. 359-371.

[VersionOne2011] VersionOne, http://www.versionone.com/Resources/
FeatureEstimation.asp, last accessed July 6, 2011.

[Whitworth2007] Whitworth, E., Biddle, R., The Social Nature of Agile Teams,
Agile 2007, pp.26-36.

http://evi.sagepub.com/search?author1=Pirkko+Vartiainen&sortspec=date&submit=Submit

242

APPENDIX A. ETHICS BOARD CERTIFICATE

243

244

245

APPENDIX B. CO-AUTHOR PERMISSIONS

246

247

APPENDIX C. EXPLORATORY STUDY

Setup

Step 1. Pre-questionnaire

Pre-Questionnaire: Please provide the following information.

1. Program of study:
2. Area of research (if any):
3. How many years did you spend in industry?
4. What area(s) did you work on in industry? (ignore if your answer to 3 was “0”)
5. How do you describe your background in Software Engineering?

Expert/Professional Advanced Basic Novice I know nothing

6. How familiar are you with Agile Software Engineering (ASE)?

I have been
heavily
involved in
ASE research
or practice

I practiced ASE
once or twice

I have a good
theoretical
understanding of
ASE but never
used it

I have a general
idea of what
ASE is about

What is that?

7. How familiar are you with Acceptance Testing (AT)?

I have been
heavily
involved in AT
research or
practice

I used it once
or twice

I have a good
theoretical
understanding of
AT but never
used it

I have a general
idea of what
AT is about

What is that?

8. How familiar are you with Software Product Line Engineering (SPLE)?

I have been
heavily
involved in
SPLE research
or practice

I practiced
SPLE once or
twice

I have a good
theoretical
understanding of
SPLE but never
practiced it

I have a general
idea of what
SPLE is about

What is that?

Step 2. Tutorial

248

The objective of this tutorial is to provide you with the background required to proceed
with this experiment. You can refer back to this tutorial at any point during the course of
the experiment. Please do ask questions about this tutorial should you need any further
clarification. Traditionally in software engineering, the requirements of a software system
are described in a textual format like this one:

In Agile Software Development, user requirements are usually NOT documented in the
style shown above. A rather more structured format is used to describe features. Take this
as an example:

Default Table A: Manual addition of a course
Check User 120356 Is registered for CPSC433 False
Check User 120356 Is student True
Check User 120356 Has taken CPSC433 False
Check User 120356 Has taken CPSC333 True
Add course CPSC433 For user 120356
Check User 120356 Is registered for CPSC433 True

Optional Table B: Scheduled addition of a course
Enter User 120356 Should be registered for CPSC433 on 23-11-2008
Check User 120356 Is student True
Check User 120356 Has taken CPSC433 False
Check User 120356 Has taken CPSC333 True
Enter Date 22-11-2008
Check User 120356 Is registered for CPSC433 False
Enter Date 23-11-2008
Check User 120356 Is registered for CPSC433 True

Default Table C: Drop a course given classes have not started
Check User 120356 Is registered for CPSC433 True
Check Start date of classes in course CPSC43

3
Is > Today True

Drop course CPSC433 For user 120356
Check User 120356 Is registered for CPSC433 False

Suppose that the two test tables shown above represent the UofC requirements of a
certain feature in the system called “Managing courses.” In this experiment, you will be
given similar scenarios and asked to:

1.1 The system shall allow the user to add a course, given that:
1.1.1 The user has the privilege to do so (i.e. the user is a student).
1.1.2 The student has the pre-requisites for the course to be added.
1.1.3 The student is not already enrolled in the course
1.1.4 The student has not previously taken the course
1.2 The system shall allow the user to schedule an automatic addition of a course on a specific

day given that all requirements in 1.1 are met.
1.3 The system shall allow the user to drop a course he is currently enrolled in as long as classes

in the course have not yet started.

249

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.
This question can be answered by looking at what test tables a given customer has
specified.
In this example, we have three tables: “Table A”, “Table B” and “Table C”.
Therefore, we draw:

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.
This question is asking you to draw the feature as it will be shown to the next
customer of the same system. To answer this question, we should consider
requests by all previous customers of the feature. For now, this is our first
customer; this is why this drawing should look similar to the previous one.
However, notice the dotted line used to convey that Table B is “optional”
meaning that it can be removed without substantially affecting the value of the
feature at hand. You can find out whether a test table is “optional” or “default”
by looking at the top left corner of the table.

Managing
courses

Table A

Table B

Table C

Managing
courses

Table A

Table B

Table C

250

Now say that UofA wants the same feature as previously shown, but with the following
changes:

Don’t select Table B: because it contradicts the bylaws of the registrar’s office.
Add Table D:

Default Table D: Drop a course even if classes have started, but with a penalty of a W grade
Check User 120356 Is registered for CPSC433 True
Drop course CPSC433 For user 120356
Check Grade of CPSC43

3
For user 120356 W True

Check User 120356 Is registered for CPSC433 False

Remove Table C: as it cannot coexist with Table D.

Given the new customer request, let’s answer the same two questions again.

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.
Once again, remember to include test tables requested by all customers. Again,
the objective of this diagram is to show your future customers what you can offer
in a certain feature.
We start with the diagram we built in the previous scenario. Then we add to that
any newly added tables. In this case, we add “Table D” as a “default”
component. Other components should not change. However, to denote that Table
D and Table C cannot coexist, we impose a [min..max] constraints of [1..1]. This
means one and only one of these two tables has to exist in the “Managing
courses” feature.

Managing
courses

Table A

Table D

Managing
courses

Table A

Table B

Table C

Table D

[1..1]

251

Suppose UofS wants the same feature with the following customization request:

Don’t select Table B
Select Table D
Add Table E:

Optional Table E: Trade courses between students
Enter User 120356 Allows trade of CPSC433 YES
Enter User 235235 Allows trade of CPSC410 YES
Trade CPSC433 by user 120356 With CPSC410 by user 235235
Check User 120356 Is registered for CPSC433 False
Check User 120356 Is registered for CPSC410 True
Check User 235235 Is registered for CPSC410 False
Check User 235235 Is registered for CPSC433 True

Try to answer these questions and check your answers with the experimenter:

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

Step 3. Exercises (three sections)

Section I

Part 1

In a feature called “Door Access Control”, the customer requests that an authentication
mechanism control entry to the house. This is how the initial test page looked like:

Assume: resident name: John Smith PIN: 12345

Default Table A. Authentication through keypad input
Enter Resident name John Smith PIN 12345
Check Door is

unlocked
True

Optiona
l

Table B. Input locked for 2 minutes after two failed
attempts

Enter Resident name John Smith PIN 11111
Check Door is unlocked False
Enter Resident name John Smith PIN 22222
Check Door is unlocked False
Check Input locked True

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

It is often sufficient to read the
first row of the table to have an
idea of what the table is testing
(this is called user story).

252

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

Part 2

A new customer requests the “Door Access Control” feature, but requires the following
changes:

Don’t select Table B: Customer does not want to restrict number of attempts.
Add Table C

Optional Table C. A successful attempt after a failed one

should prompt the user to enter his info again
Enter Resident name John Smith PIN 11111
Check Door is unlocked False
Enter Resident name John Smith PIN 12345
Check Door is unlocked False
Check User prompted to

enter info again
True

Enter Resident name John Smith PIN 12345
Check Door is unlocked True

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

Part 3

A new customer requests to have the “Door Access Control” feature, but requires the
following changes:

Select Table C
Add Table D

Optiona
l

Table D. Owner notified after three failed attempts

Enter Resident name John Smith PIN 11111
Check Door is unlocked False
Enter Resident name John Smith PIN 22222
Check Door is unlocked False
Enter Resident name John Smith PIN 33333
Check Door is unlocked False
Check Owner notified True

Don’t select Table B: since it cannot coexist with Table D.

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

253

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

Section II

Part 1

A customer of the Intelligent Home system would like to have a security system with a
new feature “Open Window Detection.” According to home security standards in
Canada, at least two detection mechanisms need to be supported in a burglary detection
system. The customer describes his request as:

Default Table E. Notify owner if a window is opened when nobody at home.
Enter No of people currently at home 1
Check Window number 3 Is closed True
Force value of window sensor 3 OPEN
Check Window number 3 Is closed False
Check Alarm is off False

Force value of window sensor 3 CLOSED
Enter No of people currently at home 0
Check Window number 3 Is closed True
Force value of window sensor 3 OPEN
Check Window number 3 Is closed False
Check Owner notified True

Default Table F. Detect if a window is opened between 12:00 am & 6:00 am.
Enter System time 12:00 am
Check Window number 3 Is closed True
Force value of window sensor 3 OPEN
Check Window number 3 Is closed False
Check Alarm is off True

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

Part 2

A new customer would like to have the “Open Window Detection” feature with the
following modifications:

Add Table G:

Default Table G. Alarm goes off if a window is opened between 12:00 am till

6:00 am only if motion sensor in the backyard has been activated.
Enter System time 12:00 am
Check Window number 3 Is closed True
Force value of window sensor 3 OPEN
Force value of motion sensor 3m ACTIVE

254

Check Window number 3 Is closed False
Check Alarm is off True

Remove Table F: as it cannot coexist with Table G
Add Table H:

Optional Table H. If more than one window is broken into, police should be notified, and camera

surveillance should be activated.
Check Window number 2 Is closed True
Check Window number 3 Is closed True
Force value of window sensor 3 OPEN
Force value of window sensor 2 OPEN
Check Window number 3 Is closed False
Check Alarm is off True
Check Window number 2 Is closed False
Check Police notified True

1. Draw a feature tree representing the specific instance of this feature as requested
by the customer.

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

Part 3

A new customer would like to have the “Open Window Detection” feature. He does not
know how to make a choice from the existing feature, but he provides the following
information:

- He is not willing to pay for motion sensors.
- He does not have surveillance cameras.
- He would like to add Table I:

Optional Table I. Police is notified only if at least two windows are broken into and alarm is not
deactivated within 5 minutes.

Enter System time 1:00 am
Check Window number 2 Is closed True
Check Window number 3 Is closed True
Force value of window sensor 3 OPEN
Force value of window sensor 2 OPEN
Check Window number 3 Is closed False
Check Alarm is off True
Check Window number 2 Is closed False
Enter System time 1:02 am
Check Alarm is off True
Check Police notified False
Enter System time 1:06 am
Check Alarm is off True
Check Police notified True

1. Draw a feature tree representing the specific instance of this feature as requested

by the customer.

255

2. Draw a feature tree representing the current state of the feature in the product line
context. If required, add any [min..max] constraints.

3. Draw a feature tree representing both the “Door Access Control” and “Open
Window Detection” features in a product line context. Both features belong to a
module (feature at a higher level) called “Security System.” Bear in mind that
when a customer purchases the “Security System” module, he should choose at
least one of the two features but can also select both.

Section III

Say, the result of Section I and Section II was the following feature tree:

1. Draw the configuration that yields the minimum cost for the customer assuming
that he has to pay an extra amount of money for each added feature? There might
be more than one. Any answer will do.

2. Draw the configuration that yields the maximum value to the customer assuming
that he is paying the same amount of money for any given configuration? There
might be more than one. Any answer will do.

Step 4. Post-questionnaire

Post-Questionnaire: In this experiment you have used a procedure based on a new model
to manage variability in software product lines. Please rank each of the following
statements on the given scale:

Security
System

door access
control

Table A

Table C

Table B

Table D

open window
detection

Table E

Table H

Table I

Table F

Table G

[1..1]

[0..1]

[1..2]

[0..1]

256

1. I found the procedure realistic and practical: I think the procedure can deal with
real-life problems of different scales, and it does not make unrealistic
assumptions.

Strongly agree Agree Neutral Disagree Strongly disagree

2. I found the procedure easy to comprehend: It does not take so much time and
mental effort to understand how to apply the procedure on a given problem.

Strongly agree Agree Neutral Disagree Strongly disagree

3. I found the procedure easy to apply: when working with the procedure, it was
easy to construct feature trees and understand relations between the requested
changes as well as the [min..max] constraints.

Strongly agree Agree Neutral Disagree Strongly disagree

4. I found the procedure flexible: when executing the procedure, I could easily
handle different scenarios without finding myself stuck with the semantics or/and
notations of the procedure. The procedure was flexible enough to accommodate
change requests of different complexities.

Strongly agree Agree Neutral Disagree Strongly disagree

5. I found it easy to work with acceptance tests: As a cohesive representation of
the features in a software system, it was easy to understand and work with
acceptance tests to produce feature trees.

Strongly agree Agree Neutral Disagree Strongly disagree

6. I found it easy to read feature trees: It was reasonably easy to understand what a
feature tree tells about possible variations in a given feature including: the
breakdown of the feature into smaller components (the hierarchical structure) and
the [min..max] constraints.

Strongly agree Agree Neutral Disagree Strongly disagree

7. I found it easy to use feature trees: to produce different instances of the same
feature based on customer requests.

Strongly agree Agree Neutral Disagree Strongly disagree

Please add any comments:
--
--

257

258

Detailed Results

Table 13 – Participants’ background information

ID Background info
Line 1 - Department: Specialization
Line 2 - Experience in Industry
Line 3 - Level of involvement in the following topics:
Software Engineering: Agile Methods: Acceptance Testing: Product Line
Engineering (where 1-> no background at all, and 5 -> heavily involved)

1 ECE: SE
Worked 1 year in Business Process Analysis
4:3:2:2

2 CS: SE
No experience
4:5:4:2

3 CS:SE
2.5 years developing web applications
4:4:4:2

4 EE: Wireless Comm.
No experience
3:1:1:1

5 CS:DB
2 years in network admin and software development
3:2:3:1

6 CS:SE
No experience
3:3:4:2

7 CS:SE
No experience
3:2:2:2

8 CS:SE
1 year in SE
4:2:3:2

9 CS:SE
No experience
4:5:5:2

10 ECE:SE
1 year in SE
4:2:4:2

11 GE: LIS
2 years in networking and programming
2:1:1:1

259

ID Background info
Line 1 - Department: Specialization
Line 2 - Experience in Industry
Line 3 - Level of involvement in the following topics:
Software Engineering: Agile Methods: Acceptance Testing: Product Line
Engineering (where 1-> no background at all, and 5 -> heavily involved)

12 CS:BI
No Experience
3:2:1:2

13 CE:IP
1-2 years in software development
3:3:2:3

14 CS:SE
3 years in Web applications and plugin development for VS
4:4:4:2

15 EE:BES
3 years in firmware
3:5:4:1

16 CS:DM
2 to 3 years in networking and database
3:2:2:1

260

Table 14 - Time and Scores

 Time Scores
ID TUT Ex1 Ex2 Ex3 Total Ex1 Ex2 Ex3

1 12 4 10 5 31 95 86 100
2 14 5 10 2 31 80 93 100
3 14 8 10 2 34 70 89 100
4 20 12 30 5 67 100 86 100
5 19 6 18 4 47 95 64 100
6 9 6 13 4 32 70 86 100
7 8 6 6 2 22 100 100 100
8 8 5 13 3 29 85 96 100
9 9 9 15 3 36 95 96 100

10 15 12 18 3 48 70 96 100
11 17 9 23 8 57 95 96 100
12 15 8 13 6 42 95 71 100
13 9 9 17 5 40 100 100 100
14 21 12 16 6 55 85 96 100
15 12 6 15 2 35 85 89 100
16 14 13 25 7 59 95 86 *

Min 8 4 6 2 22 70 64 100
Max 21 13 30 8 67 100 100 100
AVG 13.5 8.1 15.8 4.2 41.6 88.4 89.5 100
STD 4.3 2.9 6.2 1.9 15.2 10.9 10.0 0.0

Table 15 - Questionnaire results

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7
1 3 4 3 3 3 4 3
2 4 5 5 5 5 5 5
3 4 5 3 4 4 4 5
4 5 5 5 5 5 5 5
5 4 5 3 3 2 3 4
6 4 5 5 4 3 4 5
7 4 5 5 5 5 4 4
8 4 4 4 4 3 4 4
9 4 5 5 5 5 4 5

10 4 3 4 4 3 3 3
11 4 5 4 4 3 5 4
12 4 4 4 4 3 5 5
13 4 4 5 4 3 5 4

261

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7
14 5 5 4 4 5 5 4
15 4 4 4 3 4 4 4
16 5 4 4 5 5 5 5

Comments & Observations

ID Participant’s comments Observations made by investigator
1 - answered post-questionnaire based on

the feeling that I did not do well.
- ATs didn’t seem to be very relevant in
the experiment.

- Didn’t know how to use 0 as min for
optional features.
- didn't include one feature
- Didn’t realize the implicit constraint
on H & I

2 - the model is easy to handle problems
with not many conflicts, but I am not
sure whether it would be still as easy
when many constraints exist.

- participant didn’t deduce the [0..1]
constraint on H and I.
- participant chose to group most of the
optional features using [min..max]
constraints.

3 - I think dealing with constraints is
tricky and might cause confusion.

- participant assumed more constraints
than necessary.
- participant did not know how to
impose constraints on higher level
components (Sec III-part 3 – 3rd
question).

4 - participant missed implied constraints
on H & I.
He confused a default feature with an
optional one.

5 - Does this work well with more
complex structures? For example, say
you have a table that cannot coexist with
another, but is needed with another
table.

- Didn’t know how to use 0 as min for
optional features.
- participant missed the addition of one
feature. Also missed implied constraints
on H & I.

6 - Scalability. This may or may not
already be accounted for but after
features/tables are always allocated
together, larger trees may be useful to
represent common sub trees as a single
entity to reduce clutter.

- participant assumed more constraints
than necessary.
- participant missed implied constraints
on H & I.

262

ID Participant’s comments Observations made by investigator
7 - Feature trees can get very complex in a

larger system.
- participant kept asking about what is to
be grouped and what is not. That is,
what defines a meaningful grouping
constrain and what does not.

8 - The feature tree do not encode other
constraints that might play a role within
the feature. Also, I wonder if this would
scale well for large systems.

- participant constrained features
unnecessarily.
- interestingly, participant used [1..1]
instead of [0..1] rationalizing that the
optionality is implied in the dotted line
and thus [1..1] will do.
- participant did not know how to
specify the maximum for the higher
level grouping.

9 - I found dealing with AT very easy.

- participant used [1..1] instead of [0..1]
rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.

10 - There is nothing mentioned in the tree
about the priority of excuting tasks or
procedures.

- participant ignored an explicit
constraint between optional
components.
- participant used [1..1] instead of [0..1]
rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.

11 - participant used [1..1] instead of [0..1]
rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.
- participant did not know how to
specify the maximum for the higher
level grouping.

12 - How will you deal with features of
different weights. I.e. Both tables a and
b are default, but the customer prefers a.

- participant used [1..1] instead of [0..1]
rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.
- participant mistook a default
component with an optional one.
- Didn’t realize the implicit constraint
on H & I

13

263

ID Participant’s comments Observations made by investigator
14 - participant used [1..1] instead of [0..1]

rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.
- participant constrained features
unnecessarily.

15 - participant used [1..1] instead of [0..1]
rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.
- participant constrained features
unnecessarily [twice].

16 - participant used [1..1] instead of [0..1]
rationalizing that the optionality is
implied in the dotted line and thus [1..1]
will do.
- participant could not interpret explicit
requirements.
- Didn’t realize the implicit constraint
on H & I
- didn't know how to apply [min..max]
constraints on higher level abstraction.
- didn't understand section 3 of the
experiment.

264

Expected Model

The final model according to the intended interpretation

